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ELEMENTARY LINEAR ALGEBRA FOR ADVANCED
SPECTRAL PROBLEMS

by Johannes SJÖSTRAND & Maciej ZWORSKI

Abstract. — We describe a simple linear algebra idea which has been used
in different branches of mathematics such as bifurcation theory, partial differen-
tial equations and numerical analysis. Under the name of the Schur complement
method it is one of the standard tools of applied linear algebra. In PDE and spectral
analysis it is sometimes called the Grushin problem method, and here we concen-
trate on its uses in the study of infinite dimensional problems, coming from partial
differential operators of mathematical physics.

Résumé. — Nous décrivons une idée simple d’algèbre linéaire, qui a été utilisée
dans différentes branches des mathématiques, telles que la théorie des bifurcations,
les équations aux dérivées partielles et l’analyse numérique. Sous le nom de la
méthode des compléments de Schur c’est un des outils standard de l’algèbre linéaire
appliquée. En e.d.p. et en analyse spectrale elle est parfois appelée la méthode des
problèmes de Grushin, et ici nous nous concentrons sur son utilisation dans l’étude
des problèmes en dimension infinie, venant des équations aux dérivées partielles de
la physique mathématique.

1. Introduction

The purpose of this article is to discuss a simple linear algebraic tool
which has proved itself very useful in the mathematical study of spec-
tral problems arising in elecromagnetism and quantum mechanics. Roughly
speaking it amounts to replacing an operator of interest by a suitably cho-
sen invertible system of operators.

That approach has a very long tradition and appears constantly under
different names and guises in many works of pure and applied mathematics.
Our purpose here is not to provide a historical survey but to present an

Keywords: Grushin problem, Schur complement, Feshbach reduction, eigenvalues, reso-
nances, trace formulæ.
Math. classification: 15A21, 35P05, 35Q40, 81Q15.



2096 Johannes SJÖSTRAND & Maciej ZWORSKI

account of a specific approach from a personal perspective of the authors.
On one hand we hope to provide a source of systematic references for the
practitioners of our type of spectral theory and, hopefully, to convince
others of the usefulness of this method. We do not know, but find very
interesting, if the method which has proved itself so successful in theoretical
studies has a chance of being useful numerically.

The key elementary observation goes back — at least — to Schur and
his complement formula: if for matrices(

P R−
R+ 0

)−1

=
(

E E+

E− E−+

)
,

then P is invertible if and only if E−+ is invertible and

(1.1) P−1 = E − E+E−1
−+E−, E−1

−+ = −R+P−1R−.

In fact the equivalence of invertibilities of P and E−+ holds for systems
with a nonzero lower right hand corner (see Lemma 3.1) but since here we
always start with P and choose R± we can normally consider these simpler
systems. Sometimes, in the context of index theory one considers operators
P which are never invertible. In that case the index of P is equal the index
of E−+ which is trivial to compute if E−+ is a matrix — see §2.4.

In the study of linear partial differential equations the use of enlarged
systems appeared in Grushin’s work [8] on hypoelliptic operators. In a
different context they were used in the thesis of the first author [19] and
the ± notation comes from there — see §2.2 for an explanation in the
context of linear algebra. As is seen there it is essential that the system is
allowed to be non-self-adjoint (†) . For that historical, if somewhat personal
reason, we refer to the problem{

Pu + R−u− = v

R+u = v+

P : H1 → H2, R− : H− → H2, R+ : H1 → H+,

(1.2)

as a Grushin problem. If it is invertible, we call it well posed and we write
its inverse as follows

(1.3)
(

u

u−

)
=
(

E E+

E− E−+

)(
v

v+

)
.

(†) That distinguishes it from the KKT (for Karush-Kuhn-Tucker) systems popular in
numerical studies — see for instance [6] — which seem to be related to §2.1 below.

ANNALES DE L’INSTITUT FOURIER



LINEAR ALGEBRA FOR SPECTRAL PROBLEMS 2097

In this case we will refer to E−+ as the effective Hamiltonian of P . That
effective Hamiltonian normally has its own physical interpretation as will
be seen in examples in §§2.5, 5.3 and 5.4.

To illustrate this by a straightforward example consider an operator P :
L2(Rn) → L2(Rn) defined as a convolution, Pu = K?u, with K̂ ∈ L∞(Rn).
We can take H± = L2(Rn) and put R−u−(x) = −(2π)−nû−(−x), the
negative of the inverse Fourier transform, and R+u(ξ) = û(ξ). One easily
checks that the resulting Grushin problem is well posed and that E−+ is
given by multiplication by K̂. This of course is the effective Hamiltonian for
the convolution operator which is invertible on L2 if and only if K̂−1 ∈ L∞.

The main difficulty in constructing useful Grushin problems is the choice
of suitable operators R± and of the spaces on which they act. As will be
illustrated below that depends on the situation even though one can notice
some underlying principles.

The paper is organized as follows. In §2 we present in detail several sim-
ple examples showing different ways of constructing Grushin problems. In
§3 we review basic linear algebra techniques which are useful when study-
ing Grushin problems arising in spectral theory. In §3.5 we also show a
typical parameter dependent estimate. Trace formulæ which are central in
the study of classical/quantum correspondence are the subject of §4: we
give the basic idea in the context of Grushin problems and use it to prove
the Poisson summation formula, in a way which lends itself to many gen-
eralizations. Finally, in §5 we describe — without proofs — four advanced
examples: a remark on Lidskii-Lusternik-Vishik perturbation theory for
matrices [16], [18], the Peierls substitution of solid state physics (from the
work of Helffer and the first author [11]), the quantum monodromy ap-
proach to the Gutzwiller trace formula, and the asymptotics of scattering
poles in electromagnetic scattering by convex bodies (from earlier work of
the authors [23], [22]). It would be very hard to survey all the examples in
which the Grushin problem appears explicitly — not to mention, those in
which it appears implicitly — and we again made some personal choices.

Acknowledgments. — We would like to thank Steve Zelditch for sug-
gesting a talk on Grushin problems during the semi-classical semester at
MSRI: this paper is a direct result of that. We are grateful to Michael Over-
ton for the references to Lidskii’s perturbation theory which are the basis of
§5.1, and to Michael Hutchings and John Lott for a helpful discussion lead-
ing to a simple proof of Proposition 4.2. We are also particularly indebted
to Mark Embree whose comments and valuable criticisms eliminated many
mistakes in the paper and increased its breadth and readability.
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Université de Paris-Nord, for its generous hospitality in October 2003.

2. Simple examples

We give five examples. The first two are purely linear algebraic and the
third and fifth are intended to show how well known objects in mathemat-
ical physics fit in the Grushin problem set up. The fourth example relates
Grushin problems to analytic Fredholm theory which is one of the basic
tools of spectral theory.

2.1. The Moore-Penrose pseudoinverse

If P : Cn → Cm is a linear transformation, its Moore-Penrose pseudoin-
verse is the unique transformation P+ : Cm → Cn satisfying

PP+P = P, P+PP+ = P+,

(PP+)∗ = PP+, (P+P )∗ = P+P.
(2.1)

If P has full rank then

P+ =

{
(P ∗P )−1P ∗, n 6 m

P ∗(PP ∗)−1, n > m
.

In general P+ can be expressed by using the standard singular value de-
composition P = UΣV ∗, and inverting the nonzero entries in Σ. It is closely
related to least square problems — see [1, Lecture 11].

Another way to describe the pseudoinverse is as

P+ =
(
P�ker(P )⊥

)−1
πim(P ),

where πV is the orthogonal projection on the subspace V , since P�ker(P )⊥ :
ker(P )⊥ → im(P ) is bĳective.

The pseudoinverse is a special case of E in (1.3), with H1 = Cn, H2 =
Cm, and for a natural choice of R±, related to the least squares method.
Before describing it, let us give a general statement relating the Grushin
problem to (2.1):

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.1. — In the notation of (1.2) and (1.3) we always have

EPE = E,

and
(R−E−)2 = R−E−, (E+R+)2 = E+R+,

that R−E− and E+R+ are always projections. In addition the following
equivalences hold:

PEP = P ⇐⇒ E−P = 0

(PE)∗ = PE ⇐⇒ (R−E−)∗ = R−E−

(EP )∗ = EP ⇐⇒ (E+R+)∗ = E+R+.

In particular, when the conditions on the left hold, E = P+, in the sense
that the equations in (2.1) are satisfied.

We can now choose R± so that the conditions in Proposition 2.1 are
satisfied. For that we simply put

H− = P (H1)⊥, H+ = ker(P )

R− : H− = P (H1)⊥ ↪→ H2, R+ : H1
⊥→ ker(P ) = H+.

This is generalized in §3.6 in order to take into account small eigenvalues
of (P ∗P )

1
2 and (PP ∗)

1
2 .

Following a suggestion of Mark Embree, we rephrase this linear algebraic
example in terms of matrices. Thus let r = rank(P), and set

H− = Cm−r ' ker(P ∗), H+ = Cn−r ' ker(P ).

Define R− ∈ Mm,m−r(C) to have columns that form an orthonormal basis
for ker(P ∗), and define R+ ∈ Mn−r,n(C) such that the columns of R∗

+

form an orthonormal basis of ker(P ). This choice of R− and R+ makes the
Grushin problem (1.2) invertible, and leads to

E = P+, E+ = R∗
+, E− = R∗

−, E−+ = 0.

We note that E+R+ and R−E− are orthogonal projections for ker(P ) and
ker(P ∗) respectively.

2.2. Non-self-adjoint eigenvalue problems

Let J be the n× n upper triangular Jordan matrix:

J = (Jij)16i,j6n, Jij =

{
1 for j = i + 1

0 otherwise.
.

TOME 57 (2007), FASCICULE 7
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Let

e+ =


1
0
...
0

 , e− =


0
...
0
1

 .

Then Je+ = 0, J∗e− = 0, ‖e±‖ = 1, and we can set up the following well
posed Grushin problem for λ− J :

J (λ) =
(

λ− J R−
R+ 0

)
: Cn ⊕ C −→ Cn ⊕ C,

R−u− = u−e−, R+u = 〈u, e+〉,

where 〈•, •〉 denotes the standard Hermitian inner product on Cn. One
easily checks that E−+(λ) = λn, and that

E+v+ = v+e+(λ), E−v = 〈v, e−(λ̄)〉,
(2.2)

e+(λ) =


1
λ
...

λn−1

 , e−(λ) =


λn−1

...
λ

1

 .

If we add a small matrix perturbation, εQ to J the same problem re-
mains well posed and, using a Neumann series argument for matrices (see
Proposition 3.6 for a proof),

Eε
−+(λ) = E−+(λ) +

∞∑
k=1

(−1)kεkE−(λ)Q(E(λ)Q)k−1E+(λ),

with uniform convergence for |λ| 6 θ < 1 and ε 6 ε0, for some ε0 > 0.
Using (2.2) we consequently see that

(2.3) Eε
−+(λ) = λn − ε〈Qe+(λ), e−(λ̄)〉+O(ε2).

