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TILINGS ASSOCIATED WITH NON-PISOT MATRICES

by Maki FURUKADO,
Shunji ITO & E. Arthur ROBINSON, Jr

Abstract. — Suppose A ∈ Gld(Z) has a 2-dimensional expanding subspace
Eu, satisfies a regularity condition, called “good star”, and has A∗ > 0, where A∗

is an oriented compound of A. A morphism θ of the free group on {1, 2, . . . , d}
is called a non-abelianization of A if it has structure matrix A. We show that
there is a tiling substitution Θ whose “boundary substitution” θ = ∂Θ is a non-
abelianization of A. Such a tiling substitution Θ leads to a self-affine tiling of
Eu ∼ R2 with Au := A|Eu ∈ GL2(R) as its expansion. In the last section we find
conditions on A so that A∗ has no negative entries.

Résumé. — Supposons que A ∈ Gld(Z) ait un sous-espace d’extension bidimen-
sionnel Eu, satisfaisant une condition de régularité, appelée “bonne étoile”, et telle
que A∗ > 0, où A∗ est un composé orienté. Un morphisme θ du groupe libre sur
{1, 2, . . . , d} est une non-abélianisation de A si sa matrice de structure est A. Nous
prouvons qu’il existe une substitution de pavage Θ dont la substitution de frontière
θ = ∂Θ est une non-abélianisation de A. Une telle substitution de pavage θ donne
un pavage “auto-affine” de Eu ∼ R2 avec pour expansion Au := A|Eu ∈ GL2(R).
Dans la dernière section nous trouvons des conditions sur A de sorte que A∗ n’ait
pas de coefficients négatifs.

1. Introduction

A tiling substitution Θ is a mapping from tiles in R2 to finite tiling
patches that has enough regularity to be extended to a mapping from
tiling patches to tiling patches. This permits the iteration of Θ, starting
with a single tile, or a small tiling patch, to obtain larger tiling patches, and
ultimately tilings of the plane. A tiling substitution Θ induces a mapping
θ = ∂Θ on tile boundaries. Assuming there are finitely many polygonal
prototiles, having d different boundary segments, this boundary map θ can

Keywords: Tilings, substitutions, non-Pisot property, Binet-Cauchy theorem.
Math. classification: 37B50, 52C20, 11R06, 15A15.
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be viewed as a 1-dimensional substitution on B := {1, 2, . . . , d}. The struc-
ture matrix of θ is the matrix A whose i, jth entry counts the number of
times the edge j occurs in the substitution θ(i). Frequently, this matrix A is
hyperbolic, and has a 2-dimensional expanding subspace. This corresponds
to how Θ “expands” R2. Iterating Θ yields an uncountable collection XΘ

of tilings of R2, which can be regarded as a compact metric space (see e.g.,
[16]), and on which Θ is a “hyperbolic” self homeomorphism. In the best
case, the action of Θ on XΘ is semi-conjugate to the action of A on Td (as
a toral automorphism). In fact, the tilings z ∈ XΘ are closely related to a
Markov partition for A on Td (see [12], [10]).

In this paper we seek to reverse the process described above. Starting
with a hyperbolic matrix A ∈ GLd(Z) having a 2-dimensional expanding
subspace, we want: (1) to find a 1-dimensional substitution θ, or more
generally a free group endomorphism θ, that has A as its structure matrix,
and (2) find a tiling substitution Θ with ∂Θ = θ. As it turns out, not
every A works, at least not for the method that we describe here. But we
find a sufficient condition for A to work, namely that a certain “oriented
compound” of A, denoted A∗, satisfies A∗ > 0 (we also give a sufficient
condition on A for A∗ > 0). Then, given a matrix A with A∗ > 0, we
construct what we call a properly ordered endomorphism θ, which has A

as its structure matrix. Finally, we show how to use such a θ to construct
a tiling substitution Θ with ∂Θ = θ.

The idea of starting with a matrix, constructing a corresponding substi-
tution, and using it to define geometric objects first appears in G. Rauzy
[15], where the “Rauzy fractal” is introduced (a nice update on this theory
appears in [3], highlighting its connections to number theory, dynamics and
fractal geometry). The idea of using A and a 1-dimensional substitution to
construct a tiling substitution appears many works by P. Arnoux, S. Ito
and their co-workers (see e.g., [12], [4], [6], and [7]). An approach related
to the one described here appears in [10].

It should be remarked, however, that all of the work mentioned above
assumes some form of the Pisot condition. Recall that a Pisot number
(or PV number) is real algebraic integer λ > 1 whose conjugates λ′ satisfy
|λ′| < 1. The companion matrix B for a Pisot number λ is a d×d hyperbolic
integer matrix with a 1-dimensional expanding subspace and contracting
subspace of dimension d − 1. It is this codimension-1 hyperbolicity that
is the crux of the Pisot condition. The importance of this condition for
most approaches to tiling substitutions cannot be overstated. However, in
this paper we do not need the Pisot condition. We also eliminate another

ANNALES DE L’INSTITUT FOURIER



TILINGS 2393

common assumption: that A > 0. A program similar to ours, (in particular,
also without the Pisot assumption) appears in the dissertation [13] of R.
Kenyon, but with few details. For other approaches to the non-Pisot case,
see [11], [10] [8] and [9].

The third author wishes to thank Tsuda College, Japan, where he carried
out much of his work on this paper as a frequent visitor. Thanks also to
the referee for many helpful suggestions.

2. Linear theory

2.1. The non-Pisot property

Let A ∈ Gld(Z) have eigenvalues λ1, λ2, . . . , λd that satisfy

(2.1) |λ1| > |λ2| > 1 > |λ3| > · · · > |λd| > 0.

In particular, A is nonsingular and hyperbolic and has a 2-dimensional
expanding subspace, which we denote Eu. Let Es be the contracting sub-
space, which has dimension d− 2, and assume d− 2 > 1.

We say A satisfies a Pisot condition if d−2 = 1 (i.e., Eu has codimension-
1). A matrix A satisfying (2.1) is called non-Pisot of order n if n = d− 2 >

1. The main innovation in this paper is that we do not need to assume
the Pisot condition. In particular, our examples typically have d = 4 and
n = d − 2 = 2. However, we do not need to exclude the Pisot condition
either.

2.2. The good star property

Let v1,v2 be an ordered basis for Eu (for example, we could take v1 and
v2 to be eigenvectors). We call a matrix P ∈ R2×d a “projection” to Eu if

(2.2) Pv1 = e1 and Pv2 = e2.

It will often be convenient to identify Eu with its P -image, which we
think of as the plane R2. If P ′ is another projection, corresponding to a
different basis for Eu, then

(2.3) P ′ = MP for M ∈ Gl2(R).

Note that a projection P is onto R2 ∼ Eu and transverse to Es. By appro-
priate choice of basis it may be made orthogonal to Eu or parallel to Es.

TOME 56 (2006), FASCICULE 7
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Let us write P = (p1,p2, . . . ,pd) in terms of its columns. Then Pej = pj .
In other words, the columns pj are projections of ej to R2. When we
draw these vectors in R2, we refer to the picture as a star of vectors (see
Figure 2.1).

Definition 2.1. — We call P = (p1,p2, . . . ,pd) a good star of vectors
if

(2.4) pi = ωpj for some real ω 6= 0 implies i = j.

In other words, the vectors pi are pairwise non-parallel. We say a ma-
trix A satisfying (2.1) has the good star property if some projection P =
(p1,p2, . . . ,pd) to Eu is a good star of vectors.

By (2.3), if (2.4) holds for some projection P , then it holds for any
projection. Hence the good star property depends only on A.

Definition 2.2. — Let A satisfy (2.1) and (2.4), and let P be a pro-
jection to Eu. Define Au ∈ R2×2 be the matrix conjugate to A|Eu via P .
That is,

(2.5) Au := PA(v1,v2).

It is easy to see that Au has eigenvalues λ1, λ2.

2.3. The compound

Let B ∈ Cp×q (the set of p× q complex matrices), with p, q > n. Define
the nth compound of B to be the matrix Cn(B) ∈ C(p

n)×(p
n) whose entries

are the n× n minors of B (see [2]). In this paper, n = 2. We index C2(B)
by pairs i ∧ j, k ∧ `, where i < j and k < `, in lexicographic order.

Theorem 2.3 (The Binet-Cauchy Theorem, see [2]). — If B = B1B2

then Cn(B) = Cn(B1)Cn(B2). If B is non-singular then Cn(B−1) =
Cn(B)−1.

Let P ∈ R2×d be the projection for a matrix A satisfying (2.1) and (2.4).
The compound C2(P ) ∈ R1×(d

2) has entries

(2.6) pi∧j := det(pi,pj) = sin(∠pipj) 6= 0,

where the last inequality follows ∠pipj ∈ (−π, 0) ∪ (0, π) by (2.4).

ANNALES DE L’INSTITUT FOURIER
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For p 6= 0, let sgn(p) = p/|p|. For a vector a ∈ Cn, let diag(a) denote the
n×n matrix with the entries of a along the diagonal, and zeros everywhere
else. Define
(2.7)
S(A) = diag

(
(sgn(p1∧2), sgn(p1∧3), . . . , sgn(p(d−1)∧d)

)
∈ {−1, 0, 1}(

d
2)×(d

2).

The Binet-Cauchy Theorem and (2.3) imply that S(A) is well defined up
to a change of sign. Define

(2.8) A∗ = S(A)C2(A)S(A).

This is the matrix with entries ai∧j,k∧` sgn(pi∧j)sgn(pk∧`), where ai∧j,k∧`

are the entries of C2(A). We call A∗ the oriented compound of A.
From now on, in addition to (2.1) and (2.4), we will assume:

(2.9) A∗ > 0,

i.e., A∗ has no negative entries. It is easy to see that this does not depend
on the choice of the basis for Eu.

2.4. Example: The Ammann matrix

Consider the matrix

(2.10) A =


−1 1 0 −1

1 −1 −1 0
0 −1 −1 −1

−1 0 −1 −1

 ,

which is related to the tiling sometimes called the Ammann-Beenker tiling
(see [17], [11]). Note that A is symmetric and has characteristic polynomial
p(x) = (x2 + 2x − 1)2. The eigenvalues are λ1 = λ2 = −1 −

√
2 and

λ3 = λ4 =
√

2− 1, so A satisfies (2.1).
Let

Q =
(
q1,q2,q3,q4

)
=


√

2 −1 −
√

2 −1
−1

√
2 −1 −

√
2

0 1 0 1
1 0 1 0

 ,

where the columns qj are eigenvectors for λj . Define the projection P to
be the the first two rows of Q−1:

(2.11) P =
√

2
4

(
1 0 1

√
2

0 1
√

2 1

)
= (p1,p2,p3,p4),

TOME 56 (2006), FASCICULE 7
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p1

p2
p4

p3

Figure 2.1. The good star of vectors corresponding to the Ammann
matrix A in (2.10).

