

ANNALES

DE

L'INSTITUT FOURIER

Jean-Louis VERGER-GAUGRY

On gaps in Rényi β -expansions of unity for $\beta>1$ an algebraic number Tome 56, no 7 (2006), p. 2565-2579.

http://aif.cedram.org/item?id=AIF_2006__56_7_2565_0

© Association des Annales de l'institut Fourier, 2006, tous droits réservés.

L'accès aux articles de la revue « Annales de l'institut Fourier » (http://aif.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques

http://www.cedram.org/

ON GAPS IN RÉNYI β -EXPANSIONS OF UNITY FOR $\beta>1$ AN ALGEBRAIC NUMBER

by Jean-Louis VERGER-GAUGRY

ABSTRACT. — Let $\beta>1$ be an algebraic number. We study the strings of zeros ("gaps") in the Rényi β -expansion $d_{\beta}(1)$ of unity which controls the set \mathbb{Z}_{β} of β -integers. Using a version of Liouville's inequality which extends Mahler's and Güting's approximation theorems, the strings of zeros in $d_{\beta}(1)$ are shown to exhibit a "gappiness" asymptotically bounded above by $\log(\mathrm{M}(\beta))/\log(\beta)$, where $\mathrm{M}(\beta)$ is the Mahler measure of β . The proof of this result provides in a natural way a new classification of algebraic numbers >1 with classes called $\mathrm{Q}_i^{(j)}$ which we compare to Bertrand-Mathis's classification with classes C_1 to C_5 (reported in an article by Blanchard). This new classification relies on the maximal asymptotic "quotient of the gap" value of the "gappy" power series associated with $d_{\beta}(1)$. As a corollary, all Salem numbers are in the class $\mathrm{C}_1 \cup \mathrm{Q}_0^{(1)} \cup \mathrm{Q}_0^{(2)} \cup \mathrm{Q}_0^{(3)}$; this result is also directly proved using a recent generalization of the Thue-Siegel-Roth Theorem given by Corvaja.

RÉSUMÉ. — Soit $\beta>1$ un nombre algébrique. Nous étudions les plages de zéros ("lacunes") dans le β -développement de Rényi $d_{\beta}(1)$ de l'unité qui contrôle l'ensemble \mathbb{Z}_{β} des β -entiers. En utilisant une version de l'inégalité de Liouville qui étend des théorèmes d'approximation de Mahler et de Güting, on montre que les plages de zéros dans $d_{\beta}(1)$ présentent une "lacunarité" asymptotiquement bornée supérieurement par $\log(\mathrm{M}(\beta))/\log(\beta)$, où $\mathrm{M}(\beta)$ est la mesure de Mahler de β . La preuve de ce résultat fournit de manière naturelle une nouvelle classification des nombres algébriques >1 en classes appelées $\mathrm{Q}_i^{(j)}$ que nous comparons à la classification de Bertrand-Mathis avec les classes C_1 à C_5 (reportée dans un article de Blanchard). Cette nouvelle classification repose sur la valeur asymptotique maximale du "quotient de lacune" de la série "lacunaire" associée à $d_{\beta}(1)$. Comme corollaire, tous les nombres de Salem sont dans la classe $\mathrm{C}_1 \cup \mathrm{Q}_0^{(1)} \cup \mathrm{Q}_0^{(2)} \cup \mathrm{Q}_0^{(3)}$; ce résultat est également obtenu par un théorème récent qui généralise le théorème de Thue-Siegel-Roth donné par Corvaja.

Keywords: Beta-integer, beta-numeration, PV number, Salem number, Perron number, Mahler measure, Diophantine approximation, Mahler's series, mathematical quasicrystal.

Math. classification: 11B05, 11Jxx, 11J68, 11R06, 52C23.

1. Introduction

The exploration of the links between symbolic dynamics and number theory of β -expansions, when $\beta > 1$ is an algebraic number or more generally a real number, started with Bertrand-Mathis [6] [7]. Bertrand-Mathis, in Blanchard [8], reported a classification of real numbers according to their β -shift, using the properties of the Rényi β -expansion $d_{\beta}(1)$ of 1. A lot of questions remain open concerning the distribution of the algebraic numbers $\beta > 1$ in this classification. The Rényi β -expansion of 1 is important since it controls the β -shift [38] and the discrete and locally finite set $\mathbb{Z}_{\beta} \subset \mathbb{R}$ of β -integers [13] [18] [25] [26]. The aim of this note is to give a new Theorem (Theorem 1.1) on the gaps (strings of 0's) in $d_{\beta}(1)$ for algebraic numbers $\beta > 1$, and investigate how it provides (partial) answers to some questions of [8], in particular for Salem numbers (Corollary 1.2).

Theorem 1.1 provides an upper bound on the asymptotic quotient of the gap of $d_{\beta}(1)$ and is obtained by a version of Liouville's inequality extending Mahler's and Güting's approximation theorems. The proof of Theorem 1.1 turns out to be extremely instructive in itself since it leads to a new classification of the algebraic numbers β as a function of the asymptotics of the gaps in $d_{\beta}(1)$ and "intrinsic features", namely the Mahler measure $M(\beta)$, of β (the definition of M(β) is recalled in Section 3). The existence of this double parametrization, symbolic and algebraic, was guessed in [8] p 137. This new classification complements Bertrand-Mathis's (Blanchard [8] pp 137–139) and both are recalled below for comparison's sake. The question whether an algebraic number $\beta > 1$ is contained in one class or another has already been discussed by many authors [5] [6] [7] [8] [9] [10] [11] [12] [17] [22] [32] [33] [38] [39] [41] [42] and depends at least upon the distribution of the conjugates of β in the complex plane. Only the conjugates of β of modulus strictly greater than unity intervene in Theorem 1.1 via the Mahler measure of β . Corollary 1.2 is readily deduced from this remark. We deduce that Salem numbers belong to $C_1 \cup C_2 \cup Q_0$, whereas the Pisot numbers are in $C_1 \cup C_2$ [45].

