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INTEGRABLE HIERARCHIES
AND THE MODULAR CLASS

by Pantelis A. DAMIANOU & Rui Loja FERNANDES (*)

Abstract. — It is well-known that the Poisson-Nĳenhuis manifolds, introduced
by Kosmann-Schwarzbach and Magri form the appropriate setting for studying
many classical integrable hierarchies. In order to define the hierarchy, one usually
specifies in addition to the Poisson-Nĳenhuis manifold a bi-hamiltonian vector field.
In this paper we show that to every Poisson-Nĳenhuis manifold one can associate a
canonical vector field (no extra choices are involved!) which under an appropriate
assumption defines an integrable hierarchy of flows. This vector field is the modular
class of the Poisson-Nĳhenhuis manifold. This class has a canonical representative
which, under a cohomological assumption, is a bi-hamiltonian vector field. In many
examples the associated hierarchy of flows reproduces classical integrable hierar-
chies. We illustrate in detail with the Harmonic Oscillator, the Calogero-Moser
system, the classical Toda lattice and various Bogoyavlensky-Toda Lattices.

Résumé. — Il est bien connu que les variétés de Poisson-Nĳenhuis, introduites
par Kosmannn-Schwarzbach et Magri, constituent le contexte le plus approprié
pour étudier de nombreuses hiérarchies intégrables. Afin de définir une telle hiérar-
chie, on explicite d’habitude, en plus de la variété de Poisson-Nĳenhuis, un champ
de vecteurs bi-hamiltonien. Dans cet article, nous montrons qu’à toute variété de
Poisson-Nĳenhuis nous pouvons associer un et un seul champ de vecteurs canonique
qui, sous des hypothèses convenables, définit une hiérarchie intégrable de flots. Ce
champ de vecteurs est la classe modulaire de la variété de Poisson-Nĳenhuis. Cette
classe possède un représentant défini de manière canonique qui, sous une hypo-
thèse cohomologique, est un champ de vecteurs bi-hamiltonien. Dans de nombreux
exemples, la hiérarchie associée de flots reproduit les hiérarchies intégrables clas-
siques. Nous illustrons en détails ce fait à l’aide de l’oscillateur harmonique, du
système de Calogero-Moser, du réseau de Toda classique et des divers réseaux de
Bogoyavlensky-Toda.

1. Introduction

It is well-known that the Poisson-Nĳenhuis manifolds, introduced by
Kosmann-Schwarzbach and Magri in [20], form the appropriate setting for

Keywords: Poisson-Nĳhenhuis manifolds, modular class, integrable hierarchies.
Math. classification: 53D17, 37J35.
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studying many classical integrable hierarchies. In order to define the hier-
archy, one usually specifies in addition to the Poisson-Nĳenhuis manifold
a bi-hamiltonian vector field. In this paper we will show that to every
Poisson-Nĳenhuis manifold one can associate a canonical vector field (no
extra choices are involved!) which under an appropriate assumption de-
fines an integrable hierarchy of flows. Moreover, this vector field is a very
natural geometric entity, leading to a cohomological interpretation of this
condition. For many classical examples we recover well-known integrable
hierarchies.

In order to explain in more detail our results, let us recall that a Poisson
manifold (M,π) usually does not carry a Liouville form, i.e., a volume form
which is invariant under the flow of all hamiltonian vector fields(1) . The ob-
struction to the existence of an invariant volume form, as was explained by
J.-L. Koszul [22] and A. Weinstein [29], lies in the first Poisson cohomology
group H1

π(M) (the Poisson vector fields modulo hamiltonian vector fields).
More precisely, given a volume form µ, we can associate to it a Poisson
vector field Xπ

µ , called the modular vector field. Though this vector field
depends on the choice of µ, the Poisson cohomology class [Xπ

µ ] ∈ H1
π(M)

does not, and this modular class is zero iff there exists some invariant mea-
sure on M . The modular vector field was used by Dufour and Haraki in
[9] to classify quadratic Poisson brackets in R3. It was also useful in the
classification of Poisson structures in low dimensions, e.g., [24, 18].

Assume now that (M,π0,N ) is a Poisson-Nĳenhuis manifold ([20]). It is
well known that we can associate to it a hierarchy of Poisson structures:

π1 := Nπ0, π2 := Nπ1 = N 2π0, . . .