The columns of P are plotted in Figure 2.1. Clearly A satisfies the good
star property (2.4).

We have Au = λ1Id = −(1+
√

2)Id, which we interpret as a composition
of an expansion of R2 by 1 +

√
2, and a rotation by π. Applying (2.7) we

find

(2.12) S(A) = diag(1, 1, 1,−1,−1,−1),

so that by (2.8)

(2.13) A∗ =



0 1 1 1 1 1
1 1 1 1 2 1
1 1 0 1 1 1
1 1 1 0 1 1
1 2 1 1 1 1
1 1 1 1 1 0


> 0.

Thus A satisfies (2.9). We shall return to this example below.

3. Proto-objects and objects

In the next few sections we are going to consider geometric objects g in
R2, including curves, closed curves, tiles, tiling patches and tilings. Each
object g will have a particular location in R2, and we can move an object
by a translation. In particular, g + w denotes the translation of g by the
vector w ∈ R2. We call two objects g1 and g2 translationally equivalent
if g1 = g2 + w for some w ∈ R2. We denote the translational equivalence
class of the object g by G, and refer to G as a proto-object. Thus, we will
refer to proto-curves, prototiles, etc..

ANNALES DE L’INSTITUT FOURIER
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It will be convenient to represent each proto-object G by an arbitrary
fixed choice of a geometric object from its translational equivalence class.
We think of this object as being “located at the origin” in R2. Let G denote
the set of all proto-objects G. Each object g is then a translation g =
G + w := (w, G) of the corresponding proto-object G ∈ G by a unique
vector w ∈ R2.

3.1. Words and substitutions

Let B = {1, 2, . . . , d}. Let B∗ denote the free semi-group of nonempty
finite words in B. Let B± = {i±1 : i ∈ B}, and let F〈B〉 denote the free
group on B, which we think of as the set of reduced words in (B±)∗, together
with the empty word ε.

A substitution is a mapping θ : B → B∗. Since B is a basis for both B∗
and F〈B〉, a substitution uniquely defines both a semigroup and a group
endomorphism. More generally, any mapping θ : B → F〈B〉 defines an en-
domorphism of F〈B〉. We always assume an endomorphism is non-erasing,
which means θ(i) 6= ε. We think of a non-erasing endomorphism a sort of
“generalized substitution”, but refrain from using this language to avoid
confusion with its other uses.

The abelianization homomorphism f : F〈B〉 → Zd is defined on B by
f(i) = ei, and extended to F〈B〉. A endomorphism of Zd is given by a
matrix M ∈ Zd×d. For any endomorphism θ of F〈B〉, the abelianization f

induces an (abelian group) endomorphism of Zd, denoted by Lθ, satisfying
Lθ ◦ f = f ◦ θ. In particular,

(3.1) Lθ = (f(θ(1)), f(θ(2)), . . . , f(θ(d))) .

This matrix is also called the structure matrix of θ, or more formally the
abelianization of θ. We note that if each θ(i) is an efficient word (see Defi-
nition 5.3 below), then entry `i,j of Lθ equals the signed number times that
i appears in θ(j) (in particular, this always holds if θ is a substitution).
For a given matrix A, we call any endomorphism θ that satisfies Lθ = A a
non-abelianization of A.

3.2. Curves

A curve is continuous, piecewise C1 mapping w : [a, b] → R2. Two curves
are considered the same if they differ by an orientation preserving piecewise

TOME 56 (2006), FASCICULE 7
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C1 change of parameterization. The reverse of a curve w, denoted −w, is
given by −w(t) = w(−t + a + b).

For x0,x1 ∈ R2 the linear curve from x0 to x1 is defined to be w(t) =
(1−t)x0+tx1, for t ∈ [0, 1]. Similarly, for a sequence of points x0,x2, . . . ,x`

we define the piecewise linear curve (or “broken line”) connecting the points
by w : [0, `] → R2 where

w(t) = (1− (t− j))xj + (t− j)xj+1 for t ∈ [j, j + 1].

We will usually restrict our attention to the following case. Let P =
(p1,p2, . . . ,pd) be a good star of vectors. For each k = 1, . . . , `, suppose
there exists ik ∈ {1, . . . , d} and a nonzero ak ∈ R so that

(3.2) xk − xk−1 = akpik .

In effect, we consider piecewise linear curves whose segments are parallel
to the vectors p1, . . . ,pd.

Now suppose W ∈ (B±)∗ and x ∈ R2. In particular, W = ia1
1 ia2

2 . . . ia`

` ,
where ik ∈ B and ak ∈ Z, ak 6= 0. Define a finite sequence of points
x0,x1, . . . ,x` inductively, by putting x0 = x, and applying (3.2) for k =
1, . . . , `. We define the curve w := (x,W ) to be the piecewise linear curve
connecting the points x0,x1, . . . ,x`. In this way a word is a proto-curve.

A curve w : [a, b] → R2 is closed if w(a) = w(b) (we sometimes think of
it as mapping w : S1 → R2). A simple closed curve is a closed curve that
is injective on S1. We say W ∈ (B±)∗ is a cyclic if the corresponding curve
w = (x0,W ) is closed. This is equivalent to x` = x0. Since

(3.3) x` − x0 = f(W ),

the curve w is closed, or equivalently the word W is a cyclic, if and only if
f(W ) = 0. A cyclic word is a proto-closed curve. We define the commutator
of two words W1,W2 by

(3.4) W = [W1,W2] := W1W2W
−1
1 W−1

2 .

Note that f([W1,W2]) = f(W1W2W
−1
1 W−1

2 ) = 0, so that a commutator is
always cyclic.

3.3. A topological proposition

Unfortunately, it is not easy to tell if a cycle W corresponds to a simple
close curve. However, in this section we obtain a partial result in the case
W = [W1,W2].

ANNALES DE L’INSTITUT FOURIER
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The Jordan curve theorem (see e.g., [1]) says that if w : S1 → R2 is a
simple closed curve then R2\w(S1) consists of two open sets: one bounded,
called the inside of w, and one unbounded, called the outside. More gener-
ally, if w is piecewise linear closed curve that is not necessarily simple, then
R2\w(S1) consists of a finite collection of open sets: the outside, which is
unbounded, and a finite number of bounded open sets, called the compo-
nents of the inside.

A chain is a finite sum of the form

(3.5) w = n1w1 + n2w2 + · · ·+ nkwk,

where each wk is a different (not necessarily closed) curve in the plane, and
nk ∈ Z (see [1]). There is a fairly obvious equivalence relation on chains,
which in addition to orientation preserving re-parameterization, allows the
combination of curves by following a secession of them. Line integrals of
real or complex functions F in the plane are defined over chains. It can be
shown that two chains are equivalent if and only if they yield the same line
integral for every function F , (see [1]). Equivalent chains are considered to
be equal.

A chain is called a cycle if (up to equivalence) each wi is a closed curve.
We assume in addition that each wi is piecewise linear satisfying (3.2). A cy-
cle is a generalization of a closed curve, and like in that case, R2\∪k

i=1wk(S1)
consists of a finite collection of open sets: an unbounded outside, and a fi-
nite number of bounded inside components. The union of the components
is called the inside of the curve or the cycle. The set ∪k

i=1wk(S1) is called
the trace.

Given a cycle w, and x ∈ R2 not in the trace, the winding number is
defined

(3.6) nw(x) =
1

2πi

∫
w

dz
z− x

.

Here we think of x and z as a complex numbers. The integral is carried out
separately over each closed curve in (3.5), and the results are added.

The basic property of the winding number function nw is that it is integer
valued, constant on each component of the inside of w, and zero outside (see
[1]). It can be shown that two cycles are equivalent if and only if they assign
the same winding numbers to all non-trace points (this follows from the
generalized Cauchy integral formula, [1]). The change of variables formula
for integrals shows that nw+y(x + y) = nw(x), and n−w(x) = −nw(x). It
is easy to see that nw1+w2(x) = nw1(x) + nw2(x) provided x is not in the
trace of w1 or w2.

TOME 56 (2006), FASCICULE 7
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Let w be a simple closed curve. Then nw(x) = ±1 for x inside w (see
[1]). If nw(x) = 1 for x inside w, we say w is positive (i.e., it is positively
oriented). More generally, we say a (not necessarily simple) closed curve w,
or even a cycle w, is positive if nw(x) > 0 for all x ∈ R2 not in the trace.
We call a closed curve or cycle w positive semi-simple if nw(x) ∈ {0, 1} for
all x ∈ R2 not in the trace.

Proposition 3.1. — Let P = (p1,p2, . . . ,pd) be a good star of vectors
and let f : F〈B〉 → Zd be the abelianization homomorphism. Suppose
W = [W1,W2] is the commutator of W1,W2 ∈ F〈B〉, and let w = (0,W )
be the corresponding closed curve. Assume w is positive and that

(3.7) det
(
[Pf(W1), Pf(W2)]

)
> 0.

Then w is positive semi-simple.

Proof. — For simplicity we identify W = w. Let v1 = Pf(W1) and
v2 = Pf(W2), which are linearly independent vectors by (3.7). Let R be
the piecewise linear curve in R2 connecting the points 0,v1,v1 + v2,v2,0,
and let R1, R2, R3, and R4 denote the four linear segments that make up
R. It follows from (3.7) that R is a positive simple closed curve, and thus
nR(x) = 1 for x inside R and nR(x) = 0 outside. We also divide W into

W
R

Figure 3.1. The curve W = [W1,W2] and its “linearization” R.

four segments: W1, W2, W−1
1 , and W−1

2 , corresponding to the four factors
of W with the same names. Note that for each i, the curves Wi and Ri

start and end at the same place.
Starting at 0, follow W1. For a while it may follow R1, but assuming,

W1 6= R1, the two curves eventually part. Continue following W1 until its
first return to R1. Call this point z1. Then follow R1 back to 0. Call the

ANNALES DE L’INSTITUT FOURIER



TILINGS 2401

resulting closed curve Z1. Let Z ′1 = −Z1 +v2 be the reflection of Z1 across
R.