Another proof of Corollary 1.2 consists of controlling the gaps of $d_{\beta}(1)$ by stronger Theorems of Diophantine Geometry which allow suitable collections of places of the number field $\mathbb{Q}(\beta)$ associated with the conjugates of β and the properties of $d_{\beta}(1)$ to be taken into account simultaneously. This alternative proof of Corollary 1.2, just sketched in Section 4, is obtained using the Theorem of Thue-Siegel-Roth given by Corvaja [1] [15].

THEOREM 1.1. — Let $\beta > 1$ be an algebraic number and $M(\beta)$ be its Mahler measure. Denote by $d_{\beta}(1) := 0.t_1t_2t_3...$, with $t_i \in A_{\beta} :=$ $\{0,1,2,\ldots,\lceil\beta-1\rceil\}$, the Rényi β -expansion of 1. Assume that $d_{\beta}(1)$ is infinite and gappy in the following sense: there exist two sequences $\{m_n\}_{n\geq 1}$, $\{s_n\}_{n\geqslant 0}$ such that

$$1 = s_0 \leqslant m_1 < s_1 \leqslant m_2 < s_2 \leqslant \ldots \leqslant m_n < s_n \leqslant m_{n+1} < s_{n+1} \leqslant \ldots$$

with $(s_n - m_n) \ge 2$, $t_{m_n} \ne 0$, $t_{s_n} \ne 0$ and $t_i = 0$ if $m_n < i < s_n$ for all $n \ge 1$. Then

(1.1)
$$\limsup_{n \to +\infty} \frac{s_n}{m_n} \leqslant \frac{\log(M(\beta))}{\log(\beta)}.$$

Moreover, if $\liminf_{n\to+\infty} (m_{n+1}-m_n)=+\infty$, then

(1.2)
$$\limsup_{n \to +\infty} \frac{s_{n+1} - s_n}{m_{n+1} - m_n} \leqslant \frac{\log(M(\beta))}{\log(\beta)}.$$

As in Ostrowski [37] the quotient $s_n/m_n \ge 1$ is called the quotient of the gap, relative to the nth-gap (assuming $t_i \neq 0$ for all $s_n \leq j \leq m_{n+1}$ to characterize uniquely the gaps). Note that the term "lacunary" has often other meanings in literature and is not used here to describe "gappiness". Denote by $\mathcal{L}(S_{\beta})$ the language of the β -shift [8] [23] [24] [34]. Bertrand-Mathis's classification ([8] pp 137–139) is as follows:

 $C_1: d_{\beta}(1)$ is finite.

 C_2 : $d_{\beta}(1)$ is ultimately periodic but not finite.

 $C_3: d_{\beta}(1)$ contains bounded strings of 0's, but is not ultimately periodic.

 $C_4: d_{\beta}(1)$ does not contain some words of $\mathcal{L}(S_{\beta})$, but contains strings of 0's with unbounded length.

 $C_5: d_{\beta}(1)$ contains all words of $\mathcal{L}(S_{\beta})$.

Present classes of algebraic numbers, with the notations of Theorem 1.1:

$$Q_0^{(1)}$$
: $1 = \lim_{n \to +\infty} \frac{s_n}{m}$ with $(m_{n+1} - m_n)$ bounded.

$$Q_0^{(1)}: 1 = \lim_{n \to +\infty} \frac{s_n}{m_n} \text{ with } (m_{n+1} - m_n) \text{ bounded.}$$

$$Q_0^{(2)}: 1 = \lim_{n \to +\infty} \frac{s_n}{m_n} \text{ with } (s_n - m_n) \text{ bounded and } \lim_{n \to +\infty} (m_{n+1} - m_n) = +\infty.$$

$$Q_0^{(3)}: 1 = \lim_{n \to +\infty} \frac{s_n}{m_n} \text{ with } \limsup_{n \to +\infty} (s_n - m_n) = +\infty.$$

$$Q_0^{(3)}$$
: $1 = \lim_{n \to +\infty} \frac{s_n}{m_n}$ with $\limsup_{n \to +\infty} (s_n - m_n) = +\infty$

$$Q_0^{(3)}: 1 = \lim_{n \to +\infty} \frac{s_n}{m_n} \text{ with } \limsup_{n \to +\infty} (s_n - \frac{s_n}{m_n}) = \frac{s_n}{m_n} < \frac{\log(M(\beta))}{\log(\beta)}.$$

$$Q_2: \lim_{n \to +\infty} \sup_{n \to +\infty} \frac{s_n}{m_n} = \frac{\log(M(\beta))}{\log(\beta)}.$$
What are the relative proportions

Q₂:
$$\limsup_{n \to +\infty} \frac{s_n}{m_n} = \frac{\log(M(\beta))}{\log(\beta)}$$
.

What are the relative proportions of each class in the whole set $\overline{\mathbb{Q}}_{>1}$ of algebraic numbers $\beta > 1$? Comparing C_2 , C_3 and $Q_0^{(1)}$, what are the relative proportions in $Q_0^{(1)}$ of those β which give ultimate periodicity in $d_{\beta}(1)$ and those for which $d_{\beta}(1)$ is not ultimately periodic? Schmeling ([41] Theorem A) has shown that the class C_3 (of real numbers $\beta > 1$) has Hausdorff dimension one. We have:

 $\begin{array}{lll} \bullet & \overline{\mathbb{Q}}_{>1} \ \cap \ C_2 & \subset \ \mathrm{Q}_0^{(1)}, \\ \bullet & \overline{\mathbb{Q}}_{>1} \ \cap \ C_3 & \subset \ \mathrm{Q}_0^{(1)} \ \cup \ \mathrm{Q}_0^{(2)}, \ \mathrm{with} \ C_3 \ \cap \ \mathrm{Q}_0^{(3)} = \emptyset, \\ \bullet & \overline{\mathbb{Q}}_{>1} \ \cap \ C_4 & \subset \ \mathrm{Q}_0^{(3)} \ \cup \ \mathrm{Q}_1 \ \cup \ \mathrm{Q}_2. \end{array}$

The Pisot numbers β are contained in $C_1 \cup Q_0^{(1)}$ since they are such that $d_{\beta}(1)$ is finite or ultimately periodic (Parry [38], Bertrand-Mathis [5]). Recall that a Perron number is an algebraic integer $\beta > 1$ such that all the conjugates $\beta^{(i)}$ of β satisfy $|\beta^{(i)}| < \beta$. Conversely, as shown in Lind [32], Denker, Grillenberger, Sigmund [17] and Bertrand-Mathis [7], if $\beta > 1$ is such that $d_{\beta}(1)$ is ultimately periodic (finite or not), then β is a Perron number. Not all Perron numbers are attained in this way: a Perron number which possesses a real conjugate greater than 1 cannot be such that $d_{\beta}(1)$ is ultimately periodic ([8] p 138). Parry numbers belong to $C_1 \cup C_2$. Let $Q_0 = Q_0^{(1)} \cup Q_0^{(2)} \cup Q_0^{(3)}$.

COROLLARY 1.2. — Let $\beta > 1$ be a Salem number which does not belong to C_1 . Then β belongs to the class Q_0 .

The attribution of Salem numbers to C_1 , $Q_0^{(1)}$, $Q_0^{(2)}$ and $Q_0^{(3)}$ is an open problem in general, except in low degree. Boyd [9] [12] has shown that Salem numbers of degree 4 belong to C_2 , hence to $Q_0^{(1)}$. It is also the case of some Salem numbers of degree 6 and ≥ 8 in the framework of a probabilistic model [11] [12]. In Section 5 we ask the question whether Corollary 1.2 could still be true for Perron numbers.

The definition of the class Q_0 does not make any allusion to β , i.e. to $M(\beta)$, to the conjugates of β , to the minimal polynomial of β or to its length, etc, but takes only into account the quotients of the gaps in $d_{\beta}(1)$. Hence this class Q_0 can be applied to real numbers $\beta > 1$ in full generality instead of only to algebraic numbers > 1. The question whether there exist transcendental numbers $\beta > 1$ which belong to the class Q_0 was asked in [8]; what proportion appears in each subclass? Examples of transcendental numbers (Komornik-Loreti constant [2] [29], Sturmian numbers [14]) in Q_0 are given in Section 5.

In the present note, we deal with the algebraicity of values of "gapppy" series, deduced from $d_{\beta}(1)$, at the algebraic point β^{-1} . In a related context, more related to transcendency, Nishioka [36] and Corvaja Zannier [16] have followed different paths and applied the Subspace Theorem [43] to deduce different results.

2. Definitions

For $x \in \mathbb{R}$ the integer part of x is $\lfloor x \rfloor$ and its fractional part $\{x\} = x - \lfloor x \rfloor$. The smallest integer larger than or equal to x is denoted by $\lceil x \rceil$. For $\beta > 1$ a real number and $z \in [0,1]$ we denote by $T_{\beta}(z) = \beta z \pmod{1}$ the β -transform on [0,1] associated with β [38] [40], and iteratively, for all integers $j \geq 0$, $T_{\beta}^{j+1}(z) := T_{\beta}(T_{\beta}^{j}(z))$, where by convention $T_{\beta}^{0} = Id$.

Let $\beta > 1$ be a real number. A beta-representation (or β -representation, or representation in base β) of a real number $x \ge 0$ is given by an infinite sequence $(x_i)_{i\ge 0}$ and an integer $k\in\mathbb{Z}$ such that $x=\sum_{i=0}^{+\infty}x_i\beta^{-i+k}$, where the digits x_i belong to a given alphabet ($\subset \mathbb{N}$) [23] [24] [34]. Among all the beta-representations of a real number $x \ge 0, x \ne 1$, there exists a particular one called Rényi β -expansion, which is obtained via the greedy algorithm: in this case, k satisfies $\beta^k \le x < \beta^{k+1}$ and the digits

belong to the finite canonical alphabet $\mathbb{A}_{\beta} := \{0, 1, 2, \dots, \lceil \beta - 1 \rceil\}$. If β is an integer, then $\mathbb{A}_{\beta} := \{0, 1, 2, \dots, \beta - 1\}$; if β is not an integer, then $\mathbb{A}_{\beta} := \{0, 1, 2, \dots, \lfloor \beta \rfloor\}$. We denote by

$$(2.2) \langle x \rangle_{\beta} := x_0 x_1 x_2 \dots x_k \cdot x_{k+1} x_{k+2} \dots$$

the couple formed by the string of digits $x_0x_1x_2...x_kx_{k+1}x_{k+2}...$ and the position of the dot, which is at the k-th position (between x_k and x_{k+1}). By definition the integer part (in base β) of x is $\sum_{i=0}^k x_i \beta^{-i+k}$ and its fractional part (in base β) is $\sum_{i=k+1}^{+\infty} x_i \beta^{-i+k}$. If a Rényi β -expansion ends in infinitely many zeros, it is said to be finite and the ending zeros are omitted. If it is periodic after a certain rank, it is said to be eventually periodic (the period is the smallest finite string of digits possible, assumed not to be a string of zeros); for the substitutive approach see [19] [39].