Hence when n is large and |λ| < 1 there will be no spectrum near λ for a
generic perturbation Q. This is illustrated in Figure 2.1. The most dramatic
perturbation is obtained by taking Q with a large inner product 〈Qe+, e−〉.

This example is a linear algebraic model of the first author’s thesis [19]
where the −+ notation was introduced. It was motivated by the sign in
Hörmander’s commutator condition — see [20] and also [27] for a light-
hearted introduction. It is reflected here by the fact that

(2.4) [J, J∗]e± = ±e±, [J, J∗] = JJ∗ − J∗J.

This example will be revisited in a more general context in §3.5.

ANNALES DE L’INSTITUT FOURIER
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Figure 2.1. Eigenvalues of a small random perturbation of a 200 × 200
Jordan block matrix (◦) and of the perturbation Q = εe− ⊗ e+, ε = 10−9

(·). Since the latter lie on the circle of radius 10−9/200 they are “masked”
by the eigenvalues of the random perturbation. An estimate on the number
of eigenvalues of a random perturbation not escaping to the boundary, that
is the ◦ inside the disc, has been recently given by Davies and Hager [3].

2.3. Feshbach method

The Feshbach method which has been useful in the study of quantum
resonances fits in the framework of Grushin problems discussed in this
paper. To review it we follow [4] and we refer to that paper for pointers to
the vast literature on the subject.

Suppose that a Hilbert space H can be written as a direct sum H = Hv⊕
Hv̄, and that the operator whose spectrum we want to study decomposes
under this splitting as

H =
(

Hvv Hvv̄

H v̄v H v̄v̄

)
.

Assume now that for z ∈ Ω, an open set in C, the operator (z1lv̄v̄ −H v̄v̄)
is invertible. Following [4] we define the resonance function

Gv(z) = z1lvv −Hvv −Hvv̄(z1lv̄v̄ −H v̄v̄)−1H v̄v,

which, in classical terminology reviewed in §1 is just the Schur complement
of z1lv̄v̄ −H v̄v̄ in z −H.

TOME 57 (2007), FASCICULE 7



2102 Johannes SJÖSTRAND & Maciej ZWORSKI

It then follows, by block Gaussian elimination, that for z /∈ σ(H v̄v̄)

z ∈ σ(H) ⇐⇒ 0 ∈ σ(Gv(z)),

and moreover it can be verified directly that

(2.5) tr
∫

γz

(ζ −H)−1dζ = tr
∫

γz

∂ζGv(ζ)Gv(ζ)−1dζ,

γz(t) = z + εeit, 0 6 t 6 2π,

that is, the multiplicities agree.
To see how the Schur complement, and hence also the Feshbach method,

fit in the Grushin scheme we consider the following larger operator

P(z) =
(

z −H R−
R+ 0

)
: D ⊕Hv −→ H⊕Hv,

R+ = (1lvv 0vv̄), R− =
(

1lvv

0v̄v

)
.

If z1lv̄v̄ − H v̄v̄ is invertible then this problem is well posed and Gaussian
elimination shows that

E−+(z) = −(z1lvv −Hvv) + Hvv̄(z1lv̄v̄ −H v̄v̄)−1H v̄v = −Gv(z).

The multiplicity formula follows from general principles described in §3.1
but of course it is easy enough to verify directly.

We should stress that converting a linear eigenvalue problem for a matrix
H to a nonlinear eigenvalue problem for the smaller matrix G(λ) is a basis
of much numerical linear algebra, developed independently of the work in
mathematical physics.

2.4. Analytic Fredholm theory

Here we recall the discussion of the appendix in [10]. For the basic facts
from functional analysis we refer to [7] for an in-depth treatment and to
[14, Sect.19.1] for a comprehensive introduction.

A bounded operator P : H1 → H2 between two Banach spaces, is called
a Fredholm operator if the kernel of P ,

ker P
def= {u ∈ H1 : Pu = 0},

and the cokernel of P ,

cokerP
def= H2/{Pu ∈ H2 : u ∈ H1},

ANNALES DE L’INSTITUT FOURIER
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are finite dimensional. It then automatically follows (see for instance [14,
Lemma 19.1.1] or the comment after the proof of Proposition 2.2) that
PH1 is closed. For Fredholm operators the index is defined as

ind P = dim ker P − dim coker P.

We have the following

Proposition 2.2. — Suppose that for some choice of R± the Grushin
problem (1.2) is well posed. Then P : H1 → H2 is a Fredholm operator if
and only if E−+ : H+ → H− is a Fredholm operator, and

ind P = indE−+.

Proof. — As for all well posed Grushin problems we have that R+, E−
are surjective, and E+, R− are injective.

The equations Pu = v, u− = 0 are equivalent to

(2.6) u = Ev + E+v+, 0 = E−v + E−+v+, v+ = R+u.

This means that
E− : im P −→ im E−+,

and we can define the induced map

E]
− : H2/ im P −→ H−/ im E−+.

Since E− is surjective, so is E]
−. Also, ker E]

− = {0}, since if E−v ∈ im E−+

then we use (2.6) to see that v ∈ im P . Hence E]
− is a bĳection of cokernels.

On the other hand,

E+ : kerE−+ −→ ker P

is a bĳection. In fact, if u ∈ ker P then u = E+v+ and E−+v+ = 0 and the
map is onto, which is all we need to check as E+ is always injective.

We conclude that

(2.7) dim coker P = dim cokerE−+, dim kerP = dim ker E−+.

In particular the indices are equal. �

For Fredholm operators we can always take H± to be finite dimensional:
let n+ = dim ker P and n− = dim cokerP and choose

R− : Cn− −→ H2, R+ : H1 −→ Cn+ ,

of maximal rank and such that

R−(Cn−) ∩ im P = {0}, ker(R+�ker P ) = {0}.

TOME 57 (2007), FASCICULE 7
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In that case E−+ : Cn− → Cn+ and its index is, of course, n+ − n−.
This argument also shows that the index does not change under contin-
uous Fredholm deformations of P , and that PH1 is closed: by Banach’s
open mapping theorem the operators E• in (1.3) (constructed using linear
algebra only) are continuous.

The following standard result is proved particularly nicely using the
Grushin problem framework:

Proposition 2.3. — Suppose that for z ∈ Ω ⊂ C, a connected open
set, A(z) is a family of Fredholm operators depending holomorphically on z.
If A(z0)−1 exists at a point z0 ∈ Ω, then Ω 3 z 7→ A(z)−1is a meromorphic
family of operators.

Proof. — Let z0 ∈ Ω and let V (z0) be a small neighbourhood of z0.
We can then form a Grushin problem for P = A(z0) as described before
the statement of the proposition. The same Rz0

± give a well posed Grushin
problem for P = A(z) for z ∈ V (z0), if V (z0) is sufficiently small. Since
the index A(z) is equal to zero we see that n+ = n− = n and Ez0

−+(z) is an
n× n matrix with holomorphic coefficients. The invertibility of Ez0

−+(z) is
equivalent to the invertibility of A(z).

This shows that there exists a locally finite covering of Ω, {Ωj}, such
that for z ∈ Ωj , A(z) is invertible precisely when fj(z) 6= 0, where fj is
holomorphic in Ωj . Since Ω is connected and since A(z1) is invertible for
at least one z1 ∈ Ω shows that all fj ’s are not identically zero.

That means that det E−+(z) is a non-vanishing holomorphic function in
V (z0) and consequently E−+(z)−1 is a meromorphic family of matrices.
Applying (1.1) we conclude that

A(z)−1 = E(z)− E+(z)E−+(z)−1E−(z)

is a meromorphic family of operators in V (z0), and since z0 was arbitrary,
in Ω. �

2.5. Boundary value problems

Let P be an elliptic second order operator on a compact manifold, X,
with an orientable smooth boundary, ∂X. For the simplest example we
could take P = −∂2

x + V (x) on [a, b], in which case all the objects below
are easily described.

We want to pose a Grushin problem for the Dirichlet realization of P :

PDu = f ∈ L2(X), u�∂X= 0.

ANNALES DE L’INSTITUT FOURIER
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We then put

H = H2(X) ∩H1
0 (X), H− = H

3
2 (∂X), H+ = H

1
2 (∂X).

Let T : H
3
2 (∂X) → H2(X) be an extension operator, with the following

properties:
Tv�∂X= v, ∂νTv�∂X= 0,

where ∂ν is the outward normal differentiation at ∂X. The operator T can,
for instance, be obtained by introducing normal geodesic coordinates (x, y)
in a collar neighbourhood of ∂X, y ∈ ∂X, and putting

Tv(x, y) = χ(x) exp(x2∆∂X)v(y), −∆∂X > 0,

where χ ∈ C∞c ([0, δ)), χ ≡ 1, near 0.
We then define

R− : H− −→ H, R+ : H −→ H+

R−u−
def= −PTu−, R+u

def= ∂νu�∂X .
(2.8)

If we denote by PN the Neumann realization of P ,

PNu = f ∈ L2(X), ∂νu�∂X= 0,

we have

Proposition 2.4. — With R± defined by (2.8) the Grushin problem
for PD is well posed when P−1

N exists. The effective Hamiltonian is given
by the Neumann-to-Dirichlet map:

E−+ = N, N : ∂νu�∂X 7−→ u�∂X , Pu = 0,

where the existence of N is guaranteed by the invertibility of PN .

Proof. — We can write (1.3) explicitly using the Green operator, GN
def=

P−1
N , and the Poisson operator:

QNf = u, Pu = 0, ∂νu�∂X= f.

It can be easily constructed from P−1
N .

Using this notation we have

Ev = GNv + T ((GNv)�∂X)
E−v = (GNv)�∂X

E+v+ = QNv+ + TNv+

E−+v+ = (QNv+)�∂X

A direct verification proves the surjectivity. To prove injectivity we see that
injectivity of PN gives

P (u− Tu−) = 0, ∂ν(u− Tu−) = 0 =⇒ u− Tu− = 0.

TOME 57 (2007), FASCICULE 7



2106 Johannes SJÖSTRAND & Maciej ZWORSKI

Since u�∂X= 0 this shows that u− = Tu− �∂X= 0, and hence u = 0, as
well. �

A more systematic approach and one related to another use of two-by-
two systems [2], [14, Sect.20.4] can be described as follows. Suppose that
P : C∞(X) → C∞(X) is an elliptic operator of order m, and that we have
two sets of boundary differential operators, with transversal orders < m,

Bj : C∞(X) → C∞(∂X), j = 1, . . . , J,

Ck : C∞(X) → C∞(∂X), k = 1, . . . ,K.

For instance we can consider P = ∆, B1u = ∂νu �∂X , C1u = u �∂X ,
J = K = 1.

We want to study the boundary problem

(2.9) Pu = f in X, Cku = hk in ∂X, k = 1, . . . ,K,

assuming that the boundary problem

(2.10) Pu = f in X, Bju = gk in ∂X, j = 1, . . . , J,

is well posed. To avoid technical issues involving Sobolev spaces (see [14,
Chapter 20]) we will remain in the C∞ category. We then put:

H1 = C∞(X), H2 = C∞(X)⊗ C∞(∂X)K ,

H− = C∞(∂X)K , H+ = C∞(∂X)J ,

writing

u− =

u1
−
...

uK
−

 ∈ H−, v =


vX

v1
∂X
...

vK
∂X

 ∈ H2,

and define

Qu
def=


Pu

C1u
...