It is easy to check that the Nĳenhuis tensor N maps hamiltonian (respec-
tively, Poisson) vector fields of π0 to hamiltonian (respect., Poisson) vector
fields of π1, and more generally those of πi to those of πi+1. However, in
general, for any choice of µ, it does not map the modular vector field X0

µ

of π0 to the modular vector field X1
µ of π1. As we will show below, the

difference:
XN := X1

µ −NX0
µ,

is a Poisson vector field for π1, which is independent of the choice of volume
form µ. Notice that this vector field is zero if there exists a volume form µ

which is invariant simultaneously under the flows of the hamiltonian vector
fields for π1 and π0. Hence, we may think of XN as a modular vector field

(1) We will assume that our manifolds are orientable. This is enough to cover all ap-
plications and simplifies the presentation. However, our results do extend to the non-
orientable case.
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INTEGRABLE HIERARCHIES AND THE MODULAR CLASS 109

of our Poisson-Nĳenhuis manifold. Moreover, using the concept of relative
modular class, introduced recently in [17, 21], we can show that the Poisson
cohomology class of XN is the relative modular class of the transpose N ∗,
when viewed as a morphism of Lie algebroids. Furthermore, we will show
the following result:

Theorem 1.1. — Let (M,π0,N ) be a Poisson-Nĳenhuis manifold. Then
the modular vector field XN is hamiltonian relative to π0 with hamiltonian
equal to minus one half the trace of N :

XN = X0
− 1

2 trN .

Therefore, the vector field XN is hamiltonian relative to π0 and Poisson
relative to π1. So XN is very close to defining a bi-hamiltonian system,
and hence a hierarchy of flows. Of course, the obstruction is the Poisson
cohomology class [XN ] ∈ H1

π1
(M), i.e., the modular class of the Poisson-

Nĳenhuis manifold. This class is zero, for example, if there are measures µ
and η invariant under both the hamiltonian flows of π0 and π1. Note that,
in general, XN itself will still be non-zero, in which case the two invariant
measures are non-proportional. A typical situation that fits many examples
is the following:

Theorem 1.2. — Let (M,π0,N ) be a Poisson-Nĳenhuis manifold and
assume that N is non-degenerate. Then the modular vector field XN is
bi-hamiltonian and hence determines a hierarchy of flows which are given
by:

Xi+j = π]
idhj = π]

jdhi (i, j ∈ Z)

where
h0 = −1

2
log(detN ), hi = − 1

2i
trN i (i 6= 0).

We will see below that most of the known hierarchies of integrable sys-
tems can be obtained in this manner, therefore providing a new approach
to the integrability of those systems. Moreover, in some cases (e.g., the
Toda systems) it gives rise to previously unknown bi-hamiltonian formu-
lations. Note that the fact that the traces of the powers of N give rise to
a hierarchy of flows was noticed early in the history of integrable systems
(see, e.g., [4, 19]).

The paper is organized as follows. In Section 2, we recall a few basic
facts concerning modular vector fields and modular classes, and we show
that the modular class of the Lie algebroid associated with a Nĳenhuis
tensor is represented by d(trN ). This basic fact, which does not seem to
have been noticed before, sets up the stage for Section 3, where we consider

TOME 58 (2008), FASCICULE 1



110 Pantelis A. DAMIANOU & Rui Loja FERNANDES

the modular vector field of a Poisson-Nĳenhuis manifold. In Section 4, we
introduce integrable hierarchies related to the modular class and we prove
Theorem 1.2 above. In Section 5, we show how one can recover many of
the known classical integrable hierarchies using our results.

Acknowledgments. We would like to thank several institutions for their
hospitality while work on this project was being done: Instituto Supe-
rior Técnico and Université de Poitiers (Pantelis Damianou); University of
Cyprus, University of Milano-Bicoca and ESI Vienna (Rui L. Fernandes).
We would like to thank Yvette Kosmann-Schwarzbach for many comments
on a first version of this paper, which helped improving it greatly, Franco
Magri who pointed out to us that the assumption (made on the same
first version of the paper) of invertibility of π0 is actually superfluous, and
Raquel Caseiro for useful discussions.

2. Modular classes

In this section we present several results concerning modular classes that
will be needed later. This will also help establishing our notation. Our main
result here is Proposition 2.4, where we compute the modular class of the
Lie algebroid associated with a (1,1)-tensor N with vanishing Nĳenhuis
torsion.