The Rényi β -expansion which plays an important role in the theory is the Rényi β -expansion of 1, denoted by $d_{\beta}(1)$ and defined as follows: since $\beta^{0} \leq 1 < \beta$, the value $T_{\beta}(1/\beta)$ is set to 1 by convention. Then using the formulae (2.1)

$$(2.3) t_1 = \lfloor \beta \rfloor, t_2 = \lfloor \beta \{\beta \} \rfloor, t_3 = \lfloor \beta \{\beta \{\beta \} \} \rfloor, \dots$$

The writing

$$d_{\beta}(1) = 0.t_1 t_2 t_3 \dots$$

corresponds to

$$1 = \sum_{i=1}^{+\infty} t_i \beta^{-i}.$$

Links between the set \mathbb{Z}_{β} of beta-integers and $d_{\beta}(1)$ are evoked in [18] [21] [27] [26] [46]. A real number $\beta > 1$ such that $d_{\beta}(1)$ is finite or eventually periodic is called a beta-number or more recently a Parry number (this recent terminology appears in [18]). In particular, it is called a simple beta-number or a simple Parry number when $d_{\beta}(1)$ is finite. Beta-numbers (Parry numbers) are algebraic integers ([38]) and all their conjugates lie within a compact subset which looks like a fractal in the complex plane [44]. The conjugates of beta-numbers are all bounded above in modulus by the golden mean $\frac{1}{2}(1+\sqrt{5})$ ([20] [44]).

3. Proof of Theorem 1.1

Since algebraic numbers $\beta > 1$ for which the Rényi β -expansion $d_{\beta}(1)$ of 1 is finite are excluded, we may consider that β does not belong to \mathbb{N} . Indeed, if $\beta = h \in \mathbb{N}$, then $d_h(1) = 0.h$ is finite (Lothaire [34], Chap. 7). If $\beta \notin \mathbb{N}$, then $\lceil \beta - 1 \rceil = \lfloor \beta \rfloor$ and the alphabet A_{β} equals $\{0, 1, 2, \ldots, \lfloor \beta \rfloor\}$, where $\lfloor \beta \rfloor$ denotes the greatest integer smaller than or equal to β .

Let $f(z) := \sum_{i=1}^{+\infty} t_i z^i$ be the "gappy" power series deduced from the representation $d_{\beta}(1) = 0.t_1t_2t_3...$ associated with the β -shift (gappy in the sense of Theorem 1.1). Since $d_{\beta}(1)$ is assumed to be infinite, its radius of convergence is 1. By definition, it satisfies

(3.1)
$$f(\beta^{-1}) = 1,$$

which means that the function value $f(\beta^{-1})$ is algebraic, equal to 1, at the real algebraic number β^{-1} in the open disk of convergence D(0,1) of f(z) in the complex plane. This fact is a general intrinsic feature of the Rényi expansion process which leads to the following important consequence by the theory of admissible power series of Mahler [35].

Proposition 3.1. —

$$\limsup_{n \to +\infty} \frac{s_n}{m_n} < +\infty.$$

Proof. — This is a consequence of Theorem 1 in [35]. Indeed, if we assume that there exists a sequence of integers (n_i) which tends to infinity such that $\lim_{i\to+\infty} s_{n_i}/m_{n_i} = +\infty$, then f(z) would be admissible in the sense of [35]. Since f(z) is a power series with nonnegative coefficients, which is not a polynomial, the function value $f(\beta^{-1})$ should not be algebraic. But it equals 1. Contradiction.

Let us improve Proposition 3.1. Assume that

(3.3)
$$\limsup \frac{s_n}{m_n} > \frac{\log(\mathcal{M}(\beta))}{\log(\beta)}$$

and show the contradiction with (1.1) and (1.2). Recall that, if

$$P_{\beta}(X) = \sum_{i=0}^{d} \alpha_i X^i = \alpha_d \prod_{i=0}^{d-1} (X - \beta^{(i)})$$

with $d \ge 1$, $\alpha_0 \alpha_d \ne 0$, denotes the minimal polynomial of $\beta = \beta^{(0)} > 1$, having $\beta^{(1)}, \beta^{(2)}, \dots, \beta^{(d-1)}$ as conjugates, the Mahler measure of β is by definition

$$M(\beta) := |\alpha_d| \prod_{i=0}^{d-1} \max\{1, |\beta^{(i)}|\}.$$

Güting [28] has shown that the approximation of algebraic numbers by algebraic numbers is fairly difficult to realize by polynomials. In the present proof, we use a version of Liouville's inequality which generalizes approximation theorems obtained by Güting [28], and apply it to the values of the "polynomial tails" of the power series f(z) at the algebraic number β^{-1} , to obtain the contradiction. Let us write

(3.4)
$$f(z) = \sum_{n=0}^{+\infty} Q_n(z)$$

with

(3.5)
$$Q_n(z) := \sum_{i=s}^{m_{n+1}} t_i z^i, \qquad n = 0, 1, 2, \dots.$$

By construction the polynomials $Q_n(z)$, of degree m_{n+1} , are not identically zero and $Q_n(1) > 0$ is an integer for all $n \ge 0$.

Denote by $S_n(z)=-1+\sum_{i=1}^{m_n}t_iz^i$ the m_n th-section polynomial of the power series f(z)-1 for all $n\geqslant 1$. Recall that, for $R(X)=\sum_{i=0}^v\alpha_iX^i\in\mathbb{Z}[X],\ L(R):=\sum_{i=0}^v|\alpha_i|$ denotes the length of the polynomial R(X). We have: $L(S_n)=1+\sum_{i=1}^{m_n}t_i=1+\sum_{j=0}^{n-1}Q_j(1)$. From Theorem 5 in [28] we deduce that only one of the following cases (G-i) or (G-ii) holds, for all $n\geqslant 1$:

(3.6)
$$(G-i)$$
 $S_n(\beta^{-1}) = 0,$

(3.7)
$$(G - ii)$$
 $|S_n(\beta^{-1})| \ge \frac{1}{\left(1 + \sum_{j=0}^{n-1} Q_j(1)\right)^{d-1} \left(L(P_\beta^*)\right)^{m_n}},$

where $P_{\beta}^*(X) = X^d P_{\beta}(1/X)$ is the reciprocal polynomial of the minimal polynomial of β , for which $L(P_{\beta}) = L(P_{\beta}^*) \in \mathbb{N} \setminus \{0,1\}.$

Case (G-i) is impossible for any n. Indeed, if there exists an integer $n_0 \ge 1$ such that (G-i) holds, then, since all the digits t_i are positive and that $\beta^{-1} > 0$, we would have $t_i = 0$ for all $i \ge s_{n_0}$. This would mean that the Rényi expansion of 1 in base β is finite, which is excluded by assumption. Contradiction. Therefore, the only possibility is (G-ii), which holds for all integers $n \ge 1$. From Lemma 3.10 and Liouville's inequality (Proposition 3.14) in Waldschmidt [47] the inequality (G-ii) can be improved to

(3.8)
$$|S_n(\beta^{-1})| \ge \frac{1}{\left(1 + \sum_{j=0}^{n-1} Q_j(1)\right)^{d-1} (M(\beta))^{m_n}}.$$

This improvement may be important; recall the well-known inequalities:

$$M(\beta) \leqslant L(P_{\beta}) \leqslant 2^{\deg(\beta)}M(\beta)$$

and see [47] p. 113 for comparison with different heights. On the other hand, since $|S_n(\beta^{-1})| = \sum_{i=s_n}^{+\infty} t_i \beta^{-i}$ for all integers $n \ge 1$, we deduce

$$(3.9) \left| S_n(\beta^{-1}) \right| \leqslant \frac{\lfloor \beta \rfloor}{1 - \beta^{-1}} \beta^{-s_n} n = 1, 2, \dots$$

Putting together (3.8) and (3.9), we deduce that

(3.10)
$$\frac{\beta^{s_n}}{\left(1 + \sum_{j=0}^{n-1} Q_j(1)\right)^{d-1} \mathcal{M}(\beta)^{m_n}} \leqslant \frac{\lfloor \beta \rfloor}{1 - \beta^{-1}}$$

should be satisfied for $n = 1, 2, 3, \ldots$ Denote

$$u_n := \frac{\beta^{s_n}}{\left(1 + \sum_{j=0}^{n-1} Q_j(1)\right)^{d-1} M(\beta)^{m_n}}$$
 for all $n \ge 1$.

Proof of (1.1): from (3.3) assumed to be true there exists a sequence of integers (n_i) which tends to infinity and an integer i_0 such that

$$\frac{s_{n_i}}{m_{n_i}} > \frac{\log(\mathcal{M}(\beta))}{\log(\beta)}$$
 for all $i \ge i_0$.

Now,

$$(3.11) \quad \left(\frac{1}{1+\lfloor\beta\rfloor m_{n_i}}\right)^{d-1} \left(\frac{\beta^{\frac{s_{n_i}}{m_{n_i}}}}{M(\beta)}\right)^{m_{n_i}}$$

$$\leq \frac{1}{\left(1+\sum_{j=0}^{n_i-1} Q_j(1)\right)^{d-1}} \left(\frac{\beta^{\frac{s_{n_i}}{m_{n_i}}}}{M(\beta)}\right)^{m_{n_i}} \leq u_{n_i}.$$

For $i \geqslant i_0$ the inequality

(3.12)
$$1 = \frac{\beta^{\frac{\log(M(\beta))}{\log(\beta)}}}{M(\beta)} < \frac{\beta^{\frac{s_{n_i}}{m_{n_i}}}}{M(\beta)}$$

holds. This implies that the left-hand side member of (3.11) tends exponentially to infinity when i tends to infinity. By (3.11) this forces u_{n_i} to tend to infinity. The contradiction now comes from (3.10) since the sequence (u_n) should be uniformly bounded.

Proof of (1.2): for n = 1, 2, ..., let us rewrite the n-th quotient

(3.13)
$$\frac{u_{n+1}}{u_n} = \frac{\beta^{s_{n+1}-s_n}}{M(\beta)^{m_{n+1}-m_n}} \frac{\left(1 + \sum_{j=0}^{n-1} Q_j(1)\right)^{d-1}}{\left(1 + \sum_{j=0}^{n} Q_j(1)\right)^{d-1}}$$

as

$$(3.14) \quad \frac{u_{n+1}}{u_n} = \frac{\left(\beta^{\frac{s_{n+1}-s_n}{m_{n+1}-m_n}}\right)^{m_{n+1}-m_n}}{(m_{n+1}-m_n+1)^{(d-1)}} \left[(m_{n+1}-m_n+1)^{(d-1)} \frac{\left(1+\sum_{j=0}^{n-1} Q_j(1)\right)^{d-1}}{\left(1+\sum_{j=0}^{n} Q_j(1)\right)^{d-1}} \right]$$

and denote

(3.15)
$$U_n := \frac{1}{(m_{n+1} - m_n + 1)^{(d-1)}} \left(\frac{\beta^{\frac{s_{n+1} - s_n}{m_{n+1} - m_n}}}{M(\beta)} \right)^{m_{n+1} - m_n}$$

and

(3.16)
$$W_n := (m_{n+1} - m_n + 1)^{(d-1)} \left(\frac{1 + \sum_{j=0}^{n-1} Q_j(1)}{1 + \sum_{j=0}^n Q_j(1)} \right)^{d-1}$$

so that $u_{n+1}/u_n = U_n W_n$.