CKu

 , R−u−
def=


0

u1
−
...

uK
−

 , R+u
def=

B1u
...

BJu

 .(2.11)

We have the following formal

Proposition 2.5. — Suppose that the boundary value problem (2.10)
is well posed. Then the Grushin problem

Qu + R−u− = v, R+u = v+,
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obtained using the operators (2.11) is well posed and the effective Hamil-
tonian,

E−+ : C∞(∂X)J → C∞(∂X)K

is a generalization of the Neumann-to-Dirichlet map:

(2.12) E−+ :

v1
+
...

vJ
+

 7−→

C1u
...

CKu

 , Pu = 0, Bju = vj
+, j = 1, . . . , J.

For boundary value problems one of the basic issues is showing that,
on suitably chosen spaces, the operator u 7→ (Pu, C1u, . . . , Cku) has the
Fredholm property. By Proposition 2.2 that is equivalent to showing the
Fredholm property of the operator (2.12). The reduction to the boundary
described in Proposition 2.5 will furnish us with another example in §3.3.

3. Basic techniques

Here we present some general results about systems arising from consid-
ering Grushin problems and examples showing how they can be used. We
recall that a Grushin problem for an operator P : H1 → H2 is a system

(3.1)

{
Pu + R−u− = v

R+u = v+

where R− : H− → H, R+ : H → H+. In matrix form we can write

P def=
(

P R−
R+ 0

)
: H1 ⊕H− −→ H2 ⊕H+.

We say that the Grushin problem is well posed if we have the inverse

E =
(

E E+

E− E−+

)
: H2 ⊕H+ −→ H1 ⊕H−,

that is

(3.2)
(

u

u−

)
=
(

E E+

E− E−+

)(
v

v+

)
.

In this case we will refer to E−+ as the effective Hamiltonian of P .
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3.1. Two by two systems

Here we consider an invertible system

A def=
(

A11 A12

A21 A22

)
: H1 ⊕H2 −→ H̃1 ⊕ H̃2,

B def= A−1 =
(

B11 B12

B21 B22

)
: H̃1 ⊕ H̃2 −→ H1 ⊕H2.

(3.3)

We first recall the formula involving an expression known as the Schur
complement in linear algebra and as the Feshbach operator in mathematical
physics:

Lemma 3.1. — Suppose that A22 is invertible. Then B11 is invertible,
and

(3.4) B−1
11 = A11 −A12A

−1
22 A21.

Proof. — Using B11A11 + B12A21 = I and B11A12 = −B12A22 we see
that

B11A11 −B11A12A
−1
22 A21 = I − (B12 + B11A12A

−1
22 )A21 = I,

and the left inverse property is derived similarly. �

We now allow the entries of A to depend on a parameter, and denote
differentiation with respect to that parameter by A 7→ Ȧ. The next lemma
explicitly shows that the traces of Ḃ11B

−1
11 and Ȧ22A

−1
22 differ by terms

not involving any inverses. In the case of holomorphic dependence on the
parameter that means that these traces differ by holomorphic terms which
disappear in contour integration. Before stating this precisely let us recall
some basic facts about trace class operators — see [7] or [14, Sect.19.1].

If Hj are infinite dimensional Hilbert spaces, the operator A : H1 → H2

is said to be of trace class if the self-adjoint operator (AA∗)
1
2 : H2 → H2

has a discrete spectrum, {µj}∞j=1, and
∑∞

j=1 µj < ∞. If A is of trace class,
and B1 : H1 → H1, B2 : H2 → H2 are bounded operators then AB1 and
B2A are of trace class.

If H = H1 = H2 and A is of trace class we can define the trace of A as
follows. Let {ej}∞j=1 be an orthonormal basis of H, then

trA = trH A
def=

∞∑
j=1

〈Aej , ej〉H ,

and this definition is independent of the choice of a basis.
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Finally, if A : H1 → H2 is of trace class and B : H2 → H1 is bounded
then AB and BA are both of trace class and

(3.5) trH1 BA = trH2 AB.

In particular, if H=H1=H2 then under the same assumptions tr[A,B]=0.

Lemma 3.2. — Let A and B be as in (3.3). Suppose that the operators
Ȧij are of trace class. Then, when A22 is invertible, we have

trB−1
11 Ḃ11 = tr A−1

22 Ȧ22 − tr ȦB.(3.6)

Here the traces are taken in H̃1, H1, and H̃1 ⊕ H̃2, respectively.

Proof. — This is a straightforward computation based on the formulæ,
AB = I, Ḃ = −BȦB, cyclicity of the trace, and Lemma 3.1 (we note that
all Ḃij , and in particular Ḃ11, are of trace class). We obtain

trB−1
11 Ḃ11 = tr A−1

22 Ȧ22 + trE1 + trE2,

E1 = −Ȧ11B11 − Ȧ12B21 : H̃1 −→ H̃1,

E2 = −Ȧ21B12 − Ȧ22B22 : H̃2 −→ H̃2,

and
trE1 + trE2 = − tr ȦB = trAḂ.

�

The relevance of this discussion for Grushin problems (which in principle
have B22 = 0) will become apparent in the next subsection.

3.2. From one Grushin problem to another

Suppose that we have a well posed Grushin problem (1.2) with the inverse
given by (1.3).

We want to check if another Grushin problem is well posed:

(3.7)

{
Pu + R̃−ũ− = ṽ

R̃+ũ = ṽ+

The corresponding operator will be denoted by P̃ : H1 ⊕ H̃− → H2 ⊕ H̃+.
If the inverse exists we will denote it by Ẽ , with the corresponding notation
for the entries.

The simple answer is given in
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Proposition 3.3. — The Grushin problem (3.7) is well posed if and
only if the following system of operators obtained from the solution (1.3)
of the well posed problem (1.2),

(3.8) G =

(
−R̃+ER̃− R̃+E+

−E−R̃− E−+

)
,

is invertible, that is if and only if the matrix of operators has a two sided
inverse. In that case

(3.9) G−1 =
(

0 I

I 0

)
G̃
(

0 I

I 0

)
,

where

G̃ =

(
−R+ẼR− R+Ẽ+

−Ẽ−R− Ẽ−+

)
.

Proof. — In place of (3.7) we can consider a larger system
Pu + R−u− + R̃−ũ− = ṽ

R+u = v+

R̃+u = ṽ+

,

in which ṽ, ṽ+, and u− are given, and u, ũ−, and v+ are unknown. We can
solve (3.7) by putting u− = 0. Using (1.3) we can write

u = E(ṽ − R̃−ũ−) + E+v+(3.10)

u− = E−(ṽ − R̃−ũ−) + E−+v+,

or, since R̃+u = ṽ+,

R̃+E+v+ − R̃+ER̃−ũ− = ṽ+ − R̃+Eṽ

E−+v+ − E−R̃−ũ− = u− − E−ṽ.

which in turn can be rewritten as

G
(

ũ−
v+

)
=

(
ṽ+ − R̃+Eṽ

u− − E−ṽ

)
.

Hence the invertibility of G implies that (3.7) is well posed. In fact, we first
obtain ũ− by inverting G and then u by using the first equation in (3.10).
When ṽ = 0 we see that

G
(

ũ−
v+

)
=
(

ṽ+

u−

)
,

from which the equivalence and (3.9) follow. �
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We illustrate Proposition 3.3 with an example which is also the basis for
§4.2 below. Let us consider

(3.11) P = P (z) def= hDx − z, x ∈ S1 def= R/(2πZ).

We formulate a Grushin problem as in [23, Sect.2] where it was motivated
by [12]. For that we want to find R±(z) so that

(3.12) P(z) def=
(

P − z R−(z)
R+(z) 0

)
: H1(S1)× C −→ L2(S1)× C,

is invertible. Rather than give the answer in a “deus ex machina” manner
we follow our original reasoning. First, a boundary condition

R+u
def= u(0),

is a natural choice. Then we can locally solve{
(P − z)u = 0

R+u = v
,

by putting

u = I+(z)v = exp(izx/h)v, −ε < x < 2π − 2ε.

This is the forward solution, and we can also define the backward one by

u = I−(z)v = exp(izx/h)v, −2π + 2ε < xε.

The monodromy operator M(z, h) : C → C, can be defined by

(3.13) I+(z)v(π) = I−(z)M(z, h)v(π),

and we immediately see that

M(z, h) = exp(2πiz/h).

We use I±(z) and the point π to work with objects defined on S1 rather
than on its cover: a more intuitive definition of M(z, h) can be given by
looking at a value of the solution after going around the circle.

Let χ ∈ C∞(S1, [0, 1]) have the properties

χ(x) ≡ 1, −ε < x < π + ε, χ(x) ≡ 0, −π + 2ε < x < −2ε,

and put
E+(z) = χI+(z) + (1− χ)I−(z).

We see that

(P − z)E+ = [P, χ]I+(z)− [P, χ]I−(z) = [P, χ]−I+(z)− [P, χ]−I−(z),
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where [P, χ]− denotes the part of the commutator supported near π. This
can be simplified using (3.13):

(i/h)(P − z)E+ + (i/h)[P, χ]−I−(z)(I −M(z, h)) = 0,

which suggests putting

R−(z) = (i/h)[P, χ]−I−(z),

so that the problem {
(P − z)u + R−(z)u− = 0

R+(z)u = v

has a solution: {
u = E+(z)v

u− = E−+(z)v
,

with E−+(z) = I − M(z, h). In fact, it is much more natural, and easier
for full-blown microlocal generalizations, to consider a different R+(z) so
that, with symmetry reminiscent of §2.2,

R−(z)u− = u−e−(z), R+(z)u = 〈u, e+(z)〉,
e±(z, x) = (i/h)[P, χ]±(exp(i • z/h))(x).

(3.14)

One can show that with this choice of R±(z), (3.12) is invertible and
then

P(z)−1 = E(z) =
(

E(z) E+(z)
E−(z) E−+(z)

)
,

where all the entries are holomorphic in z, and E+(z), E−+(z), are as
above. The operator E−+(z) is the effective Hamiltonian in the sense that
its invertibility controls the existence of the resolvent:

(3.15) (P − z)−1 = E(z)− E+(z)E−+(z)−1E−(z).

The invertibility is independent of χ with the properties described above.
Hence we can move to a singular limit in the choice of χ and deform π to 0.
That means that we consider the following Grushin problem (with suitably
modified spaces):{

(i/h)(hDx − z)u(x)− δ0(x)u− = v(x)

u(0+) = v+

.

In fact, we can write

u = E(z)v + E+(z)v+, u− = E−(z)v + E−+(z)v+,
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where

E(z)v(x) = 1l[0,2π[

∫ x

0

exp(i(x− y)z/h)v(y)dy,

E+(z)v+ = v+ exp(ixz/h)1l[0,2π[,

E−(z)v = − exp(2πiz/h)
∫ 2π

0

exp(−iyz/h)v(y)dy,

E−+(z) = 1− exp(2πiz/h).

