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ON THE FUNDAMENTAL GROUP OF SELF-AFFINE
PLANE TILES

by Jun LUO & Jörg M. THUSWALDNER (*)

Abstract. — Let A ∈ Z2 × Z2 be an expanding matrix, D ⊂ Z2 a set with
| det(A)| elements and define T via the set equation AT = T + D. If the two-
dimensional Lebesgue measure of T is positive we call T a self-affine plane tile.
In the present paper we are concerned with topological properties of T . We show
that the fundamental group π1(T ) of T is either trivial or uncountable and provide
criteria for the triviality as well as the uncountability of π1(T ). Furthermore, we
give a short proof of the fact that the closure of each component of int(T ) is a
locally connected continuum (we prove this result even in the more general case of
plane IFS attractors fulfilling the open set condition). If π1(T ) = 0 we even show
that the closure of each component of int(T ) is homeomorphic to a closed disk.

We apply our results to several examples of tiles which are studied in the liter-
ature.

Résumé. — Soient A ∈ Z2 × Z2 une matrice expansive, D ⊂ Z2 un ensemble
à | det(A)| éléments et T l’ensemble défini par l’équation AT = T + D. Si
T a une mesure de Lebesgue sur R2 strictement supérieure à zéro, alors T est
appelé motif plan auto-affine. Cet article établit certaines propriétés topologiques
de T . Nous montrons que le groupe fondamental π1(T ) de T est soit trivial, soit
infini non dénombrable, et nous donnons des critères associés à chacun des deux
cas. De plus, nous incluons une courte preuve de la propriété que l’adhérence de
chaque composante connexe de int(T ) est un continuum localement connexe (nous
démontrons même ce résultat dans le cas plus général d’attracteurs plans d’IFS
satisfaisant la condition de l’ensemble ouvert). Si π1(T ) = 0, nous montrons même
que l’adhérence de chaque composante de int(T ) est homéomorphe au disque unité.
Nous appliquons nos résultats à plusieurs examples de motifs étudiés dans la litté-
rature.

Keywords: Tile, tiling, fundamental group, number system.
Math. classification: 52C20, 14F35, 11A63, 05B45.
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1. Introduction

This paper is devoted to the study of topological properties of integral
self-affine tiles with standard digit set in the plane. Before we discuss our
aims in more detail we recall some definitions.

It is well-known that for a family of contractions f1, . . . , fk on Rd, there
is a unique non-empty compact set T = T (f1, . . . , fk) with T =

⋃
i fi(T )

(cf. [12]). Here T is called the attractor of the iterated function system (IFS
for short) f1, . . . , fk. If there exists a non-empty bounded open set V ⊂ Rd

such that fi(V ) ∩ fj(V ) = ∅ for i 6= j and
⋃

i fi(V ) ⊂ V , then we say that
f1, . . . , fk (or T ) satisfy the open set condition (cf. [8, p. 118]).

Special instances of IFS are so-called self-affine tiles. Let A be a real d×d

matrix with all eigenvalues greater than 1. Suppose that |det(A)| > 1 is
an integer and let D ⊂ Rd with |D| = |det(A)|. Then there exists a unique
non-empty compact set T := T (A,D) such that

AT =
⋃

v∈D
(T + v).

If T has positive d-dimensional Lebesgue measure we call it a self-affine
tile. In the present paper we are concerned with so-called integral self-affine
tiles with standard digit set. These are tiles T (A,D) with integer matrix A

whose digit set D ⊂ Zd is a complete set of coset representatives of Zd/AZd.
Moreover, we shall assume that T (A,D) tiles Rd by the lattice Zd, i.e.,

T + Zd = Rd

where

(1.1) int((T + γ1)) ∩ (T + γ2) = ∅ for γ1 6= γ2 (γ1, γ2 ∈ Zd).

Following Bandt and Wang [4] we shall call such a tile a Zd-tile for short.
There are standard methods for checking whether T forms a tiling or not.
We refer for instance to Vince [28, Theorem 4.2] where a list of tiling criteria
is given.

The topological structure of attractors of IFS has been studied exten-
sively in the literature. Let T be an IFS attractor. Hata [10] observed among
many other results that if T is connected then it is a locally connected con-
tinuum. More recently, many results for plane IFS attractors with open set
condition have been shown. For example Luo et al. [18] prove that connec-
tivity of int(T ) implies that T is homeomorphic to a closed disk, Ngai and
Tang [22, 21] study the structure of the components of int(T ) and Luo et
al. [17] prove that connectivity of T implies connectivity of ∂T . For the
case of Z2-tiles Bandt and Wang [4] provide an algorithmic criterion for
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the homeomorphy of a given Z2-tile to a closed disk. The structure of the
set of “neighbors” of a Z2-tile was investigated by Scheicher and Thuswald-
ner [25] as well as Strichartz and Wang [26]. Recently Ngai and Tang [20]
study “vertices” of Z2-tiles. For a survey on topological results of Z2-tiles
with a long list of references we refer to Akiyama and Thuswaldner [2].

The aim of the present paper is to continue the study of the topological
structure of Z2-tiles. In particular, we will prove the following results.

• In Section 4 we prove that the fundamental group of a Z2-tile T is
either trivial or uncountable (Theorem 4.4). If it is trivial, then T
is either homeomorphic to a closed disk or it contains a cut point.

• Section 5 is devoted to the study of the components Ui (i ∈ N)
of the interior of a Z2-tile T . We give a short proof of the fact
that Ui is a locally connected continuum. In fact, we are able to
prove this result even for arbitrary plane IFS satisfying the open
set condition (Proposition 5.2; this result has been shown already
in [22, Theorem 1.2] with a much longer proof). Furthermore, we
prove that π1(T ) = 0 implies that all the sets Ui are homeomorphic
to a closed disk (Theorem 5.3, for plane IFS with open set condition
see Theorem 5.4).

• Sections 6 and 7 are devoted to criteria for checking whether a given
Z2-tile T has trivial (Theorem 7.2) or uncountable fundamental
group (Theorems 6.4 and 6.6). All these criteria can be checked by
inspecting a certain graph related to the neighbors of T .

• In the last section we apply our results to some examples.

Our results suggest that there are three levels of topological difficulty for
Z2-tiles.

• T is homeomorphic to a closed disk.
• T has trivial fundamental group but is not homeomorphic to a

closed disk. In this case, T has at least one cut point and the closure
of each of its interior components is homeomorphic to a closed disk.

• T has uncountable fundamental group. This is the most involved
case. Here in general we only know that the closures of the compo-
nents of int(T ) are locally connected continua.

The paper is organized as follows. Sections 2 and 3 contain preliminary
results. In Sections 4, 5, 6 and 7 we state and prove our main results and
Section 8 contains the detailed discussion of several examples.

TOME 56 (2006), FASCICULE 7
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2. Neighbor graph and adding machine

To each Z2-tile T (A,D) we may associate a kind of number system that
permits to represent elements of Z2 in terms of powers of A with “digits”
from the set D. This enables us to view each element of Z2 as a digit
string (i.e., an element of DN). If we add a fixed element s ∈ Z2 to an
arbitrary element z ∈ Z2, it is natural to expect that the digit string
corresponding to z + s is somehow related to the digit strings of z and s.
Indeed, this relation can be made precise with help of an “adding machine”
represented by a certain graph GT (R). Since it turns out that properties
of this adding machine play an important role in our results we want to
recall its construction in full detail (cf. for instance [24, 25]).

We start with attaching a digit string to each element of Z2. To this
matter define the mapping

Φ(z) := A−1(z − δ),

where δ is the unique element of D with δ ≡ z(modA Z2). If Φl(z) denotes
the l-th iterate of Φ then for each z ∈ Z2 we call (Φj(z))j>0 the orbit of z

generated by Φ. Let ‖·‖ denote any norm in R2. Since A−1 is contractive it
is easy to see (cf. [13, 14]) that there exists a constant C with the following
property. For each z ∈ Z2 there exists an integer j0 such that for each
j > j0 we have ‖Φj(z)‖ 6 C. Since there are only finitely many elements
of Z2 with bounded norm we conclude that the sequence

(2.1) Φ0(z),Φ1(z),Φ2(z), . . .

is ultimately periodic for each z ∈ Z2.
Let us call an element p ∈ Z2 periodic, if for some positive integer ω we

have Φω(p) = p, and denote the set of all periodic elements by P. Thus
(2.1) ends in a cycle of periodic points for each z and P is the attractor of
the dynamical system (Z2,Φ) (this dynamical system has been studied for
instance in [13, 14, 27]). Since the sequence (‖Φj(z)‖)j>0 is ultimately less
than or equal to C we conclude that P has only finitely many elements.