Lemma 3.2. —

$$(3.17) 0 < \liminf_{n \to +\infty} W_n$$

Proof. — Assume the contrary. Then there exists a subsequence (n_i) of integers which tends to infinity such that $\lim_{i\to+\infty} W_{n_i} = 0$. In other terms, for all $\epsilon > 0$, there exists i_1 such that $i \geqslant i_1$ implies $W_{n_i} \leqslant \epsilon$, equivalently

$$(3.18) (m_{n_i+1} - m_{n_i} + 1) \left(1 + \sum_{j=0}^{n_i-1} Q_j(1)\right) \leqslant \epsilon^{\frac{1}{d-1}} \times \left(1 + \sum_{j=0}^{n_i} Q_j(1)\right).$$

Since, by hypothesis, $t_{s_n} \ge 1$ and $t_{m_n+1} \ge 1$ for all $n \ge 1$, we have: $n_i \le 1 + \sum_{j=0}^{n_i-1} Q_j(1)$. On the other hand, $Q_{n_i}(1) \le \lfloor \beta \rfloor (m_{n_i+1} - m_{n_i} + 1)$. Then, from (3.18) with ϵ taken equal to 1, we would have

$$(3.19) \quad n_i \leqslant 1 + \sum_{j=0}^{n_i - 1} Q_j(1)$$

$$\leqslant \frac{Q_{n_i}(1)}{(m_{n_i + 1} - m_{n_i} + 1) - 1} \leqslant \lfloor \beta \rfloor \times \frac{m_{n_i + 1} - m_{n_i} + 1}{m_{n_i + 1} - m_{n_i}} \leqslant \frac{3}{2} \lfloor \beta \rfloor.$$

But the left-hand side member of (3.19) tends to infinity which is impossible. Contradiction.

Let us assume that (1.2) does not hold and show the contradiction; that is, assume that $\liminf_{n\to+\infty} (m_{n+1}-m_n) = +\infty$ and $\limsup_{n\to+\infty} (s_{n+1}-s_n)/(m_{n+1}-m_n) > \log(\mathrm{M}(\beta))/\log(\beta)$ hold. Then

(3.20)
$$1 = \frac{\beta^{\frac{\log(\mathcal{M}(\beta))}{\log(\beta)}}}{\mathcal{M}(\beta)} < \frac{\beta^{\frac{s_{n_i+1}-s_{n_i}}{m_{n_i+1}-m_{n_i}}}}{\mathcal{M}(\beta)}$$

for some sequence of integers (n_i) which tends to infinity. This proves that $\limsup_{n\to+\infty}U_n=+\infty$ since $\lim_{i\to+\infty}U_{n_i}=+\infty$ exponentially, by (3.15) and (3.20).

By Lemma 3.2 there exists r > 0 such that $W_n \ge r$ for all n large enough. Therefore, $u_{n+1}/u_n = U_n W_n \ge r U_n$ for all n large enough. Since $\limsup_{n\to+\infty} U_n = +\infty$ we conclude that $\limsup u_{n+1}/u_n = +\infty$, hence that $\limsup u_n = +\infty$. This contradicts (3.10) and proves (1.2).

4. A direct proof of Corollary 1.2

Let $\beta > 1$ be a Salem number such that $\beta \notin C_1$. Using the notations of Theorem 1.1 we show that the assumption

$$\limsup_{n \to +\infty} \frac{s_n}{m_n} > 1$$

leads to a contradiction.

Denote by \mathbb{K} the algebraic number field $\mathbb{Q}(\beta)$, considered as a multivalued field with the product formula [15] [43] (see also [30]).

The present proof is merely an adaptation of that of Theorem 1 in [1], though the aims are different, and therefore does not merit publication. We simply point out a few hints for the interested reader.

The main result which is used is Corollary 1 of the Main Theorem in [15], as in [1]. This is a version of the Thue-Siegel-Roth Theorem given by Corvaja which is stronger than Roth Theorem for number fields [31] [43] to the extent it allows us to introduce a missing proportion of places of \mathbb{K} by considering the projective approximation of the point at infinity in $\mathbb{P}^1(\mathbb{K})$. Since β is a Salem number, it is a unit [4]. Hence, this missing proportion has just to be chosen among the pairwise distinct Archimedean places of \mathbb{K} .

5. On the class Q_0

5.1. Perron numbers

Let us give, after Solomyak ([44], p 483), the example of a Perron number which is not a beta-number and therefore which is not in the class C₂, without knowing whether it is in the class Q_0 . This example allows us to estimate the sharpness of the upper bound $\log(M(\beta))/\log(\beta)$ in (1.1). Recall that a real number $\beta > 1$ is a beta-number if the orbit of x =1 under the transformation T_{β} : $x \to \beta x \pmod{1}$ is finite [34] [39]. The set of all conjugates of all beta-numbers is the union of the closed unit disc in the complex plane and the set of reciprocals of zeros of the function class $\{f(z) = 1 + \sum a_i z^j \mid 0 \leqslant a_i \leqslant 1\}$. The closure of this domain, say Φ , is compact and was studied by Flatto, Lagarias and Poonen [20] and Solomyak [44]. After [44], the Perron number $\beta = \frac{1}{2}(1+\sqrt{13})$, dominant root of $P_{\beta}(X) = X^2 - X - 3$, is not a beta-number, though its only conjugate $\beta' = \frac{1}{2}(1-\sqrt{13})$ lies in the interior $int(\Phi)$. We have $M(\beta) = 3$. By Theorem 1.1 the "quotients of the gaps" are asymptotically bounded above by $\log(3)/\log(\beta) = 1.3171...$, a much better bound than the degree d=2 of β (see Lemma 5.1). This does not suffice to conclude that $\frac{1}{2}(1+\sqrt{13})$ belongs to Q_0 .

Do all Perron numbers belong to Q_0 ? Let $\beta > 1$ be a Perron number of degree $d \ge 2$ and denote by $\beta^{(1)}, \beta^{(2)}, \ldots, \beta^{(d-1)}$ the conjugates of $\beta = \beta^{(0)}$, roots of the minimal polynomial $P_{\beta}(X)$ of β . Let $K_{\beta} := \max\{|\beta^{(i)}| \mid i = 1, 2, \ldots, d-1\}$.