(3.16)

We finally come to an application of Proposition 3.3. In (3.14) it would
be nice to be able to take e−(z) = e+(z), that is to have a self-adjoint
Grushin problem. That would also simplify matters in more complicated
situations. Hence suppose that

e±(z, x) = f(x) exp(ixz/h).

We then have to consider the invertibility of the matrix G in Proposition
3.3 — * which here is an honest 2 × 2 matrix. A brief calculation shows
that for z ∈ R, G is equal to(

−A B

e2πiz/hB 1− e2πiz/h

)
, A =

∫ 2π

0

∫ x

0

f(x)f(y)dydx, B =
∫ 2π

0

f(x)dx,

and we observe that |B|2 = A + A.
Hence the condition for invertibility becomes

Re(Ae−πiz/h) 6= 0,

and that will always be violated for some z ∈ R. Hence we cannot have a
well posed Grushin problem for all z ∈ R with e− = e+ in (3.14).

3.3. Iterated problems

The Grushin problems can be iterated and this is particularly important
when the intermediate Grushin problems are formal and only after one or
more iterations we obtain a well posed problem. An example of a useful
formal problem will be given in §5.2.

Before giving an example of that we start with the following simple

Proposition 3.4. — Suppose that (1.2) is well posed with the inverse
given by (1.3). If (

E−+ N−
N+ 0

)
: H+ ⊕ V− −→ H− ⊕ V+
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is invertible, with the inverse

F =
(

F F+

F− F−+

)
,

then the new Grushin problem(
P R−N−

N+R+ 0

)
: H ⊕ V− −→ H ⊕ V+,

is well posed with the inverse given by(
E − E+FE− E+F+

F−E− −F−+

)
.

Proof. — We need to solve

Pu + R−N−u− = v,

N+R+u = v+

Putting N−u− = ũ−, and R+u = ṽ+, we obtain

Pu + R−ũ− = v,

R+u = ṽ+

which is solved by taking

u = Ev + E+ṽ+,

ũ− = E−v + E−+ṽ+

Recalling the definitions of ũ− and ṽ+ this becomes(
E−+ N−
N+ 0

)(
ṽ+

−u−

)
=
(
−E−v

v+

)
.

Solving this using F gives the lemma. �

We will mention one concrete example for which iterated Grushin prob-
lems are useful. In the notation of Proposition 2.5 consider for X an open
set in Rn+1, with a smooth boundary Ω, and put Pu = ∆u, B1u = u�Ω,
and C1u = V u�Ω, K = J = 1, where V is a vectorfield. If V is not every-
where transversal to Ω we obtain the oblique derivative problem and the
operator (2.12) is not elliptic and not self-adjoint. As in [19] one can then
construct a new Grushin problem for that operator using the structure of
the set where V is not transversal to Ω. A “baby” version of that type of
problem was presented on the level of matrices in §2.2.
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3.4. A Grushin approximation scheme

Let H be a Hilbert space, and H0 a finite dimensional subspace with an
orthonormal basis {ej}N

j=1. Let us introduce

R+ : H → CN , R− = R∗
+ : CN → H,

given by

(R+u)j = 〈u, ej〉, R−u− =
N∑

j=1

u−,jej .

We want to consider the Grushin problem for the operator

P = I − T, T : H → H.

In many interesting situations we can reduce the study of a differential
operator to the study of I − T by factoring out an invertible term.

The following lemma is related to the example presented in §2.1:

Lemma 3.5. — Let π be the orthogonal projection on the span of ej ’s.
With the operators R± given above, and P = (1 − πT ) the problem (1.2)
is well posed, and the matrix (1.3) is given by

(3.17)
(

E0 E0
+

E0
− E0

−+

)
=
(

1− π R−
R+(I + T (1− π)) R+TR− − 1

)
.

Proof. — We observe that

(3.18) R−R+ = π, R+R− = IdCN , πR− = R−, R+π = R+,

which leads to an immediate verification of (3.17). �

We can now consider the problem for 1− T and we have

Proposition 3.6. — If ‖(1− π)T‖ < δ < 1 then the Grushin problem
(1.2) with P = 1 − T and R± as in Lemma 3.5, is well posed, and the
effective Hamiltonian has the following expansion:

E−+ = E0
−+ +

∞∑
k=1

R+T ((1− π)T )kR−.

Proof. — This is a typical Neumann series argument. Using Lemma 3.5,
and writing I − T = I − πT − (I − π)T we see that(

I − T R−
R+ 0

)
=
(

I − πT R−
R+ 0

)(
IdH⊕CN −

(
(I − π)T 0

R+T (I − π)T 0

))
,

where we used (3.18) to multiply(
1− π R−

R+(I + T (1− π)) R+TR− − 1

)(
(I − π)T 0

0 0

)
.
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Hence(
E E+

E− E−+

)
=

∞∑
k=0

(
(I−π)T 0

R+T (I−π)T 0

)k (
1− π R−

R+(I+T (1−π)) R+TR−−1

)
.

Since (
A 0
B 0

)k

=
(

Ak 0
BAk−1 0

)
,

we immediately obtain the formula for E−+. �

The difficulty with the approximation scheme described here is the need
for an orthonormal basis. In practice that is rarely given in theoretical and,
especially, numerical problems. To some extent that can be remedied as
follows.

We replace the condition on the smallness of (I−π)T by a different con-
dition. We assume that there exists a finite set, {ej}M

j=1, with the following
property:

(3.19) ∀u ∈ H, ∃tj ∈ C, r ∈ H,

Tu =
M∑
1

tjej + r, ‖r‖ 6 δ‖u‖, 1
C
‖Tu‖ 6 ‖~t‖`2 6 C‖Tu‖.

As before we would like to construct a well posed (in the sense that
its stability constant is controlled, not just that it is invertible) Grushin
problem for I − T .

First, we need to modify the spanning set, {ej}M
j=1. For that we introduce

the Grammian matrix,

G
def= (〈ei, ej〉)16i,j6M .

It is positive semi-definite and hence can be diagonalized. We then can,
after a unitary (in CM ) “reorganization”, assume that {ej} satisfy

〈ei, ej〉 = δijλj , λ1 > λ2 > · · · > λM > 0.

Suppose that λj > (ε/C)2 for j 6 L. The condition number, ‖G‖‖G−1‖,
of the Grammian, G, for {ej}L

j=1 is now bounded by C2 max |λj |/ε2 so we
can use G, and its inverse, to form a well posed Grushin problem. For that
we change ej to ej/

√
λj , and denote by π the orthogonal projection onto

the span of ej ’s. We easily see the following

Lemma 3.7. — Condition (3.19) implies

‖(1− π)T‖ 6 δ + ε‖T‖.
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Proof. — In the notation of (3.19) we write

r̃ =
M∑

j=L+1

tjej + r,

and

‖Tu−
L∑

j=1

tjej‖ = ‖r̃‖ 6 δ‖u‖+

(
M∑

L+1

λj |tj |2
) 1

2

.

Since λj 6 ε2/C2, and ‖~t‖`2 6 C‖Tu‖ the estimate follows. �

We can now proceed as in Proposition 3.6.

3.5. A typical estimate

Specific application of the Grushin problem scheme — see for instance
§5 — involve estimates, often depending on a parameter. We would like to
illustrate this in a situation loosely related to the approximation scheme
described in §3.4, and more concretely to the example in §2.2.

Let us assume that P = P (h) : H → H is a bounded operator. Suppose
that there exist two orthogonal projections π± = π±(h) : H → H satisfying

‖P ∗π−‖, ‖Pπ+‖ = O(h),

‖π−P (I − π+)‖ = o(h), ‖π+P ∗(I − π−)‖ = o(h),

‖P (I − π+)u‖ > h‖(I − π+)u‖, ‖P ∗(I − π−)u‖ > h‖(I − π−)u‖.
(3.20)

Here by a(h) = o(h) we mean that limh→0 a(h)/h = 0.
We then have

Proposition 3.8. — With P and π± with the properties described
above we define

H±
def= im π±, R− : H− ↪→ H, R+ : H ⊥→ H+,

R∗
−R− = IdH− , R−R∗

− = π−, R+R∗
+ = IdH+ , R∗

+R+ = π+.

Then for h small enough the Grushin problem{
Pu + R−u− = v

R+u = v+

is well posed and

(3.21) h‖u‖+ ‖u−‖ 6 C(‖v‖+ h‖v+‖),

where C is independent of h.
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Proof. — We start by rewriting our Grushin problem as{
Pũ + R−u− = ṽ

R+ũ = 0

ũ
def= u−R∗

+v+, ṽ
def= v − PR∗

+v+.

(3.22)

We observe that π−R− = R−, R+π+ = R+, and (I − π+)ũ = ũ. From
(3.20) we see that

‖Pũ‖ = ‖P (I − π+)ũ‖ > h‖(I − π+)ũ‖ = h‖ũ‖.

Taking the inner product of the first equation in (3.22) with Pũ gives

‖Pũ‖2 + Re〈P ∗π−R−u−, ũ〉 6 ‖Pũ‖‖ṽ‖,

and we estimate the second term on the left hand side using (3.20):

|〈P ∗π−R−u−, ũ〉| 6 ‖(I − π+)P ∗π−‖‖u−‖H−‖ũ‖ = o(h)‖u−‖H−‖ũ‖.

Putting these inequalities together gives
1
2
(
h2‖ũ‖2 + ‖Pũ‖2

)
6 ‖Pũ‖2 6 ‖Pũ‖‖ṽ‖ − Re〈P ∗π−R−u−, ũ〉

6
1
4
‖Pũ‖2 + ‖ṽ‖2 + o(h)‖u−‖H−‖ũ‖

6
1
4
‖Pũ‖2 + ‖ṽ‖2 + o(h2)‖ũ‖2 + o(1)‖u−‖2H−

.

We conclude that
h‖ũ‖ 6 C‖ṽ‖+ o(1)‖u−‖2H−

,

and also that,

‖u−‖H− = ‖R−u−‖ 6 ‖Pũ‖+ ‖ṽ‖ 6 C‖ṽ‖+ o(1)‖u−‖H− .

Consequently
‖u−‖H− + h‖ũ‖ 6 C‖ṽ‖.

To obtain (3.21) we estimate ‖ṽ‖ using (3.20):

‖PR∗
+v+‖ = ‖Pπ+R∗

+v+‖ = O(h)‖v+‖H+ ,

so that
‖ṽ‖ 6 ‖v‖+O(h)‖v+‖H+ .

Since by definition ‖u‖ 6 ‖ũ‖+ ‖v+‖H+ , the estimate follows.
This shows the injectivity and to see the surjectivity we apply the same

proof to the adjoint Grushin problem, observing that the assumptions are
symmetric. �
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The estimate (3.21) is natural and appears under different assumptions
(see for instance [22, Lemma 5.2] for another elementary abstract estimate).
In the proof we could have considered h = 1 since we can scale h out of
the hypotheses:(

h−1 0
0 1

)(
P (h) R−
R+ 0

)(
1 0
0 h

)
=
(

h−1P (h) R−
R+ 0

)
.