It is immediate from the definition of Φ and P that each z ∈ Z2 admits
a unique representation of the shape

(2.2) z =
L∑

`=0

A`a` + AL+1p

with p ∈ P, a` ∈ D and L as small as possible. We call this represen-
tation the A-adic representation of z. Since p is a periodic point, there
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exists a positive integer ω, such that p =
∑Nω−1

k=0 Akbkmod ω + ANωp, with
b0, . . . , bω−1 ∈ D and N ∈ N arbitrary. So we can rewrite (2.2) in the form

(2.3) z =
L∑

`=0

A`a` + AL+1
Nω−1∑
k=0

Akbkmod ω + AL+1+Nωp

for any N ∈ N. In what follows we will denote the infinite repetition of a
string bω−1 . . . b0 by (bω−1 . . . b0)∞ and identify the A-adic representation
(2.3) of z with the infinite digit string

(2.4) z = ((bω−1 . . . b0)∞aL . . . a0)A.

If p = 0 we write z = (aL . . . a0)A instead of z = (0∞aL . . . a0)A. In this case
we call the A-adic representation a finite representation of length L + 1.
This will be written as L(z) = L + 1. If the A-adic representation of z

is not finite, we say that it has infinite length and write L(z) = ∞. We
will use the notation L for elements of Z2 as well as for strings of A-adic
representations.

In a next step we want to give the description of the adding machine
for A-adic representations. We define the directed labelled graph G(Z2) as
follows.

• Each s ∈ Z2 is a vertex of G(Z2).

• Let s, s′ be vertices of G(Z2). There exists an edge s
d|d′−−→ s′ from s

to s′ labelled by d|d′ if and only if As + d′ = s′ + d holds for a pair
(d, d′) ∈ D ×D.

For R ⊆ Z2 we denote by G(R) the restriction of G(Z2) to the set of vertices

R. In an edge s
d|d′−−→ s′ the number d′ is uniquely determined by s, s′ and

d. Thus we sometimes omit d′ and say that d is the label of this edge.
One important subgraph of G(Z2) is the neighbor graph G(S), where S

is the set of “neighbors” of a Z2-tile T , namely

(2.5) S := {s ∈ Z2 | T ∩ (T + s) 6= ∅}.

The graph G(S) can be used in order to obtain a representation of ∂T as
a so-called graph directed self-affine set (cf. for instance [25, 26]).

For R ⊆ Z2 denote by GT (R) the transposed graph of G(R), which is
obtained by changing the direction of every edge of G(R), i.e., there is an

edge s
d|d′−−→ s′ from s to s′ labelled by d|d′ if and only if s + d = As′ + d′

holds for a pair (d, d′) ∈ D ×D.
The graph GT (R) is right resolving in the sense that a pair (s, d) ∈ Z2×D

determines at most one edge s
d|d′−−→ s′ in GT (R). Indeed, suppose that there

TOME 56 (2006), FASCICULE 7
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exist edges s
d|d′−−→ s′ and s

d|d′′−−−→ s′′ with (s′, d′) 6= (s′′, d′′). Then

s + d = As′ + d′ = As′′ + d′′.

Reducing the second equation modulo AZ2 we see that d′ ≡ d′′( mod AZ2).
Since d′, d′′ ∈ D and D is a complete set of coset representatives of Zd/AZd

this implies that d′ = d′′ and thus s′ = s′′, a contradiction. By the same
reasoning we see that the only edges of GT (R) starting at 0 are of the shape

(2.6) 0
d|d−−→ 0,

i.e., there is no edge leading away from 0.
If GT (R) accepts the full shift, i.e., if for each pair (s, d) ∈ Z2 ×D there

exists an edge s
d|d′−−→ s′, we say that R has property (C) and call GT (R)

an adding machine. It has been shown in [25] that the set S in (2.5) has
property (C).

We can regard the graph GT (R) as a transducer automaton (cf. [7] for
a definition). In each label d|d′ we call d the input digit and d′ the output
digit. GT (R) can read each string of input digits contained in DN and
produces a unique string of output digits.

Suppose that GT (R) is an adding machine and let an A-adic represen-
tation (2.4) of z be given. We feed GT (R) with (2.4) from right to left
as input digits starting at the state s ∈ R. Then the output string is the
unique A-adic representation of the vector z + s. This follows easily from
the definition of Φ and GT (R) (see also Scheicher and Thuswaldner [24,
Section 2] where this is discussed in more detail).

We need the following simple results.

Lemma 2.1. — Let T (A,D) be a Z2-tile. If a ∈ Z2 satisfies L(a) 6 L

then
A−L(T + a) ⊂ T .

If a ∈ Z2 satisfies L(a) > L we have

int(A−L(T + a)) ∩ T = ∅.

Proof. — The first assertion is clear since T =
{∑

j>1 A−jdj | dj ∈ D
}

.
Suppose that a = (. . . b1b0)A is the A-adic representation of a. Then
A−L(T + a) ⊂ T + z for z = (. . . bL+1bL)A. Since L(a) > L we have
z 6= 0. Together with (1.1) this implies the second assertion. �

Lemma 2.2. — Let T (A,D) be a Z2-tile and let R ⊂ Z2 with property
(C) be given. Let r1, r2 ∈ R and let a := (. . . b2b1)A be the A-adic repre-
sentation of a ∈ Z2. Use (. . . b2b1) as input string for GT (R) starting at r1

ANNALES DE L’INSTITUT FOURIER
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and r2 in order to produce the output strings o1 and o2, respectively. Then

L(o1) < L(o2)

implies that

L(r1 + a) < L(r2 + a)

holds. Furthermore, setting L := L(o1), we get

A−L(T + r1 + a) ⊂ T ,

int(A−L(T + r2 + a)) ∩ T = ∅.

Proof. — The first assertion is true because if we use GT (R) with the
string (. . . b2b1) starting at ri then the output string oi is the A-adic
representation of ri + a (1 6 i 6 2). The second assertion follows from
Lemma 2.1. �

Let R1, R2 ⊂ R where R has property (C). We say that a string of input
digits w = (aL−1 . . . a0) leads from a set R1 to a set R2 in GT (R) if R2

is minimal with the property that each walk in GT (R) with labelling w

starting at a state r ∈ R1 ends in a state r′ ∈ R2.

Lemma 2.3. — Let T (A,D) be a Z2-tile and assume that R ⊂ Z2 has
property (C). For each R0 ⊂ R there is a string of input digits w leading
from R0 to {0}.

Proof. — By [9, Proposition 3.2] each s ∈ Z2 and a fortiori each s ∈ R

has a representation of the shape

(2.7) s =
L−1∑
i=0

Ai(a′i − ai) with ai, a
′
i ∈ D.

There is an edge r
a|a′−−→ r′ in GT (R) if and only if Ar′+a′ = r+a. Iterating

this L times we conclude that there exists a walk

(2.8) s
a0|a′0−−−→ s1

a1|a′1−−−→ s2 · · · sL−1

aL−1|a′L−1−−−−−−−→ 0

if and only if s has a representation of the shape (2.7).
Suppose that R0 contains n non-zero elements. Select s ∈ R0. Then s has

a representation of the shape (2.7). Thus by the above considerations there
exists a walk (2.8) leading from s to 0. Because by (2.6) no walk leads away
from 0 this implies that w leads from R0 to a set R1 containing at most
n− 1 non-zero elements. Repeating this argument proves the lemma. �

TOME 56 (2006), FASCICULE 7
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Lemma 2.4. — Let T (A,D) be a Z2-tile and assume that R ⊂ Z2 has
property (C). Then for each non-empty subset R0 of R with #R0 > 2 there
is a string of input digits w leading from R0 to a set

R1 := {b1, . . . , bm}

with bi := di − d (1 6 i 6 m) for d, d1, . . . dm ∈ D containing at least one
non-zero element.

