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ON GAPS IN RENYI 3-EXPANSIONS OF UNITY FOR

8 >1 AN ALGEBRAIC NUMBER

by Jean-Louis VERGER-GAUGRY

ABSTRACT. Let 8 > 1 be an algebraic number. We study the strings of
zeros (“gaps”) in the Rényi B-expansion dg(1) of unity which controls the set Zg
of B-integers. Using a version of Liouville’s inequality which extends Mahler’s and
Giiting’s approximation theorems, the strings of zeros in dg(1) are shown to exhibit
a “gappiness” asymptotically bounded above by log(M(3))/ log(3), where M() is
the Mahler measure of 3. The proof of this result provides in a natural way a new
classification of algebraic numbers > 1 with classes called QEJ) which we compare
to Bertrand-Mathis’s classification with classes C1 to Cs (reported in an article by
Blanchard). This new classification relies on the maximal asymptotic “quotient of
the gap” value of the “gappy” power series associated with dg(1). As a corollary, all

Salem numbers are in the class C1U Q(()I)U Q(()Q)U Q(()3) ; this result is also directly
proved using a recent generalization of the Thue-Siegel-Roth Theorem given by
Corvaja.

RESUME. — Soit 8 > 1 un nombre algébrique. Nous étudions les plages de zé-
ros (“lacunes”) dans le (-développement de Rényi dg(1) de I'unité qui contréle
I’ensemble Zg des (-entiers. En utilisant une version de I'inégalité de Liouville qui
étend des théoremes d’approximation de Mahler et de Giiting, on montre que les
plages de zéros dans dg(1) présentent une “lacunarité” asymptotiquement bornée
supérieurement par log(M(0))/log(8), o M(S) est la mesure de Mahler de (3. La
preuve de ce résultat fournit de maniére naturelle une nouvelle classification des
nombres algébriques > 1 en classes appelées QEJ ) que nous comparons a la classi-
fication de Bertrand-Mathis avec les classes C; & Cs (reportée dans un article de
Blanchard). Cette nouvelle classification repose sur la valeur asymptotique maxi-
male du “quotient de lacune” de la série “lacunaire” associée a dg(1). Comme

corollaire, tous les nombres de Salem sont dans la classe C1U Qf)l)u Q((]Q)U QéS) ;
ce résultat est également obtenu par un théoréme récent qui généralise le théoreme
de Thue-Siegel-Roth donné par Corvaja.

Keywords: Beta-integer, beta-numeration, PV number, Salem number, Perron num-

ber,

Mahler measure, Diophantine approximation, Mahler’s series, mathematical

quasicrystal.
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2566 Jean-Louis VERGER-GAUGRY

1. Introduction

The exploration of the links between symbolic dynamics and number the-
ory of B-expansions, when 8 > 1 is an algebraic number or more generally
a real number, started with Bertrand-Mathis [6] [7]. Bertrand-Mathis, in
Blanchard [8], reported a classification of real numbers according to their
B-shift, using the properties of the Rényi S-expansion dg(1) of 1. A lot of
questions remain open concerning the distribution of the algebraic numbers
£ > 1 in this classification. The Rényi f-expansion of 1 is important since
it controls the B-shift [38] and the discrete and locally finite set Zg C R of
[-integers [13] [18] [25] [26]. The aim of this note is to give a new Theorem
(Theorem 1.1) on the gaps (strings of 0’s) in dg(1) for algebraic numbers
8 > 1, and investigate how it provides (partial) answers to some questions
of [8], in particular for Salem numbers (Corollary 1.2).