3.6. Application to pseudospectral estimates

To see the estimates of §3.5 in use we relate them to the example in §2.2.
The general phenomenon observed there is the growth of the resolvent
of a non-normal operator away from the spectrum, and the consequent
instability of eigenvalues — see [20], [24], [27].

Thus consider a general n × n matrix A. Let us then put P = P (λ) =
A− λ, and

π− = π−(λ) def= 1lP (λ)P (λ)∗6h2 , π+ = π+(λ) def= 1lP (λ)∗P (λ)6h2 ,

where for a selfadjoint matrix B, 1lB6r denotes the orthogonal projection
on the span of eigenvectors of B with eigenvalues less than or equal to r.

A more concrete description of π± is given using the singular value de-
composition:

(3.23) A− λ = (U1 U2)
(

Σ1 0
0 Σ2

)(
V ∗

1

V ∗
2

)
,

where the singular values of Σ1 are all greater than h, and those of Σ2 are
less than or equal to h. Then

π− = π−(λ, h) def= U2U
∗
2 , π+ = π+(λ, h) def= V2V

∗
2 .

We see that the hypothesis (3.20) is satisfied:

‖Pπ+u‖2 = 〈P ∗Pπ+u, π+u〉 6 h2‖π+u‖2,

‖P ∗π−u‖2 = 〈PP ∗π−u, π−u〉 6 h2‖π−u‖2,

‖P (I − π+)u‖2 = 〈P ∗P (I − π+)u, (I − π+)u〉 > h2‖(I − π+)u‖2,

‖P ∗(I − π−)u‖2 = 〈PP ∗(I − π−)u, (I − π−)u〉 > h2‖(I − π−)u‖2,
π−P (I − π+) = 0, π+P ∗(I − π−) = 0.

To see the last identities we can use (3.23) or note that

P : ker(P ∗P − r) −→ ker(PP ∗− r), P ∗ : ker(PP ∗− r) −→ ker(P ∗P − r),
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implies

1lPP∗6h2P1lP∗P>h2 = 0, 1lP∗P6h2P ∗1lPP∗>h2 = 0.

This shows that we can apply Proposition 3.8. In the notation of (3.23)
that means putting

R−
def= U2, R+ = V ∗

2 .

The corresponding Grushin problem constructed there has the inverse:(
E(λ, h) E+(λ, h)
E−(λ, h) E−+(λ, h)

)
=
(
O(1/h) O(1)
O(1) O(h)

)
: Cn⊕Cn(λ,h) −→ Cn⊕Cn(λ,h),

where n(λ, h) = tr 1l(A−λ)∗(A−λ)6h2 . Using (1.1) we see in particular that

(3.24) ‖(A− λ)−1‖ ' ‖E−+(λ, h)−1‖+O(1/h),

since ‖E+v+‖ ' ‖v+‖, and ‖E∗
−u−‖ ' ‖u−‖. Here a ' b means that

b/C 6 a 6 Cb for a constant independent of h.
In the example presented in §2.2 where A was equal to a Jordan block

matrix, we can take any |λ|n � h < |λ| to obtain a Grushin problem with
n(λ, h) = 1 and

E−+(λ, h) = −‖(A− λ)−1‖−1.

The discrepancy with §2.2 was explained to us by Mark Embree as follows.
In §2.2 R− and R+ were chosen as good “pseudoeigenvectors”, not as
optimal pseudoeigenvectors. In the present setting, R− and R+ are obtained
from optimal pseudoeigenvectors (in the sense that they correspond to the
minimal singular value of A − λ). Using the singular value decomposition
(3.23) we see that

E−1
−+ = −R−P−1R+ = −V ∗

2 (A− λ)−1U2 = −Σ−1
2 .

Recently this approach to pseudospectral estimates was used in [9] to
study random perturbations of nonselfadjoing semiclassical pseudodiffer-
ential operators.

4. Trace formulæ

4.1. Basic idea

Suppose that P = P (z). Writing ∂zA(z) = Ȧ(z) we have

Ė(z) = −E(z)Ṗ(z)E(z),

which gives
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(4.1) E−(z)Ṗ (z)E+(z) = −Ė−+(z)− E−(z)Ṙ−(z)E−+(z)

− E−+(z)Ṙ+(z)E+(z).

We recall that, formally,

P (z)−1 = E(z)− E+(z)E−+(z)−1E−(z).

Hence, assuming that we have no difficulty in taking traces, we obtain

(4.2) tr Ṗ (z)P (z)−1 = tr Ė−+(z)E−+(z)−1 + trE−(z)Ṙ−(z)

+ tr Ṙ+(z)E+(z) + tr Ṗ (z)E(z),

which is a special case of Lemma 3.2. This gives

Proposition 4.1. — Suppose that P = P (z) is a family of Fredholm
operators depending holomorphically on z ∈ Ω where Ω ⊂ C is a connected
open set. Suppose also that the operators R± = R±(z) are of finite rank,
depend holomorphically on z ∈ Ω, the corresponding Grushin problem is
well posed for z ∈ Ω, and that E−+(z0)−1 is invertible at some z0 ∈ Ω. Let
g be holomorphic in Ω. Then for any curve γ homologous to 0 in Ω, and
on which P (z)−1 exists

∫
γ

Ṗ (z)P (z)−1g(z)dz is of trace class and we have

(4.3) tr
∫

γ

Ṗ (z)P (z)−1g(z)dz = tr
∫

γ

Ė−+(z)E−+(z)−1g(z)dz.

Proof. — Since E−1
−+ is a finite matrix for z ∈ γ we have that∫

γ

Ṗ (z)P (z)−1g(z)dz = −
∫

γ

Ṗ (z)E+(z)E−+(z)−1E−(z)g(z)dz

is an operator of trace class, and, arguing as we did before the statement
of the proposition we obtain (4.3). �

The condition that E−+(z) is a finite matrix is often too restrictive. To
illustrate this in a simple example we use the results of §2.5. Let ∆D and
∆N be the Dirichlet and Neumann Laplacians on a bounded domain X,
with a smooth boundary ∂X. We now put P•(z) = −∆•− z, • = D,N . As
described in §2.5 we have a well posed problem for PD(z) if P−1

N (z) exists,
and in that case E−+(z) = N(z), the Neumann to Dirichlet operator.
Similarly we have a well posed problem for PN (z) if P−1

D (z) exists, and in
that case E−+(z) = N(z)−1, the Dirichlet to Neumann operator. Hence if
γD is a contour homologous to 0 in the region where PN (z)−1 exists we get
− tr

∫
γD

PD(z)−1dz = tr
∫

γD
Ṅ(z)N(z)−1dz. Strictly speaking we cannot

apply Proposition 4.1 directly but as N(z) is a Fredholm operator we can
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locally use an iterated problem with R± of finite rank. Our contour can be
made a sum of contours involving only these local problems.

Similarly we have
∫

γD
PN (z)−1dz = 0. We can consider an analogous

contour γN and write any contour γ as γD +γN . This leads to the following
formula:

(4.4) tr
∫

γ

(
(−∆N − z)−1 − (−∆D − z)−1

)
dz = tr

∫
γ

N(z)−1 d

dz
N(z)dz,

where N(z) is the Neumann to Dirichlet map for −∆− z. For a non-trivial
application of a similar idea in the context of resonances for the elastic
Neumann problem see the work of Vodev and the first author [21].

4.2. Classical Poisson formula

To present an application of Proposition 4.1 we use it to derive the
classical Poisson summation formula:

(4.5)
∑
n∈Z

f(n) =
∑
m∈Z

f̂(2πm), f̂ ∈ C∞c (R), f̂(ξ) def=
∫

f(x)e−ixξdx.

Our proof here might well be the most complicated derivation of (4.5) but
as will be indicated in §5.2 it lends itself to far reaching generalizations.

We start by rewriting (4.5) using the operator P = hDx on R/(2πZ):

(4.6) trf(P/h) =
1

2πi

∑
|k|6N

∫
R

f(z/h)
(
e2πiz/h

)k d

dz

(
e2πiz/h

)
dz.

The left hand side there can be written using the usual functional calculus
based on Cauchy’s formula:

tr f

(
P

h

)
=

1
2πi

tr
∫

Γ

f
( z

h

)
(P − z)−1dz,

Γ = Γ+ − Γ−, Γ± = R± iR,

(4.7)

where we take the positive orientation of R and R > 0 is an arbitrary
constant. We make an assumption on the support of the Fourier transform
on f :

(4.8) supp f̂ ⊂ (−2πN, 2πN).

We can now use the Grushin problem (3.12) and its inverse given by
(3.16). Applying Proposition 4.1 with P (z) = (i/h)(P − z) and g(z) =
f(z/h) we obtain

tr f

(
P

h

)
= − 1

2πi

∫
Γ

f
( z

h

)
tr ∂zE−+(z)E−+(z)−1dz.
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We now use the expression for E−+ from §3.2 to write

tr f

(
P

h

)
=

1
2πi

∫
Γ+

f
( z

h

)
tr ∂zM(z, h)(I−M(z, h))−1dz

+
1

2πi

∫
Γ−

f
( z

h

)
tr ∂zM(z, h)M(z, h)−1(I−M(z, h)−1)−1dz,

M(z, h) = exp(2πiz/h). The assumption (4.8) and the Paley-Wiener theo-
rem give

|f̂(z/h)| 6 e2πN | Im z|/h〈Re z/h〉−∞.

Writing

(I −M(z, h))−1 =
N−1∑
k=0

M(z, h)k + M(z, h)N (I −M(z, h))−1,

for Γ+, and

M(z, h)−1(I −M(z, h)−1)−1 =
N∑

k=1

M(z, h)−k

+ M(z, h)−N−1(I −M(z, h))−1,

for Γ−, we can eliminate the last terms by deforming the contours to imag-
inary infinities (R →∞ in (4.7)), and this gives (4.6).

4.3. An abstract version

In addition to demanding a finite rank of R±, Proposition 4.1 is re-
strictive in the sense that we need to assume that the family of opera-
tors depends holomorphically on the parameter z. Following [17, Appen-
dix A] we present a result without that assumption. Let H be a complex
Hilbert space and let us denote by L(H,H) bounded operators on H. We
consider S1 3 t 7→ A(t) ∈ L(H,H), a C1 closed curve of operators, in
the sense that A(t) is strongly differentiable with a continuous derivative
S1 3 t 7→ Ȧ(t) ∈ L(H,H). We write dA = Ȧdt, and for another such
t 7→ B(t), ∫

S1
B(t)Ȧ(t)dt =

∫
BdA ∈ L(H,H).

If the values of A(t) are taken in an open subset V of L(H,H), we will
will say that A(t) is contractible in V , if S1 3 t 7→ A(t) ∈ V has a C1

extension D 3 z 7→ A(z) ∈ V , D = {|z| < 1}, ∂D = S1.
With this terminology we have
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Proposition 4.2. — Suppose that

(4.9) S1 3 t 7→ P(t) =
(

P (t) R−(t)
R+(t) 0

)
: H⊕ CN −→ H⊕ CN ,

is contractible in the set of invertible operators on H⊕CN , with D 3 z 7→
Ṗ(z) continuous with values in operators of trace class.

