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INVARIANT MEASURES FOR THE STABLE
FOLIATION ON NEGATIVELY CURVED

PERIODIC MANIFOLDS

by François LEDRAPPIER (*)

Abstract. — We classify reversible measures for the stable foliation on mani-
folds which are infinite covers of compact negatively curved manifolds. We extend
the known results from hyperbolic surfaces to varying curvature and to all dimen-
sions.

Résumé. — Nous décrivons les mesures réversibles associées au feuilletage stable
du flot géodésique sur une variété périodique de courbure négative. Nous étendons
ainsi ce qui était connu pour les surfaces hyperboliques aux cas de courbure variable
et de dimension supérieure.

1. Introduction

Let M be a Riemannian manifold of dimension n > 1 and T 1M its unit
tangent bundle. The geodesic flow is the flow gs : T 1M → T 1M which
moves a line element at unit speed along the geodesic it determines. We
write X for the geodesic spray, the vector field defining the geodesic flow.
At the line element v ∈ T 1M , the vector X(v) is the horizontal lift of v. The
manifold is called Anosov (1) if the sectional curvature is pinched between
two negative constants and the first derivative of the curvature is bounded.
Then, ([3], Appendix III) there is a uniformly continuous decomposition
of T 1M as the Whitney sum of three bundles Ess, Esu and RX and there

Keywords: Invariant measure, stable foliation, negative curvature.
Math. classification: 37D40, 37A40, 53C12.
(*) Conversations with Tatiana Nagnibeda and with Omri Sarig were extremely useful.
The author is partially supported by NSF grant DMS-0500630.
(1) Contrarily to the usual definition, we do not assume here that M is compact.
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exist C, λ positive such that, for s > 0:

||dgsv||gsω 6 Ce−λs||v||ω for v ∈ Ess(ω),

||dg−sv||g−sω 6 Ce−λs||v||ω for v ∈ Esu(ω).

The bundles Ess, Es := Ess ⊕ X, Esu, Eu := Esu ⊕ X are all integrable
and the integral manifolds at a point ω are respectively the strong stable
manifold W ss(ω), the stable manifold W s(ω), the strong unstable man-
ifold W su(ω), the unstable manifold Wu(ω). The strong stable manifold
at a line element ω is the geometric location of all ω′ ∈ T 1(M) for which
d(gsω, gsω′) −−−→

s→∞
0.(2) The strong stable manifolds are smoothly em-

bedded (n − 1) submanifolds of T 1M . The Sasake Riemannian metric on
T 1M defines by restriction to each W ss(ω) a metric gss and the associated
distance dss and Laplacian ∆ss on C2 functions. As ω varies the W ss(ω)
form a continuous lamination Wss, and, in local charts, the distance dss

and the Laplacian ∆ss vary continuously. The stable lamination Ws, the
strong unstable lamination Wsu and the unstable lamination Wu are de-
fined analogously and have the same properties. In particular, denote by
∆s the Laplacian along the stable manifolds Ws defined by the restriction
of the Sasake metric. The manifold M is called periodic if it is a regular
cover of a finite volume manifold M0. The period of M is M0, and the sym-
metry group of M (relative to M0) is the group of deck transformations. A
periodic manifold is called cocompact if M0 is compact.

In the particular case when M is a cocompact periodic hyperbolic surface,
the stable manifolds are one-dimensional and have a natural parametriza-
tion as the orbits of the horocycle flow. For an invariant ergodic Radon mea-
sure m for the horocycle flow, there is a real α such that m◦gs = eαsm([15],
Theorem 1). In this paper we extend this property to a general Anosov
cocompact periodic manifold. We describe now a property of a Radon
measure which generalizes invariance to higher dimensions and variable
negative curvature. The following definitions are in the spirit of [6], [12]
and [9]. Consider a second order differential operator L on a manifold V .
We assume that L1 = 0. A positive Radon measure on V is said to be L
harmonic (or harmonic with respect to L) if for any f C2 function with
compact support, we have

(1.1)
∫

(Lf)dm = 0.

(2) Uniform continuity and regularity of the invariant manifolds are not explicit in [3],
and are usually established in the compact case. But the proofs use only local coordinates
around the trajectory with bounded geometry, see e.g., [14].
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A harmonic measure is called ergodic if it cannot be decomposed into a
nontrivial convex combination of harmonic measures. A positive Radon
measure on V is said to be L reversible (or reversible with respect to L) if
for any f, g C2 functions with compact support, we have

(1.2)
∫

(Lf)gdm =
∫

f(Lg)dm.

This property is called ‘fully invariant’ in [12] and ‘self-adjoint’ in [9]. Even
if this not used here, ‘reversible’ alludes to a property of m with respect
to the associated leafwise diffusion. [9] contains a full discussion and exam-
ples of harmonic and reversible finite measures with respect to a leafwise
diffusion operator along the stable foliation on a compact Anosov manifold.

By choosing g in (1.2) constant on the support of f , we see that re-
versible measures are harmonic. A Radon measure m which is reversible
with respect to the Laplacian ∆ss has conditional measures along W ss

leaves which are proportional to the Riemannian volume. Indeed, we know
([6], Theorem 1,(c)) that a ∆ss harmonic measure has conditional mea-
sures along strong stable manifolds that have a density with respect to the
Riemannian volume mss. Moreover, this density k is a positive function
satisfying ∆ssk = 0. Write the reversibility condition in a decomposition
into local strong stable manifolds: for all f, g with compact support on M :∫ (∫

W ss
loc

(∆ssf)gkdmss

)
dm =

∫ (∫
W ss

loc

f(∆ssg)kdmss

)
dm.

On the other hand, since ∆ss is symmetric on W ss
loc, we can also write:∫ (∫

W ss
loc

(∆ssf)gkdmss

)
dm =

∫ (∫
W ss

loc

f∆ss(gk)dmss

)
dm.

Comparing the two formulas, we see that for all f, g with compact support∫ (∫
W ss

loc

f < ∇ssg,∇ssk > dmss

)
dm = 0.

This is possible only if k is a constant function. Conversely, if the condi-
tional measures of m along strong stable manifolds are proportional to the
Riemannian volume, then the same computation shows that the measure m

is ∆ss reversible. Therefore, in higher dimension and variable curvature, we
propose to replace invariance under the horocycle flow by ∆ss reversibility.
In this paper, we show how to extend the result of [15]. A reversible measure
is called extremal reversible if it cannot be decomposed into a nontrivial
convex combination of reversible measures; it is called ergodic reversible
if it cannot be further decomposed into a nontrivial convex combination

TOME 58 (2008), FASCICULE 1



88 François LEDRAPPIER

of harmonic measures. For a smooth function f with compact support, we
denote Xf =< X,∇sf > the derivative of f in the direction of the flow.