Theorem 1.1 provides an upper bound on the asymptotic quotient of the
gap of dg(1) and is obtained by a version of Liouville’s inequality extending
Mahler’s and Giiting’s approximation theorems. The proof of Theorem 1.1
turns out to be extremely instructive in itself since it leads to a new classi-
fication of the algebraic numbers 3 as a function of the asymptotics of the
gaps in dg(1) and “intrinsic features", namely the Mahler measure M((),
of B (the definition of M(f3) is recalled in Section 3). The existence of this
double parametrization, symbolic and algebraic, was guessed in [8] p 137.
This new classification complements Bertrand-Mathis’s (Blanchard [8] pp
137-139) and both are recalled below for comparison’s sake. The question
whether an algebraic number 8 > 1 is contained in one class or another
has already been discussed by many authors [5] [6] [7] [8] [9] [10] [11] [12]
[17] [22] [32] [33] [38] [39] [41] [42] and depends at least upon the distribu-
tion of the conjugates of 3 in the complex plane. Only the conjugates of
B of modulus strictly greater than unity intervene in Theorem 1.1 via the
Mahler measure of 5. Corollary 1.2 is readily deduced from this remark.
We deduce that Salem numbers belong to C; U CaU Qq, whereas the Pisot
numbers are in C; U Cq [45].

Another proof of Corollary 1.2 consists of controlling the gaps of dg(1)
by stronger Theorems of Diophantine Geometry which allow suitable col-
lections of places of the number field Q(3) associated with the conjugates of
B and the properties of dg(1) to be taken into account simultaneously. This
alternative proof of Corollary 1.2, just sketched in Section 4, is obtained
using the Theorem of Thue-Siegel-Roth given by Corvaja [1] [15].

ANNALES DE L’INSTITUT FOURIER
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THEOREM 1.1. — Let 8 > 1 be an algebraic number and M(3) be
its Mahler measure. Denote by dg(1) := O.titots..., with t; € Ag :=
{0,1,2,...,[B — 1]}, the Rényi -expansion of 1. Assume that dg(1) is in-
finite and gappy in the following sense: there exist two sequences {my }n>1,
{8n}n>0 such that

l=sp<mi <s1<MmMa<sa< ... <My <8y <Mpg1 < Spt1 < e
with ($n, — my) 2 2, ty, # 0,ts, # 0 and t; = 0 if m, < ¢ < s, for
allm > 1. Then

(1.1) hmsups—n < M.
n—+oo Mp log(ﬁ)
Moreover, if liminf,_, 4 oo (Mp4+1 — My ) = 400, then
(1.2) lim sup Sntl” n < log(M(ﬂ)).
n—-+oo mn+1 — my log(ﬁ)

As in Ostrowski [37] the quotient s,,/m,, > 1 is called the quotient of the
gap, relative to the nth-gap (assuming ¢; # 0 for all s, < j < my41 to
characterize uniquely the gaps). Note that the term “lacunary’ has often
other meanings in literature and is not used here to describe “gappiness".
Denote by L£(Sg) the language of the §-shift [8] [23] [24] [34]. Bertrand-
Mathis’s classification ([8] pp 137-139) is as follows:

Cy @ dg(1) is finite.

Cy @ dg(1) is ultimately periodic but not finite.

Cs : dg(1) contains bounded strings of 0’s, but is not ultimately periodic.

Cy4 @ dg(1) does not contain some words of £(Sg), but contains strings

of 0's with unbounded length.

Cs @ dg(1) contains all words of £(S3).

Present classes of algebraic numbers, with the notations of Theorem 1.1:

Qél); 1= lim 87" with (anrl . mn) bounded.
n—-+oo Mnp
(2); 1= lim ;—n with (s, —my,) bounded and lim (mpt1 —my) = +o0.
n—-+4o00 n o
Q(3)_ 1= lim 87" with hmsup(sn — mn) = +4o00.
n—-+oo Mp 00
Qi 1 < limsup S o log(M(83)) (ﬁ))
n—eo Mn log(5)
Q2: limsup Sno_ M_
n—+oo Mn lOg(ﬁ)