Proof. — Using Lemma 2.3 we know that there exists a string of input
digits w leading from R0 to {0}. Since the empty walk is a prefix of w there
exists a maximal prefix v of w leading from R0 to a set

R1 = {b1, . . . , bm}

which contains at least one non-zero element. It remains to show that the
bi have the desired properties. By the maximality property of v there are
d, d1, . . . , dm ∈ D such that the edges

bi
d|di−−→ 0 (1 6 i 6 m)

exist. By the definition of the edges of GT (R) this implies that the elements
bi (1 6 i 6 m) have the desired representations. �

We will need so-called L-vertices of a Z2-tile T . Let S be the set of
neighbors of T defined in (2.5). Then an L-vertex is an element of R2

where T coincides with L translates of the shape T + s (s ∈ S \ {0}). More
precisely, for distinct s1, . . . , sL ∈ S \ {0} we set

VL(s1, . . . , sL) :=

x ∈ R2

∣∣∣∣∣∣x ∈ T ∩
L⋂

j=1

(T + sj)

 .

The set of L-vertices of T is then defined by

VL =
⋃

{s1,...,sL}⊂S\{0}

VL(s1, . . . , sL)

where the union is extended over all subsets of S\{0} containing L elements.
A 2-vertex is sometimes simply called vertex. Furthermore, we define the
set of vertices between digital translates of T by

VD′ := {x ∈ R2 | there exist pairwise disjoint d, d1, d2 ∈ D′ with

x ∈ (T + d) ∩ (T + d1) ∩ (T + d2)}

for each D′ ⊂ D.
The next proposition gives a way how to characterize VL with help of

the graph G(S \ {0}).

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.5. — Let L > 1 and let s01, . . . , s0L ∈ S \ {0} be pair-
wise different. Then the following two assertions are equivalent.

(i)
x =

∑
j>1

A−jdj ∈ VL(s01, . . . , s0L).

(ii) There exist the L infinite walks

s0i
d1|d′1−−−→ s1i

d2|d′2−−−→ s2i
d3|d′3−−−→ · · · (1 6 i 6 L)

in G(S \ {0}).

Proof. — For the proof we refer to Strichartz and Wang [26, Appendix]
or to Akiyama and Thuswaldner [3, Section 8]. �

In an obvious way this result can also be used to characterize VD′ . Indeed,
it is easy to see that VD′ is a finite union of translations of sets of the shape
V2(s1, s2).

3. Preliminaries from plane topology

In the following sections we will frequently use definitions and results
from plane topology (see for instance Kuratowski [15, 16] and Hatcher [11]).
In order to make the paper more readable we want to list some of them in
this section.

We start with the definition of locally connected continuum. First, recall
that a topological space is locally connected at a point x if every open
neighborhood of x contains a connected neighborhood of x. A topological
space that is locally connected at each point is called a locally connected
space.

Definition 3.1. — A Hausdorff-space X is called a continuum if it is
compact and connected. If it is also locally connected it is termed locally
connected continuum.

According to the theorem of Hahn-Mazurkiewicz-Sierpiński (cf. [16, §50,
II, Theorem 2]) a continuum is locally connected if and only if it is the
continuous image of an interval.

A space whose every pair of points can be joined by a continuum is said
to be a semi-continuum.

Definition 3.2. — A set is said to be a cut of a space if its complement
is not a semi-continuum. If a cut consists of a single point it is called a cut
point.

TOME 56 (2006), FASCICULE 7
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According to [16, §50, II, Theorem 4] a cut point x of a locally connected
metric continuum X is a separation of X, i.e., X \ {x} is disconnected.

Proposition 3.3 (Thorhorst; see [16, §61, II, Theorem 4]). — Let C ⊂
S2 be a locally connected continuum and let R be a component of S2 \ C.
Then ∂R is a locally connected continuum.

If C contains no cut point, then R is homeomorphic to a closed disk.

Proposition 3.4 (Schönflies; see [16, §61, II, Theorem 10]). — Let C ⊂
S2 be a locally connected continuum and suppose that S2 \C has infinitely
many components {Ri}i∈N. Then diam(Ri) → 0 for i →∞.

Proposition 3.5 (see [16, §61, IV, Theorem 11]). — Let C ⊂ S2 be a
locally connected continuum whose complement is connected. Then C is
an absolute retract. If, moreover, #C > 2 and if C contains no cut point
then C is homeomorphic to a closed disk.

Proposition 3.6 (see [16, §62, VI, Theorem 1]). — Let C ⊂ S2 \{p, q}
be a locally connected set which cuts between p and q. Then C contains a
simple closed curve which cuts between p and q.

Proposition 3.7 (see [16, §62, IV, Theorem 7]). — Let C0, C1, C2 ⊂ S2

be three connected sets and let x0, x1 ∈ S2 \ (C0 ∪ C1 ∪ C2).
If none of the sets Ck ∪ Ck+1 cuts S2 between x0 and x1 and if C0 ∩

C1 ∩ C2 6= ∅ then also C0 ∪ C1 ∪ C2 does not cut between x0 and x1 (here
k = 0, 1, 2 and the indices are reduced modulo 3).

Recall that M ⊂ S2 is called locally simply connected if for every x ∈ M

there exists an arcwise connected and simply connected neighborhood V

of x.

Proposition 3.8 (cf. Conner and Lamoreaux [5, Theorem 3.1]). — Let
K be a connected, locally arcwise connected subset of the Euclidean plane.
Then the following assertions are equivalent.

(i) π1(K) is not free.
(ii) π1(K) is uncountable.
(iii) K is not locally simply connected.
(iv) K has no universal cover.

Proposition 3.9 (cf. Pommerenke [23, p. 279]). — Let g be a univalent
function defined on the open unit disk D and let G = g(D). The following
assertions are equivalent:

(i) ∂G is locally connected.
(ii) g(z) has a continuous extension to D.

ANNALES DE L’INSTITUT FOURIER
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We end this section with some easy remarks on arcs. An arc in S2 is an
injective continuous mapping h : [0, 1] → S2. Sometimes, we also say that
the image h([0, 1]) is an arc. Let B ⊂ S2 be a closed set intersecting an arc
h, then h([0, 1]) ∩B is also closed. Thus

h−1(B) ⊂ [0, 1]

is compact and therefore has a minimal element t. We call the point h(t)
the first intersection of the arc h with B. The last intersection of h with B

is defined analogously.

Lemma 3.10. — Let h1, h2 : [0, 1] → S2 be two arcs in S2 intersecting
each other. Let h1(t1) be the first intersection of h1 with h2. Then there is
a unique t2 such that h1(t1) = h2(t2). Furthermore,

h1([0, t1]) ∪ h2([t2, 1])

is an arc.

Proof. — First note that the uniqueness of t2 is a consequence of the
injectivity of h2. Let t′1 := t1

2 and define the mapping h : [0, 1] → S2 by

h(t) :=

h1(2t) 0 6 t 6 t′1,

h2

(
t2−1
t′1−1 t + t′1−t2

t′1−1

)
t′1 6 t 6 1.

Then h([0, 1]) = h1([0, t1])∪ h2([t2, 1]). As continuity is clear, we just need
to show that h is injective. Suppose that there exist s1 6= s2 such that
h(s1) = h(s2). If s1, s2 6 t′1 or s1, s2 > t′1 this is a contradiction to the
injectivity of h1 and h2, respectively. Thus we may assume that s1 < t′1 <

s2. By the definition of h this implies that

h1(s1) = h2

(
t2 − 1
t′1 − 1

s2 +
t′1 − t2
t′1 − 1

)
.

But since s1 < t1 this contradicts the minimality of t1 and we are done. �

4. Possible cardinalities of the fundamental group of a tile

In this section we will prove that the fundamental group of a Z2-tile is
either trivial or uncountable. This result together with a sketched proof
is contained in the survey paper [2]. Here we give the result with its full
proof.