Consider the universal cover M̃ of M . Since M is negatively curved, M̃ is
homeomorphic to an open ball. Denote by ∂M̃ the geometric boundary of
M̃ and by Γ the associated covering group of isometries of M̃ . The action of
Γ on M̃ extends to a continuous action of Γ on ∂M̃ . Define the Busemann
function Bξ(x, y) for ξ ∈ ∂M̃, x, y ∈ M̃ by

(1.3) Bξ(x, y) = lim
z→ξ

(d(y, z)− d(x, z)).

We fix once and for all a base point o ∈ M̃ . Let α be real. A measure ν

on ∂M̃ is called α-conformal if, for all γ ∈ Γ, dν◦γ
dν (ξ) = eαBξ(o,γ−1o). A

measure ν on ∂M̃ is called α-conformal ergodic if it is α-conformal and
cannot be decomposed as a convex combination of α-conformal measures.

Fix η ∈ ∂M̃ . The weak unstable manifold Wu
η is made of all vectors

v ∈ T 1M̃ such that the geodesic σv defined by v goes to η at time −∞.
We can take as coordinates on Wu

η the pair (ξ, s), where ξ = σv(+∞) and
s is given by s = −Bξ(o, σv(0)). Let ν be a α-conformal measure. Define
on Wu

η a measure νη by

(1.4) dνη(ξ, s) = eαsdν(ξ)ds.

Clearly, the family νη is a family of transverse invariant measures for the
strong stable manifolds W ss. Indeed, two points on the same stong stable
manifold have the same coordinates. Moreover, the family νη is equivariant
under Γ, since this action is given by γ(η, s, ξ) = (γη, s + Bξ(o, γ−1o), γξ)
and ν is conformal.

Define a measure m̃ν on T 1M̃ by making the product of νη with the
Riemannian volume on strong stable manifolds. This makes sense since
the νη are W ss invariant. Moreover, the measure m̃ν clearly is a Radon
measure. By equivariance, m̃ν is Γ invariant. Write mν for the measure
on T 1M which lifts to m̃ν . Since the conditional measures of the measure
mν are proportional to the Riemannian volume, the measure mν is ∆ss

reversible. It has been shown by Roblin ([18], Théorème 2.2), that the
measure is ∆ss ergodic. Our result is that, for cocompact Anosov periodic
manifolds, extremal ∆ss reversible measures are all of that form. More
precisely:

Theorem 1.1. — Let M be a cocompact periodic Anosov manifold with
period M0. Assume M is not simply connected. Let ν be a α-conformal er-
godic measure on ∂M̃ , for some α. Then the above measure mν is ∆ss

ANNALES DE L’INSTITUT FOURIER
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reversible ergodic, and ∆s + αX reversible ergodic. Conversely, any ex-
tremal ∆ss reversible measure is of that form, for some real α, and any
extremal ∆s + αX reversible measure as well. In particular, an extremal
∆ss reversible measure is ∆ss ergodic and ∆s + αX reversible ergodic, for
some α.

We illustrate these results by a few examples.

Corollary 1.2 (Bowen-Marcus’s unique ergodicity [2]). — Suppose M

is compact negatively curved. Then, there exists a unique ∆ss harmonic
probability measure.

Proof. — This is the case when the symmetry group is trivial. Recall that
the leaves of the Wss foliation have polynomial growth for the distance dss.
Since the manifold M is compact, this implies that ∆ss harmonic measures
are ∆ss reversible ([12], Corollary to Theorem 4). By Theorem 1.1 any er-
godic ∆ss harmonic measure is therefore associated to a conformal measure
on ∂M . But in the cocompact case, there is only one conformal measure
(this is a consequence of the ‘shadow property’ of Sullivan; see [19], Propo-
sition 0.2.1 for the most general statement). Therefore, all ∆ss harmonic
measures are proportional and finite. There is only one ∆ss harmonic prob-
ability measure. �

We are also able to classify all Radon measures on T 1M which are re-
versible and ergodic with respect to ∆ss, in the case when the symmetry
group Γ0/Γ is abelian or nilpotent. Indeed in these cases, U. Hamenstädt
([10]) and M. Babillot ([1]) classified the Radon measures which are re-
versible and ergodic with respect to ∆s + αX, for any α. Therefore:

Corollary 1.3. — Let M be a cocompact periodic Anosov manifold
with period M0 such that the symmetry group G is abelian or nilpotent.
There is a one-to-one correspondence between

(1) the (rays of) Radon measures on T 1M which are reversible and
ergodic with respect to ∆ss,

(2) the (rays of) Radon measures which are reversible and ergodic with
respect to ∆s + αX, for some α,

(3) the (rays of) α-conformal measures, for the same α as in (2) and
(4) exponentials e : G 7→ R+, e(g1g2) = e(g1)e(g2).

In particular, a ∆ss reversible ergodic measure on T 1M m is the measure
mν associated to a αm-conformal measure ν and is quasiinvariant under
the action of G; the number em(γΓ) is the constant d(m◦Dγ)

dm .

TOME 58 (2008), FASCICULE 1
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Proof. — The correspondence between (1),(2) and (3) is Theorem 1.1.
The correspondence between (2) and (4) is in [1], Theorem B. �

In the case when M is a cocompact periodic locally symmetric space of
negative curvature, T 1M can be represented as the set of double cosets
Γ \G/T where G = SO(n, 1), SU(n, 1), Sp(n, 1) or f4(−20), T is a compact
subgroup and Γ is a discrete subgroup which is normal in an uniform lattice
Γ0 in such a way that the geodesic flow is the right action of a one-parameter
group A which commutes with T , the Wss foliation is the foliation into the
orbits of the right action of a nilpotent group N which normalizes T , and
the Ws foliation is the foliation into the orbits of the right action of the
group AN (see [11], Chapter X). We have the following extension of ([15],
Theorem 1):

Corollary 1.4. — Let M be a cocompact periodic locally symmetric
space of negative curvature, m a N -invariant ergodic measure on T 1M .
Then there is real β such that m ◦ gs = eβsm.