What are the relative proportions of each class in the Whole set Qs
of algebraic numbers § > 1 ? Comparing Cs, C3 and QO , what are the
relative proportions in Qo of those 8 which give ultimate periodicity in
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2568 Jean-Louis VERGER-GAUGRY

dg(1) and those for which dg(1) is not ultimately periodic ? Schmeling
([41] Theorem A) has shown that the class Cs (of real numbers 5 > 1) has
Hausdorff dimension one. We have:

L4 @>1 N 02 C le)a

e 0., N0 c QY uQP, withcy n QP =0,

e WanG < UQUQ

The Pisot numbers [ are contained in C;U Q(()l) since they are such that
dg(1) is finite or ultimately periodic (Parry [38], Bertrand-Mathis [5]). Re-
call that a Perron number is an algebraic integer 5 > 1 such that all the
conjugates ) of 3 satisfy || < 3. Conversely, as shown in Lind [32],
Denker, Grillenberger, Sigmund [17] and Bertrand-Mathis [7], if § > 1 is
such that dg(1) is ultimately periodic (finite or not), then 5 is a Perron
number. Not all Perron numbers are attained in this way: a Perron number
which possesses a real conjugate greater than 1 cannot be such that dg(1)
is ultimately periodic ([8] p 138). Parry numbers belong to C; U Cy. Let

Qo= Q"u QP u QY.

COROLLARY 1.2. — Let 8 > 1 be a Salem number which does not belong
to C1. Then (3 belongs to the class Q.

The attribution of Salem numbers to Cy, 01), (2) and QO is an open

problem in general, except in low degree. Boyd [9] [12] has shown that Salem
numbers of degree 4 belong to Cs, hence to Qél). It is also the case of some
Salem numbers of degree 6 and > 8 in the framework of a probabilistic
model [11] [12]. In Section 5 we ask the question whether Corollary 1.2
could still be true for Perron numbers.

The definition of the class Qg does not make any allusion to 3, i.e. to
M(B), to the conjugates of 3, to the minimal polynomial of 3 or to its
length, etc, but takes only into account the quotients of the gaps in dg(1).
Hence this class Qg can be applied to real numbers g > 1 in full generality
instead of only to algebraic numbers > 1. The question whether there exist
transcendental numbers g > 1 which belong to the class Q¢ was asked in
[8]; what proportion appears in each subclass ? Examples of transcendental
numbers (Komornik-Loreti constant [2] [29], Sturmian numbers [14]) in Qg
are given in Section 5.

In the present note, we deal with the algebraicity of values of “gapppy"
series, deduced from dg(1), at the algebraic point B!, In a related context,
more related to transcendency, Nishioka [36] and Corvaja Zannier [16] have
followed different paths and applied the Subspace Theorem [43] to deduce
different results.

ANNALES DE L’INSTITUT FOURIER
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2. Definitions

For z € R the integer part of x is | ] and its fractional part {z} = z—|z].
The smallest integer larger than or equal to x is denoted by [z]. For 5 > 1
a real number and z € [0,1] we denote by Ts(z) = [z (mod 1) the §-
transform on [0, 1] associated with ( [38] [40], and iteratively, for all integers
j =0, Té“(z) = T[j(Té(Z)), where by convention Tg = Id.

Let 8 > 1 be a real number. A beta-representation (or S-representation,
or representation in base ) of a real number x > 0 is given by an infinite
sequence (x;);>0 and an integer k € Z such that z = Z;;Og xﬁ’”’ﬂ where
the digits x; belong to a given alphabet (C N) [23] [24] [34]. Among all the
beta-representations of a real number x > 0,2 # 1, there exists a particular
one called Rényi [-expansion, which is obtained via the greedy algorithm:
in this case, k satisfies 3% < z < BF*1 and the digits