LEMMA 5.1. — Let $n = n_{\beta}$ (with $2 \le n_{\beta} \le d$) be the number of conjugates of β of modulus strictly greater than unity (including β). Then

(5.1)
$$\frac{\log(\mathcal{M}(\beta))}{\log(\beta)} \leqslant n - \frac{n-1}{(d\beta)^{6d^3} \log \beta}.$$

Proof. — Obvious since (Lemma 2 in [33]):
$$K_{\beta} < \beta \left(1 - \frac{1}{(d\beta)^{6d^3}}\right)$$
.

The upper bound (5.1) does not allow us to give a positive answer to the question and has probably to be improved.

5.2. Transcendental numbers

Let us show that the Komornik-Loreti constant [2] [29] belongs to $Q_0^{(1)}$.

THEOREM 5.2. — There exists a smallest $q \in (1,2)$ for which there exists a unique expansion of 1 as $1 = \sum_{n=1}^{\infty} \delta_n q^{-n}$, with $\delta_n \in \{0,1\}$. Furthermore, for this smallest q, the coefficient δ_n is equal to 0 (respectively, 1) if the sum of the binary digits of n is even (respectively, odd). This number q can then be obtained as the unique positive solution of $1 = \sum_{n=1}^{\infty} \delta_n q^{-n}$. It is equal to 1.787231650....

This constant q is named Komornik-Loreti constant. Allouche and Cosnard [2] have shown the following result.

THEOREM 5.3. — The constant q is a transcendental number, where the sequence of coefficients $(\delta_n)_{n\geqslant 1}$ is the Prouhet-Thue-Morse sequence on the alphabet $\{0,1\}$.

The uniqueness of the development of 1 in base q given by Theorem 5.2 allows us to write

$$d_q(1) = 0.\delta_1 \delta_2 \delta_3 \dots,$$

the coefficients δ_n being the digits of the Rényi q-expansion of 1. Since the strings of zeros and 1's in the Prouhet-Thue-Morse sequence are known (Thue, 1906/1912; [3]) and uniformly bounded, the constant q belongs to the class $Q_0^{(1)}$.

As second example, let us show that Sturmian numbers in the interval (1,2) (in the sense of [14]) belong to $Q_0^{(1)}$.

A real number $\beta > 1$ is called a Sturmian number if $d_{\beta}(1)$ is a Sturmian word over a binary alphabet $\{a, b\}$, with $0 \le a < b = \lfloor \beta \rfloor$. Chi and Kwon [14] have shown the following theorem.

Theorem 5.4. — Every Sturmian number is transcendental.

Let us consider all the Sturmian numbers $\beta \in (1,2)$ for which the twoletter alphabet is $\{0,1\}$. For such numbers gappiness appears in $d_{\beta}(1)$ (in the sense of Theorem 1.1). By Theorem 3.3 in [14] strings of zeros, resp. of 1's, cannot be arbitrarily long. This gives the claim.

Acknowledgments

The author thanks J.-P. Allouche, B. Adamczewski, J. Bernat, V. Berthé, C. Frougny, J.-P. Gazeau and the anonymous referee for valuable comments, discussions and remarks. The author would like to thank Catriona MacLean for her careful rereading of the manuscript.

BIBLIOGRAPHY

- B. Adamczewski, "Transcendance "à la Liouville" de certains nombres réels", C. R. Acad. Sci. Paris 338 (2004), no. I, p. 511-514.
- [2] J.-P. ALLOUCHE & M. COSNARD, "The Komornik-Loreti constant is tanscendental", Amer. Math. Monthly 107 (2000), p. 448-449.
- [3] J.-P. ALLOUCHE & J. SHALLIT, "The ubiquitous Prouhet-Thue-Morse sequence", in Sequences and Their Applications (C. Ding, T. Helleseth & H. Niederreiter, eds.), Proceedings of SETA'98, Springer-Verlag, 1999, p. 1-16.
- [4] M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse & J.-P. Schreiber, Pisot and Salem Numbers, Birkhaüser, 1992.
- [5] A. Bertrand-Mathis, "Questions diverses relatives aux systèmes codés : applications au θ -shift", preprint.
- [6] —, "Développements en base Pisot et répartition modulo 1", C. R. Acad. Sci. Paris 285 (1977), no. A, p. 419-421.
- [7] ——, "Développements en base θ et répartition modulo 1 de la suite $(x\theta^n)$ ", Bull. Soc. Math. Fr. **114** (1986), p. 271-324.
- [8] F. Blanchard, "β-expansions and Symbolic Dynamics", Theoret. Comput. Sci. 65 (1989), p. 131-141.
- [9] D. BOYD, "Salem numbers of degree four have periodic expansions", in *Théorie des Nombres Number Theory* (Berlin and New York), Walter de Gruyter & Co., Eds. J.M. de Koninck and C. Levesque, 1989, p. 57-64.
- [10] ——, "On beta expansions for Pisot numbers", Math. Comp. 65 (1996), p. 841-860.
- [11] ——, "On the beta expansion for Salem numbers of degree 6", Math. Comp. 65 (1996), p. 861-875.
- [12] ——, "The beta expansions for Salem numbers", in Organic Mathematics (Providence, RI), Canad. Math. Soc. Conf. Proc. 20, A.M.S., 1997, p. 117-131.
- [13] C. Burdik, C. Frougny, J.-P. Gazeau & R. Krejcar, "Beta-integers as natural counting systems for quasicrystals", J. Phys. A: Math. Gen. 31 (1998), p. 6449-6472.
- [14] D. P. Chi & D. Kwon, "Sturmian words, β-shifts, and transcendence", Theoret. Comput. Sci. 321 (2004), p. 395-404.
- [15] P. CORVAJA, "Autour du Théorème de Roth", Monath. Math. 124 (1997), p. 147-175.