Proposition 4.1. — Let K ⊂ S2 be a locally arcwise connected set. If
S2 \K is disconnected then K contains a non-trivial loop.
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Proof. — Let U1 and U2 be two components of S2 \K and select p ∈ U1

and q ∈ U2. Then K cuts S2 between p and q. By Proposition 3.6 this
implies the existence of a simple closed curve C ⊂ K which also cuts S2

between p and q. From this follows by [16, §59, IV, Theorem 4] that every
set obtained from C by deformation in S2 \{p, q} can not be a single point.
Since K ⊂ S2 \ {p, q} this holds a fortiori for each deformation of C in K.
Thus C is a non-trivial loop in K. This proves the result. �

Proposition 4.2. — Let K ⊂ S2 be a locally arcwise connected con-
tinuum. Suppose that S2 \ K has infinitely many components. Then the
following assertions hold.

(i) π1(K) is not free.
(ii) π1(K) is uncountable.
(iii) K is not locally simply connected.
(iv) K has no universal cover.

Proof. — We show assertion (iii). Then Proposition 3.8 yields (i), (ii)
and (iv). In what follows, Br(y) will denote the open ball with radius r

centered at y.
Let {Ui}i>1 be the components of S2 \ K and select xi ∈ Ui. Let x be

an accumulation point of the sequence xi. Note that x ∈ K because K

is closed and diam(Ui) → 0 for i → ∞ by Proposition 3.4. Let ε > 0 be
an arbitrarily given number and set Kε := K ∩ Bε(x) (observe that Kε

is locally arcwise connected, as it is an open subset of the locally arcwise
connected space K). We need to show that the neighborhood Kε of x is
not simply connected.

Since K is a locally connected continuum there exists an η ∈ (0, ε) such
that every pair of points with distance less than η can be connected by an
arc of diameter ε (see [16, §50, II, Theorem 4]).

Since limi→∞ diam(Ui) = 0, the definition of x implies that there is an
m ∈ N such that Um ⊂ Bη/2(x). Thus Kη is a locally arcwise connected
set with disconnected complement. Applying Proposition 4.1 yields a loop
Cη ⊂ Kη which is nontrivial in K. This loop can be connected with x by an
arc contained in Kε. By [11, Proposition 1.5] this yields a nontrivial loop
in Kε which is based in x. Thus K is not locally simply connected in x.
This proves (iii). �

Lemma 4.3. — Let T = T (A,D) ⊂ S2 be a connected Z2-tile with dis-
connected complement S2\T . Then S2\T has infinitely many components.

Proof. — Since T is compact the disconnectivity of S2 \ T implies that
R2 \ T has at least one bounded component T0. As R2 \ T is open, every
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component of it is open in R2. Thus T0 contains points which lie in the
interior of a translate T + v for a certain v ∈ Z2 \ {0}. Of course, each of
the sets

R2 \A−1(T + d) (d ∈ D)

contains a bounded component A−1(T0 +d), which contains interior points
of A−1(T + d + v). Since v 6= 0, by the the equation AT = T + D there
exists a d0 ∈ D for which

A−1(T + d0 + v) ∩ int(T ) = ∅.

Set T1 := A−1(T0 + d0). Again by the equation AT = T + D we con-
clude that T1 is a component of R2 \ T . Iterating this construction we can
construct countably many components Ti (i > 0) of R2 \ T which are all
contained in a certain fixed disk Br(0) around the origin. �

Theorem 4.4. — Let T ⊂ S2 be a connected Z2-tile.
• If S2 \T is connected then π1(T ) is trivial. If, moreover, T contains

no cut point, it is homeomorphic to a closed disk.
• If S2 \ T is disconnected then π1(T ) is uncountable and not free.

Furthermore, T is not locally simply connected and has no universal
cover.

In particular, the fundamental group of a Z2-tile is either trivial or un-
countable.

Proof. — Since T is a locally arcwise connected continuum by Hata [10,
Theorem 4.6], the first part follows from Proposition 3.5. Just note that
for a set M which is an absolute retract we can extend each continuous
function f : S1 → M to a continuous function f̃ : D → M on the closed
unit disk D. This implies that each loop in M is trivial.

The second part follows from Lemma 4.3 together with Proposition 4.2.
�

5. On the components of the interior of a tile

In this section we prove results on the topological structure of the com-
ponents {Ui}i>1 of a connected plane IFS attractor T . The corresponding
results for connected Z2-tiles follow as corollaries. First we prove that Ui

is a locally connected continuum for each i. This result has already been
obtained by Ngai and Tang [22]. However, our proof is much shorter and
easier than theirs. We need the following lemma.
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Lemma 5.1. — Suppose that T is the attractor of the IFS {fj}q
j=1 of

injective contractions in the plane that satisfies the open set condition.
Suppose further that T is connected and that {Ui} is the collection of the
components of int(T ). Then Ui is a complementary component of a locally
connected continuum for each i.

Proof. — It is known from Hata [10, Theorem 4.6] that T is a locally
connected continuum. There exist indices i1, i2, . . . , im ∈ {1, 2, . . . , q}, such
that the small homeomorphic copy

H(T ) := fi1 ◦ fi2 ◦ · · · ◦ fim(T )

of T is entirely contained in U1. Then, H−1(U1) is a component of the
interior of H−1(T ), which is also a locally connected continuum. Moreover,
we have T ⊂ H−1(U1). For every word α = j1j2 . . . jm ∈ {1, 2, . . . , q}m let

fα = fj1 ◦ fj2 ◦ · · · ◦ fjm .

Then H−1(T ) =
⋃

α H−1 ◦ fα(T ). Let

M :=
⋃

α∈{1,...,q}m

α 6=i1i2...im

H−1 ◦ fα(T ).

We claim that M is a locally connected continuum. To prove this define a
sequence Mk (k > 0) inductively as follows.

M0 := ∂T,

Mk+1 := Mk ∪
⋃

α 6=i1i2···im

H−1◦fα(T )∩Mk 6=∅

H−1 ◦ fα(T ) (k > 0).

Since M0 is a continuum by [17], we conclude that Mk is a continuum for
each k ∈ N and M0,M1, . . . is an increasing sequence of continua. Because
{1, . . . , q}m is finite, this sequence becomes eventually constant, equal to
a set M ′, say. It is clear that M ′ ⊆ M . We will now show that M ′ = M .
Suppose to the contrary that M ′ 6= M . Then there is a maximal non-empty
I ⊂ {1, . . . , q}m \{i1 . . . im} such that H−1 ◦fα(T )∩M ′ = ∅ for each α ∈
I. Hence, for α ∈ I we have H−1 ◦ fα(T ) ∩ ∂T = ∅ and thus, by the open
set condition, H−1 ◦ fα(T ) ∩ T = ∅. Since H−1(T ) = T ∪ M ′ ∪ M ′′ with
M ′′ :=

⋃
α∈I H−1 ◦ fα(T ) this yields the separation (T ∪ M ′) ∪ M ′′ of

H−1(T ). This contradicts the connectivity of T . Thus M ′ = M and since
M ′ is a continuum so is M . Moreover, since every H−1 ◦ fα(T ) is a locally
connected continuum, M is the union of finitely many locally connected
continua. Thus M is locally connected by [16, §49, II, Theorem 1] which
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says that the union of finitely many locally connected compact sets is locally
connected.
Now, we will show that each Ui is a component of the complement of
M . Obviously, Ui is connected. Since int(T ) ⊂ R2 \ M we conclude that
Ui ⊂ R2 \M .

We will prove that Ui is open and closed in R2\M . Firstly, Ui is obviously
open in R2 \M because it is open in R2. Secondly, by construction, Ui ⊂
T ⊂ H−1(U1) is contained in the interior of H−1(T ) = M ∪ int(T ). Thus
the only points in R2\M having distance 0 from Ui are contained in int(T ).
Hence,

Ui (w.r.t. R2 \M) = Ui (w.r.t. int(T )) = Ui

and we conclude that Ui is closed in R2 \M . Being a connected, open and
closed subset of R2 \M , the set Ui is a component of R2 \M by [16, §46,
III, Theorem 4] and we are done. �

Now it is easy to prove the following proposition.