2.1. Modular class of a Poisson manifold

If (M, {·, ·}) is a Poisson manifold, we will denote by π ∈ X2(M) the
associated Poisson tensor which is given by

π(df,dg) := {f, g}, (f, g ∈ C∞(M))

and by π] : T ∗M → TM the vector bundle map defined by

π](dh) = Xh := {h, ·},

where Xh is the hamiltonian vector field determined by h ∈ C∞(M). Recall
also that the Poisson cohomology of (M,π), introduced by Lichnerowicz
[23], is the cohomology of the complex of multivector fields (X•(M),dπ),
where the coboundary operator is defined by taking the Schouten bracket
with the Poisson tensor:

dπA ≡ [π,A].

ANNALES DE L’INSTITUT FOURIER



INTEGRABLE HIERARCHIES AND THE MODULAR CLASS 111

This cohomology is denoted by H•
π(M). We will be mainly interested in the

first Poisson cohomology space H1
π(M), which is just the space of Poisson

vector fields modulo the hamiltonian vector fields. Note that our conven-
tions are such that the hamiltonian vector field associated with the function
h is given by:

(2.1) Xh = −[π, h] = −dπh.

In this paper we follow the same sign conventions as in the book by Dufour
and Zung [10], and which differ from other sign conventions such as the
one in Vaisman’s monograph [28] (2) .

Let us assume that M is oriented and fix an arbitrary volume form
µ ∈ Ωtop(M). The divergence of a vector field X ∈ X(M) relative to µ is
the unique function divµ(X) that satisfies:

£Xµ = divµ(X)µ.

When (M,π) is a Poisson manifold, a volume form µ defines the modular
vector field:

Xµ(f) := divµ(Xf ).

Note that this vector field depends on the choice of µ.
More generally, a choice of volume form µ induces, by contraction, an

isomorphism Φµ : Xk(M) → Ωm−k(M), where m = dimM , and we define,
following Koszul [22], the following operator that generalizes the divergence
operator above: Dµ : Xk(M) → Xk−1(M) defined by:

Dµ = Φ−1
µ ◦ d ◦ Φµ ,

where d is the exterior derivative. It is obvious that D2
µ = 0, so Dµ is a

homological operator. Now we have:

Proposition 2.1. — For a Poisson manifold (M,π) with a volume form
µ the modular vector field is given by:

(2.2) Xµ = Dµ(π).

(2) In particular the Schouten bracket on multivector fields satisfies the following super-
commutation, super-derivation and super-Jacobi identities:

[A, B] = −(−1)(a−1)(b−1)[B, A]

[A, B ∧ C] = [A, B] ∧ C + (−1)(a−1)bB ∧ [A, C]

(−1)(a−1)(c−1)[A, [B, C]] + (−1)(b−1)(a−1)[B, [C, A]] + (−1)(c−1)(b−1)[C, [A, B]] = 0

where A ∈ Xa(M), B ∈ Xb(M) and C ∈ Xc(M).

TOME 58 (2008), FASCICULE 1



112 Pantelis A. DAMIANOU & Rui Loja FERNANDES

If (x1, . . . , xm) are local coordinates, such that µ = dx1 ∧ · · · ∧ dxm and
π =

∑
i<j π

ij ∂
∂xi ∧ ∂

∂xj then:

Xµ =
m∑

i=1

 m∑
j=1

∂πij

∂xj

 ∂

∂xi
.

The proof of this proposition is standard and we refer, for example, to
[10, Chapter 2.6] for details.

Some authors take expression (2.2) as the definition of the modular vector
field. Recalling that the Koszul operator satisfies the basic identity:

(2.3) Dµ([A,B]) = [A,Dµ(B)] + (−1)b−1[Dµ(A), B]

we see immediately from [π, π] = 0 that

dπXµ = [π,Dµ(π)] = 0,

so the modular vector field is a Poisson vector field. Also, if we are given
another volume form µ′, so that µ′ = gµ for some non-vanishing function
g, we find from the definition of the Koszul operator:

DgµA = DµA+ [A, ln |g|].

In particular, when A = π this shows that under a change of volume form
the modular vector field changes by an addition of a hamiltonian vector
field:

(2.4) Xgµ = Xµ −Xln |g|.