If P (t)−1 exists for all t ∈ S1 then

(4.10) tr
∫

P−1dP = tr
∫

E−1
−+dE−+,

where we use the standard Grushin problem notation for the inverse of
(4.9).

Proof. — We first note that for t ∈ S1 we can smoothly deform P(t) to(
P (t) 0

0 E−+(t)−1

)
,

within the space of invertible operators. In fact, we define

P(t, s) =
(

P (t) (cos s)R−(t)
(cos s)R+(t) (sin2 s)E−+(t)−1

)
, 0 6 s 6 π/2,

and we easily check its invertibility for all s, and t ∈ S1: since E−1
−+ =

−R+P−1R− we have

P(t, s) =
(

P (t) 0
(cos s)R+(t) IdCN

)(
IdH (cos s)P (t)−1R−(t)
0 E−+(t)−1

)
.

In the sense of operator valued differential forms in variables (t, s) ∈
S1 × [0, π/2],

(4.11) d(P−1dP) = −P−1dP ∧ P−1dP.

Also for a differential form µ with values in operators of trace class

(4.12) trµ ∧ µ = 0.

Using Stokes’s theorem on Ω = S1× [0, π/2], (4.11), and (4.12), we see that

tr
∫
P(•, π/2)−1dP(•, π/2) = tr

∫
P(•, 0)−1dP(•, 0) = 0,

where the last equality comes from the contractibility assumption and from
another application of Stokes’s theorem. The left hand side is clearly equal
to tr

∫
P−1dP − tr

∫
E−1
−+dE−+ which proves (4.10). �
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It is quite possible that Proposition 4.2 follows from some general topog-
ical facts. It is not clear what are the weakest assumptions on P and dP

to guarantee that
∫

PdP is of trace class. For a discussion of one case of a
weaker assumption see [17, Appendix A].

5. Advanced examples

5.1. Around Lidskii’s perturbation theory for matrices

In §2.2 the equation for the eigenvalues of the perturbation of one Jordan
block is easily derived from (2.3):

λn − εQn1 + εO(λ) +O(ε2) = 0, |λ| < 1.

and the solutions are

λ` = ε1/n|Qn1|1/ne(2πi`+arg Qn1)/n + o(ε1/n), 1 6 ` 6 n.

Here we consider n fixed and are interested in the ε → 0 asymptotics.
In this section we will show how the Grushin problem approach applies

to the study of perturbation of matrices with arbitrary Jordan structure.
We restrict ourselves to an example suggested by Michael Overton which
according to him contains the essential elements of the general problem
studied in [16] and [18].

Let J` be the `×` upper triangular Jordan bloc matrix. We then consider

(5.1) A = Jn ⊕ Jn ⊕ Jk : Cn ⊕ Cn ⊕ Ck −→ Cn ⊕ Cn ⊕ Ck, k < n,

that is

A =

 Jn 0nn 0nk

0nn Jn 0nk

0kn 0kn Jk

 ,

where 0`p denotes the `× p zero matrix.
The Grushin problem for A is a straightforward modification of the one

for Jn in §2.2:

R− : C3 −→ Cn ⊕ Cn ⊕ Ck, R+ : Cn ⊕ Cn ⊕ Ck −→ C3.

We then obtain the effective Hamiltonian, E−+(λ) for A− λ:

E−+(λ) =

λn 0 0
0 λn 0
0 0 λk

 ,

and E±(λ) are similarly constructed from the three e±(λ) vectors.
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Suppose we now consider a perturbation of A:

Aε = A + εQ, Q =

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 ,

Qij : Cni −→ Cnj , ni = n, i = 1, 2, n3 = k.

(5.2)

As in §2.2 we see that the effective Hamiltonian for the perturbation is

Eε
−+(λ) = E−+(λ)− εE−(λ)QE+(λ) +O(ε2).

The effective first order perturbation is easily checked to be

E−(λ)QE+(λ) =


Q11

n1 Q12
n1 Q13

n1

Q21
n1 Q22

n1 Q23
n1

Q31
k1 Q32

k1 Q33
k1

+O(λ),

where Qpq
ij denotes the ij’th entry of the matrix Qpq.

Suppose that the matrix (Qij
n1)16i,j,62 is diagonalizable with eigenvalues

q1 and q2. Then the eigenvalues of Aε are given by the values of λ for which
the following matrix is not invertible:λn − εq1 0 εQ̃13

0 λn − εq2 εQ̃23

εQ̃31 εQ̃32 λk − εQ̃33

+ εO(λ) +O(ε2).

Since k < n, and both k and n are fixed, perturbation theory gives

Proposition 5.1. — The largest modulus eigenvalues of Aε for ε small
are given by

λj
` = ε1/n|qj |1/ne(2πi`+arg qj)/n + o(ε1/n), 1 6 ` 6 n, j = 1, 2,

where qj are the eigenvalues (assumed to be distinct) of the (Qij
n1)16i,j62

part of the perturbation matrix in (5.2).

A finer perturbation theory for matrices of size given by the number of
distinct Jordan blocks will (most likely) give the general results of [16] and
[18].

5.2. Generalized Gutzwiller trace formula

Trace formulæ provide one of the most elegant descriptions of the
classical-quantum correspondence. One side of such a formula is given by a
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trace of a quantum object, typically derived from a quantum Hamiltonian,
and the other side is described in terms of closed orbits of the corresponding
classical Hamiltonian.

Here we follow [23] and outline the structure of a formula which is de-
rived using a formal Grushin problem. It is an intermediate trace formula
in which the original trace is expressed in terms of traces of quantum
monodromy operators directly related to the classical dynamics. The usual
trace formulæ follow and in addition this approach allows handling effective
Hamiltonians, such as the one described in §5.3 below.

Let P be a semi-classical, self-adjoint, principal type operator, elliptic
in the classical sense, with symbol p, and a compact characteristic variety,
p−1(0). Let γ ⊂ p−1(0) be a closed primitive orbit of the Hamilton flow
of p. The simplest example, and one discussed in §4.2, P = hDx, on the
circle, p−1(0) = {(x, 0)x ∈ S1} ⊂ T ∗S1, and the Hamilton vector field is ∂x.
More interesting examples are P = −h2∆g − 1 on a compact Riemannian
manifold, or P = −h2∆ + V (x) with a suitable V on Rn.

We can define the monodromy operator, M(z, h) for P−z along γ, acting
on functions in one dimension lower, that is, on functions on the transversal
to γ in the base. We then have

Theorem 5.2. — Suppose that there exists a neighbourhood of γ, Ω,
satisfying the condition

(5.3) m ∈ Ω and exp tHp(m) = m, p(m) = 0, 0 < |t| 6 TN =⇒ m ∈ γ,

where T is the primitive period of γ. If f̂ ∈ C∞c (R), supp f̂ ⊂ (−NT, NT )\
{0}, χ ∈ C∞c (R), and A ∈ Ψ0,0

h (X) is a microlocal cut-off to a sufficiently
small neighbourhood of γ, then

(5.4) trf(P/h)χ(P )A

=
1

2πi

N−1∑
−N−1

tr
∫

R
f(z/h)M(z, h)k d

dz
M(z, h)χ(z)dz +O(h∞),

where M(z, h) is the semi-classical monodromy operator associated to γ.

The dynamical assumption on the operator means that in a neighbour-
hood of γ there are no other closed orbits of period less than TN , on the
energy surface p = 0. We avoid a neighbourhood of 0 in the support of f̂

to avoid the dependence on the microlocal cut-off A.
The monodromy operator quantizes the Poincaré map for γ and its geo-

metric analysis gives the now standard trace formulæ of Selberg, Gutzwiller
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and Duistermaat-Guillemin. The term k = −1 corresponds to the contri-
butions from “not moving at all” and the other terms to contributions from
going |k + 1| times around γ, in the positive direction when k > 0, and in
the negative direction, when k < −1. For non-degenerate orbits the analy-
sis of the traces on monodromy operators recovers the usual semi-classical
trace formulæ in our general setting — see [23, Theorem 3].

The proof of the formula follows the lines of the proof of the classical
Poisson formula presented in §4.2. In the general situation where the circle
is replaced by a closed trajectory of a real principal type operator we can
proceed similarly but now microlocally in a neighbourhood of that closed
orbit on an energy surface. The contour integral formula (4.7) is replaced
by the Dynkin-Droste-Helffer-Sjöstrand formula (see [5, Chapter 8])

(5.5) tr f

(
P

h

)
χ(P )A = − 1

π

∫
C

f
( z

h

)
∂̄zχ̃(z)(P − z)−1AL(dz),

where χ̃ is an almost analytic extension of χ, that is an extension satisfying
∂̄zχ(z) = O(| Im z|∞) — see [23, Sect.6] and we want to proceed with a
similar reduction to the effective Hamiltonian given in terms of a suitably
defined monodromy operator.

To construct the monodromy operator we fix two different points on
γ, m0, m1 (corresponding to 0 and π in (3.12)-(3.13)), and their disjoint
neighbourhoods, W+ and W− respectively. We then consider local kernels
of P−z near m0 and m1 (that is, sets of distributions satisfying (P−z)u = 0
near mi’s), kermj

(P − z), j = 0, 1, with elements microlocally defined in
W±. and the forward and backward solutions:

I±(z) : kerm0(P − z) −→ kerm1(P − z).

We then define the quantum monodromy operator, M(z) by

I−(z)M(z) = I+(z), M(z) : kerm0(P − z) −→ kerm0(P − z).

The operator P is assumed to be self-adjoint with respect to some inner
product 〈•, •〉, and we define the quantum flux norm on kerm0(P − z) as
follows(‡) : let χ be a microlocal cut-off function, with basic properties of
the function χ in the example. Roughly speaking χ should be supported
near γ and be equal to one near the part of γ between W+ and W−. We
denote by [P, χ]W+ the part of the commutator supported in W+, and put

〈u, v〉QF
def= 〈[(h/i)P, χ]W+u, v〉, u, v ∈ kerm0(P − z).

(‡) See [12] for an earlier mathematical development of this basic quantum mechanical
idea.
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As can be easily seen this norm is independent of the choice of χ. This
independence leads to the unitarity of M(z):

〈M(z)u,M(z)u〉QF = 〈u, u〉QF, u ∈ kerm0(P − z).

For practical reasons we identify kerm0(P −z) with D′(Rn−1), microlocally
near (0, 0), and choose the identification so that the corresponding mon-
odromy map is unitary (microlocally near (0, 0) where (0, 0) corresponds
to the closed orbit intersecting a transversal identified with T ∗Rn−1). This
gives

M(z, h) : D′(Rn−1) −→ D′(Rn−1),

microlocally defined near (0, 0) and unitary there. This is the operator
appearing in Theorem 5.2 and it shares many properties with its simple
version exp(2πiz/h) appearing in (3.13) for S1.