Proposition 5.2. — Suppose that T is the attractor of an IFS {fj}q
j=1

of injective contractions in the plane which satisfies the open set condition.
Suppose further that T is connected and that {Ui} is the collection of the
components of int(T ). Then Ui is a locally connected continuum for each i.

Proof. — Each component Ui is a complementary component of a locally
connected continuum by Lemma 5.1. Thus Proposition 3.3 implies that the
boundary of every Ui is a locally connected continuum. Because every Ui

is a simply connected region, there is a conformal homeomorphism hi from
the open unit disk D onto Ui by the Riemann Mapping Theorem (cf. [1]).
Since ∂Ui is a locally connected continuum, this homeomorphism has a
continuous extension to D by Proposition 3.9 (take g = hi). Therefore, the
closure Ui is a continuous image of the closed disk D. Thus it is a locally
connected continuum by the Hahn-Mazurkiewicz-Sierpiński Theorem (cf.
[16, §50, II, Theorem 2]). �

The main objective of the present section is the proof of the following
theorem.

Theorem 5.3. — Suppose that T is a connected Z2-tile and that {Ui}
is the collection of the components of int(T ). Then, for every fixed i the
fundamental group π1(Ui) is trivial if and only if Ui is homeomorphic to a
closed disk. Particularly, triviality of π1(T ) implies that Ui is homeomor-
phic to a closed disk for every i.

We will even prove the following more general result.
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Theorem 5.4. — Suppose that T is the attractor of an IFS {fj}q
j=1 of

injective contractions on the plane which satisfies the open set condition.
Suppose that T is connected and that {Ui} is the collection of the com-
ponents of int(T ). Then, for every fixed i the fundamental group π1(Ui)
is trivial if and only if Ui is homeomorphic to a closed disk. Particularly,
triviality of π1(T ) implies that Ui is homeomorphic to a closed disk for
every i.

Proof. — Ui is a locally connected continuum by Proposition 5.2. Thus
the triviality of the fundamental group π1(Ui) implies that S2 \ Ui is con-
nected (Proposition 4.1). Since it is easy to see that Ui has no cut point, we
may apply the last assertion of Proposition 3.3 with C = Ui to derive that
the boundary of (the unique component of) S2 \Ui is a simple closed curve.
But this boundary is exactly ∂Ui. Consequently, Ui is homeomorphic to
a closed disk by a theorem of Schönflies (cf. [19, Chapter 9, Theorem 6]).
The converse part is trivial.

If the fundamental group of T is trivial, π1(Ui) is clearly trivial for every i.
�

6. Tiles with nontrivial fundamental group

In this section we want to state criteria which assure the non-triviality
of the fundamental group of a Z2-tile. These criteria can be checked easily
with help of the neighbor graph and the adding machine.

We need the following auxiliary result which will be proved using meth-
ods from plane topology. During its proof we will use Lemma 3.10 fre-
quently.

Lemma 6.1. — Let B0, B1, B2 ⊂ R2 be locally connected continua with
the following properties.

(i) int(Bi) ∩ int(Bj) = ∅ for i 6= j.
(ii) Bi is the closure of its interior (0 6 i 6 2).
(iii) S2 \ int(Bi) is a locally connected continuum (0 6 i 6 2).
(iv) There exist x1, x2 ∈ B0 ∩B1 ∩B2 with x1 ∈ int(B0 ∪B1 ∪B2).

Then there is an i ∈ {0, 1, 2} such that Bi ∪ Bi+1 has a bounded comple-
mentary component U with U ∩ int(Bi+2) 6= ∅ (the indices are to be taken
modulo 3).

Remark 6.2. — Every lattice tiling of R2 by connected and locally con-
nected tiles has the first three properties (see the proof of Proposition 6.3),
so these are natural conditions for our discussion on Z2-tiles.
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Proof. — For i ∈ {0, 1, 2} let {U (i)
j }j>0 be the components of int(Bi).

Furthermore, let ε > 0 be small enough such that

B2ε(x1) ⊂ B0 ∪B1 ∪B2.

We want to distinguish two cases.

Case (i). — There are infinitely many sets in the collection

{U (i)
j }j>0,06i62

having nonempty intersection with Bε(x1).
There exists a fixed i0 ∈ {0, 1, 2} such that infinitely many sets of the

shape U
(i0)
j intersecting Bε(x1). W.l.o.g. we may assume that i0 = 0. Since

S2 \ int(B0) is a locally connected continuum Proposition 3.4 yields

lim
j→∞

diam(U (0)
j ) = 0.

Thus there exists j0 such that U
(0)
j0

⊂ B2ε(x1). Set U = U
(0)
j0

. Then ∂U ⊂
B1 ∪ B2 and U is a bounded complementary component of B1 ∪ B2 with
U ∩ int(B0) 6= ∅.

Case (ii). — There are only finitely many sets in the collection

{U (i)
j }j>0,06i62

intersecting Bε(x1).
Select r ∈ (0, ε) so small that for any i ∈ {0, 1, 2} and any j

U
(i)
j ∩Br(x1) 6= ∅ =⇒

{
x1 ∈ U

(i)
j and

U
(i)
j ∩ ∂Br(x1) 6= ∅.

For i ∈ {0, 1, 2} denote by {V (i)
j } the family of all the U

(i)
j whose closure

intersects the closed disk Br(x1).
For each i ∈ {0, 1, 2} select an arc Ji ⊂ Bi from x1 to x2. Let bi be

the last point at which Ji intersects Br(x1). Then there exists ji such that

bi ∈ V
(i)
ji

. Thus x1, bi ∈ V
(i)
ji

. By local connectivity of R2 \ int(Bi) the
points x1 and bi can be connected by an arc J ′i whose interior is contained
in V

(i)
ji

. Let ai be the first point at which J ′i meets ∂Br(x1). Denote by pi

the subarc in J ′i from x1 to ai. Let p′i be the union of the subarc in J ′i from
ai to bi with the subarc of Ji from bi to x2. Let Ii = pi ∪ p′i. It is easy to
see that Ii ⊂ Bi is an arc connecting x1 and x2.

Now, the open disk Br(x1) is divided by p0 ∪ p1 ∪ p2 in three regions.
Let Yi be the region whose boundary does not intersect the interior of pi.
Note that Yi is homeomorphic to a closed disk.
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Subcase (ii.1). — The point x1 can be connected to infinity by an arc
R in

S2 \ (p′0 ∪ p′1 ∪ p′2) .

Let x′1 be the last point at which R intersects ∂Br(x1). Then x′1 must lie
on the boundary of some Yi. Assume with no loss of generality that i = 0.
Then x1 and x′1 can be joined by an arc P whose interior is contained in
Y0. Let R′ be the union of P and the subarc of R from x′1 to infinity. Then
R′ is an arc connecting x1 and infinity which does not intersect I0 ∪ I1 ∪ I2

except at x1. Let a 6= x1 be the first point at which I1 meets I2.
For i = 1, 2, denote by I ′i the subarc of Ii from x1 to a. Then I ′1 ∪ I ′2 is

a simple closed curve. Let R1, R2 its residual components and assume that
∞ ∈ R1. Then R1 contains R \ {x1}. Thus, R2 must contain p0 \ {x1}.
Because B0 is the closure of its interior this indicates that some interior
point of B0 belongs to a bounded complementary component of (I1 ∪ I2) ⊂
(B1 ∪B2).

Subcase (ii.2). — The point x1 cannot be connected to infinity by an
arc R in

S2 \ (p′0 ∪ p′1 ∪ p′2) .

Since (p′0 ∩ p′1 ∩ p′2) contains x2, by Proposition 3.7, the point x1 cannot
be connected to infinity by an arc R in

S2 \
(
p′i ∪ p′i+1

)
for some i ∈ {0, 1, 2}. (Here, the indices are to be taken modulo 3).

We may assume without loss of generality that i = 0. Then x1, and thus
an interior point of B0 near x1, must belong to a bounded complementary
component of (p′1 ∪ p′2) ⊂ (B1 ∪B2). This indicates that int(B0) intersects
a bounded complementary component of B1 ∪B2. �

Proposition 6.3. — Let T be a connected Z2-tile and let s1, s2 ∈
S \ {0} be disjoint. If #V2(s1, s2) > 2 and V2(s1, s2) \ V3 6= ∅ then one of
the following statements is true.