Therefore, the class mod(π) ≡ [Xµ] ∈ H1
π(M) is well-defined.

2.2. Modular class of a Lie algebroid

We will need also the modular class of a Lie algebroid, which was intro-
duced in [11].

Let p : A → M be a Lie algebroid over M , with anchor ρ : A → TM

and Lie bracket [·, ·] : Γ(A)×Γ(A) → Γ(A). Lie algebroids are some kind of
generalized tangent bundles, so many of the constructions from the usual
tensor calculus can be extended to Lie algebroids, and we recall a few
of them. First, the algebroid cohomology of A is the cohomology of the
complex (Ωk(A),dA), where Ωk(A) ≡ Γ(∧kA∗) and dA : Ωk(A) → Ωk+1(A)

ANNALES DE L’INSTITUT FOURIER



INTEGRABLE HIERARCHIES AND THE MODULAR CLASS 113

is the de Rham type differential:

(2.5) dAω(α0, . . . , αk) =
k∑

i=0

(−1)i+1ρ(αi)(ω(α0, . . . , α̌i, . . . , αk))∑
06i<j6k

(−1)i+jω([αi, αj ], α0, . . . , α̌i, . . . , α̌j , . . . , αk).

The Lie algebroid cohomology is denoted by H•(A). Given a section α ∈
Γ(A) (a “vector field”), there is a Lie A-derivative operator £α and a
contraction operator iα defined as in the usual case of TM , but using the
A-Lie bracket. It follows that we also have Cartan’s magic formula (for
details see, e.g., [11]):

£α = iαdA + dAiα.

Now to define the modular class of A we proceed as follows. We assume
that the line bundles ∧topA and ∧topT ∗M are trivial and we choose global
sections η and µ (3) . Then η ⊗ µ is a section of ∧topA⊗∧topT ∗M , and we
define ξA ∈ C1(A) to be the unique element such that:

(£αη)⊗ µ+ η ⊗ (£ρ(α)µ) = ξA(α)η ⊗ µ, ∀α ∈ Γ(A).

One checks that ξA is indeed an A-cocycle, and that its cohomology class is
independent of the choice of η and µ. Hence, there is a well-defined modular
class of A denoted mod(A) ≡ [ξA] ∈ H1(A).

Example 2.2. — For a Poisson manifold (M,π) we have a natural Lie
algebroid structure on its cotangent bundle T ∗M . For the anchor we have
ρ = π] and for the Lie bracket on sections of A = T ∗M , i.e., on one forms,
we have:

[α, β] = £π]αβ −£π]βα− dπ(α, β).

Note however that the two definitions above of the modular class differ by
a multiplicative factor:

mod(T ∗M) = 2 mod(π).

See also [14] for a deeper explanation of the factor 2. This factor will appear
frequently in our formulas.

Example 2.3. — Let M be a manifold and N : TM → TM a Nĳenhuis
tensor, i.e., a (1,1)-tensor whose Nĳenhuis torsion

TN (X,Y ) := N [NX,Y ] +N [X,NY ]−N 2([X,Y ])− [NX,NY ],

(3) Again, this orientability assumption is made only to simplify the presentation, and
is not essential for what follows.

TOME 58 (2008), FASCICULE 1



114 Pantelis A. DAMIANOU & Rui Loja FERNANDES

vanishes. This is equivalent to requiring that the triple (TM, [ , ]N , ρN ) is
a Lie algebroid, where the anchor is given by

ρN (X) := NX,

and the Lie bracket is defined by:

[X,Y ]N := [NX,Y ] + [X,NY ]−N ([X,Y ]).

Let us compute the modular class of this Lie algebroid.

Proposition 2.4. — The modular class of (TM, [ , ]N , ρN ) is the co-
homology class represented by the 1-form d(trN ).

Note that this class may not be trivial: we must consider it as a coho-
mology class in the Lie algebroid cohomology of (TM, [ , ]N , ρN ). This
cohomology is computed by the complex of differential forms but with a
modified differential dN that satisfies:

dNN ∗ = dN ∗

(here N ∗ : T ∗M → T ∗M denotes the transpose of N ).

Proof of Proposition 2.4. — We pick a volume form µ ∈ Ωtop(M), and
we let η ∈ Γ(∧topA) = Xtop(M) be the dual multivector field: 〈µ, η〉 = 1.
Around any point, we can choose local coordinates (x1, . . . , xm) such that:

µ = dx1 ∧ · · · ∧ dxm, η =
∂

∂x1
∧ · · · ∧ ∂

∂xm
.