Next, starting at z1, repeat the previous construction. Follow W1 until
it leaves R1 and then returns for the first time at z2. Then follow R1

back to z1. Call the resulting closed curve Z2, and define its reflection
Z ′2 = −Z2+v2. Continuing in this fashion we get a sequence Z1, Z2, . . . , Z`1

of closed curves. We stop when z`1 = v1. We also obtain their reflections
Z ′1, Z

′
2, . . . , Z

′
`1

.
Repeat construction with W2 and R2 to obtain simple closed curves

Z`1+1, . . . , Z`2 , and their reflections Z ′`1+1, . . . , Z
′
`2

, where Z ′k = −Zk − v1

for k = `1 + 1, . . . , `2.
Let Λ = {nv1+mv2 : n, m ∈ Z} be the lattice in R2 generated by v1 and

v2. Consider the tessellation R̃ of R2 by the parallelograms Λ + R. We can
assume without loss of generality that each closed curve Zi lies inside one
of the parallelograms in R̃. If not, we can subdivide Zi into a sum of closed
curves (i.e., a cycle) that follow Zi and the lines in R̃. Simultaneously, we
do the same thing to each Z ′i in reverse.

Now for convenience, we renumber all the reflections

Z ′`1 , Z
′
`1−1, . . . , Z

′
1, Z ′`2+`1 , Z

′
`2+`1−1, . . . , Z

′
`1+1

as
Z`1+`2+1, Z`1+`2+2, . . . , Z2(`1+`2).

Thus the closed curves Z1, . . . , Z2(`1+`2) come in pairs of reflections (with
opposite orientations), and each lies in just one parallelogram of R̃.

Define the chain

(3.8) Z :=
2(`1+`2)∑

j=1

Zj .

Because of the way the curves Zi were constructed, W = R + Z. It follows
that

(3.9) nW (x) = nR(x) + nZ(x),

and by (3.8),

(3.10) nZ(x) =
2(`1+`2)∑

j=1

nZj (x),

for (non-trace) x ∈ R2.
Let x0 ∈ R2 be such that no x ∈ Λ +x0 is in the trace of W , Z, R or R̃.

Let
Ix0 = {j : ∃x ∈ Λ + x0 with nZj (x) 6= 0}.

TOME 56 (2006), FASCICULE 7
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For each j ∈ Ix0 there is a unique xj ∈ Λ + x0 so that nZj (xi) 6= 0. This
is because each Zj lies in a single parallelogram form R̃. Using (3.10) we
have ∑

x∈Λ+x0

nZ(x) =
∑

x∈Λ+x0

2(`1+`2)∑
j=1

nZj (x)

=
2(`1+`2)∑

j=1

∑
x∈Λ+x0

nZj (x)(3.11)

=
∑

j∈Ix0

nZj
(xj).

For each j ∈ Ix0 there exists j′ so that Zj′ is the reflection of Zj . Since
Zj′ = −Zj + (xj′ − xj), it follows that nZj′ (xj′) = −nZj

(xj). This implies
the last sum in (3.11) is zero, so that

(3.12)
∑

x∈Λ+x0

nZ(x) = 0.

Suppose that nW (x0) > 1, and consider two cases: (i) x0 is inside R and
(ii) x0 is not inside R.

In case (i), (3.9) and the fact that R is a positive simple closed curve
implies nZ(x0) > 1. It also follows that nW (x) = nZ(x) for x ∈ Λ + x0,
x 6= x0. By (3.12) there exists such an x so that nW (x) = nZ(x) 6 1 < 0.
This contradicts the fact that W is positive.

In case (ii), nZ(x0) = nW (x0) > 2. It follows that either: (a) there exists
x ∈ Λ + x0, x 6= x0, so that nZ(x) 6 2, or (b) there exist two distinct
x1,x2 ∈ Λ + x0, not equal to x0, so that nZ(x1) 6 1 and nZ(x2) 6 1. In
case (a), (3.9) implies nW (x) < 1 since nR(x) 6 1. In case (b) we have
nR(xi) = 1 for i = 1 or i = 2 only if xi is inside R. This can happen for at
most one of the two, since they differ by Λ. Otherwise nR(xi) = 0. Then
(3.9) implies that nW (xi) < 0 for at least one of the xi. In both cases we
again contradict the fact that W is positive. �

3.4. Tiles, tilings and tiling patches

Let B2 denote the set of all pairs i ∧ j for i, j ∈ B. Define

(3.13) sgn(i ∧ j) := sgn(pi∧j) = sgn(sin(∠pipj)).

By (2.6), sgn(i ∧ j) ∈ {−1, 1} if i 6= j and sgn(i ∧ i) = 0. For i < j, (3.13)
shows that the entries of the matrix S(A) in (2.7) are sgn(i ∧ j). When
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sgn(i ∧ j) 6= 0 we write j ∧ i = −(i ∧ j). More generally, for a, b ∈ {−1, 1},
we simplify ia∧jb = ab(i∧j). We call i∧j a positive prototile if sgn(i∧j) = 1,
and a negative prototile if sgn(i∧j) = −1. In the latter case, j∧i = −(i∧j)
is positive. The set of all positive prototiles is denoted by B2

+. Prototiles
i ∧ i are neither positive or negative, and are called trivial. We simplify
ia ∧ ib = i ∧ i. Thus B2 denotes the set of all prototiles.

Figure 3.2. The positive prototiles for the matrix A in (2.10): 1 ∧ 2,
1 ∧ 3, 1 ∧ 4, 3 ∧ 2, 4 ∧ 2, 4 ∧ 3.

Definition 3.2. — Let W ∈ F〈B〉 be a positive semi-simple word (i.e.,
any (x,W ) is a positive semi-simple curve). For x ∈ R2, define the tile
t = (x,W ) to be the union of the inside of the curve (x,W ) with its trace.
We write ∂(x,W ) = (x,W ) for the boundary of the tile.

Now let i∧ j ∈ B2. To define the geometric realization of the tiles corre-
sponding to i ∧ j, we first define the boundary of i ∧ j by

∂(i ∧ j) = [i, j] = iji−1j−1.

We define the tile
t = (x, i ∧ j) := (x, [i, j]).

We define the boundary ∂(t) = ∂(x, i∧j) := (x, iji−1j−1), which is a piece-
wise linear simple closed curve (i.e., a parallelogram). The four oriented
segments of this curve are called the edges of the tile, and are denoted
E
(
(x, i ∧ j)

)
. Two tiles t1, t2 are said to be adjacent if −E(t1) ∩ E(t2) 6= ∅,

i.e., the two tiles share an oppositely oriented edge.
Now consider a finite sum(1)

(3.14) y = n1t1 + n2t2 + · · ·+ n`t`

of different tiles tk = (xk, ik ∧ jk). Assume that if any two tiles in (3.14) in-
tersect at more than a vertex, they are adjacent. Define ∂(y) =

∑
nk∂(tk),

which is a cycle. If the cycle ∂(y) is positive semi-simple, then we say y is a
(positive) tiling patch. Note that this implies that n1 = n2 = · · · = nk = 1.
Tiling patches, modulo translation are, called tiling proto-patches, and are
denoted by (B2

+)∗.

(1) This is in the same spirit as a cycle as a sum of closed curves.
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3.5. Positive tiling substitutions

Our goal in this section is to give a definition of a positive tiling substi-
tution analogous to the definition θ : B → B∗ of an ordinary substitution.
Basically it will be a mapping Θ : B2

+ → (B2
+)∗. But, whereas in the case

of a substitution, essentially any mapping works, we have two additional
requirements for a tiling substitution: (a) Θ needs to be able to apply to
tiles (i.e., translations of prototiles), and (b) Θ needs to apply consistently
to adjacent tiles in a tiling patch, and still output a tiling patch. We will
achieve these two goals using the next definition.

Definition 3.3. — A tiling substitution is a mapping Θ : B2
+ → (B2

+)∗

such that there is a morphism θ : B → F〈B〉 with the property that

(3.15) ∂(Θ(i ∧ j)) = θ([i, j]) for each i ∧ j ∈ B2
+.

We abbreviate (3.15) θ = ∂Θ. In effect, this says that Θ(i ∧ j) should be
a tiling of the inside of the curve θ([i, j]). Since Θ(i∧ j) is a positive tiling
patch, it follows that its boundary θ([i, j]) is a positive semi-simple curve.
More generally, we define Θ(x, i ∧ j) := (Aux,Θ(i ∧ j)).

Lemma 3.4. — Let Θ be a positive tiling substitution. Suppose y =
t1 + t2 + · · · + t` ∈ (B2

+)∗, i.e., y is a positive tiling patch. Define Θ(y) =
Θ(t1) + Θ(t2) + · · · + Θ(t`). Then Θ(y) ∈ (B2

+)∗. i.e., Θ(y) is a positive
tiling patch.

Corollary 3.5. — The iterates Θn(i ∧ j) for i ∧ j ∈ B2
+, and Θn(y),

for y ∈ (B2
+)∗, are well defined for all n > 0.

Proof of Lemma 3.4. — For i ∧ j define Au(i ∧ j) to be the tile whose
boundary is the curve connecting the points 0,pi,pi + pj ,pj ,0. For tk =
(xk, ik ∧ jk) in y, let Autk = (Auxk, Au(ik ∧ jk)), and let Auy = Aut1 +
· · ·+ Aut`. Then Auy is a tiling patch.

Similarly, define θ(tk) = θ(xk, ik ∧ jk) := (Auxk, [θ(ik), θ(jk)]) using
Definition 3.2, and put θ(y) = θ(t1) + · · · + θ(t`). Each of these tiles has
four “edges”, which along the boundary are labeled θ(ik), θ(jk), θ(i−1

k ) and
θ(j−1

k ).
We have

∂(θ(tk)) = (Auxk, [θ(ik), θ(jk)])

= (Auxk, θ([ik, jk]))(3.16)

= ∂(Θ(xk, ik ∧ jk)).
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Since Θ is a positive tiling substitution, its boundary is a positive semi-
simple closed curve. Thus by (3.16), ∂(θ(tk)) is a positive semi-simple closed
curve, and θ(tk) is a tile.

If th and tk are adjacent in y then Auth and Autk are adjacent in Auy.
Moreover, both endpoints of each edge of Autk are endpoints of the edges
of θ(tk). Thus θ(th) and θ(tk) are adjacent in θ(y). It follows that θ(y) is a
“positive tiling patch” by the tiles θ(tk).