(2.1) ;= LﬁTé(%)J i=0,1,2,...,

belong to the finite canonical alphabet Ag := {0,1,2,...,[8 —1]}. If 8
is an integer, then Ag := {0,1,2,...,8 — 1}; if 8 is not an integer, then
Ag:={0,1,2,...,[8]}. We denote by
(2.2) (x)g == ToT1T2 ... T - Thy1Tht2 - - -
the couple formed by the string of digits xgx122 ... TxTr+1Tk+2 - .. and the
position of the dot, which is at the k-th position (between xj and zj11).
By definition the integer part (in base () of x is Zf:o z;37* and its
fractional part (in base 3) is Z;OEH x; 7 If a Rényi B-expansion ends
in infinitely many zeros, it is said to be finite and the ending zeros are
omitted. If it is periodic after a certain rank, it is said to be eventually
periodic (the period is the smallest finite string of digits possible, assumed
not to be a string of zeros); for the substitutive approach see [19] [39].
The Rényi [-expansion which plays an important role in the theory is
the Rényi [-expansion of 1, denoted by dg(1) and defined as follows: since
B% < 1 < B, the value T5(1/3) is set to 1 by convention. Then using the
formulae (2.1)

(2.3) tr = |B],t2 = [B{B}], ts = [B{B{B}}), -

The writing
dﬁ(l) = 0.t1tat3 ...

corresponds to

“+oo
1= 3"
i=1

TOME 56 (2006), FASCICULE 7
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Links between the set Zg of beta-integers and dg(1) are evoked in [18] [21]
[27] [26] [46]. A real number § > 1 such that dg(1) is finite or eventually
periodic is called a beta-number or more recently a Parry number (this
recent terminology appears in [18]). In particular, it is called a simple beta-
numberor a simple Parry number when dg(1) is finite. Beta-numbers (Parry
numbers) are algebraic integers ([38]) and all their conjugates lie within a
compact subset which looks like a fractal in the complex plane [44]. The
conjugates of beta-numbers are all bounded above in modulus by the golden
mean 1(1+ v/5) ([20] [44]).

3. Proof of Theorem 1.1

Since algebraic numbers 3 > 1 for which the Rényi S-expansion dg(1)
of 1 is finite are excluded, we may consider that § does not belong to N.
Indeed, if 8 = h € N, then dj,(1) = 0.h is finite (Lothaire [34], Chap. 7). If
B & N, then [ — 1] = |8] and the alphabet Ag equals {0,1,2,...,[5]},
where | 3] denotes the greatest integer smaller than or equal to 3.

Let f(z) := :;Of t:2" be the “gappy”’ power series deduced from the
representation dg(1) = 0.t1¢ats . .. associated with the S-shift (gappy in the
sense of Theorem 1.1). Since dg(1) is assumed to be infinite, its radius of
convergence is 1. By definition, it satisfies

(3.1) fH=1,

which means that the function value f(871!) is algebraic, equal to 1, at the
real algebraic number 371 in the open disk of convergence D(0,1) of f(2)
in the complex plane. This fact is a general intrinsic feature of the Rényi
expansion process which leads to the following important consequence by
the theory of admissible power series of Mahler [35].

ProprosiTION 3.1. —

(3.2) limsups—" < 400.
n—+oo Mp

Proof. — This is a consequence of Theorem 1 in [35]. Indeed, if we assume
that there exists a sequence of integers (n;) which tends to infinity such
that lim; 4o Sp, /My, = +00, then f(z) would be admissible in the sense
of [35]. Since f(z) is a power series with nonnegative coefficients, which is
not a polynomial, the function value f(3~!) should not be algebraic. But
it equals 1. Contradiction. O

ANNALES DE L’INSTITUT FOURIER
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Let us improve Proposition 3.1. Assume that