• (T + s1) ∪ (T + s2) has a bounded complementary component U

with U ∩ int(T ) 6= ∅.
• T ∪ (T + s1) has a bounded complementary component U with

U ∩ int(T + s2) 6= ∅.
• T ∪ (T + s2) has a bounded complementary component U with

U ∩ int(T + s1) 6= ∅.
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Proof. — The assertion follows if B0 := T , B1 := T +s1 and B2 := T +s2

satisfy the conditions of Lemma 6.1. First of all, T and its translates are
locally connected continua by Hata’s result [10, Theorem 4.6]. Condition (i)
of Lemma 6.1 is true because of (1.1) and Condition (ii) follows because the
Z2-tile T (as well as its translates) is the closure of its interior (cf. Vince [28,
Theorem 3.6]). Condition (iii) is true because the connected closed set
R2\int(T ) can be written as a locally finite union of translates of T . Thus it
is also locally connected and its closure in S2, the set S2\ int(T ), is a locally
connected continuum. The same holds for all translates of T . To see that
Condition (iv) holds just take x1, x2 ∈ V (s1, s2) such that x1 6∈ V3. Then
clearly x1, x2 ∈ B0 ∩B1 ∩B2 holds. Suppose that x1 6∈ int(B0 ∪B1 ∪B2).
Then by the tiling property there exists s3 ∈ Z2\{0, s1, s2} with x1 ∈ T +s3,
hence, x1 ∈ V3, a contradiction.

Thus the conditions of Lemma 6.1 are fulfilled by the sets T , T + s1 and
T + s2. The proposition now follows as a consequence of this lemma. �

Theorem 6.4. — Let T be a connected Z2-tile. Suppose that there
exist s1, s2 ∈ S \ {0} with the following properties.

• #V2(s1, s2) > 2 and V2(s1, s2) \ V3 6= ∅.
• For each i ∈ {0, 1, 2} there exists a digit string wi with the following

property. Using wi as input string for GT (S) starting at 0, s1, and
s2 yields output strings c0, c1, c2 satisfying

max(L(ci),L(ci+1)) < L(ci+2)

(indices are to be taken modulo 3).
Then π1(T ) is uncountable and not free. Furthermore, T is not locally
simply connected and has no universal cover.

Remark 6.5. — Both conditions can be checked rather easily by inspect-
ing the graph GT (S) (see Section 8, where examples are discussed).

Proof. — The first condition of the theorem ensures that Proposition 6.3
holds. Suppose that the first alternative of this proposition is true (the other
alternatives are treated likewise), i.e., we have that
(6.1)
R2\((T +s1)∪ (T +s2)) has a bounded component U with U ∩ int(T ) 6= ∅.

By the second condition we may apply Lemma 2.2 with a = (w1)A, r1 = s1,
r2 = 0, o1 = c1, o2 = c0 and with a = (w1)A, r1 = s2, r2 = 0, o1 = c2,
o2 = c0. Indeed, since

L = max(L(c1),L(c2)) < L(c0)

TOME 56 (2006), FASCICULE 7



2512 Jun LUO & Jörg M. THUSWALDNER

Lemma 2.2 yields

A−L(T + si + (w1)A) ⊂ T (i = 1, 2),(6.2)

int(A−L(T + (w1)A)) ∩ T = ∅.(6.3)

In view of the tiling property of T (6.3) yields the existence of an s ∈ Z2\{0}
with

int(A−L(T + (w1)A)) ⊂ int(T + s).(6.4)

If we translate (6.1) by (w1)A and multiply by A−L then (6.2) and (6.4)
imply that T has a bounded complementary component U ′ containing
A−L(U + (w1)A) with U ′ ∩ int(T + s) 6= ∅. Thus S2 \ T is disconnected.
Theorem 4.4 now yields the result. �

Theorem 6.6. — Let T = T (A,D) be a Z2-tile. Suppose that there
is an a 6∈ D such that ∂(T + a) ⊂ (T + D). Then π1(T ) is uncountable
and not free. Furthermore, T is not locally simply connected and has no
universal cover.

Proof. — Since ∂(T + a) ⊂ (T + D), the interior of T + a is the union
of bounded components of S2 \ (T + D). Since L(a) > 2 multiplication
by A−1 implies that the complement of T itself must have some bounded
components. Thus S2 \ T is disconnected and the result follows from The-
orem 4.4. �

7. Tiles with trivial fundamental group

In this section we give a criterion for the triviality of the fundamental
group of a Z2-tile. The main theorem of this section is Theorem 7.2. It
contains three conditions which are sufficient for the triviality of π1(T ).
As we will show after the proof of this theorem, these conditions can be
checked with help of G(S) and is transpose. Before we state the result we
need a preparatory lemma.

Lemma 7.1. — Let T (A,D) be a Z2-tile with π1(T ) 6= 0. Then at least
one of the following assertions holds.

• There exists a non-zero a ∈ Z2 and a loop ` ⊂ T ∩ (T + a) which
separates a point x0 ∈ T + a from ∞.

• There exists D′ ⊂ D with #D′ > 3 and #VD′ > #D′ − 1.
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Proof. — Because π1(T ) 6= 0 Theorem 4.4 implies that T has a bounded
complementary component V . Thus there is a set S0 ⊂ S such that

(7.1) V ⊂
⋃

s∈S0

(T + s).

Let w = (aL−1 . . . a0) be a string of input digits leading from s to s′ in
GT (S) and define a (continuous, open) mapping f : R2 → R2 by

f(x) = A−L

(
x +

L−1∑
i=0

Aiai

)
.

Because S has property (C) we see as in the proof of Lemma 2.3 that the
existence of such a labelling implies that

s =
L−1∑
i=0

Ai(a′i − ai) + ALs′.

Thus

(7.2) f(T + s) = A−L

(
T + s +

L−1∑
i=0

Aiai

)

=
L−1∑
i=0

Ai−La′i + A−LT + s′ ⊂ (T + s′).

If the string of input digits w leads from S0 to S1 (7.1) implies together
with (7.2) that

f(V ) ⊂
⋃

s∈S1

(T + s).

As S has property (C) Lemma 2.4 enables us to select w = (aL−1 . . . a0)
in a way that for a fixed d ∈ D each element of S1 is of the shape d′ − d

with some d′ ∈ D and S1 contains at least one non-zero element. Choose
b1 ∈ S1 \ {0}. Because V is open, (7.2) implies that f(V ) contains interior
points of T + b1. Moreover, f(T ) ⊂ T implies that ∂f(V ) ⊂ T . Thus f(V )
contains a complementary component U of T for which

U ⊂
⋃

b∈S1\{0}

(T + b)

holds. Obviously, ∂U ⊂ T . Because T is a locally connected continuum,
Proposition 3.3 implies that ∂U is also a locally connected continuum.
Moreover, ∂U cuts between a point x0 ∈ U ∩ (T + b1) and ∞. Thus by
Proposition 3.6 there exists a simple closed curve ` : S1 → ∂U which also
cuts between x0 and ∞. Note that ` ⊂ T .
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There are two cases to distinguish. The first one is ` ⊂ (T + b) for some
b ∈ S1 \ {0}. Since ` ⊂ T in this case the first assertion holds with a := b.

Otherwise let S2 ⊂ S1\{0} be minimal with the property ` ⊂
⋃

b∈S2

(T +b)

(note that in this case we have #S2 > 2). Then for each b ∈ S2 there exists
a parameter tb ∈ S1 with

`(tb) ∈ (T + b) \
⋃

b ∈S2\{b}

(T + b′).

Let Ib be an interval which is maximal with the property `(int(Ib)) ⊂
(T + b) \

⋃
b ∈S2\{b}

(T + b′). Let eb be the end point of Ib. Then there is

some b′ ∈ S2 \ {b} with

(7.3) `(eb) ∈ T ∩ (T + b) ∩ (T + b′).