Each term Θ(tk) in Θ(y) is a tiling patch with boundary ∂(Θ(xk, ik∧jk)),
which by (3.16) is ∂(θ(tk)). Since they only overlap on their edges (with
opposite orientations), their sum is positive semi-simple closed curve, and
it follows that Θ(y) is a positive tiling patch. �

4. de Bruĳn diagrams

4.1. The definition of a de Bruĳn diagram

Starting with a cyclic word W ∈ (B±)∗, we will construct an object Y ,
called a de Bruĳn diagram, which depends (in a non-unique way) on W .
We will think of such a diagram as a combinatorial representation of a
tiling patch with W as its boundary. However, we will need to drop the
restriction that a patch be a tiling by positive tiles, and allow negative and
trivial tiles as well.

Suppose W = ia1
1 ia2

2 . . . ian
n . Let c : [0, 1] → R2 be a positive simple

closed curve. Starting at c(0) we follow c and attach n arrows normal to c,
labeled i1, i2, . . . , in. We make the kth arrow point in if ak = 1 and point
out if ak = −1 (see Figure 4.1 (a)). This is called the frame of the (still to
be defined) de Bruĳn diagram Y . We denote the frame by ∂(Y ). Up to a
diffeomorphism of R2, ∂(Y ) is uniquely defined by W .

Next we describe how to get from the frame ∂(Y ) to the diagram Y . Since
W is cyclic, f(W ) = 0, and thus for each i ∈ B there are the same number
of i labeled in- and out-arrows. We choose some arbitrary matching of these
and connect each matched pair by a non-self intersecting curve through the
inside of c, called a pseudo-line. Assume that at most two pseudo-lines cross
at any point, and any two pseudo-lines cross transversally. The resulting
picture is a de Bruĳn diagram Y (see Figure 4.1).

Each pseudo-line in Y is labeled by some i ∈ B, and is oriented by
its arrows. Two diagrams that differ by an orientation preserving diffeo-
morphism of R2 are considered the same. The frame ∂(Y ) of a de Bruĳn
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1 2

2

3-1

2-11-1

2-1

3

1 2

2

3-1

2-11-1

2-1

3

1 2

2

3-1

2-11-1

2-1

3

(a)
(b) (c)

Figure 4.1. (a) The frame for W = [W1,W2] = 1223−12−11−132−1

where c is a square. Two corresponding de Bruĳn diagrams: (b) the
product W1 ∧W2, and (c) the only other possibility in this case.

diagram Y determines the cyclic word W up to a cyclic permutation. We
write ∂(Y ) = W .

The vertices of a de Bruĳn diagram Y are defined to be the crossings of
its pseudo-lines. A diagram Y with no vertices is called trivial. The pseudo-
lines in Y divide the inside of c into finitely many faces F , the edges E of
which are either pseudo-line segments or segments of c. A face with no c

segment edges is called an internal face. A vertex that is an intersection of
two pseudo-lines is called an internal vertex.

Given a de Bruĳn diagram Y , we can draw a neighborhood of any in-
ternal vertex as shown in Figure 4.2, using a (possibly orientation revers-
ing) change of coordinates. In particular, we have a crossing of a straight

i

F2

F3F4

F1

(a) (b)

pi

p j

γ(F1) γ(F2)

γ(F3)γ(F4)

j

Figure 4.2. (a) A vertex v of type i ∧ j in canonical coordinates,
showing the four faces F1, F2, F3, F4. (b) The γ image of F1, F2, F3, F4

in the case i ∧ j is positive. In particular, this illustrates the case
i ∧ j = 1 ∧ 3 in the Ammann matrix example.

pseudo-line segment labeled i, pointing up, and a straight pseudo-line seg-
ment labeled j, pointing left. We say this vertex is of type i ∧ j.
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Definition 4.1. — A vertex of type i ∧ j in a de Bruĳn diagram Y is
called positive if sgn(i∧ j) > 0. A de Bruĳn diagram Y is positive if all its
vertices are positive.

4.2. The tiling patch corresponding to a diagram

Here we describe how to go from a nonsingular de Bruĳn diagrams Y to
the corresponding tiling patch y. The idea—to use planar graph duality—
comes from de Bruĳn’s algebraic theory of Penrose tilings [5]. In particular,
an internal type i∧j vertex in Y corresponds to a tile t of type i∧j. Similarly,
each face F in Y corresponds, under duality, to a tile vertex in y. We will
start with this correspondence.

Let F denote the set of all faces in Y . Given a vector x0 and some
F0 ∈ F , we define γ : F → R2 as follows. Put γ(F0) = x0, and proceed
by induction. Suppose γ has been defined on a set Fk ⊆ F of k < #(F)
faces. Let F ∈ F\Fk be adjacent to some F ′ ∈ Fk across a pseudo-line
segment labeled i. Put a = 1 or a = −1 depending on whether segment
i is oriented to the left or to the right in crossing from F ′ to F . Define
γ(F ) = γ(F ′) + api, and put Fk+1 = Fk ∪ {F}.

Lemma 4.2. — Suppose Y is a nonsingular de Bruĳn diagram. Let F1,
F2, F3 and F4 be faces surrounding a type i ∧ j vertex in Y , as shown
in Figure 4.2 (a). Then γ(F1), γ(F2), γ(F3) and γ(F4) are the vertices of
the tile (γ(F1), i ∧ j) (Figure 4.2 (b)), and the boundary of this tile is the
piecewise linear curve corresponding to the sequence of points γ(F1), γ(F2),
γ(F3), γ(F4), γ(F1).

Proof. — We can assume without loss of generality that γ(F1) = 0. Then
γ(F2) = pi, γ(F4) = pj , γ(F3) = pi + pj (see Figure 4.2 (b)). �

Lemma 4.2 says that a positive de Bruĳn diagram describes a sort of
“locally correct” tiling patch. It gives each tile a precise location, and tiles
corresponding to adjacent vertices meet across complete edges. However,
there is no a priori guarantee that different parts of the tiling do not over-
lap. The next result shows this cannot happen if the boundary choice is
correct.

Proposition 4.3. — Let P = (p1,p2, . . . ,pd) be a good star of vectors
and let f : F〈B〉 → Zd be the abelianization homomorphism. Suppose
W = [W1,W2], with W1,W2 ∈ F〈B〉, satisfies

det
(
[Pf(W1), Pf(W2)]

)
> 0.
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If Y is a positive de Bruĳn diagram with ∂(Y ) = W , then Y corresponds
to a positive tiling patch y with ∂(y) = (x,W ) for some x ∈ R2.

Proof. — By Lemma 4.2, the vertices of Y correspond to positive tiles
t1, t2, . . . , t`. Let Ti = ∂(ti). Then Ti is a simple closed curve, which is pos-
itive since Y is positive. Thus nTi

(x) = 1 if x is inside Ti, and 0 otherwise.
Also

(4.1)
∑̀
i=1

Ti = ∂(Y ) = W,

since two adjacent tiles have oppositely oriented boundaries.
Let x be inside W . Then (4.1) implies

(4.2) nW (x) =
∑̀
i=1

nTi
(x) > 0.

Since det
(
[Pf(W1), Pf(W2)]

)
> 0, Proposition 3.1 implies nW (x) = 1,

from which it follows that the sum in (4.2) is 6 1 for all non-trace x. Thus
any x inside W can be in at most one tile ti, so that two tiles only can
intersect along their boundaries. This means y = t1 + t2 + · · · + t` is a
positive tiling patch. �

Conversely, if y is a positive tiling patch with ∂(y) = (x,W ), then there
exists a de Bruĳn diagram Y corresponding to y such that ∂(Y ) = W . This
fact, which we do not use, is discussed in [5]. In general, we think of a not
necessarily positive de Bruĳn diagram as a generalized tiling proto-patch
by positive, negative and trivial tiles. This is illustrated in Section 6.1. We
denote the set of all these proto-patches by (B2)∗.

4.3. Product diagrams and tiling substitutions

From now on we will consider only diagrams Y where ∂(Y ) = [V,W ] for
V,W ∈ F〈B〉. For the frame, we take c to be the unit square. We put V

along the bottom, put W going up the right side, put V −1 going backwards
along the top, and put W−1 going down along the left side (see Figure 4.1
(a)).

The simplest diagram of this type is a product diagram, denoted Y =
V ∧W . To obtain it, we start with the frame described above and connect
the arrows by vertical and horizontal lines (see Figure 4.1 (b)). It follows
that

(4.3) ∂(V ∧W ) = [V,W ].
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The following “matrix notation” for a product diagram will be useful.
Suppose V = v1v1, . . . v` and W = w1w2 . . . wn. We write

V ∧W =

v1 ∧ wn v2 ∧ wn . . . v` ∧ wn

...
... . . .

...
v1 ∧ w1 v2 ∧ w1 . . . v` ∧ w1


In the matrix above ip ∧ jq is the intersection of a vertical pseudo-line

labeled i a horizontal pseudo-line labeled j. We have p = 1 if the i arrow
points up and p = −1 if the i arrow points down. Also q = 1 if the j arrow
points left and q = −1 if the j arrow points right. This vertex is equivalent
to pq(i ∧ j).

5. Cancellation

5.1. The three moves on de Bruĳn diagrams

Let Y be a de Bruĳn diagram. In this section we will describe three
“moves” µ that can be applied to a diagram Y to obtain a new diagram
Y ′. Since the moves are reversible denote them Y

µ↔ Y ′.
The first move µ1 is called the flip. In it, we slide a pseudo-line across a

vertex. It is called the flip move because in a (positive) tiling it implements

i j

k

i j

k
i^j

k^j

k^i

Figure 5.1. The flip move µ1.

the “Necker cube flip” (see Figure 5.2).
The second move µ2 is called cancellation. It takes a pair of opposite sign

adjacent vertices, i ∧ j and −(i ∧ j), and cancels them by uncrossing two
loops (see Figure 5.3).

The third move µ3 is called trivial tile elimination. It may be used to
cancel a trivial tile i∧ i, which occurs when two pseudo-lines with the same
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i

j

k

Figure 5.2. The Necker cube flip, implemented by the flip move µ1.

K

ii j

i^j

j^i

i

Figure 5.3. The cancellation move µ2.

label cross (see Figure 5.4). Move µ3 is different form the other two for two
reasons: (i) pseudo-lines are cut and reconnected in a different way, and (ii)
it depends on the orientation.

i

i
i^i

i

i

Figure 5.4. Trivial tile elimination move µ3.