Proof. — Indeed, this follows directly from equation (2.1) below, since
the function U = −DivsX is a constant k(G) on T 1M . Normalize the metric
on M in such a way that the maximum of the sectional curvature is −1.
Then, we have k(SO(n, 1)) = n−1, k(SU(n, 1)) = 2n, k(Sp(n, 1)) = 4n+2
and k(f4(−20)) = 22. In all cases, β = α− k(G).(3) (4) �

Consider the Laplace operator ∆M on functions in C2(M). The collection
of positive λ–eigenfunctions of ∆M forms a cone. The extremal rays of this
cone are directions generated by the minimal positive λ– eigenfunctions:
the λ–eigenfunctions F for which ∆MG = λG, 0 6 G 6 F ⇒ ∃c s.t.
G = cF . Then:

Corollary 1.5. — Let M be a cocompact periodic locally symmetric
space with negative curvature. There is a bĳection between (rays of) ergodic
N -invariant Radon measures on T 1(M) and the (rays of) minimal positive
eigenfunctions of ∆M . This bĳection satisfies:

(1) m ◦ gs = eβsm ⇔ ∆MFm = β(β + k(G))Fm;
(2) m ◦ dD = cm ⇔ Fm ◦ D = cFm for all D in the symmetry group

of M .

(3) There is in these cases a super strong stable manifold W sss(ω), the set of unit vectors
ω′ such that lim supt→∞

1
t

log d(gtω, gtω′) 6 −2. Then the constant k is DimW ss+

DimW sss.
(4) Observe that in the cases when G = Sp(n, 1) or G = f4(−20), the symmetry group has
property (T ), since it is the quotient of a lattice in a property (T ) group. Such examples
of infinite quotient of cocompact lattices in Sp(n, 1) or f4(−20) are due to Gromov (see
[16], Remark IX.7.16).

ANNALES DE L’INSTITUT FOURIER
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Proof. — In the same way as in dimension 2, Theorem 1.1 establishes a
bĳection between (rays of) ergodic N -invariant Radon measures on T 1(M)
and (rays of) ergodic α-conformal measures on the boundary. On the other
hand, again in the same way as in dimension 2, Karpelevich’s theorem ([13])
establishes a bĳection between the (rays of) minimal positive λ eigenfunc-
tions of ∆M and (rays of) ergodic α-conformal measures on the boundary,
where α is the larger solution of λ = α(α − k(G)). Corollary 1.5 follows.
We refer to [15], Section 5 for details. �

In Section 2, we discuss ∆ss reversibility of measures by calculating along
the leaves of the foliation. In order to prove Theorem 1.1, it remains to
show, in terms of Definition 1 below, that for the action of Γ on ∂M̃ , the
Busemann cocycle has the invariant measure property. This was the main
result of [15], and the proof here follows the same lines. Two ingredients
in [15] hold in greater generality: Sarig’s cocycle reduction theorem ([20])
and the ratio set argument from Section 4.3. in [15]. The third ingredient
is a ‘Holonomy Lemma’, see Lemma 4.2 below. The proof of the Holonomy
Lemma in [15] uses the fact that Γ is a normal subgroup of a lattice Γ0

in PSL(2, R) and the symbolic representation of the action of Γ0 on the
boundary ∂H2. In higher dimension, there is no direct symbolic represen-
tation of the action of Γ0 on ∂M̃ . In Section 3, we show how one can
use instead the symbolic representation of the action of Γ0 on its Gromov
boundary ([4]). The rest of the proof in Section 4 closely follows [15].

2. Proof of Theorem 1.1

Consider the universal cover M̃ of M and Γ the covering group. By
assumption, Γ is not reduced to the identity. Moreover, Γ is a normal
subgroup of the cocompact group Γ0 of isometries of M̃ generated by Γ and
the lifts of the symmetries of M . Denote by the same letters the invariant
manifolds on T 1M̃ (these are the connected components of the lifts of
the invariant manifolds on T 1M). Also denote by the same letter the Γ
invariant lift on T 1M̃ of a measure on T 1M . We endow T 1M̃ with the
Sasake metric associated with the Levi-Civita connection: at a point (p, v) ∈
T 1M̃ , the horizontal subspace H ⊂ T(p,v)T

1M̃ and the vertical subspace
V ⊂ T(p,v)T

1M̃ are orthogonal and the natural projections from H and V
on TpM̃ are isometries.
Step 1: From α-conformal measures to ∆s + αX reversible measures.

Let ν be a α-conformal measure on ∂M̃ . In this step is shown that the
measure mν is a ∆s + αX reversible measure. Recall that the measure

TOME 58 (2008), FASCICULE 1
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m̃ν is given by integrating the Lebesgue measure mss with respect to the
transverse invariant measure eαsdν(ξ)ds. On each stable manifold W s, the
measure ds on the geodesic trajectories is invariant under W ss holonomies
and the measure obtained by integrating the Riemannian volume mss with
respect to the transverse invariant measure ds is exactly the Riemannian
volume ms. This means that, in local charts, the conditional measures of
mν with respect to local W s leaves are proportional to eαsms. Therefore,
we can apply Green formula to each leaf and obtain for any smooth f with
compact support,∫

(∆sf)gdmν =
∫ (∫

∆sf(geαs)dms

)
= −

∫
< ∇sf,∇sg > dmν − α

∫
gXfdmν .

Therefore
∫

(∆sf + αXf)gdmν = −
∫

< ∇sf,∇sg > dmν is symmetric in
f and g, and mν is indeed reversible.

For later use, observe that, using in the same way a leafwise Green for-
mula, we obtain, for any smooth f with compact support, any vector field
Y along the stable leaves (i.e., Yv ∈ TvW s):∫

Y fdmν =
∫ (∫

Y (feαs)dms

)
− α

∫
< Y,X > fdmν

= −
∫ (∫

(DivsY )feαsdms

)
− α

∫
< Y,X > fdmν

= −
∫

(DivsY )fdmν − α

∫
< Y,X > fdmν .

In particular, it follows that, for all f smooth with compact support

(2.1)
∫

Xfdmν =
∫

f(U − α)dmν ,

where U := −DivsX = ∆s
yBξ(o, y).

Step 2: ∆s + αX reversible measures are ∆ss reversible measures.
This is due to U. Hamenstädt ([9], Lemma 2.6. See also [1], Section 3).