As in §3.2 we can construct a Grushin problem with the effective Hamil-
tonian given by E−+(z, h) = I − M(z, h). However, now the problem is
formal, that is all the inversion formulæ are only valid microlocally(*) near
γ. Since in Theorem 5.2 we are interested in taking traces, and not, for
instance, locating eigenvalues or resonances, that is sufficient.

Nevertheless, as one striking application of this point of view we can
explain the way in which complex quasi-modes manifest themselves on
compact manifolds [15], a phenomenon which was already explicitly or
implicitly noted in the works of Paul-Uribe, Guillemin, and Zelditch — see
[25] and references given there.

To explain it, let us recall the now classical fact (Lazutkin, Ralston, Colin
de Verdière, Popov) that for an elliptic closed geodesic on a compact mani-
fold M one can construct approximate eigenfunctions concentrating on that
trajectory, and that the corresponding approximate eigenvalues are close to
actual eigenvalues with arbitrary polynomial accuracy as energy increases.
When the trajectory is hyperbolic that procedure no longer makes sense
as the formal construction of quasi-modes gives complex numbers. That
can lead to the construction of resonances in scattering situations (Ikawa,
Gérard, Sjöstrand-Gérard) but cannot have a direct spectral interpretation
when the manifold is compact. Despite that they make a direct appearance
when traces are considered and we have the following consequence of recent
work on inverse spectral problems (see [25] and [15]):

(*) For a review of this important notion see [23, Section 3]. Roughly speaking it cor-
responds to a localization of the behaviour of quantum states to relevant subsets of
classical phase space. It does not guarantee global well-posedness in an honest Hilbert
space sense.
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Theorem 5.3. — Let M be a compact Riemannian manifold and γ

a closed hyperbolic trajectory of primitive length Lγ . Let λ2
j denote the

sequence of eigenvalues of the Riemann-Beltrami operator, µk the sequence
of complex quasi-modes associated to the trajectory γ, 0 < Im µk (well
defined modulo O(|Re µk|−∞)). Suppose that for any m ∈ Z \ {0}, mLγ

is different from the length of any closed geodesic on M which is not an
iterate of γ. Then, for any m ∈ Z \ {0} there exists a neighbourhood Um

of mLγ such that ∑
j

eiλjt −
∑

k

eiµkt ∈ C∞(Um),

where both sums are meant in the sense of distributions on R, and
∑

k eiµkt

is defined only modulo C∞(R \ 0).

In our approach, especially in view of Grushin reductions to the effective
Hamiltonians, it is important that we can consider operators with non-
linear dependence on the spectral parameter. In that case, motivated by
Proposition 4.1, the left hand side of (5.4) is replaced by

1
π

tr
∫

f(z/h)∂̄z

[
χ̃(z)∂zP (z)P (z)−1

]
AL(dz),

which for P (z) = P − z reduces to (5.5). For a generalized version we refer
to [23, Theorem 2].

Finally we point out that the semi-classical Grushin problem point of
view taken here, when translated to the special case of C∞-singularities/high
energy regime, is close to that of Marvizi-Melrose and Popov (see references
in [23]). In those works the trace of the wave group was reduced to the study
of a trace of an operator quantizing the Poincaré map.

5.3. Peierls substitution

In this section we will follow [11] to show how the Grushin reduction leads
to a natural mathematical explanation of the celebrated Peierls substitution
from solid state physics. It gives an effective Hamiltonian for a crystal in a
magnetic field. For simplicity of the presentation we will consider the case
of dimension two only, and of the first spectral band — we refer to [11]
and [12] for the general case and for references to the vast literature on the
subject.
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First we need to consider the case of no magnetic field. Mathematically
this corresponds to considering a Schrödinger operator with a periodic po-
tential:

P0 = −∆ + V, V ∈ C∞(R2), V (x + γ) = V (x), γ ∈ Γ,

where Γ is a lattice in R2. In other words,

(5.6) TαP0 = P0Tα, Tαu(x) def= u(x− α).

The operator P0 is unitarily equivalent to a direct integral of Floquet op-
erators, Pθ, acting as P0 on Hθ:

Hθ
def= {u ∈ L2

loc(R2) : ∀γ ∈ Γ u(x− γ) = ei〈θ,γ〉u(x)}, θ ∈ R2/Γ∗,

where Γ∗ is the dual lattice of Γ: γ∗ ∈ Γ∗ ⇐⇒ 〈γ∗, α〉 ∈ 2πZ for all α ∈ Γ.
We denote by E and E∗ the fundamental domains of Γ and Γ∗ respectively.
Explicitly,

BP0C =
∫ ⊕

Pθdθ,

(Bf)(x, θ) =
∑
γ∈Γ

e−i〈θ,γ〉f(x− γ), (Cg)(x) =
1

vol(E∗)

∫
E∗

g(x, θ)dθ,

B : L2(R2) −→ L2(R2/Γ∗,Hθ), C = B∗ = B−1.

The spectrum of P0 is absolutely continuous and equal to
⋃

k∈N{λk(θ) :
θ ∈ R2/Γ∗}, where {λk(θ)}∞k=1 is the sequence of eigenvalues of Pθ. Each
interval in the union is referred to as a band and we assume that the first
band is disjoint from all the other bands.

We now want to find a Grushin problem for P0 − z which will be well
posed near the first band. It turns out (see [10, Lemma 1.1]) that one can
choose φ(x, θ), Pθφ(x, θ) = λ1(θ)φ(x, θ), to be holomorphic, as a function
of θ, in a complex neighbourhood of Rn/Γ∗. That implies that

φ0(x) def= (Cφ)(x),

has very nice properties: |∂α
x φ0(x)| 6 Cαe−|x|/C . We then define the fol-

lowing Grushin problem:

P0(z) =
(

P0 − z R0
−

R0
+ 0

)
: H2(R2)⊕ `2(Γ) −→ L2(R2)⊕ `2(Γ),

R0
+

def= (R0
−)∗, R0

−u−(x) def=
∑
γ∈Γ

u−(γ)φ0(x− γ).
(5.7)
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It is not hard to see that this problem is well posed for z close to the first
band and away from all the other bands. The effective Hamiltonian is given
by

(E0
−+(z)v+)(α) =

∑
β∈Γ

(zδα,β − Ê(α− β))v+(β),

Ê(γ) =
1

vol(E∗)

∫
E∗

λ1(θ)ei〈θ,γ〉dθ,

which is unitarily equivalent to the multiplication by z−λ1(θ), the obvious
effective Hamiltonian near the first band.

The Grushin problem (5.7) does have the advantage of being stable under
small perturbations and we will see it when the magnetic field is turned
on. That corresponds to adding a magnetic potential to our operator. Here
we consider only a constant weak magnetic field B = hdx1 ∧ dx2:

(5.8) PB = (Dx1 −hx2)2 +D2
x2

+V (x), Dxj =
1
i
∂xj , B = hdx1∧dx2.

Although the operator PB is no longer periodic in the sense of (5.6) it
commutes with magnetic translations:

TB
α PB = PBTB

α , TB
α u(x) def= e

i
2 〈B,x∧α〉u(x− α),

TB
α TB

β = e−i〈B,α∧β〉TB
β TB

α .
(5.9)

We now use the magnetic translations to modify the Grushin problem (5.7):

PB(z) =
(

PB − z RB
−

RB
+ 0

)
: H2

B(R2)⊕ `2(Γ) −→ L2(R2)⊕ `2(Γ),

(RB
−u−)(x) def=

∑
γ∈Γ

u−(γ)TB
γ φ0(x), (RB

+u)(γ) def= 〈u, TB
γ φ0〉L2(R2),

H2
B

def= {u ∈ L2(R2) : PBu ∈ L2(R2)}.

(5.10)

The operator PB(z) commutes with(
TB

γ 0
0 τB

γ

)
, τB

γ u(α) def= e
i
2 〈B,α∧γ〉u(α− γ).

It is shown in [11, Proposition 3.1] that when h is small (B = hdx1 ∧ dx2)
then PB(z) is invertible for z near the first band for P0. Although it requires
some technical work, roughly speaking it follows from the invertibility of
P0 and the smallness of the magnetic field.

The inverse has the same symmetries as PB(z) and in particular
τB
α E−+(B, z) = E−+(B, z)τB

α for all α ∈ Γ. That implies that E−+(z,B)
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is given by a “twisted convolution”:

(E−+(z,B)v+) (α) =
∑
β∈Γ

e
i
2 〈B,α∧β〉fB,z(α− β)v+(β),

|fB,z(γ)| 6 Ce|γ|/C .

(5.11)

Operators with kernels satisfying these properties form an algebra some-
times called the algebra of magnetic matrices. In [11, Proposition 5.1] it is
shown that the invertibility of a magnetic matrix as an operator on `2(Γ)
is equivalent to its invertibility in the algebra of magnetic matrices. Let
MB(f) denote the magnetic matrix associated to an exponentially decay-
ing function on Γ, f :

MB(f)(α, β) = e
i
2 〈B,α∧β〉f(α− β) = e

i
2 hσ(α,β)f(α− β),

where σ is the standard symplectic form on R2. It is easy to check that
(5.12)
MB(f)MB(g) = MB(f#Bg), f#Bg(γ) =

∑
α+β=γ

e
i
2 〈B,α∧β〉f(α)g(β).

We are now getting close to the Peierls substitution which provides an
elegant microlocal description of E−+(z,B). We can take the Fourier trans-
form of an exponentially decaying function on Γ, f ,

f̂(θ) def=
∑
γ∈Γ

ei〈θ,γ〉f(γ),

to obtain a Γ∗-periodic analytic function on R2.
To simplify the presentation we assume now that Γ = Z2. Then one can

check [11, §6] the following fact:

(5.13) Opw
h (f̂#Bg) = Opw

h (f̂)Opw
h (ĝ),

where Opw
h denotes the semi-classical Weyl quantization of a function

on R2:
a(x, ξ) 7−→ aw(x, hD) : L2(R) −→ L2(R),

provided that a and all of its derivatives are bounded (see [5]). In view of
(5.12) and (5.13) it is not surprising that the invertibility of MB(f) in the
algebra of magnetic matrices is equivalent to the invertibility of Opw

h (f̂) in
the algebra of of pseudodifferential operators. This leads to

Theorem 5.4. — Suppose that the first spectral band of a Schrödinger
operator with a Z2-periodic smooth potential is separated from other bands,
with θ 7→ E(θ), the (2πZ)2-periodic first Floquet eigenvalue. Suppose that
PB is the corresponding magnetic Schödinger operator with B = hdx1∧dx2.
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Then there exists (2πZ)2-periodic (in θ) analytic function, E = E(θ, z, h),
such that for z in a neighbourhood of the first band, and h small

z ∈ σ(PB) ⇐⇒ 0 ∈ σ(Opw
h (E(•, z, h))),

E(θ, z, h) ∼ E(θ)− z + hE1(θ) + h2E2(θ, z) + · · · .

For the formulation for a general lattice and any dimension (in particular
dimension three) we refer to [11] where one can also find the discussion of
the coefficients in the expansion of E(θ, z, h). Considering the spectrum of
the leading term, E(x, hDx), already shows how dramatic is the introduc-
tion of the magnetic field from the spectral point of view — see [12] and
the references given there.