(3.3) lim sup Snos log(M(5))

and show the contradiction with (1.1) and (1.2). Recall that, if
d

d—1
Py(X) =Y X" = aq [[(X - BD)
i=0 i=0
with d > 1, apag # 0, denotes the minimal polynomial of 3 = (0 > 1,
having gV, 83, ..., =1 as conjugates, the Mahler measure of 3 is by

definition
d—1

M(B) = |aa| [] max{1,]3@}.
=0

Giiting [28] has shown that the approximation of algebraic numbers by al-
gebraic numbers is fairly difficult to realize by polynomials. In the present
proof, we use a version of Liouville’s inequality which generalizes approxi-
mation theorems obtained by Giiting [28], and apply it to the values of the
“polynomial tails" of the power series f(z) at the algebraic number 371, to
obtain the contradiction. Let us write

+o0o
(3.4) f(2) =3 Qul(2)
n=0

with
Mpit1 4
(3.5) Qu(z) = Y t:z", n=0,1,2,....

By construction the polynomials @, (z), of degree m,, 11, are not identically
zero and @, (1) > 0 is an integer for all n > 0.

Denote by Sy, (z) = —1 + >/ ¢;2" the m,th-section polynomial of the
power series f(z) — 1 for all n > 1. Recall that, for R(X) =Y, o, X" €
Z[X], L(R) :== Y_]_, || denotes the length of the polynomial R(X). We
have: L(S,) = 14+ > " t; = 1+ E;:& Q;(1). From Theorem 5 in [28]
we deduce that only one of the following cases (G-i) or (G-ii) holds, for
alln > 1:

(3.6) (G—1i) Sn(B71) =0,

3.7 (G —i) 192 (B7H)] = ;

TOME 56 (2006), FASCICULE 7



2572 Jean-Louis VERGER-GAUGRY

where P3(X) = X 4P3(1/X) is the reciprocal polynomial of the minimal
polynomial of 3, for which L(Ps) = L(Pj) € N\ {0, 1}.

Case (G-i) is impossible for any n. Indeed, if there exists an integer ng > 1
such that (G-i) holds, then, since all the digits ¢; are positive and that
B! > 0, we would have t; = 0 for all i > s,,,. This would mean that the
Rényi expansion of 1 in base ( is finite, which is excluded by assumption.
Contradiction. Therefore, the only possibility is (G-ii), which holds for all
integers n > 1. From Lemma 3.10 and Liouville’s inequality (Proposition
3.14) in Waldschmidt [47] the inequality (G-ii) can be improved to

1

(3.8) (L —ii) |S.(B71)| = , — .
(1+ S5 @) @)™

This improvement may be important; recall the well-known inequalities:
M(B) < L(Ps) < 2950M(6)

and see [47] p. 113 for comparison with different heights. On the other
hand, since ’Sn(ﬁ_l)‘ = E:FO: t; 3" for all integers n > 1, we deduce

_ 16} s
(3.9) wa&lﬂ<1télﬁ nop=1,2,....

Putting together (3.8) and (3.9), we deduce that

g __1pl

(3.10) _ Ll
(1+Z;Z01 Qj(l))d M(g)mn 31

should be satisfied for n = 1,2, 3, .... Denote

per

Uy 1= for all n > 1.

(Do) M@

Proof of (1.1): from (3.3) assumed to be true there exists a sequence of
integers (n;) which tends to infinity and an integer iy such that

sn, _ log(M(B))
My, ~ log(3)

for all i > ig.
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Now,
d—1 [ pomi\ M
1 Mn,;
(3.11) () g
1+ [B)my, M(3)
< ! b < U,

Censtem)t MO

For ¢ > ig the inequality

(3.12) . P ) e
| T M@ T M)

holds. This implies that the left-hand side member of (3.11) tends exponen-
tially to infinity when ¢ tends to infinity. By (3.11) this forces u,, to tend to
infinity. The contradiction now comes from (3.10) since the sequence (uy,)
should be uniformly bounded.