We first prove that if m is ∆s +αX reversible, m satisfies the relation (2.1).
Let g be a smooth function with compact support in T 1M̃ . There exists
a function h with compact support such that gX = −g∇sBξ = −g∇sh.

Writing
∫

∆s(gh) + αX(gh)dm = 0, we obtain:∫
(g∆sh + 2 < ∇sg,∇sh > +h∆sg + αhXg + αgXh) dm = 0.

ANNALES DE L’INSTITUT FOURIER
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Using reversibility again , we obtain∫
(g∆sh+ < ∇sg,∇sh > +αgXh) dm = 0.

Since on the support of g, ∆sh = U,∇sh = −X and Xh = −1, we obtain
the relation (2.1).

We claim that, with the above notations:

(2.2) ∆sf = ∆ssf − UXf + XXf.

We note XX for the second derivative in the direction of the flow, i.e., the
derivative in the direction of the flow of the function Xf =: f ′. Indeed,

∆sf = Divs∇f = Divs(∇ssf + f ′X) = ∆ssf + f ′DivsX + Xf ′.

Using (2.2), we can see that m is reversible for ∆ss:∫
((∆s + αX)f) gdm =

∫
(∆ssf)gdm +

∫
(α− U)f ′gdm +

∫
(Xf ′)gdm

=
∫

(∆ssf)gdm−
∫

X (f ′g) dm +
∫

(Xf ′)gdm

=
∫

(∆ssf)gdm−
∫

f ′g′dm.

We used (2.1) to write the second line. Since the Left Hand Side of the
first line is symmetric in f and g, the last line is also symmetric in f and
g, and therefore the measure m is reversible w.r.t. ∆ss.

Step 3: Extremal ∆ss reversible measures are given by Step 1.
More precisely, Step 3 is devoted to the proof of:

Proposition 2.1. — Let m be a Radon measure on T 1M which is ∆ss

reversible and extremal with this property. Then there exist α and a α-
conformal measure ν on ∂M̃ such that m = mν .

Recall that each transversal to W ss can be parametrized by the pair
(ξ, s), where ξ = σv(+∞) and s is given by s = Bξ(o, σv(0)). Lift m into a
Γ invariant measure m̃. Since the measure m̃ is Radon and ∆ss reversible,
it is obtained as the integral of the Riemannian volume on strong stable
manifolds with respect to some Radon measure µ on (ξ, s). Now, that m̃ is
Γ-invariant means that the measure µ is invariant by the following action
on ∂M̃ × R:

(2.3) γ : (ξ, s) 7→
(
γξ, s + Bξ(o, γ−1o)

)
.

Moreover, convex decomposition of a reversible measure into reversible
measures corresponds to convex decompositions of the associated Γ in-
variant measure into Γ invariant measures. Therefore, the property that m̃

TOME 58 (2008), FASCICULE 1
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descends to an extremal reversible measure is equivalent to the ergodicity
of the associated measure µ with respect to the Γ action (2.3). We have:

Theorem 2.2. — Let µ be a Radon measure on ∂M̃ × R which is in-
variant and ergodic under the Γ action (2.3). Then the measure µ is quasi-
invariant under the translations of the R coordinate.

Theorem 2.2 will be proven in Sections 3 and 4. Applying Theorem 2.2,
the measure µ is Γ ergodic and its translates by s in the R direction are Γ
ergodic as well. For each real s, the density of the translated µ ◦ gs with
respect to the measure µ is therefore a constant as µ-almost everywhere.
Clearly, we have as+t = asat and the map s 7→ as is measurable. It follows
that there is a number α such that as = e−αs. Therefore, the measure
e−αsµ is invariant by R translations. Thus, the measure µ can be written
as

dµ(ξ, s) = eαsdν(ξ)ds,

for some measure ν on ∂M̃ . Γ invariance shows that the measure ν is α-
conformal and this proves Proposition 2.1.

Step 4: Proof of Theorem 1.1, extremality.
Let ν be an ergodic α-conformal measure. Then, by construction, the

measure mν is ∆ss reversible and, by [18], ∆ss ergodic. By Step 1, the
measure mν is reversible with respect to ∆s +αX and by Step 2, the mea-
sure mν is extremal with this property, since a nontrivial decomposition of
mν into ∆+αX reversible Radon measures would yield a nontrivial decom-
position of mν into ∆ss reversible Radon measures. Conversely, suppose the
Radon measure µ is extremal ∆ss reversible. By step 3, there exists α and
a α-conformal measure ν on ∂M̃ such that µ = mν . By construction, the
measure ν has to be ergodic as an α-conformal measure. Finally, starting
from an extremal ∆s + αX reversible Radon measure m, we see that m is
∆ss reversible by Step 2. If we can decompose m =

∫
Y

mydπ(y) the mea-
sure m into Radon measures my that are extremal ∆ss reversible, then by
the above discussion, there are constants αy and αy-conformal measures νy

such that m̃ is obtained as the product of the Lebesgue measure on strong
stable manifolds and of the measure

dµ(ξ, s) =
∫

Y

eαysdνy(ξ)dπ(y)ds.

In particular, we have equation (2.1) for m and the my for all y. By com-
paring the RHS of these equations (2.1), we get, for all f smooth with

ANNALES DE L’INSTITUT FOURIER



INVARIANT MEASURES FOR STABLE FOLIATION 95

compact support:

α

∫
fdm =

∫
Y

αy

(∫
fdmy

)
dπ(y).

It follows that αy = α for π-a. e. y ∈ Y . Since the measure m is extremal
reversible with respect to ∆s + αX, the decomposition m =

∫
Y

mydπ(y) is
trivial.

To complete the proof of Theorem 1.1, we still have to establish the
following statement:

Step 5: Extremal ∆s + αX reversible measures are ∆s + αX ergodic.
This follows from the observation that the measures which appear in the

decomposition of a reversible measure into harmonic measures are them-
selves reversible. Therefore, the decomposition of a reversible measure into
extremal reversible measures is also its ergodic decomposition.

Indeed, since the operator ∆s +αX is hypoelliptic on the leaves W s, the
conditional measures on local leaves have a smooth density kω with respect
to the riemannian volume (see e.g., [6]). The harmonicity relation reads as:

0 =
∫

(∆s + αX)(f)kωdms =
∫

f(∆skω − αXkω − αkωDivsX)dms.