5.4. High frequency scattering by a convex obstacle

In this section we will outline the construction of a Grushin problem
which reduces an exterior resonance problem to a problem on the surface
of the obstacle. It was used in [22] to describe the asymptotic distribution
of resonances in scattering by a convex obstacle satisfying a natural (at
least from the point of view of our Grushin problem) curvature pinching
conditions.

The study of resonances, or scattering poles, for convex bodies has a
very long tradition going back to Watson’s 1918 work on electromagnetic
scattering by the earth. He was motivated by the description of the field in
the deep shadow. It provided impetus for the work on the distribution of
zeros of Hankel functions which are the resonances for the case of the sphere.
For general convex obstacles the distribution of resonances was studied,
among others, by Buslaev, Fock, Babich-Grigoreva, Bardos-Lebeau-Rauch,
and Hargé-Lebeau. We refer to [22] for pointers to the literature on the
subject.

The problem can be described as follows. Let O ⊂ Rn be a strictly convex
compact set with a C∞ boundary. We consider the Dirichlet (or Neumann)
Laplacian on Rn \ O, −∆Rn\O, and its resolvent,

RO(λ) def= (−∆Rn\O − λ2)−1 : L2(Rn \ O)

−→ H2(Rn \ O) ∩H1
0 (Rn \ O), Im λ > 0.

When we allow RO(λ) to act on a smaller space with values in a larger
space, it becomes meromorphic in λ:
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RO(λ) : L2
comp(Rn \ O) −→ H2

loc(Rn \ O) ∩H1
0,loc(Rn \ O),

λ ∈

{
C when n is odd
Λ when n is even

where Λ is the logarithmic plane. The poles of this meromorphic family
of operators are called resonances or scattering poles. They constitute a
natural replacement of discrete spectral data for problems on non-compact
domains — see [26] for an introduction and references.

The first step of the argument is a deformation of Rn \O to a totally real
submanifold, Γ, with boundary ∂Γ = ∂O in Cn. The Laplacian −∆Rn\O
on Rn \ O can be considered as a restriction of the holomorphic Laplacian
on Cn and it in turn restricts to an operator on Γ, −∆Γ. When Γ is equal
to eiθ0Rn near infinity then the resonances of −∆Rn\O coincide with the
complex eigenvalues of ∆Γ in a conic neighbourhood of R. That is the
essence of the well known complex scaling method adapted to this setting.

Normal geodesic coordinates are obtained by taking x′ as coordinates on
∂O and xn as the distance to ∂O. In these coordinates the Laplacian near
the boundary is approximated by

(5.14) D2
xn
− 2xnQ(x′, Dx′) + R(x′, Dx′)

where R is the induced Laplacian on the boundary and the principal symbol
of Q is the second fundamental form of the boundary. The complex defor-
mation near the boundary can be obtained by rotating xn in the complex
plane: xn 7→ eiθxn which changes (5.14) to

(5.15) e−2iθD2
xn
− 2eiθxnQ(x′, Dx′) + R(x′, Dx′).

The natural choice of θ comes from the homogeneity of the equation:
θ = π/3.

It is also natural to work in the semi-classical setting, that is, to consider
resonances of −h2∆Rn\O near a fixed point, say 1. Letting h → 0 gives
then asymptotic information about resonances of −∆Rn\O.

Hence we are lead to an operator which near the boundary is approxi-
mated by

(5.16) P0(h) = e−2πi/3((hDxn)2 + 2xnQ(x′, hDx′)) + R(x′, hDx′),

and we are interested in its eigenvalues close to 1. Let us consider the
principal symbol of (5.16) in the tangential variables. That gives

p0(h) = e−2πi/3((hDxn)2 + 2xnQ(x′, ξ′)) + R(x′, ξ′).
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We are interested in the invertibility of P0(h)− ζ for ζ close to 1 and that
should be related to invertibility of the operator valued symbol p0(h)− ζ.
We rewrite it as

p0(h)− ζ = h
2
3

(
e−2πi/3(D2

t + tµ) + λ− z
)

,

t = h−
2
3 xn, λ = h−

2
3 (R(x′, ξ′)− 1),

z = h−
2
3 (ζ − 1), µ = 2Q(x′, ξ′),

(5.17)

that is, we rescale the variables using the natural homogeneity of p0(h)−ζ.
On the symbolic level the operator (5.16) can be analyzed rather easily.
We can describe (p0(h)− ζ)−1 using the Airy function:

(D2
t + t)Ai(t) = 0, Ai(−ζj) = 0, Ai ∈ L2([0,∞)).

Thus we consider

(5.18) Pλ − z = e−2πi/3(D2
t + µt) + λ− z,

λ ∈ R, 1/C 6 µ 6 C, | Im z| < C1,

where C1 will remain large but fixed. To simplify the notation we shall now
put µ = 1 (all the estimates will clearly be uniform with respect to µ with
all derivatives).

Let 0 > −ζ1 > −ζ2 > · · · > −ζk > · · · be the zeros of the Airy function
and let ej(t) = cjAi(t− ζj) be the normalized eigenfunctions of{

(D2
t + t)ej(t) = ζjej(t), t > 0

ej(0) = 0.

We recall that the eigenfunctions ej decay rapidly since for t → +∞ we
have

Ai(t) ∼ (2
√

π)−1t−
1
4 exp(−2t

3
2 /3).

We now take N = N(C1) to be the largest number such that

| Im e−i2π/3ζN | 6 C1.

To set up the model Grushin problem we define

R0
+ : L2([0,∞)) −→ CN , R0

+u(j) = 〈u, ej〉, 1 6 j 6 N,

R0
− : CN → L2([0,∞)), R0

− = (R0
+)∗.

(5.19)

Using this we put
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P0
λ(z) =

(
Pλ − z R0

−
R0

+ 0

)
: Bλ × CN −→ L2 × CN ,

Bλ = {u ∈ L2 : D2
t u, tu ∈ L2, u(0) = 0},

‖u‖Bz,λ
= 〈λ− Re z〉‖u‖L2 + ‖D2

t u‖L2 + ‖tu‖L2 .

(5.20)

Since the eigenvalues of Pλ are given by λ + e−2πi/3ζj and ej are the cor-
responding eigenfunctions, we see that P0

λ(z) is bĳective with a bounded
inverse.

As in §5.3 our Grushin problem becomes “stable under perturbations”.
However, because of the rescaling, the symbol class of the inverse is very
bad in the original coordinates: we lose h−

2
3 when differentiating in the di-

rection transversal to the hypersurface R−1 = 0. Overcoming that requires
some second microlocal techniques. Once that is in place the invertibility of
P0(h)−(1+h

2
3 z) for | Im z| 6 C is controlled by invertibility of an operator

on the boundary with the principal symbol given by

E0
−+ ∈ Hom(CN , CN ), (E0

−+)16i,j6N = −(λ− z + µ
2
3 e−2πi/3ζj)δij ,

λ = h−
2
3 (R(x′, ξ′)− 1), µ = 2Q(x′, ξ′).

(5.21)

Here N depends on C which controls the range of Im z.
The passage to a global operator on the boundary, E−+(z), with poles

of E−+(z)−1 corresponding to the rescaled resonances is rather delicate.
We use [22, Section 6] a symbolic calculus which takes into account lower
order terms near the boundary. This results in an effective Hamiltonian,
E−+(z), described in Theorem 5.5. In a suitable sense it is close to the
model operator E0

−+ described above. It has to be stressed that a restriction
on the range of Re z has to be made: for every large constant L we construct
a different E−+(z) which works for |Re z| 6 L. The properties of the leading
symbol remain unchanged but the lower order terms and the symbolic
estimates depend on L.

The detailed description of the effective Hamiltonian is quite technical
and involves the second microlocal classes of pseudodifferential operators
introduced in [22, Section 4]. Nevertheless from a computational point of
view the construction is quite straightforward relying on the Grushin prob-
lem described above and the Taylor expansion of the coefficients of the
Laplacian (in normal geodesic coordinates) at the boundary.

Theorem 5.5. — Let W b (0,∞) be a fixed set. For every w ∈ W

and z ∈ C, |Re z| � 1/
√

δ, | Im z| 6 C1 there exists Ew,−+(z), a second
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microlocal pseudodifferential operator associated to Σw = {p ∈ T ∗∂O :
R(p) = w}, N = N(C1) such that for 0 < h < h0(δ):

(i) If the multiplicity of the pole of the meromorphic continuation of
(∆Rn\O − ζ)−1 is given by mO(ζ) then

(5.22) mO(h−2(w + h
2
3 z)) =

1
2πi

tr
∮
|z̃−z|=ε

Ew,−+(z̃)−1 d

dz̃
Ew,−+(z̃)dz̃,

0 < ε � 1.

(ii) If E0
w,−+(z; p) = σΣw,h (Ew,−+(z)) (p;h), p ∈ T ∗∂O, σΣw,h, the sec-

ond microlocal symbol map,

E0
w,−+(z; p;h) = O(〈λ− Re z〉).

In addition for |λ| 6 1/(C
√

δ) we have

(5.23) ‖E0
w,−+(z; p;h)− diag(z − λ− e−2πi/3ζj(p))‖L(CN ,CN ) 6 ε � 1,

and
(5.24)

det E0
w,−+(z; p;h) = 0 ⇐⇒ z = λ + e−2πi/3ζj(p) for some 1 6 j 6 N

where the zero is simple. Here ζj(p) = ζj(2Q(p))
2
3 .

(iii) For |λ| > 1/(C
√

δ), E0
w,−+ is invertible and

E0
w,−+(z; p;h)−1 = O(〈λ− Re z〉−1).

In [22, Section 9] we give a trace formula for E−+(z). For that we start
with the obvious observation that the trace of the integral of
E−+(z)−1(d/dz)E−+(z) against a holomorphic function f over a closed
curve gives the sum of values of f at resonances enclosed by the curve.
The proof of the trace formula involves a further Grushin reduction, a lo-
cal lower modulus theorem and a good choice of contours. The gain is in
obtaining an integral in the region where the operator E−+(z) is elliptic
(roughly speaking in the pole free region). A good choice of f , yields an
asymptotic formula (see [22, Theorem 1.2]) for the number of resonances
in bands

κζj(Re λ)
1
3 − C < − Im λ < Kζj(Re λ)

1
3 + C, j 6 j0

κ = 2−
1
3 cos

π

6
min
S∂O

Q
2
3 , K = 2−

1
3 cos

π

6
max
S∂O

Q
2
3 ,
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Figure 5.1. The distribution of resonances for a convex obstacle satisfying
the pinched curvature assumption (5.25) with j0 = 1.

where, as above, Q is the second fundamental form of ∂O and S∂O the
sphere bundle of ∂O, provided that we have the pinched curvature condi-
tion:

(5.25)
maxS∂O Q

minS∂O Q
<

(
ζj0+1

ζj0

) 3
2

.

Under this assumption the regions between the bands are resonance free
— this is shown in Figure 5.1 which illustrates the result.
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