- [16] P. CORVAJA & U. ZANNIER, "Some New Applications of the Subspace Theorem", Compositio Mathematica 131 (2002), p. 319-340.
- [17] M. DENKER, C. GRILLENBERGER & K. SIGMUND, Ergodic Theory on compact spaces, Springer Lecture Notes in Math. 527, 1976.
- [18] A. ELKHARRAT, C. FROUGNY, J.-P. GAZEAU & J.-L. VERGER-GAUGRY, "Symmetry groups for beta-lattices", Theor. Comp. Sci. 319 (2004), p. 281-305.
- [19] S. Fabre, "Substitutions et β-systèmes de numération", Theoret. Comput. Sci. 137 (1995), p. 219-236.
- [20] L. FLATTO, J. LAGARIAS & B. POONEN, "The zeta function of the beta transformation", Ergod. Th. and Dynam. Sys. 14 (1994), p. 237-266.
- [21] C. FROUGNY, J.-P. GAZEAU & R. KREJCAR, "Additive and multiplicative properties of point sets based on beta-integers", Theoret. Comput. Sci. 303 (2003), p. 491-516.
- [22] C. FROUGNY & B. SOLOMYAK, "Finite beta-expansions", Ergod. Theor. Dynam. Sys. 12 (1992), p. 713-723.
- [23] C. FROUGNY, "Number Representation and Finite Automata", London Math. Soc. Lecture Note Ser. 279 (2000), p. 207-228.
- [24] ——, "Algebraic Combinatorics on Words", chap. Numeration systems, 7, Cambridge University Press, 2003.
- [25] J.-P. GAZEAU, "Pisot-Cyclotomic Integers for Quasilattices", in *The Mathematics of Long-Range Aperiodic Order* (Dordrecht), Ed. R. V. Moody, Kluwer Academic Publisher, 1997, p. 175-198.
- [26] J.-P. GAZEAU & J.-L. VERGER-GAUGRY, "Geometric study of the set of β -integers for a Perron number and mathematical quasicrystals", *J. Th. Nombres Bordeaux* **16** (2004), p. 1-25.
- [27] ——, "Diffraction spectra of weighted Delone sets on β -lattices with β a quadratic unitary Pisot number", Ann. Inst. Fourier, 2006.
- [28] R. GÜTING, "Approximation of algebraic numbers by algebraic numbers", Michigan Math. J. 8 (1961), p. 149-159.
- [29] V. Komornik & P. Loreti, "Unique developments in non-integer bases", Amer. Math. Monthly 105 (1998), p. 636-639.
- [30] S. Lang, "Fundamentals of Diophantine Geometry", Springer-Verlag, New York (1983), p. 158-187.
- [31] W. J. LEVEQUE, "Topics in Number Theory", Addison-Wesley II (1956), p. 121-160
- [32] D. Lind, "The entropies of topological Markov shifts and a related class of algebraic integers", Erg. Th. Dyn. Syst. 4 (1984), p. 283-300.
- [33] ——, "Matrices of Perron numbers", J. Number Theory 40 (1992), p. 211-217.
- [34] M. LOTHAIRE, Algebraic Combinatorics on Words, Cambridge University Press, 2003.
- [35] K. Mahler, "Arithmetic properties of lacunary power series with integral coefficients", J. Austr. Math. Soc. 5 (1965), p. 56-64.
- [36] K. NISHIOKA, "Algebraic independence by Mahler's method and S-units equations", Compositio Math. 92 (1994), p. 87-110.
- [37] A. OSTROWSKI, "On representation of analytical functions by power series", J. London Math. Soc. 1 (1926), p. 251-263, (Addendum), ibid 4 (1929), p. 32.
- [38] W. Parry, "On the β -expansions of real numbers", Acta Math. Acad. Sci. Hung. 11 (1960), p. 401-416.
- [39] N. PYTHÉAS FOGG, Substitutions in dynamics, arithmetics and combinatorics, Springer Lecture Notes in Math. 1794, 2003.
- [40] A. RÉNYI, "Representations for real numbers and their ergodic properties", Acta Math. Acad. Sci. Hung. 8 (1957), p. 477-493.

- [41] J. SCHMELING, "Symbolic dynamics for β-shift and self-normal numbers", Ergod. Th. & Dynam. Sys. 17 (1997), p. 675-694.
- [42] K. SCHMIDT, "On periodic expansions of Pisot numbers and Salem numbers", Bull. London Math. Soc. 12 (1980), p. 269-278.
- [43] W. M. SCHMIDT, Diophantine Approximations and Diophantine Equations, Springer Lecture Notes in Math. 1467, 1991.
- [44] B. SOLOMYAK, "Conjugates of beta-numbers and the zero-free domain for a class of analytic functions", Proc. London Math. Soc. (3) 68 (1993), p. 477-498.
- [45] W. P. Thurston, "Groups, tilings, and finite state automata", A.M.S. Colloquium Lectures, Boulder, Summer 1989.
- [46] J.-L. VERGER-GAUGRY, "On self-similar finitely generated uniformly discrete (SFU-) sets and sphere packings", in *Number Theory and Physics* (L. Nyssen, ed.), IRMA Lectures in Mathematics and Theoretical Physics, E.M.S. Publishing House, 2006.
- [47] M. WALDSCHMIDT, Diophantine Approximation on Linear Algebraic Groups. Transcendence Properties of the Exponential Function in Several Variables, Springer-Verlag, Berlin, 2000.

Jean-Louis VERGER-GAUGRY Université de Grenoble I Institut Fourier UMR CNRS 5582 BP 74 - Domaine Universitaire, 38402 Saint-Martin d'Hères (France) jlverger@ujf-grenoble.fr