Thus a measure is ∆s + αX harmonic if, and only if, it has densities kω

with respect to the Riemannian volume on stable leaves satisfying:

(2.4) ∆skω − αXkω + αkωU = 0.

The property comes from the fact that writing that the measure m is
∆s + αX reversible will be compatible with only one solution of equation
(2.4). Then, if m is reversible, this determines the density of the conditional
measures along W s leaves, and the measures of the ergodic decomposition
have the same density. Indeed, using again a leafwise Green formula, we
have, for all f, g of class C2 and with compact support∫

g(∆s+αX)(f)kωdms =
∫

f
(
(∆sg)kω + 2(<∇sg,∇skω >) + g∆skω

)
dms

+ α

∫
f
(
Ugkω − g′kω − gk′ω

)
dms.

Writing
∫

f(∆s + αX)(g)kωdms =
∫

g(∆s + αX)(f)kωdms yields, after
simplifications using (2.4):

(2.5) 2
∫

f (< ∇sg,∇skω > −αkωXg) dms = 0.
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Since the relation (2.5) holds for all f , we have for all g with compact
support:

< ∇sg,∇skω > −αkωXg = 0.

It follows that ∇s log kω = αX; the function kω has to be proportional
to e−αBξ(o,·). Working backwards, if a ∆s + αX harmonic measure has
densities along W s leaves proportional to e−αBξ(o,·), then it is ∆s + αX

reversible.
This achieves the reduction of the proof of Theorem 1.1 to the proof of

Theorem 2.2.

Remark. — Extremal ∆ss reversible measures are ∆ss ergodic.

As recalled in the introduction, ∆ss reversible measures have constant
densities along strong stable manifolds. The same reasoning as in Step 5
above shows that extremal ∆ss reversible measures are ∆ss ergodic, with-
out using Theorem 1.1 or [18].

3. Markov coding

Definition 3.1. — Let Γ be a countable group, X a compact metric
Γ-space and Φ : (Γ × X) 7→ R a Hölder continuous cocycle (i.e., Φ(γ, x)
is a Hölder continuous function of x for all γ, and satisfies Φ(γ′γ, x) =
Φ(γ′, γx) + Φ(γ, x)). We say that (X, Γ,Φ) satisfies the invariant measure
property if any Radon measure m on X ×R which is invariant and ergodic
under the Γ action

(3.1) γ : (x, s) 7→
(
γx, s + Φ(γ, x)

)
is quasiinvariant under the translations of the R coordinate.

Clearly, in this language, Theorem 2.2 is saying that (∂M̃, Γ, Bξ(o, γ−1o))
satisfies the invariant measure property. In this section, we reduce the dis-
cussion of the invariant measure property to a symbolic model.

Definition 3.2. — Let Γ0 be a countable group of homeomorphisms of
a compact metric space X. We say that (X, Γ0) admits a Markov coding if
there is (Σ, π) with the following properties:

(1) Σ is a transitive subshift of finite type: there is a finite set S of
states and a transition matrix A = (tij)S×S , tij = {0, 1} such that
Σ := {x = (xi)i>1 ∈ SN : ∀i, txixi+1 = 1} and for all i, j ∈ S × S,
there is a n such that the entry t

(n)
ij of An is positive. We denote

by f the shift transformation on Σ. Σ is endowed with the metric
d(x, y) =

∑
k>1

1
2k (1− δxk,yk

).
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(2) Γ0 acts on Σ in such a way that for all s ∈ S, the map f restricted
to [s] := {x ∈ Σ : x1 = s} is given by the restriction to [s] of the
action of an element γs of Γ0.

(3) π : Σ 7→ X is a bounded-to-one Γ0-equivariant Hölder continuous
map.

Definition 3.3. — A homeomorphism γ on a compact space X is called
a North-South homeomorphism if there is an open cover U−, U+ of Σ such
that:

γU+ ∩ U− = ∅,
⋂
n∈Z

γnU+ = {γ+},
⋂
n∈Z

γnU− = {γ−}.

The action of a group Γ on a compact space X is said to be North-
South if each element of Γ distinct from the identity acts by a North-South
homeomorphism. We want to prove:

Theorem 3.4. — Assume (X, Γ0) admits a Markov coding, that Γ is a
normal subgroup of Γ0 and that Φ is a Hölder cocycle for the action of Γ
on X. Denote by τ(γ) := Φ(γ, γ+) for γ 6= Id, τ(Id) = 0 the periods of the
cocycle Φ. Assume that the action of Γ is minimal and North-South on X,
that the cocycle Φ admits a Hölder continuous extension as a cocycle for
the action of Γ0 and that the periods satisfy:
(Even) for all γ ∈ Γ, τ(γ) = τ(γ−1) and
(NonA) the set τ(Γ) generates R as a closed additive group.
Then (X, Γ,Φ) satisfies the invariant measure property.

Theorem 2.2 follows from Theorem 3.4. Indeed, let M̃ be a simply con-
nected Anosov manifold such that M̃ admits a discrete torsionless cocom-
pact group of isometries Γ0. Let Γ be a normal subgroup of Γ0, different
from the identity group. We want to prove that (∂M̃, Γ, Bξ(o, γ−1o)) has
the invariance measure property, where B is the Busemann function de-
fined in (1.3). Observe that the elements of Γ other than the identity are
hyperbolic isometries of M̃ .(5) Therefore the action of Γ is North-South on
the boundary ∂M̃ , and γ ∈ Γ, γ 6= Id, has two fixed points γ± on ∂M̃ . Let
us recall the definition of the metric on ∂M̃ : fix a point o ∈ M̃ and define
the Gromov product on ∂M̃ by

|ξ, η|o = lim
x→ξ,y→η

1
2

(d(o, x) + d(o, y)− d(x, y)) .

(5) Let l(γ) := inf
x∈M̃

d(x, γx) and {xn} be a sequence of points of M̃ such that l(γ) =

lim d(xn, γxn). There are γn ∈ Γ0 such that γnxn ∈ M̃0, for a fixed relatively compact

fundamental domain M̃0, and a subsequence nk such that γnkxnk → y ∈ M̃0. Then
l(γ) = limk→∞ d(y, γ−1

nk
γγnky) is positive because the orbit of y is discrete.

TOME 58 (2008), FASCICULE 1



98 François LEDRAPPIER

For α0 sufficiently small, we can (see [7], page 124) define a distance on
∂M̃ equivalent to

(3.2) d(ξ, η) = e−α0|ξ,η|o .