Definition 5.1. — Two de Bruĳn diagrams are called µ-equivalent if
one can be obtained form the other by a finite series of moves.

Lemma 5.2. — If Y and Y ′ are µ-equivalent de Bruĳn diagrams, then
∂(Y ′) = ∂(Y ).
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5.2. Counting tiles

For a de Bruĳn diagram Y based on B = {1, 2, . . . , d}, let M(Y ) be the
d×d matrix with i, jth entry mi∧j equal to the number of type i∧j vertices
that occur in Y . Let ei∧j be the d× d matrix with (i∧ j)th entry equal to
1 and all other entries 0.

Lemma 5.3. — Let Y and Y ′ be de Bruĳn diagrams with ∂(Y ) = ∂(Y ′).

(i) If Y
µ1↔ Y ′ (i.e., a flip) then M(Y ′) = M(Y ).

(ii) If Y
µ2↔ Y ′, where µ2 implements a cancellation of i ∧ j and j ∧ i,

then M(Y ′) = M(Y )− ei∧j − ej∧i.
(iii) Y

µ3↔ Y ′, where µ3 implements elimination of a trivial tile i∧ i, then
M(Y ′) = M(Y )− ei∧i.

For i ∧ j ∈ B2, i 6= j let |i ∧ j| = sgn(i ∧ j)(i ∧ j). That is to say, for a
nontrivial tile i ∧ j, |i ∧ j| is its positive version. Now suppose Y is a de
Bruĳn diagram and define the vector f∗(Y ) ∈ Z(d

2) to have entries

(5.1) f∗(Y )i∧j = sgn(i ∧ j)(m|i∧j| −m−|i∧j|),

i < j in lexicographic order.

Corollary 5.4. — (of Lemma 5.3) If Y and Y ′ are µ-equivalent de
Bruĳn diagrams, then f∗(Y ) = f∗(Y ′).

Proposition 5.5. — Suppose θ is an endomorphism on B = {1, . . . , d}
and let A = Lθ. Then the “product tiling substitution” θ∧θ : B2

+ → (B2)∗,
defined by

(5.2) (θ ∧ θ)(i ∧ j) := θ(i) ∧ θ(j),

satisfies

A∗ = (f∗((θ ∧ θ)(1 ∧ 2)), f∗((θ ∧ θ)(1 ∧ 3)), . . . , f∗((θ ∧ θ)((d− 1) ∧ d))).

Remark 5.6. — The product tiling substitution θ ∧ θ is essentially the
same as E∗

1 (θ) in [4].

Proof. — First note that by (2.8) and (3.13) that A∗ has entries

a∗i∧j,k∧` = sgn(i ∧ j)sgn(k ∧ `) det
(

ai,k ai,`

aj,k aj,`

)
,

where ai,j are the entries of A. By (5.1)

f∗((θ ∧ θ)(k ∧ `))i∧j = sgn(k ∧ `)
(
m|i∧j| −m−|i∧j|

)
= sgn(i ∧ j)sgn(k ∧ `)(mi∧j −mj∧i),
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where the mi∧j are the entries of M((θ ∧ θ)(k ∧ `)).
Since Lθ = A, it follows that mi∧j = ai,kaj,` and mj∧i = aj,kai,`. Thus

mi∧j −mj∧i = det
(

ai,k ai,`

aj,k aj,`

)
,

and f∗((θ ∧ θ)(k ∧ `))i∧j = a∗i∧j,k∧`. �

5.3. Properly ordered words

Let us write W = ia1
1 ia2

2 . . . ia`

` ∈ F〈B〉, where aj ∈ Z (i.e., aj = 0 is
allowed). We call W efficient if whenever ij = ik, we have that ajak > 0.
We say W is positive if aj > 0 for all j, which implies f(W ) > 0. Two
positive words are disjoint if they have no symbols in common. A positive
word has natural order if it has the form W = 1a12a2 . . . d ad . In effect, we
have imposed an arbitrary order on B. In general, a word W has natural
order if it has the form W = W−1

1 W2, where W1 and W2 are disjoint,
positive natural order words.

The following construction is an elaboration of one from [13]. Let h =
( 1
2 , 1

2 , . . . , 1
2 ) ∈ Rd. Partition Rd into unit cubes parallel to the coordinate

axes. Each such cube contains a unique vector a + h, where a ∈ Zd, called
its label. Given a vector b ∈ Zd we are going to define a word W = W (b),
called the properly ordered word for b.

Let ` be the line segment connecting h to b + h. Consider the sequence
of cubes that ` intersects, and let b0,b1, . . . ,bn be the sequence of their
labels. Assume first that any pair of adjacent cubes in the sequence meets
in a d−1 dimensional face (see Figure 5.5 (a)). Then for each i, bi−bi−1 =
(0, 0, . . . , 0,±1, 0, . . . , 0) ∈ Zd, where the ±1 occurs at position k. We define
the properly ordered word W = W (b) to be the word with ith entry k±1.

(a) (b)

Figure 5.5. (a) The vector b = (5, 2) ∈ Z2 gives W (b) = 121321. (b)
For b = (3, 1), W ′ = 1∗1, with ∗ = 12 proper (i.e., ∗ 6= 21), and
W (b) = 1221.
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Now suppose there are places in the sequence where cube i − 1 and
cube i meet along face of dimension less than d − 1. Construct a word
W ′ as above, but insert the symbol ∗i as a place-holder at position i. If
the two cubes meet along a d − m dimensional face, for m > 1, then
ai = bi−bi−1 ∈ {0, 1,−1}d has m nonzero entries. We write ai = a+

i −a−i ,
where a+

i ,a−i > 0, and let a+
i = (a1, a2, . . . , ad) and a−i = (a′1, a

′
2, . . . , a

′
d).

Define V− = 1a′
12a′

2 . . . d a′
d , V+ = 1a12a2 . . . d ad , and V ∗

i = (V−)−1V+. A
crucial point is that V ∗

i is a naturally ordered word. The properly ordered
word W = W (b) is defined to be the word W ′ with the entries ∗i replaced
by the words V ∗

i (see Figure 5.5 (b)). As above, we can also realize W as a
piecewise linear curve with vertices b0,b1, . . . ,bn (see Figure 5.5 (b)). We
call this piecewise linear curve, the broken line for b.

Lemma 5.7. — For any b ∈ Zd the properly ordered word W = W (b)
satisfies f(W ) = b. Moreover, if 0 = b0,b1,b2, . . . ,bn = b is the corre-
sponding broken line, then for all k, f(Wk) = bk, where Wk denotes the
kth prefix of W .

Lemma 5.8. — A properly ordered word W is always efficient. If W is
properly ordered and f(W ) ∈ {0, 1,−1}d, then W is naturally ordered.

We say an endomorphism θ is properly ordered if θ(i) is a properly
ordered word for each i ∈ B. It is easy to see that for any d × d integer
matrix A, there exists a properly ordered endomorphism θ so that Lθ = A.

Definition 5.9. — A nonsingular de Bruĳn diagram Y is called effi-
cient if it has no two vertices equivalent to i ∧ j and −(i ∧ j) = j ∧ i.

Compare this to the definition of an efficient word at the beginning of
this section. We think of an efficient de Bruĳn diagram as one that has
been simplified. The following should be clear.

Lemma 5.10. — The number of vertices of type sgn(f∗(Y )i∧j)|i ∧ j|,
i < j, in an efficient de Bruĳn diagram Y is |f∗(Y )i∧j |. In particular, if
f∗(Y ) > 0, then Y is a positive de Bruĳn diagram.

5.4. Simplifying diagrams

Theorem 5.11. — Let V,W ∈ F〈B〉 be properly ordered. Then there
exists an efficient de Bruĳn diagram Y that is µ-equivalent to V ∧W .

To motivate the proof, we first explain the basic idea (including a cau-
tionary negative example). Let V = ij with i < j, so that V is positive and
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i j

i

j

(c)
i j

i

j

(a)
i j

i

j

(b)

Figure 5.6. (a) The product V ∧ V . (b) Elimination of i ∧ i and of
j ∧ j using µ3. (c) Cancellation of i ∧ j and j ∧ i using µ2.

naturally ordered, and consider the diagram V ∧V . Notice that f∗(V ∧V )
is zero since j ∧ i = −(i ∧ j). The diagram is reduced to a trivial diagram
as shown in Figure 5.6. Now let W be one of the other three naturally or-
dered two letter words. The same idea works for V ∧W where W = j−1i−1.
On the other hand, for W = j−1i, there is no need for cancellation after
elimination, because both remaining vertices are type −(i ∧ j). The same
argument works for W = i−1j. However, if we take the similar looking
diagram V ∧W , where V = ij but W = ji, then cancellation fails (see Fig-
ure 5.7). This demonstrates the importance of natural order in the words

i j

i

j

(a)
i j

i

j

(b)

Figure 5.7. Badly ordered words lead to a diagram where cancellation
fails.

V ∗
i in the definition of proper order.
The remainder of this section constitutes the proof of Theorem 5.11. The

proof proceeds by induction.
Let Y1 be the diagram obtained by using µ3 on V ∧ W to eliminate all

the trivial vertices.
Now suppose we have Yn, n > 1. Take i < j so that the total number of

vertices of type i ∧ j or j ∧ i in Yn is not zero. Let ri∧j = |f∗(Yn)i∧j | > 0
and si∧j = sgn(f∗(Yn)). There are ri∧j more vertices of type si∧j |i ∧ j|
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than there of type −si∧j |i ∧ j|. Call the latter target vertices. We would
like to cancel each target vertex in Yn with one of its negatives. Let Nn be
the total number of target vertices in Yn. If Nn = 0 then the diagram is
effcient and the proof is done.

Lemma 5.12. — Let V,W ∈ F〈B〉 be properly ordered. Suppose Y is
the de Bruĳn diagram obtained by eliminating all the trivial vertices from
V ∧ W . Then for each target vertex v of type ±(i ∧ j) in Y , i < j, there
is a unique type ∓(i∧ j) vertex v′ connected to v by a pseudo-line labeled
i and a pseudo-line labeled j. Furthermore, we may assume that the i line
and j line do not cross between v and v′.

In other words, the two vertices are connected like the vertices in Fig-
ure 5.6 (b). We call v2 the partner of v1, and call S = {v1, v2} a partner
vertex pair.

Proof. — Assume without loss of generality that i = 1, j = 2. First let
V,W be positive, so that V,W ∈ {1, 2}∗. The algorithm for constructing
properly ordered words commutes with the projection to the (1, 2)-plane.
We identify this plane with R2, so that f(V ), f(W ) ∈ Z2.