Proof of (1.2): for n =1,2,..., let us rewrite the n-th quotient

(BSn+175n (1 + Z;L:_Ol Qj(l))dil

Un+1
(3.13) =
Uy, M Mpt1—Mnp n d—1
@) (1+ S @)
as
Sn41=sn
u (/6”"’7L+1_""n )mn+17mn
3.14 ntl _ M(B)
( ) Un (mn—i-l — My + 1)(d71)
(1romiom)
T 2j=0 & )
(M1 — My + 1) jn p)
(1+2, @)
and denote
1 ﬁ Sntl1—Sn Mp1—Mn
Mp41—Mn
3.15 U, =
(3.15) (s~ + @D | N(B)
and
d—1
1+375 Qi)
(3.16) W, = (mpy1 — my, + 1)(’171) ]n;
1+3 0 0Q;(1)

so that uny1/u, = U, W,

TOME 56 (2006), FASCICULE 7
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LEMMA 3.2. —
(3.17) 0 < liminf W,

n—-+oo
Proof. — Assume the contrary. Then there exists a subsequence (n;) of
integers which tends to infinity such that lim;_, | o Wy, = 0. In other terms,
for all € > 0, there exists ¢; such that ¢ > ¢; implies W,,, < ¢, equivalently

n;—1

(3.18)  (mp,41 —mp, +1)(1+ Z Q;(1) < e x (1+ in(l)).
Jj=0

§=0
Since, by hypothesis, ¢, > 1 and t,,,4+1 = 1 for all n > 1, we have:
n; <1 —i—Z;l;Bl Q;(1). On the other hand, @y, (1) < [ 8] (M, 41 —Mp, +1).
Then, from (3.18) with e taken equal to 1, we would have

ni—l

(319) m<1+ > Q1)
7=0
Q”i(l)

(mni+1 — My, + 1) -

Mp,+1 — My, +1
<

L <18 x <319

Mp;+1 — Mn,;
But the left-hand side member of (3.19) tends to infinity which is impossi-
ble. Contradiction. O

Let us assume that (1.2) does not hold and show the contradiction ; that
is, assume that liminf,, (7M1 —my) = +oo and limsup,, _,, o (Sn+1 —
Sn)/(Mpr1 — my) > log(M(8))/log(8) hold. Then

gESE R
og n; /,17/
3.20 1= -

. M(5) M(5)

for some sequence of integers (n;) which tends to infinity. This proves that
limsup,, _, ; o, Un = 400 since lim;_, o Uy, = 400 exponentially, by (3.15)
and (3.20).

By Lemma 3.2 there exists r > 0 such that W,, > r for all n large
enough. Therefore, w41 /u, = U,W,, = rU, for all n large enough. Since
limsup,, , ., Un = 400 we conclude that limsup w,41/u, = 400, hence
that lim sup u,, = +o00. This contradicts (3.10) and proves (1.2).

4. A direct proof of Corollary 1.2

Let 8 > 1 be a Salem number such that g ¢ C;. Using the notations of
Theorem 1.1 we show that the assumption

(4.1) lim sup noo

n—-+4oo My

ANNALES DE L’INSTITUT FOURIER
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leads to a contradiction.

Denote by K the algebraic number field Q(3), considered as a multivalued
field with the product formula [15] [43] (see also [30]).

The present proof is merely an adaptation of that of Theorem 1 in [1],
though the aims are different, and therefore does not merit publication. We
simply point out a few hints for the interested reader.

The main result which is used is Corollary 1 of the Main Theorem in
[15], as in [1]. This is a version of the Thue-Siegel-Roth Theorem given by
Corvaja which is stronger than Roth Theorem for number fields [31] [43] to
the extent it allows us to introduce a missing proportion of places of K by
considering the projective approximation of the point at infinity in P!(KK).
Since (3 is a Salem number, it is a unit [4]. Hence, this missing proportion

has just to be chosen among the pairwise distinct Archimedean places of
K.