The function ξ 7→ Bξ(o, γ−1o) is Hölder continuous with respect to the
distance (3.2).(6)

The group Γ0, being cocompact, is finitely generated. Fix A a finite
symmetric set of generators for Γ0 and consider the Cayley graph on Γ0

defined by A. Endowed with the graph metric, it is quasi-isometric to M̃

and therefore, it is hyperbolic and there is a Γ0-equivariant Hölder home-
omorphism π0 between the boundary ∂Γ0, endowed with its own Gromov
metric (which is defined by a formula analogous to (3.2)), and ∂M̃ (see [7],
Chapter 7). Theorem 2.2 is the statement that (∂Γ0,Γ,Φ′(γ, ξ)) has the
invariant measure property, where

Φ′(γ, ξ) = Bπ0(ξ)(o, γ
−1o).

In the rest of this section, we verify that the (∂Γ0,Γ,Φ′(γ, ξ)) satisfy the
hypotheses of Theorem 3.4. We first have:

Proposition 3.5. — ([4]) Let Γ0 be a Gromov hyperbolic group. Then
the action of Γ0 on its boundary ∂Γ0 admits a Markov coding.

Proof. — This is the precise formulation, due to M. Coornaert and A.
Papadopoulos ([4]) of a result of Gromov about Markov coding for hyper-
bolic groups ([8], Section 8.5.Q). Namely, following [4], call a horofunction
on Γ0 a function h : Γ0 7→ Z which is quasi-convex and such that for all
n 6 h(γ), the graph distance from the point γ to the level set h−1({n}) is
exactly h(γ)−n. By [4], Proposition 4.3., if two points (γ1, γ2) are adjacent
in Γ0 (i.e., γ−1

1 γ2 is a generator), then h(γ1)− h(γ2) has value 0,−1 or 1.
Two horofunctions are called equivalent if they differ by a constant.

Let X0 be the set of equivalence classes. Γ0 acts continuously on X0 by
(γh)(γ′) = h(γ−1γ′). For [h] ∈ X0, define a gradient lines as sequences
(γn)n, γn ∈ Γ0, such that, for all n, h(γn+1) = h(γn)−1. Gradient lines are
geodesics converging to the same point at infinity, and this defines a map

(6) For ξ, η ∈ ∂M̃ , denote by σξ,η the unit speed geodesic going from ξ to η. Then we
have, from (1.3),

Bξ(o, γ−1o)−Bη(o, γ−1o) =

∫ +∞

−∞

d

dt

(
d(σξ,η(t), o)− d(σξ,η(t), γ−1o)

)
dt.

We have
∣∣ d

dt

(
d(σξ,η(t), o)−d(σξ,η(t), γ−1o)

)∣∣ 6 | sin(angσξ,η(t)(o, γ−1o))|. By compara-
ison | sin(angσξ,η(t)(o, γ−1o))| 6 C exp(−d(σξ,η(t), o)). The Hölder property follows.
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π : X0 7→ ∂Γ0. Clearly, the map π is Γ0-equivariant and surjective. More-
over, the map π is bounded-to-one ([4], Proposition 4.5). Fix an order rela-
tion on the set of generators A, and consider the map α : X0 7→ X0 defined
by: α(h) = a−1h, where a is the smallest element of A with h(Id)−h(a) = 1.
Then,

Theorem 3.6. — ([4]) The action of a on X0 is topologically conjugate
to a subshift of finite type (Σ, f).

We still have to verify Property (2) of definition 3.2. Let P : X0 7→ Σ
be the conjugating map, [s] the set of sequences with first coordinate s. It
turns out that the action of P−1fP on P−1[s] is indeed given by the action
of an element w(s) of Γ0 ( [4], page 455). �

Then, we know that the action of Γ0 on ∂Γ0 is minimal (cf., [7], page 153).
As soon as Γ is not the subgroup reduced to the identity, it acts minimally
as well. Indeed, since Γ is a nontrivial normal subgroup of Γ0, the limit set
of Γ acting on Γ0 is a Γ0 invariant closed subset of ∂Γ0. So the limit set
of Γ is the whole ∂Γ0. Since Γ ⊂ Γ0, ∂Γ0 is also the boundary of Γ for the
induced metric and Γ acts minimally on its boundary. We have moreover
seen that the function ξ 7→ Bξ(o, γ−1o) is Hölder continuous. Therefore,
Theorem 2.2 follows from Theorem 3.4 if the set of τ(γ), γ ∈ Γ satisfies the
properties (Even) and (NonA), where

τ(γ) = Bγ+(o, γ−1(o)).

Property (Even) is clear, since

τ(γ) = lim
n→+∞

1
n

d(o, γ−no) = lim
n→+∞

1
n

d(o, γno) = τ(γ−1).

If Property (NonA) were not true, we would have τ(γ) ∈ cZ for all γ ∈ Γ
and some real c. Since the group Γ is not reduced to the identity, the limit
set of Γ is a closed nonempty Γ0-invariant subset of the boundary ∂M̃ . By
the minimality of Γ0 on ∂M̃ , the limit set of Γ is the whole boundary ∂M̃ ,
a nonempty and connected set. Then, following [5], Corollaire 1.3, [17], we
see that then the crossratio of four distinct points (ξ, η, ζ, ρ) on ∂M̃ :

(3.3) (ξ, η, ζ, ρ) = |ξ, ζ|o − |ξ, ρ|o + |η, ρ|o − |η, ζ|o.

would take values in cZ as well. The crossratio is continuous in its argu-
ments and therefore has to be constant. On the other hand, the crossratio
can take arbitrarily large values, a contradiction.
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4. Proof of Theorem 3.4

We first have the following proposition, which reduces Theorem 3.4 to
the Markov case:

Proposition 4.1. — Let (X, Γ,Φ) and (X ′,Γ,Φ′) be as in Definition 1,
and assume that there is a Γ equivariant, Hölder continuous, finite-to-one
map π from X to X ′ such that Φ = Φ′◦π. Then if (X, Γ,Φ) has the invariant
measure property, then (X ′,Γ,Φ′) has the invariant measure property as
well.

Proof. — Let indeed m′ be a Radon measure on X ′×R invariant ergodic
under the action of Γ by:

γ : (x′, s) 7→
(
γx′, s + Φ′(γ, x′)

)
.