In the properly ordered word algorithm, the squares surronding f(V )
and f(W ) also contain the broken lines for V and W (see Figure 5.8 (a)).
If f(V ) and f(W ) are not parallel, then one broken line must lie to one side
of the other, although not necessarily strictly. We call this the separation
property. On the other hand, if f(V ) and f(W ) are parallel, then because
the symbols ∗i were all replaced by natural order words V ∗

i , the shorter
broken line must follow the longer one for its entire length. Again, this is
“separation”, although here the separation is everywhere not strict.

The separation property extends to the two piecewise linear paths defined
by V W and WV that approximate the parallelogram spanned by f(V )
and f(W ), (see Figure 5.8 (a)). Write the words V W = x1x2 . . . xn and
WV = y1y2 . . . yn symbolically, and denote the vertices of the correspond-
ing broken lines by x0,x1, . . . ,xn and y0,y1, . . . ,yn respectively. For z =
(z1, z2) ∈ Z2, define ν(z) = z2 − z1. The separation property implies that
either ν(xk) > ν(yk) or ν(yk) > ν(xk) for all k = 1, 2, . . . , n. Lemma 5.7
implies that ν(f(V Wk)) > ν(f(WVk)) or ν(f(WVk)) > ν(f(V Wk)) for all
k. For concreteness, assume that the former holds. This means that for
each k, there are more symbols 1 in V Wk than in WVk (and more symbols
2 in WVk).

Let Y be the diagram obtained from V ∧ W by using µ3 to remove all
the trivial tiles, and let Y ′ be the diagram obtained from Y by stretching
all the pseudo-lines in Y into lines (see Figure 5.8 (b)). To do this, it is
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(a) (b)

Figure 5.8. (a) Let V = 12212 and W = 21212. Then WV is above
V W since f(W ) is above f(V ). (b) The correspinding simplified dia-
gram Y ′. All vertices are type 1 ∧ 2.

necessary to use µ2 to cancel some target vertices v of type 2 ∧ 1 with
partners v′ of type 1 ∧ 2. We can assign these partners in such a way that
their 1- and 2-labeled pseudo-lines never cross between v and v′.

In the boundary, the symbols in V W correspond to the in-arrows en-
countered in going counter-clockwise along the bottom and right, and the
symbols in WV correspond to out-arrows, going clockwise around the left
and top. By the separation property, all the 2-labeled pseudo-lines cross
the 1-labeled pseudo-lines from right to left, so in Y ′ all vertices are of type
1 ∧ 2. It follows that all vertices of type 2 ∧ 1 were cancelled. This shows
that all the target vertices in Y were assigned to partners.

So far we have assumed V and W are positive, which means f(V ) and
f(W ) lie in the first quadrant. Essentially the same proof works whenever
f(V ) and f(W ) lie in the same quadrant. If f(V ) and f(W ) lie in opposite
quadrants, replace V ∧ W with W−1 ∧ V , which is easily seen to be the
same diagram, but f(W−1) = −f(W ) is in the same quadrant as f(V ).
Finally, if f(V ) and f(W ) lie in adjacent quadrants, there is no cancellation
necessary.

�

Assume Nn > 0. Fix a target vertex v1 in Yn and let v2 be its partner, so
that S = {v1, v2} is a partner vertex pair. If there are no other pseudo-lines
crossing the loop connecting v1 and v2, we can cancel using µ2 to obtain a
diagram Yn+1 with Nn+1 = Nn − 1. However, there may be other pseudo-
lines crossing the loop, and there may be other vertices inside the loop.
Let G be the vertices inside the loop, and let I and J be the vertices from
pseudo-lines crossing the i and j sides of the loop. Let H be the remaining
vertices, outside the picture (see Figure 5.9 (a)).
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Figure 5.9. The induction step: (a) The vertices in G cross in an
unknown way. (b) A pseudo-line k in crosses j twice. (c) Once there
are no double-crossings, the i peseudo-line moves across G.

Since all vertices are non-trivial, no pseudo-line labeled i or i−1 can cross
the i part of the loop, and likewise for j. However, pseudo-lines labeled j

or j−1 may cross the i part of the loop, and vice versa.
We may assume without loss of generality that there is no vertex v of

type ±i ∧ j in G. If there is, then by the previous paragraph, v must be
part of a partner vertex pair S′ = {v, v′} ⊆ G. In this case, we consider the
samller loop between v and v′ instead of the loop between v1 and v2. In a
similar way, we can assume that I and J contain no vertices of type ±i∧ j.

Next, consider a pseudo-line, labeled k (not i or j), that goes through
j into G. We may assume without loss of generality that when it comes
out of G, it goes through i and not j. For suppose it crosses j twice (see
Figure 5.9 (b)). Then J contains a partner vertex pair S′ = {v, v′} of types
±(j∧k). In this case, we consider the smaller loop between v and v′ instead
of the loop between v1 and v2. Since a similar argument holds for i, we may
assume that all the pseudo-lines through G cross both i and j.

To complete the induction, we move the i loop across G using successive
µ1-moves. Then we cancel the pair S using µ2. The vertices in G ∪ H do
not change. Moreover, a consequence of the previous paragraph is that the
new I has the same vertices as the old I. But since the two vetices in S

have been cancelled, and one was a target vertex, Nn+1 = Nn − 1. The
proof now follows by induction. �

6. The main result

Theorem 6.1. — Suppose A is a d×d matrix satisfying (2.1), (2.4) and
(2.9). Then there exists a properly ordered endomorphism θ with Lθ = A,
such that there is a positive tiling substitution Θ with ∂Θ = θ.
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Proof. — Let θ be a properly ordered endomorphism with Lθ = A. For
each i∧ j ∈ B2

+, Theorem 5.11 gives an efficient de Bruĳn diagram Y (i∧ j)
that is µ-equivalent to θ(i) ∧ θ(j).

By Corollary 5.4, f∗(Y (i∧ j)) = f∗(θ(i)∧ θ(j)), and by Proposition 5.5,
the vector f∗(θ(i) ∧ θ(j)) is column i ∧ j of A∗. By (2.9) (which requires
(2.1) and (2.4)), A∗ > 0. It follows that f∗(Y (i∧ j)) > 0, and since Y (i∧ j)
is efficient, Lemma 5.10 implies that Y (i ∧ j) is positive. Define Θ(i ∧ j)
to be the geometric realization of Y (i ∧ j). Proposition 4.3 shows that
Θ(i ∧ j) ∈ (B2

+)∗, i.e., Θ(i ∧ j) is a positive tiling patch. Finally we have

∂(Θ(i ∧ j)) = ∂
(
(θ ∧ θ)(i ∧ j)

)
, by Lemma 5.2,

= ∂
(
θ(i) ∧ θ(j)

)
, by (5.2),

= [θ(i), θ(j)], by(4.3),

= θ([i, j]),

so by (3.15) ∂Θ = θ, and Θ is a positive tiling substitution. �

We define the structure matrix LΘ of a positive tiling substitution Θ to
be the (d

2)× (d
2) integer matrix whose i ∧ j, k ∧ ` entry gives the number of

times k ∧ ` occurs inside Θ(i ∧ j).

Corollary 6.2. — The positive tiling substitution Θ constructed above
satisfies LΘ = A∗, i.e., (Lθ)∗ = LΘ.

6.1. Example. The Ammann matrix (continued)

Let A be the Ammann matrix (2.10), which by Section 2.4 satisfies (2.1),
(2.4) and (2.8). Let P be the projection (2.11).

To define a properly ordered endomorphism, we need for each i that θ(i)
is a properly ordered word with f(θ(i)) equal to the ith column of A. Since
the columns of A belong to {0, 1,−1}4, Lemma 5.8 implies each θ(i) should
be naturally ordered:

θ(1) = 4−11−12 θ(2) = 3−12−11

θ(3) = 4−13−12−1 θ(4) = 4−13−11−1.

Next we define the product substitution (θ∧θ)(i∧ j) = θ(i)∧θ(j) whose
value on each of the six positive prototiles we represent as product de Bruĳn
diagram.
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In two cases, (θ∧θ)(1∧3) and (θ∧θ)(4∧2), the product diagrams consist
of just positive and trivial tiles. For example,

(θ ∧ θ)(1 ∧ 3) = (4−11−12) ∧ (4−13−12−1) =

4 ∧ 2 1 ∧ 2 2 ∧ 2
4 ∧ 3 1 ∧ 3 3 ∧ 2
4 ∧ 4 1 ∧ 4 4 ∧ 2

 ,

in matrix form, where the entries have been simplified to positive prototiles.
The resulting µ-equivalent positive de Bruĳn diagram Y (1 ∧ 3) is shown
below (left), as well as its realization Θ(1 ∧ 3) as a tiling patch (right).

2

2-1

3-1

4-1

1-14-1

b

d

a

c ef

g

Y (1 ∧ 3)

p2
p3

p4

p1

c
b

d

g
h

e
f

2

1

2
-1

4

4
-1

1
-1

2

3

2
-1

4

4
-1

3
-1

Θ (1 ∧ 3)

Similarly, for (θ ∧ θ)(4 ∧ 2) we obtain:

4-1

3-1

2-1

1

3-1 1-1

a

c

g

b fe

d

Y (4 ∧ 2)

p3

p4

p1

p2

a

b

c
g
e

d
f

1
-12

1

3

2
-1

3
-1

1
-1

1

3

4

4
-1

3
-1

Θ (4 ∧ 2)

Now consider the case

(θ ∧ θ)(1 ∧ 2) = (4−11−12) ∧ (3−12−11) =

1 ∧ 4 1 ∧ 1 −(1 ∧ 2)
4 ∧ 2 1 ∧ 2 2 ∧ 2
4 ∧ 3 1 ∧ 3 3 ∧ 2

 .
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Notice that the upper right 2 × 2 block has the form shown in Figure 5.6
(a), and can be canceled as shown in Figure 5.6 (b) and (c) to obtain the
positive diagram Y (1∧ 2) (shown left). The resulting geometric realization
Θ(1 ∧ 2) is shown (right).

e

d

c b a

4-1 1-1 2

2-1

3-1

1

abc

d

e

Y (1 ∧ 2)

p2
p3

p4

p14-1

1-1

1-1
3-1

2-1

2-1

2

2

1

1

3

4

a
b

d
e

c

Θ (1 ∧ 2)

There are two more cases that work exactly the same way: (θ ∧ θ)(3∧ 2)
and (θ ∧ θ)(4 ∧ 3). These are shown below.