5. On the class Qg
5.1. Perron numbers

Let us give, after Solomyak ([44], p 483), the example of a Perron number
which is not a beta-number and therefore which is not in the class Cs,
without knowing whether it is in the class Qg. This example allows us
to estimate the sharpness of the upper bound log(M(5))/log(8) in (1.1).
Recall that a real number § > 1 is a beta-number if the orbit of z =
1 under the transformation Ty : =z — [z (modl) is finite [34] [39].
The set of all conjugates of all beta-numbers is the union of the closed
unit disc in the complex plane and the set of reciprocals of zeros of the
function class {f(z) = 1+ > a;z’ | 0 < a; < 1}. The closure of this
domain, say @, is compact and was studied by Flatto, Lagarias and Poonen
[20] and Solomyak [44]. After [44], the Perron number 8 = 1(1 + v/13),
dominant root of P3(X) = X2 — X — 3, is not a beta-number, though
its only conjugate 3’ = 1(1 — /13) lies in the interior int(®). We have
M(S) = 3. By Theorem 1.1 the “quotients of the gaps" are asymptotically
bounded above by log(3)/log(5) = 1.3171..., a much better bound than
the degree d = 2 of B (see Lemma 5.1). This does not suffice to conclude
that 1(1+ v/13) belongs to Qo.

Do all Perron numbers belong to Qo ? Let 8 > 1 be a Perron number of
degree d > 2 and denote by (1), 82 .., 3(4=1) the conjugates of 3 = (¥,
roots of the minimal polynomial Ps(X) of 3. Let Kz := max{|8"| | i =
1,2,...,d—1}.

TOME 56 (2006), FASCICULE 7
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LEMMA 5.1. — Let n = ng (with 2 < ng < d) be the number of conju-
gates of B of modulus strictly greater than unity (including ). Then

log(M(5)) n—1
ol () <" @5 log
Proof. — Obvious since (Lemma 2 in [33]): Kg < 3(1 — W).

The upper bound (5.1) does not allow us to give a positive answer to the
question and has probably to be improved.

5.2. Transcendental numbers

Let us show that the Komornik-Loreti constant [2] [29] belongs to Qél).

THEOREM 5.2. — There exists a smallest ¢ € (1,2) for which there
exists a unique expansion of 1 as 1 = > °° 6,¢”™ , with 6, € {0,1}.
Furthermore, for this smallest q, the coefficient §,, is equal to 0 (respec-
tively, 1) if the sum of the binary digits of n is even (respectively, odd).
This number ¢ can then be obtained as the unique positive solution of 1 =
S 6nq™™. Tt is equal to 1.787231650. . ..

n=1

This constant g is named Komornik-Loreti constant. Allouche and Cos-
nard [2] have shown the following result.

THEOREM 5.3. — The constant q is a transcendental number, where
the sequence of coefficients (6,,)n>1 is the Prouhet-Thue-Morse sequence
on the alphabet {0,1}.

The uniqueness of the development of 1 in base ¢ given by Theorem 5.2

allows us to write
dy(1) = 0.610203 . . .,

the coefficients d,, being the digits of the Rényi ¢-expansion of 1. Since the
strings of zeros and 1’s in the Prouhet-Thue-Morse sequence are known
(Thue, 1906/1912; [3]) and uniformly bounded, the constant ¢ belongs to
the class Q(()l).

As second example, let us show that Sturmian numbers in the inter-
val (1,2) (in the sense of [14]) belong to Q(()l).

A real number 8 > 1 is called a Sturmian number if dg(1) is a Sturmian
word over a binary alphabet {a,b}, with 0 < a < b = [3]. Chi and Kwon
[14] have shown the following theorem.

THEOREM 5.4. — Every Sturmian number is transcendental.
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Let us consider all the Sturmian numbers § € (1,2) for which the two-
letter alphabet is {0,1}. For such numbers gappiness appears in dg(1) (in
the sense of Theorem 1.1). By Theorem 3.3 in [14] strings of zeros, resp.
of 1’s, cannot be arbitrarily long. This gives the claim.
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