By ergodicity, observe that the function Card(π−1(x′)) is m′-almost ev-
erywhere constant. There is a unique measure m on X × R obtained by
integrating in m′ the uniform distribution on the finite sets π−1(x′). The
measure m is clearly Radon and Γ invariant. We may write m = a1m1 +
a2m2 + · · · + aNmN , where mi, i = 1, . . . , N are the ergodic components
of the measure m, and the ai, i = 1, . . . , N, are multiple of (Card(π−1))−1.
Each of the mi projects on m′ and is quasi-invariant under R translations
by the invariant measure property of (X, Γ,Φ). The measure m is R-quasi-
invariant as well and (X ′,Γ,Φ′) has the invariant measure property. �

By Proposition 4.1, we only have to prove the invariant measure property
for (Σ,Γ,Φ′ ◦ π). Recall that Σ is a subshift of finite type, based on the
alphabet S. For s = s1s2 . . . sq a finite admissible word, write [s] for the
cylinder based on s, i.e., the set of points x ∈ Σ such that x1 = s1, x2 =
s2, . . . , xq = sq. In particular, for s ∈ S, denote Is := [s] = {x, x ∈ Σ; x1 =
s1}. Let N be the maximum cardinality of π−1(x), x ∈ X. The action of
Γ on Σ is not necessarily North-South anymore, but we still have an open
cover U−, U+ of Σ such that

γU+ ∩ U− = ∅, γ±U± ⊂ U±,
⋂
n∈Z

γnU+ = A+,
⋂
n∈Z

γnU− = A−,

where A+ := π−1({γ+}), A− := π−1({γ−}) are finite subsets with at most
N elements. Denote γz, z ∈ Z,Z = Z+ ∪ Z− the different points of A±.
For Q = N !, all points γz, z ∈ Z are fixed by γQ. We can decompose U±
into disjoint Uz, z ∈ Z, where the points in Uz are attracted to γz under
one of γQ or γ−Q.
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Let m be a Radon measure on Σ×R invariant ergodic under the action
of Γ

(4.1) γ : (x, s) 7→
(
γx, s + Φ(γ, x)

)
,

where Φ(γ, x) = Φ′(γ, π(x)). Denote gs, s ∈ R the translation on the R
coordinate: gs(x, t) = (x, t + s). Set Hm := {s ∈ R : m ◦ gs ∼ m}. This is a
closed subgroup of R, and our goal is to show that Hm = R.

We have reduced the proof of Theorem 3.4 to a form where we can repro-
duce the proof of Theorem 1 in [15]. We now give the analog of section 4.2
in [15], since there are small differences. The Γ-action defines a full pseudo-
group [Γ]: κ ∈ [Γ] if κ : B ⊂ Σ 7→ κ(B) ⊂ Σ is Borel one-to-one and for
each x ∈ B, there is γx ∈ Γ such that κx = γxx, and this γx is unique
unless x is a fixed point of some γ ∈ Γ. Extend the cocycle Φ to [Γ] by
setting Φ(κ, x) = Φ(γx, x) (one can make any measurable choice on the
countable set where this definition is ambiguous). Then the transformation
κ : B × R 7→ κ(B)× R defined by:

κ(x, s) = (κx, s + Φ(κ, x))

preserves the measure m.(7) Such transformations are called holonomies.
We have the following Lemma:

Lemma 4.2 (Holonomy Lemma). — Let Nε(·) denote the ε–neighbor-
hood of a set, and Γ, Γ0, and m be as above. Let [a] ⊂ X be a cylinder and
I be a compact interval such that m([a]× I) 6= 0. For every τ0 ∈ τ(Γ) and
ε > 0, there exists a 1−1 measure preserving Borel holonomy κ such that
κ([a]× I) ⊂ [a]×Nε(I + Qτ0) modm.

Proof. — By ergodicity, there is certainly a b ∈ S such that the f–orbit
of a.e. x ∈ Σ enters Ib infinitely many times, more precisely: if Ωb ⊂ Σ is
the set of points with this property, then m[(Ωb × R)c] = 0. Now fix some
[a], I, τ0, ε as in the statement. By the definition of τ(Γ), there is γ ∈ Γ with
the attracting fixed points of γQ noted γz, z ∈ Z+ and the repelling fixed
points γz, z ∈ Z− satisfying Φ(γQ, γz) = Qτ0 for z ∈ Z+, Φ(γ−Q, γz) = Qτ0

for z ∈ Z−. We may assume w.l.o.g. that some γz ∈ Ib. Otherwise, choose
some h ∈ Γ such that h(A+) ∩ Ib 6= ∅ and work with h ◦ g ◦ h−1 (such h

exists because Γ acts minimally on X = πΣ). Divide Ib into open subsets

(7) This is clear if m({x : ∃γ, γx = x}) = 0. Otherwise, the set of points which are
fixed by some γ ∈ Γ is countable, and for any such point x0 with m(x0 × R) > 0, the
corresponding measure mx0 on R is a Radon measure invariant under the translations
by the group Γx0 generated by {Φ(γ, x0); γx0 = x0}. For any choice of γ′ such that
γ′x0 = κx0, the translation of mx0 by Φ(γ′, x0) is the same mκx0 and the invariance
follows.
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Iz
b for γz ∈ Iz

b such that γ±QIz
b ⊂ Iz

b , z ∈ Z±. Set Iz
b = ∅ for z such that

γz 6∈ Ib. Therefore, if we set:

γ(x) :=

{
γQ(x) x ∈ Iz

b , z ∈ Z+

γ−Q(x) x ∈ Iz
b , z ∈ Z−

then γ(Ib) ⊂ Ib and for all z ∈ Z− ∪Z+ such that γz ∈ Ib, Φ(γ, γz) = Qτ0.

Sublemma 1. — Fix ` (to be determined later) and set [b`
z] := γ±`Q(Iz

b ).
Then, for almost every x ∈ [a], the f–orbit of x enters ∪z[b`

z] = γ`(Ib)
infinitely many times.

Proof. — Assume by way of contradiction that this is not the case. In
this case the function N(x) := 1[a](x) max{0, n : fn(x) ∈ γ`(Ib)} is finite
for m–a.e. (x, s).

By choice of b, the f–orbit of a.e. x enters Ib infinitely many times.
Denote these times by n1(x) < n2(x) < · · · . For i larger than the length
of [a] and for every x, let [s1, . . . , sni(x)] be the cylinder which contains x.
Then define γi,x on [s1, . . . , sni(x)] by

γi,x := (fni(x)|[s1,...,sni(x)])
−1 ◦ γ` ◦ fni(x)|[s1,...,sni(x)].