In these coordinates, we write

N =
m∑

i,j=1

N i
j

∂

∂xi
⊗ dxj ,

and for X = ∂
∂xk we compute:

£N
X

∂

∂xi
=

m∑
j=1

(
∂N j

i

∂xk
−
∂N j

k

∂xi

)
∂

∂xj

£NXdxi =
m∑

j=1

∂N i
k

∂xj
dxj ,

ANNALES DE L’INSTITUT FOURIER
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where the first Lie derivative is in the Lie algebroid sense, while the second
is the usual Lie derivative. From these expressions it follows that:

£N
X η =

m∑
i=1

∂

∂x1
∧ · · · ∧£N

X

∂

∂xi
∧ · · · ∧ ∂

∂xm

=
m∑

i=1

(
∂N i

i

∂xk
− ∂N i

k

∂xi

)
η

and, similarly, that:

£NXµ =
m∑

i=1

dx1 ∧ · · · ∧£NXdxi ∧ · · · ∧ dxm

=
m∑

i=1

∂N i
k

∂xi
µ .

Therefore, we conclude that for X = ∂
∂xk :

£N
X η ⊗ µ+ η ⊗£NXµ =

m∑
i=1

∂N i
i

∂xk
η ⊗ µ = 〈d(trN ), X〉η ⊗ µ.

By linearity, this formula holds for every vector field X, on any coordinate
neighborhood. Hence, it must hold on all of M . We conclude that d(trN )
represents the modular class of (TM, [ , ]N , ρN ). �

Note that we have chosen the volume forms η = µ−1. For other choices
of η and µ we would obtain different representatives of the modular class.
However, whenever we choose η = µ−1 we always get the same represen-
tative, independent of the choice of µ. Also, the appearance of the trace
should not be a surprise in view of the interpretation of the modular class
as a secondary characteristic class (see [14, 15]) associated with the trace.

2.3. Relative modular class

Let φ : A → B be a morphism of Lie algebroids over the identity. Then
we have an induced chain map φ∗ : (Ωk(B), dB) → (Ωk(A), dA) defined by:

φ∗P (α1, . . . , αk) = P (φ(α1), . . . , φ(αk)),

and, hence, also a morphism at the level of cohomology:

φ∗ : Hk(B) → Hk(A).

We can attach to this morphism a relative modular class. Again, we
assume that ∧topA and ∧topB are trivial line bundles, so we take global

TOME 58 (2008), FASCICULE 1



116 Pantelis A. DAMIANOU & Rui Loja FERNANDES

sections η ∈ Γ(∧topA) and ν ∈ Γ(∧topB∗). Then we can define ξφ
A,B ∈

C1(A) to be the unique element such that:

(£A
αη)⊗ µ+ η ⊗ (£B

φ(α)µ) = ξφ
A,B(α)η ⊗ µ, ∀α ∈ Γ(A).

One can check that ξφ
A,B is in fact a cocycle, and that its cohomology is

independent of the choice of trivializing sections η and ν. We conclude that
we have a well defined relative modular class:

mod(A,B, φ) ≡ ξφ
A,B ∈ H1(A).

Now we have the following basic fact (see [21, 17]):

Proposition 2.5. — Let φ : A → B be a morphism of Lie algebroids.
Then:

(2.6) mod(A,B, φ) = mod(A)− φ∗mod(B).

Moreover, if ψ : B → C is another morphism, we have

(2.7) mod(A,C, ψ ◦ φ) = mod(A,B, φ) + φ∗mod(B,C, ψ).

If we make any choice of sections η ∈ Γ(∧topA), ν ∈ Γ(∧topB), µ ∈
Γ(∧topT ∗M), and we choose ν′ ∈ Γ(∧topB∗) to be dual to ν, (i.e., 〈ν, ν′〉 =
1), then (2.6) already holds at the level of cocycles, not just of cohomology
classes: in the notation above, we have the equality

ξφ
A,B = ξA − φ∗ξB .

Similarly, (2.7) is also true at the level of cocycles.