Since all the points `(eb) (b ∈ S2) are disjoint we see by adding d to the
relation in (7.3) that #VD′ > #S2 = #D′ − 1 holds with

D′ := {b + d | b ∈ S2} ∪ {0}

and the second assertion is true. �

Theorem 7.2. — Let T = T (A,D) be a connected Z2-tile. π1(T ) is
trivial provided that the following conditions hold.

(i) Let z1, z2 ∈ Z2 such that their A-adic expansion differs only in the
least significant digit. Then

(7.4) #
⋃

z∈Z2:L(z)<L(z1)

((T + z1) ∩ (T + z2) ∩ (T + z)) 6 1.

(ii) In each set D0 ⊂ D with #D0 > 3 there exists d ∈ D0 such that
for all d1, d2 ∈ D0 with d, d1, d2 pairwise disjoint we have

(T + d) ∩ (T + d1) ⊂ (T + d2) or (T + d) ∩ (T + d2) ⊂ (T + d1).

(iii) For all D′ ⊂ D with #D′ > 3 we have #VD′ < #D′ − 1.

Remark 7.3. — These conditions can be checked easily by inspecting
the graph G(S) and its transpose. We will give details after the proof of
the theorem.

Proof. — Assume that π1(T ) 6= 0. We will prove that this is impossi-
ble if (i), (ii) and (iii) hold. Since we assume the truth of condition (iii),
Lemma 7.1 implies that there exists a ∈ Z2 and a simple closed curve
` : S1 → T ∩ (T + a) which cuts between a point x0 ∈ int(T + a) and
∞. Let m ∈ N be the least integer with the property that there exists no
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am =
∑m−1

i=0 Aibi such that ` ⊂ A−m(T + am) + a. Thus there exists an
am−1 =

∑m−2
i=0 Aibi such that ` ⊂ A1−m(T + am−1) + a. For d ∈ D set

Sd := A−m(T + Aam−1 + d) + a ⊂ T + a.

By the choice of m there is a set D0 ⊂ D of minimal cardinality such that

C :=
⋃

d∈D0

Sd ⊃ `.

Note that #D0 > 2. By the minimality of D0 for each d ∈ D0 there exists
a parameter td ∈ S1 with

`(td) ∈ Sd \
⋃

d′∈D0\{d}

Sd′ .

Let Id be the maximal closed interval containing td with `(int(Id)) ⊂ Sd \⋃
d′∈D0\{d} Sd′ . Let e be an end point of Id. Then there is a d′ ∈ D0 \ {d}

and (because ` ⊂ T ) a translate s ∈ Z2 with A−m(T + s) ⊂ T such that
`(e) ∈ Sd ∩ Sd′ ∩A−m(T + s).

Suppose first that #D0 = 2, i.e., D0 = {d1, d2}. In this case we have at
least two different intervals Id1 and Id2 whose end points are mapped by `

to elements of sets of the shape

Sd1 ∩ Sd2 ∩A−m(T + s)

where L(s) 6 m. Multiplying by Am yields that

B(d1, d2) :=⋃
s:L(s)6m

(T + Ama + Aam−1 + d1)∩ (T + Ama + Aam−1 + d2)∩ (T + s)

contains all points

{Am`(e)| e endpoint of Id for some d ∈ D0}.

Thus #B(d1, d2) > 2 and condition (i) is violated.
Suppose now that #D0 > 2. If there is a pair d1, d2 ∈ D0 with #B(d1, d2)

> 2 then we can argue as in the previous case. If such a pair does not exist
then for each d ∈ D0 there must be an interval Id whose endpoints e1, e2

satisfy `(e1) ∈ (Sd ∩ Sd1) \ Sd2 and `(e2) ∈ (Sd ∩ Sd2) \ Sd1 (d, d1, d2 ∈ D
pairwise disjoint). This violates condition (ii) and we are done. �

We will now show how the conditions of Theorem 7.2 can be checked
with help of certain subgraphs of G(Z2). Condition (i) is treated in the
following lemma.
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Lemma 7.4. — Let

S̃(d1, d2) := {s ∈ Z2 | (T + d1) ∩ (T + d2) ∩ (T + s) 6= ∅}

and let cw(q) be the output string obtained by the input string w start-
ing at q in GT (Z2). Suppose that for all d1, d2 ∈ D and all walks w =
(. . . aL . . . a10) the number of elements s ∈ S̃(d1, d2) with

L(cw(s)) < L(cw(d1))

is at most one. Then condition (i) of Theorem 7.2 is true.

Proof. — Each pair z1, z2 in condition (i) of Theorem 7.2 is of the shape
d1 + (w)A, d2 + (w)A for certain d1, d2 ∈ D and w = (. . . a2a10). Thus we
get a contribution to the union in (7.4) for each s ∈ S̃(d1, d2) which satisfies

L(s + (w)A) < L(d1 + (w)A).

Since this can be rewritten as L(cw(s)) < L(cw(d1)) the equivalence of the
two conditions is shown. �

Conditions (ii) and (iii) can be read off from the graph G(S) easily (see
Proposition 2.5 and the remark after it). Note that Condition (ii) is trivially
true if in each set D0 ⊂ D with #D0 > 3 there exists a d ∈ D0 such that
(T + d) ∩ (T + d′) 6= ∅ holds for at most one d′ ∈ D0 \ {d}.

8. Examples

In this section we want to apply our results to special fractals. We start
with the Z2-tile T1 := T1(A1,D1) where

(8.1) A1 :=
(

0 3
1 1

)
, D1 :=

{(
0
0

)
,

(
±1
0

)}
.

The tile T1 is shown in Figure 8.1. This tile has been studied for instance
by Bandt and Wang [4]. They showed that T1 is not homeomorphic to a
closed disk. With a neighbor finding algorithm (cf. for instance [25, 26]) it
is not hard to compute the set of neighbors S1 of T1. We get

S1 = {(0, 0), (±1, 0), (±1,∓1), (±2,∓1), (±3,∓1), (±4,∓2)}.

The graph GT (S1) is drawn in Figure 8.2.
Using this graph we will be able to prove the following theorem.

Theorem 8.1. — Let T1 = T1(A1,D1) be the Z2-tile with A1 and D1

as in (8.1). Let {Ui}i∈N be the set of its interior components. Then T1

has trivial fundamental group. Furthermore, T1 has a cut point and Ui is
homeomorphic to a closed disk for each i ∈ N.
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Figure 8.1. The tile T1 and its neighbors.
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Figure 8.2. The graph GT (S1) for T1.

Proof. — The main part of the proof consists in verifying the conditions
of Theorem 7.2. We start with condition (i). To this matter we will use
Lemma 7.4.
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First by inspecting the neighbor graph in Figure 8.2 we observe using
Proposition 2.5 that

S̃((0, 0), (1, 0)) ⊆ {(−1, 1), (2,−1)},

S̃((0, 0), (−1, 0)) ⊆ {(1,−1), (−2, 1)},

S̃((1, 0), (−1, 0)) = ∅.

Let w = (. . . a3a2a10). In what follows we write 1̄ instead of −1. If we
start at a state q ∈ S1 with the input string w this will produce a certain
output string. This output string will be called c(q) in the following.

We will show now that for each w = (. . . a3a2a10) there is at most one
s ∈ S̃((0, 0), (1, 0)) with L(c(s)) < L(c((0, 0))). Since #S̃((0, 0), (1, 0)) 6 2
this is tantamount to proving that there exists an s ∈ {(−1, 1), (2,−1)}
with L(c(s)) > L(c((0, 0))).

Let a1 = 0. Then the input string w starting at (−1, 1) leads to (0, 0)
after two steps. We see form Figure 8.2 that c((−1, 1)) is of the shape
(. . . b3b211̄) where the bi coincide with the corresponding digits of c((0, 0)).
Thus L(c((−1, 1))) > L(c((0, 0))) and we are done in this case.

Let a1 = 1̄. Again the input string of w starting at (−1, 1) leads to (0, 0)
after two steps. Here c((−1, 1)) is of the shape (. . . b3b201̄) where the bi

coincide with the corresponding digits of c((0, 0)). Thus L(c((−1, 1))) =
L(c((0, 0))) unless bi = 0 for each i > 2. However, in order to get bi = 0
for i > 2 we need ai = 0 for each i > 2, i.e., w = (. . . 001̄0). In this case
c((2,−1)) = ((1̄1)∞1̄01̄) which yields L(c((2,−1))) > L(c((0, 0))) and we
are done.