Then, γi,x is a locally constant element of Γ, because f acts by elements
of Γ0 and Γ is normal in Γ0. Set κi(x) = γi,x(x), Φ(κi, x) = Φ(γi,x, x). The
map κi belongs to the full pseudogroup [Γ], and consider the associated
holonomy

κi(x, s) = (κix, s + Φ(κi, x)).

Then,
(i) κi is injective, because κi is injective (it is piecewise injective and

the images of the pieces are disjoint).
(ii) κi is measure preserving, because it is a holonomy of the orbit

relation of the action of Γ on Σ× R.
(iii) ∃M0 such that κi([a]× I) ⊂ [a]×NM0(I), as we shall see below.
(iv) For a.e. (x, s) ∈ [a]×I, κi(x, s) ∈ {y : N(y) > i}×NM0(I), because

by construction, N(κi(x)) > ni(x) > i.
In order to verify property (iii), we may write:

Φ(κi, x) = Φ((fni(x)|[s1,...,sni(x)])
−1 ◦ γ` ◦ fni(x)|[s1,...,sni(x)], x)

=
ni(x)−1∑

j=0

Φ(γ−1
sj(x), f

j+1y) + Φ(γ`, fni(x)x) +
ni(x)−1∑

j=0

Φ(γsj(x), f
jx),

where y = κix. Note that x and y have the same ni first addresses in Σ.
The cocycle relation yields Φ(γ−1

sj(x), f
j+1y) = −Φ(γsj(x), f

jy) and, by the
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Hölder property, since f jx and f jy have the same ni − j first addresses
in Σ, ∣∣Φ(γsj(x), f

jx)− Φ(γsj(x), f
jy)
∣∣ 6 Csj θ

ni−j

for some θ < 1. Set C := sups∈S Cs. We therefore have:

|Φ(κ, x)| 6 max
z∈Ib

Φ(γ`, z) +
C

1− θ
=: M0.

Now, {y : N(y) > i} × NM0(I) is a decreasing sequence of sets whose
intersection is negligible (because N < ∞ a.e.). These are subsets of the
finite measure set [a] × NM0(I), so their measure must tend to zero. By
(iv), (m ◦ κi)([a]× I) −−−→

i→∞
0. But this contradicts (ii). �

By Sublemma 1, for any `, the orbit of a.e. x ∈ [a] enters γ`(Ib) infinitely
often. It follows that [a] is (up to measure zero) of the form

[a] =
∞⊎

i=1

[p
i
] ∩ f−`i(γ`Ib)

where [p
i
] are cylinders of length `i + 1 and f `i [p

i
] = Ib. Define a map κ

on [a] by

κ|[p
i
]∩f−`i (γ`Ia) = (f `i |[p

i
])−1 ◦ γ ◦ f `i |[p

i
].

(i) κ is injective and κ[a] ⊂ [a]: Indeed, κ maps [p
i
] ∩ f−`i(γ`Ib) bĳec-

tively onto [p
i
] ∩ f−`i(γ`+1Ib) ⊂ [p

i
] ∩ f−`i(γ`Ib).

(ii) κ belongs to the full pseudo-group of the Γ action on X: because f

acts by elements of Γ0 and Γ is normal in Γ0.
(iii) sup |Φ(κ, x)−Qτ0| −−−→

`→∞
0 on [a]. See below.

Before checking (iii), we explain how it can be used to complete the con-
struction. Fix, using (iii), ` large enough that |Φ(κ, x)−Qτ0| < ε. As be-
fore,

κ : (x, s) 7→ (κx, s + Φ(κ, x)).

makes sense, is measure preserving, and maps [a]×I into [a]×Nε(I +Qτ0).
We check (iii). By the cocycle relation, we have:

|Φ(κ, x)−Qτ0| =
∣∣Φ(f `i , x) + Φ(γ, f `ix) + Φ(f−`i , γf `ix)−Qτ0

∣∣
6
∣∣−Φ(f−`i , f `ix) + Φ(f−`i , γf `ix)

∣∣
+
∣∣Φ(γ, f `ix)− Φ(γ, γz)

∣∣ ,
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where z is chosen so that the points f `ix, γf `ix and γz all lie in the same
γ`Iz

b . Then,

∣∣Φ(f−`i ,γf `ix)−Φ(f−`i ,f `ix)
∣∣ 6 `i−1∑

j=0

∣∣Φ(f−1,f−jγf `ix)−Φ(f−1,f−jf `ix)
∣∣

6 C

`i−1∑
j=0

(d(f−jγf `ix, f−jf `ix))β

6 C

`i−1∑
j=0

θj(d(γf `ix, f `ix))β

6 C ′(max
z

Diamγ`Iz
b )β .

Since we also have
∣∣Φ(γ, f `ix)− Φ(γ, γz)

∣∣ 6 C(maxz Diam γ`Iz
b )β , we in-

deed have a constant K such that

|Φ(κ, x)−Qτ0| 6 K(max
z

Diam γ`Iz
b )β .

Since every γ`Iz
b decreases to a point as ` →∞, for every ε, one can choose

` such that for all x ∈ [a], |Φ(κ, x)−Qτ0| < ε, which is Property (iii). �

Recall that we want to show that Hm = R. We say that the invari-
ant measure m is continuous on Σ if m({x} × R) = 0 for all x ∈ Σ.
By ergodicity, if m is not continuous on Σ, there is a countable set Σ0

such that m ((Σ0 × R)c) = 0. Then, we claim that Hm = R. Indeed, fix
x ∈ Σ0, τ0 ∈ τ(Γ) and I an interval such that m({x} × I) > 0. Applying
Lemma 4.2 to a decreasing family of cylinders [a]n such that

⋂
[a]n = {x}

and a sequence εn → 0, we obtain, for all n,

m({x} × I) 6 m([a]n ×Nεn
(I + Qτ0)).

As n →∞, it follows that m({x}×I) 6 m({x}×(I+Qτ0)). Since this holds
for all intervals I, we have that −Qτ0 ∈ Hm. By our hypothesis (NonA),
Hm is the whole group R.

So we may assume that m is continuous on Σ and, by way of contra-
diction, that Hm 6= R. Since Hm is a closed subgroup of R, Hm = cZ for
some c. The rest of the proof reproduces Section 4.3 in [15].
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