4
-1

3
-1

2
-1

1

3
-1

2
-1

a

c

b

ed

Y (3 ∧ 2)

p3

p4

p1

p2

a

d
c

d

e 2

1

3

2
-1

4
3
-1

1
-12

3

2
-1

4
-1

3
-1

Θ (3 ∧ 2)

The most complicated case is

(θ ∧ θ)(1 ∧ 4) = (4−11−12) ∧ (3−12−11) =

−(1 ∧ 4) 1 ∧ 1 1 ∧ 2
4 ∧ 2 1 ∧ 2 2 ∧ 2
4 ∧ 3 1 ∧ 3 3 ∧ 2

 .

Notice that the required cancellations are not adjacent. We use the method
in the proof of Theorem 5.11 as illustrated in Figure 5.6. The steps are
shown in detail below.
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4-1

4-1

3-1

2-1

3-1 1-1

a

e

d

cb

Y (4 ∧ 3)

p3

p4

p1

p2

a

e

d

c

b

1

3

2
-1

4

4
-1

3
-1

1
-1

2

3

4

4
-1

3
-1

Θ (4 ∧ 3)

: cancellation

2

2-1

3-1

4-1

1-14-1

g h i

d e f

a b c

Product diagram
(θ ∧ θ)(1 ∧ 4).

↓

p3

p4

p1

p2

c
b

df e

gi

a

h

(θ ∧ θ) (1 ∧ 4) as a signed
tiling patch.

↓

j

b’

c

d’ e’
f

g h i

a’

k

: cancellation

2

2-1

3-1

4-1

1-14-1

↓

p3

p4

p1

p2

c

f

i

a’
e’

h

b’

k

d’

j

g

↓

Finally, we will show how to iterate Θ to obtain tiling patches and tilings.
We start with the tiling patch y, shown below, and apply Θ to obtain a
sequence of patches ΘN (y). The patch y has been carefully chosen so that
for each i ∧ j ∈ B2

+, a translation of y appears as a sub-patch of ΘN (i ∧ j)
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: cancellation

2

2-1

3-1

4-1

1-14-1

: new cancellation

j

b’

c

d’ e’

f

g i

k

↓

p3

p4

p1

p2

c

f

i

e’

b’

k

d’

j

g

↓

4-1

4-1

3-1

1-1

c

e’
f

i

k

1-1 2

Y (1 ∧ 4)

p3

p4

p1

p2

c

f

i

e’

k
1
-1

2

1

3

2
-1

4

4
-1

3
-1

1
-1

4
-1

1
4

Θ (1 ∧ 4)

Figure 6.1. The patches y and Θ(y).

for all N sufficiently large. The existence of such a patch y follows from
the fact that (A∗)N > 0 for all N > 2. We say in such a case that Θ is
a primitive tiling substitution (this means that each k ∧ ` appears in each
ΘN (i ∧ j) for all N sufficiently large).

Another important property of the patch y is that y appears as a sub-
patch of Θ2(y), completely surrounded by other tiles. This is shown in
Figure 6.1. It follows that Θ2N (y) is a sub-patch of Θ2M (y) for all M > N .
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Thus the increasing limit

z := lim
N→∞

Θ2N (y)

defines a tiling of R2. A swatch of this tiling is shown in Figure 6.4.

Figure 6.2. The patch Θ2(y), showing y as a sub-patch around 0.

Figure 6.3. The patch Θ3(y), which has the same patch y′ around 0
as Θ(y).
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Figure 6.4. A swatch of the “Ammann” tiling y.

It is interesting to note that one obtains a different tiling z′ = limN→∞
Θ2N+1(y) by taking odd iterates. In particular, there is a different patch
y′ around the origin. However, since Θ is primitive, both of these belong
to the same “tiling space”, XΘ in the notation of [16] .

We call z and z′ “Ammann tilings” although they are much less sym-
metric than the classical Ammann-Beenker tiling (see [17]). In fact, there
are many different choices non-abelianizations θ of A (i.e., not necessar-
ily properly ordered) that result in completely different tiling substitutions
Θ and different tiling spaces XΘ. None of them seem to be the classical
Ammann-Beenker tilings.

7. The positivity of (A∗)N

In addition to (2.1) and (2.4), all of the tiling results in this paper require
that A satisfy (2.9): A∗ > 0. We begin by noting that A and AN , N > 1,
have the same expanding subspace Eu and the same projections P to Eu.
Thus AN satisfies (2.1) and (2.4) if and only if A does. In general, we are
not so concerned with the difference between A and AN . If θ is a non-
abelianization of A, then θN is a non-abelianization of AN , and we tend
to think of θN and θ as the “same substitution”. The main result in this
section is that AN may satisfy (2.9) (or rather a slightly stronger condition)
even if A does not.
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It follows from the Binet-Cauchy Theorem (Theorem 2.3) that if A sat-
isfies (2.1) and (2.4) then

(7.1) (A∗)N = (AN )∗ for all N > 0.

Instead of looking for matrices A where A∗ > 0, it will suffice to find A

so that (A∗)N = (AN )∗ > 0. Unfortunately this is not so easy. However,
it turns out to be possible to find good conditions on A for a stronger
conclusion: (A∗)N > 0. In this case, we say A∗ is eventually positive.

Even in the case where A∗ > 0, the eventual positivity of A∗ is important
because by Corollary 6.2 it implies the corresponding tiling substitution Θ
is primitive. In any case, if a matrix A satisfying (2.1) and (2.4) is such
that (A∗)N > 0, then (7.1) implies that B = AN satisfies (2.1), (2.4) and
(2.9). This provides lots of new examples.

7.1. The eventual positivity of A∗

A matrix A is called eventually positive if AN > 0 for all N sufficiently
large. A matrix A is primitive if A > 0 and A is eventually positive. Our
main result in this section is the following.

Theorem 7.1. — Let A satisfy (2.1) and (2.4). The matrix A∗ is even-
tually positive if and only if S(A) = ±S(AT ), where S(A) is the matrix
defined in (2.7).

Since A and AT have the same eigenvalues, A satisfies (2.1) if and only
if AT does. The proof of Theorem 7.1 will come at the end of this section.

Corollary 7.2. — If AT = A, then A∗ is eventually positive.

If A = AT , then A satisfies (2.4) if and only if AT does (they share
the projection P ). As we will show, however, there are also many non-
symmetric examples. In the 3× 3 case we get the following.

Corollary 7.3. — Let B ∈ Sl3(Z). Suppose B is eventually positive
and satisfies the following Pisot condition: dim(Eu(B)) = 1. Then A :=
B−1 satisfies (2.1), (2.4) and (2.9).

Combining this Theorem 6.1, we obtain a new proof of the result from [10]
that under the conditions of Corollary 7.3, there exists a tiling substitution
Θ with boundary θ whose structure matrix is A. (In [10] an additional
connectivity result is also obtained.)
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Proof of Corollary 7.3. — Assume without loss of generality that B > 0.
The Pisot property for B implies that B has three distinct eigenvalues
satisfying ω3 > 1 and |ω2|, |ω1| < 1. It follows that the corresponding
eigenvalues of A, λi = ω−1

i , satisfy |λ1|, |λ2| > 1 and λ3 < 1, so A satisfies
(2.1).

Let v1,v2,v3 be the corresponding eigenvectors. Since B > 0 we can as-
sume v3 = (1, a, b) where a, b > 0. Let w1 = (−a, 1, 0) and w2 = (−b, 0, 1).
Since w1 · v3 = w2 · v3 = 0,

(7.2) P = (w1,w2)T =
(
−a 1 0
−b 0 1

)
and C2(P ) = (b,−a, 1). It follows that S(A) = diag(1,−1, 1). Since BT > 0,
and since AT = (BT )−1, the same argument shows S(AT ) = S(A), and the
corollary follows from Theorem 7.1. �

7.2. Subspaces and projections

We say v ∈ Cd is real if γv ∈ Rd for some nonzero γ ∈ C; otherwise we
say v is complex. Let v1,v2 ∈ Cd be linearly independent over C. If both
v1 and v2 are real then span{v1,v2} ⊆ Rd denotes span over R. Otherwise
span{v1,v2} ⊆ Cd denotes span over C.

In general, we let F = C or F = R. Given a two dimensional subspace
E = span{v1,v2} ⊆ Fd, we call a 2×d matrix P satisfying (2.2) a projection
to E. As before, (2.3) holds, except now for M ∈ Gl2(F).

A subspace E is called real if it has a real basis, or equivalently, a real
projection P . In particular, this means there is a nonsingular M so that
MP has all real entries. Defining R = (v1,v2), we have that (2.2) implies
PR = I. We put AE = PAR, which satisfies P |EA = AEP |E .

7.3. Jordan forms

Let V ∈ GLd(C) be such that V J = AV , where J is the upper triangular
Jordan Canonical Form of A, with diag(J) = (λ1, λ2, . . . , λd) ∈ Cd. The
columns V = (v1, . . . ,vd) are a basis of ordered generalized eigenvectors
for A. If A is diagonalizable, these are actually eigenvectors.

Proposition 7.4. — Let A satisfy (2.1) and let w1 and w2 be the
first two ordered generalized eigenvectors for AT (i.e., corresponding to
Eu(AT )). Then P = (w1,w2)T is a projection to Eu(A).
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Proof. — The unique dual basis w′
1, . . . ,w

′
d corresponding to v1 . . . vd

is defined to satisfy vi ·w′
j = δi,j . Thus W ′ := (w′

1,w
′
2, . . . ,w

′
d)

T satisfies
W ′ = V −1.

We have AT (W ′)T = (W ′)T JT because W ′A(W ′)−1 = V −1AV = J

implies W ′A = JW ′. But JT is the lower-triangular Jordan form for A.
There exists a permutation matrix U so that UT JT U = J where the first

two rows (and columns) of U are either: (a) e1, e2, or (b) e2, e1, depending
on whether or not λ1 and λ2 are in a non-trivial Jordan block (this can
only happen if λ1 = λ2).

Let W = UT W ′, and express W = (w1, . . . ,wd)T . Then

W−1AT W = (UT W ′)−1AT (UT W ′) = J.

This shows w1, . . . ,wd are the ordered generalized eigenvectors for AT . Let

P = (w1,w2)T . Then P = MP ′, where M = I in case (a), or M =
(

0 1
1 0

)
in the case (b). �

Corollary 7.5. — The expanding subspace Eu(A) is real.