Thus we must have a1 = 1, i.e., w = (. . . a3a210). Now we put our
attention to a2. If a2 6= 1 then we see from Figure 8.2 that starting from
(2,−1) with the input string w we arrive at (0, 0) after three steps. By a
similar reasoning as before this leads either to L(c((−1, 1))) > L(c((0, 0)))
or to L(c((2,−1))) > L(c((0, 0))). Thus we only have to consider the case
a2 = 1.

By induction we see that if a1 = · · · = a2k = 1 and a2k+1 6= 1 then (−1, 1)
goes to (0, 0) after 2k+2 steps with input string w. Furthermore, a1 = · · · =
a2k−1 = 1 and a2k 6= 1 then (2,−1) goes to (0, 0) after 2k +1 steps. By the
same reasoning as above this leads to max(L(c((−1, 1))),L(c((−2, 1)))) >
L(c((0, 0))).

So w = (1∞0) is the only input string which remains to be checked.
However, it is easy to see that for this w we have L(c((−1, 1))) = ∞ and
we are done.
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Just by changing signs we obtain an analogous result for the set S̃((0, 0),
(−1, 0)). Since S̃((−1, 0), (1, 0)) is empty we proved the truth of the first
assertion in Lemma 7.4. Thus condition (i) of Theorem 7.2 holds.

Condition (ii) is checked as follows. First observe that it is trivial for
#D0 6 2. Thus the only possible choice is D0 = D. It is clear that T +
(−1, 0) and T +(1, 0) do not touch each other (because otherwise we would
have (2, 0) ∈ S). Thus

(T1 + (1, 0)) ∩ (T1 + (−1, 0)) = ∅ ⊂ T

and we are done. Condition (iii) is easily checked. Indeed, we have to check
VD′ only for D′ = D. However, VD = ∅ because T + (−1, 0) and T + (1, 0)
do not touch each other.

Thus π1(T1) is trivial. In [4] it is proved that T1 is not homeomorphic to
a closed disk. Since π1(T1) = 0 the first part of Theorem 4.4 ensures the
existence of a cut point of T1. The assertions on Ui follow from Theorem 5.3.

�

The next example is devoted to a tile which has been studied in [9]. Let
T2 = T2(A2,D2) be the Z2-tile with

(8.2) A2 :=
(

2 1
1 3

)
, D2 :=

{(
0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
1
1

)
,

(
1
2

)}
.

The tile T2 together with its 10 neighbors is depicted in Figure 8.3.

Figure 8.3. The tile T2 and its neighbors.

In a similar way as for the tile T1 we get the following analogous result
for T2.

Theorem 8.2. — Let T2 = T2(A2,D2) be the Z2-tile with A2 and D2

as in (8.1). Let {Ui}i∈N be the set of its interior components. Then T2

has trivial fundamental group. Furthermore, T2 has a cut point and Ui is
homeomorphic to a closed disk for each i ∈ N.
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Rough sketch of the proof. — First we need to check conditions (i),(ii)
and (iii) of Theorem 7.2. To this matter we need to construct GT (S2).
This is easily done with help of one of the neighbor finding algorithms (cf.
[25, 26]).

Condition (i) is checked in a very similar way as in Theorem 8.1. To check
condition (ii) we have to observe that the easier variant of (ii) indicated
after Lemma 7.4 is not fulfilled in this case. We have to use Proposition 2.5
here. However, because one of the intersections (T2 + d) ∩ (T2 + d1) and
(T +d)∩(T2+d2) always contains at most one point the truth of (ii) is easy
to see. Condition (iii) can easily be derived with help of Proposition 2.5.
Thus π1(T ) is trivial. However, since T2 has 10 neighbors, it can not be
homeomorphic to a closed disk in view of [4, Proposition 1.1]. Thus Theo-
rem 4.4 yields the existence of a cut point of T2. The assertions on Ui again
follow from Theorem 5.3. �

The next example is devoted to a tile with non-trivial fundamental group.
Let T3 = T3(A3,D3) be the Z2-tile with

(8.3) A3 :=
(
−2 −1
1 −2

)
, D3 :=

{(
0
0

)
,

(
1
0

)
,

(
2
0

)
,

(
3
0

)
,

(
4
0

)}
.

The tile T3 is shown in Figure 8.4. It has been studied for instance in [3, 21].

Figure 8.4. The tile T3.

Again by using a neighbor finding algorithm we can construct the set of
neighbors S3 and with this set we easily get the graph GT (S3) depicted in
Figure 8.5 (note that

a a′

· ·
b b′

is a shortcut for a|a′, a + 1|a′ + 1, . . . , b|b′).
We will show the following result.
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Figure 8.5. The graph GT (S3) (L is an abbreviation for d|d− 2, 2 6 d 6 4.

Theorem 8.3. — Let T3 = T3(A3,D3) be the Z2 tile with A3 and D3

as in (8.3). Then π1(T3) is uncountable and not free. Furthermore, T3 is
not locally simply connected and has no universal cover.

Proof. — We have to check the conditions of Theorem 6.4. Let s1 = (1, 0)
and s2 = (−1,−1). Then the first condition of Theorem 6.4 follows from
[3, Theorem 11.1] for the special choice A = 4, B = 5. In order to check
the second condition let the same notation as in Theorem 6.4 be in force.
First we take w0 = 0∞. With help of Figure 8.5 we see (using the notation
of Theorem 6.4) that this choice leads to

c0 = 0∞, c1 = 0∞1, c2 = 0∞132.

Thus max(L(c0),L(c1)) < L(c2). Now let w1 = 0∞14404. Then by looking
at Figure 8.5 we see that

c0 = 0∞14404, c1 = 0∞1210, c2 = 0∞1341.

Thus max(L(c1),L(c2)) < L(c0). For w2 we take w2 = 0∞144. Again we
easily check that we get for the output strings c0, c1, c2 that

max(L(c2),L(c0)) < L(c1).
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Thus the conditions of Theorem 6.4 are satisfied and the result follows from
the conclusion of that theorem. �

Next we want to give an easy example to which Theorem 6.6 can be
applied. In [4, Section 2] the Z2-tile T4 = T4(A,D) with

A4 :=
(

4 0
0 4

)
,

D4 :=
{(

i

j

) ∣∣∣∣ 0 6 i, j 6 3
}
\
{(

0
2

)
,

(
3
2

)}
∪
{(

−1
2

)
,

(
4
2

)}(8.4)

has been considered. It is depicted in Figure 8.6. From Theorem 6.6 one

Figure 8.6. The tile T4.

easily derives the following result on T4.

Theorem 8.4. — Let T4 = T4(A4,D4) be the Z2 tile with A4 and D4

as in (8.4). Then π1(T4) is uncountable and not free. Furthermore, T4 is
not locally simply connected and has no universal cover.

We conclude this paper with an example of a plane reptile which does
not fit in our framework. For Z2-tiles the fundamental group can not be
non-trivial and countable. However, this can happen for a plane tile, that
is, a compact subset of R2 with interior points satisfying T =

⋃
i fi(T ) for

a family of contractive similarities {f1, . . . , fm} with the same contraction

ratio r =
√

1
m . Particularly, if we divide the square [0, 1]× [0, 1] into 9 small

squares of side length 1
3 and remove the two small squares D1 = [13 , 2

3 ] ×
[ 13 , 2

3 ] and D2 = [ 23 , 1] × [0, 1
3 ], then the union T of the remaining 7 small

squares and the two small squares D′
1 = [1, 4

3 ]×[ 23 , 1] and D′
2 = [43 , 5

3 ]×[ 13 , 2
3 ]

is Grünbaum’s 36-reptile [6]. In fact, this tile has π1(T ) = Z as can be easily
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seen from Figure 8.7. Furthermore, this tile has two interior components
the closure of one of them being not not homeomorphic to a closed disc.

Figure 8.7. A tile T with π1(T ) = Z.
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