Proof. — This is clear if λ1 is real, since this is equivalent to λ2 also
being real.

If λ1 is complex, then λ2 = λ1. Put P = (w1,w1)T . Let P ′ = MP =

(Re{w1}, Im{w1})T where M = 1
2

(
1 1
−i i

)
. Then P ′ is a real projection

to Eu. �

7.4. Perron-Frobenius theory for A∗

Let v1,v2 ∈ Rd. Define v1 ∧ v2 ∈ R(d
2) by

(7.3) v1 ∧ v2 = C2

(
(v1,v2)

)
.

Lemma 7.6. — If A is d× d and v1,v2 ∈ Rd then

C2(A)(v1 ∧ v2) = (Av1) ∧ (Av2).

Proof. —

C2(A)(v1 ∧ v2) = C2(A)C2

(
(v1,v2)

)
= C2

(
(Av1, Av2)

)
= (Av1) ∧ (Av2).

�
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A matrix B ∈ Zp×p is called spectrally Perron (see [14]) if it has a real
eigenvalue ω > 0, such that for any other eigenvalue ω′ of B, |ω′| < ω. The
eigenvector u corresponding to ω is called a Perron eigenvector.

Theorem 7.7. — (Lind and Marcus, [14]) A matrix B is eventually
positive if and only if it is spectrally Perron and the Perron eigenvectors u
and u′ for B and BT respectively are both positive.

The “only if” direction follows from the the Perron-Frobenius Theorem
(see [14]). The “if” direction is Lind and Marcus [14], Exercise 11.1.9.

Lemma 7.8. — Let A satisfy (2.1) and let E = span{v1,v2} be any real
or complex 2-dimensional A-invariant subspace. Let P be a projection to
E, and let AE be the induced matrix on F2. Then u = S(A)(v1 ∧v2) is an
eigenvector for A∗ corresponding to the eigenvalue ω = det(AE). Moreover,
every eigenvalue of A∗ is obtained this way.

Proof. — We have
RAE = RPAR = AR.

Using this with (7.3) and the Binet-Cauchy Theorem (Theorem 2.3)

C2(A)(v1 ∧ v2) = C2(A)C2(R)

= C2(AR) = C2(RAE)

= det(AE)C2(R) = ω (v1 ∧ v2),

where ω = det(AE).
The fact that every eigenvalue of C2(A) is obtained this way follows from

the Jordan canonical form for A.
Now put u = S(A)(v1 ∧ v2). Then

A∗u = S(A)C2(A)S(A)2(v1 ∧ v2)

= S(A)C2(A)(v1 ∧ v2)

= ω S(A)(v1 ∧ v2) = ω u.

�

Proposition 7.9. — Let A be non-Pisot of order-2 and satisfy the
good star property. Then A∗ is spectrally Perron. In particular, if Eu =
span{v1,v2}, then u = S(A)(v1 ∧ v2) is the Perron eigenvector and ω =
det(Au) is the Perron eigenvalue.

Proof. — Since A∗ = S(A)C2(A)S(A) and A = V −1JV , the Binet-
Cauchy theorem implies

A∗ = (C2(V )S(A))−1C2(J)(C2(V )S(A)).
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Now C2(J) is upper triangular so its eigenvalues are its diagonal entries.
These are pairwise products of the diagonal entries of J , which are the
eigenvalues of A.

Since Eu is a real 2-dimensional invariant subspace there are three possi-
bilities for Au: (i) Au is diagonalizable over R and has two real eigenvalues
λ1, λ2 with |λ1|, |λ2| > 1. If necessary, by replacing A with A2, we can as-
sume λ1, λ2 > 0. Then ω = λ1λ2 > 1. (ii) Au is a nontrivial Jordan block
with eigenvalue λ. As above, assume by replacing A with A2 if necessary
λ > 0. Then ω = λ2 > 1. (iii) Au has complex eigenvalues λ and λ, and
ω = λλ = |λ|2 > 1.

Now let E be any other real or complex 2-dimensional A-invariant sub-
space, and let ω′ be the corresponding eigenvalue for A∗. If E ⊆ Es then
ω′ = det(AE) = λiλj , where i, j > 2, so |ω′| = |λi||λj | 6 |λ3|2 < 1 < ω.
Otherwise Au is diagonalizable and has eigenvalues λi, λj , i 6 2, j > 2.
Then |ω′| = |λi||λj | < |λ1||λ2| = ω. The result now follows from an appli-
cation of Lemma 7.8. �

Proposition 7.10. — Suppose A satisfies (2.1). Let v1,v2 be a real
basis for Eu(A) and let w1,w2 be a real basis for Eu(AT ). Then A∗ is
eventually positive if and only if S(A)(v1 ∧ v2) and S(AT )(w1 ∧ w2) are
positive.

Proof. — This follows from Theorem 7.7, Proposition 7.9 and Corol-
lary 7.4. �

Proof of Theorem 7.1. — Let

u = S(A)(v1 ∧ v2) and u′ = S(AT )(w1 ∧w2).

By proposition 7.10, Theorem 7.1 follows once we show

(7.4) u,u′ > 0 if and only if S(A) = ±S(AT ).

By Proposition 7.4, we have

P = PEu(A) = (w1,w2)T and P ′ = PEu(AT ) = (v1,v2)T

where
Eu(A) = span{v1,v2} and Eu(AT ) = span{w1,w2}.

By (7.3), C2(P ) = w1 ∧ w2 and C2(P ′) = v1 ∧ v2. It follows from (2.7)
that

S(A) = diag(sgn(C2(P )) = diag(sgn(w1 ∧w2))

and
S(AT ) = diag(sgn(C2(P ′)) = diag(sgn(v1 ∧ v2)).

Thus S(A) = ±S(AT ) if and only if sgn(v1 ∧ v2) = sgn(w1 ∧w2).
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Now suppose S(A) = S(AT ). Then

u = S(A)(v1 ∧ v2) = sgn(w1 ∧w2) ∗ (v1 ∧ v2)

= sgn(v1 ∧ v2) ∗ (v1 ∧ v2) > 0,

and similarly u′ > 0, where ∗ denotes entry-wise multiplication.
Conversely, suppose u,u′ > 0. Then

sgn(w1 ∧w2) ∗ (v1 ∧ v2) > 0,

which implies

sgn(v1 ∧ v2) = ±sgn(w1 ∧w2).

It follows that S(A) = S(AT ). �

8. Example: Irreducible characteristic polynomial

Consider the matrix

A =


−1 −1 −1 0
−1 0 −1 0
−1 −1 0 1

0 0 1 0

 ,

with irreducible characteristic polynomial p(x) = x4 + x3 − 4x2 + 1. The
eigenvalues are λ1 = −2.5231, λ2 = 1.44129, λ3 = 0.566889, and λ4 =
−0.485084, so A satisfies (2.1). Note that A is symmetric, so by Corol-
lary 7.2, (A∗)N > 0 for some N sufficiently large. We now find such an
N .

Starting with the matrix

Q = (q1,q2,q3,q4) =


−3.12676 −0.252532 −2.19713 0.576415
−2.23925 −0.824788 2.87576 0.188279
−2.5231 1.44129 0.566889 −0.485084

1 1 1 1


of eigenvectors, the projection P to Eu is given by

(8.1) P =
(

−0.141119 −0.101064 −0.113874 0.0451327
−0.0660841 −0.215836 0.377166 0.261686

)
,

(the first two rows of Q−1). The columns of P are plotted in Figure 8.1.
The matrix A∗ is given by
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p1

p2

p3

p4

Figure 8.1. The good star of vectors for the projection P in (8.1). The
positive prototiles are 1 ∧ 2, 3 ∧ 1, 4 ∧ 1, 3 ∧ 2, 4 ∧ 2, and 4 ∧ 3.

A∗ =



−1 0 0 −1 0 0
0 −1 −1 −1 −1 −1
0 −1 0 −1 0 0

−1 −1 −1 −1 0 −1
0 −1 0 0 0 0
0 −1 0 −1 0 −1


,

which satisfies A∗ 6 0. This is sufficient for our method. By (7.1), (A∗)2 =
(A2)∗ > 0.

For the matrix A, we find the properly ordered morphism θ to be

θ :


1 → 3−12−11−1

2 → 3−111

3 → 2−11−14
4 → 3

.

Next, we simplify all six product de Bruĳn diagrams (θ ∧ θ)(i ∧ j) to
obtain the following efficient diagrams (all of which are negative):

2-1

3-1

1-1

1-1

a
b

3-1

Y (1 ∧ 2)

2-1

3-1

2-1

1-1

1-1 4

a

e

d

cb

Y (3 ∧ 1)

3

3-1

2-1

1-1

a

b

Y (4 ∧ 1)

These de Bruĳn diagrams have the following realizations as tiling patches.
The gray color indicates the tiles are all negative.
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2-1

3-1

1-1

1-1 4

a

ed

cb

Y (3 ∧ 2)

3

3-1

1-1
a

Y (4 ∧ 2)

3

2-1

1-1

4

a

b

c

Y (4 ∧ 3)

p1

p2

p3

p4

a

b

1
-1

1

3

2
-1

3
-1

1
-1

2

1
3

3
-1

Θ(1 ∧ 2)

p1

p2

p3

p4

a

b

c
d

e

1
-1

2

1

3

2
-1

4

4
-1

3
-1

1
-1

2

1

2
-1

Θ(3 ∧ 1)

p1

p2

p3

p4

a

b

1
-1

2

3
2
-1

3
-1

1
3

3
-1

Θ(4 ∧ 1)

p1

p2

p3

p4

a

b

c

d

e

1
-1

2

1

3

2
-1

4
3
-1

1
-1

1

4
-1

Θ(3 ∧ 2)

a
p1

p2

p3

p4

1
-1

3

3
-1

1

3

3
-1

Θ(4 ∧ 2)

p4
a

b

c

p1

p2

p3

1
-1

2

13

2
-1

4

4
-1

3
-1

Θ(4 ∧ 3)

The patch y. Θ(y)
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Θ2(y)

Starting with the tiling patch y shown below, we iterate to get patches
ΘN (y). Notice that for N even, the patch is a positive tiling patch. Each
of these positive patches is a sub-patch of the previous one.

Θ3(y)

Θ4(y)

Finally, we define a tiling

z = lim
N→∞

Θ 2N (y).

A swatch of this tiling is shown in Figure 8.2.
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Figure 8.2. The positive tiling z = limN→∞Θ2N (y).
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