Example 2.6. — The tangent bundle TM of any manifold is a Lie al-
gebroid for the usual Lie bracket of vector fields and the identity map as
an anchor. For this Lie algebroid, if we take a section ν ∈ Γ(∧topTM) and
its dual section µ ∈ Γ(∧topTM∗), we see immediately that ξTM = 0, so its
modular class vanishes. Now, given any Lie algebroid (A, [·, ·]), its anchor
ρ : A→ TM is a Lie algebroid morphism. Hence, we conclude that

mod(A, TM, ρ) = mod(A).

In particular, in the case of a Poisson manifold (M,π) we find:

mod(T ∗M,TM, π]) = mod(T ∗M) = 2 mod(π).

Again, this equality is true already at the level of vector fields.

3. Modular vector fields and Poison-Nĳenhuis manifolds

We are now ready to look at Poisson-Nĳenhuis manifolds and their mod-
ular classes.

ANNALES DE L’INSTITUT FOURIER
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3.1. Poisson-Nĳhenhuis manifolds

Let (M,π0,N ) be a Poisson-Nĳhenhuis manifold. Let us recall what this
means ([20]):

(i) π0 is a Poisson structure on M ;
(ii) N : TM → TM is a Nĳenhuis tensor;
(iii) π0 and N are compatible.

The compatibility of π0 and N means, first of all, that

(3.1) Nπ]
0 = π]

0N ∗,

so that π1 = Nπ0 is a bivector field, and secondly that the bracket on
1-forms [ , ]π1 naturally associated with π1 (see Example 2.2):

[α, β]π1 := £π]
1αβ −£π]

1βα− dπ1(α, β)

and the bracket [ , ]N
∗

π0
obtained from [ , ]π0 by twisting by N ∗ (see Ex-

ample 2.3):

[α, β]N
∗

π0
:= [N ∗α, β]π0 + [α,N ∗β]π0 −N ∗([α, β]π0)

actually coincide:

(3.2) [α, β]π1 = [α, β]N
∗

π0
.

As a consequence of this definition, we have that π1 must be a Poisson
tensor and the dual of the Nĳenhuis tensor:

N ∗ : (T ∗M, [ , ]π1 , π
]
1) → (T ∗M, [ , ]π0 , π

]
0)

is a morphism of Lie algebroids.
As is well-known ([20]), we have in fact a whole hierarchy of Poisson

structures:
π1 := Nπ0, π2 := Nπ1 = N 2π0, . . .

which are pairwise compatible:

[πi, πj ] = 0, ∀i, j = 0, 1, 2, . . .

From this it follows that if we have a bi-hamiltonian vector field:

X1 = π]
1dh0 = π]

0dh1,

then we have a whole hierarchy of commuting flows X1, X2, X3, . . . where
the higher order flows are given by:

Xi = π]
idh0 = π]

i−1dh1.

Hence, one usually thinks of an integrable hierarchy as being specified by
a Poisson-Nĳenhuis manifold and a bi-hamiltonian vector field. Here we

TOME 58 (2008), FASCICULE 1



118 Pantelis A. DAMIANOU & Rui Loja FERNANDES

would like to show that, under a natural assumption, there is a canonical
hierarchy associated with a Poisson-Nĳenhuis manifold, which does not
involve other choices such as a specification of a bi-hamiltonian vector field.
The source of this hierarchy is the modular class of a Poisson-Nĳenhuis
manifold.

3.2. Modular vector field of a Poisson-Nĳhenhuis manifold

Let (M,π0,N ) be a Poisson-Nĳhenhuis manifold. It is clear from the
definition that N maps the hamiltonian vector field X0

f (relative to π0) to
the hamiltonian vector field X1

f (relative to π1). Similarly, it is easy to see
that N maps Poisson vector fields of π0 to Poisson vector fields of π1. More
generally, N induces a map at the level of multivector fields, denoted by
the same letter N : X•(M) → X•(M), which is defined by:

NA(α1, . . . , αa) = A(N ∗α1, . . . ,N ∗αa).

We have:

Proposition 3.1. — The map N : (X•(M),dπ0) → (X•(M),dπ1) is a
morphism of complexes:

Ndπ0 = dπ1N .

Proof. — We need simply to observe that we have a Lie algebroid mor-
phism:

N ∗ : (T ∗M, [ , ]π1 , π
]
1) → (T ∗M, [ , ]π0 , π

]
0)

so it induces a morphism between the complexes of forms of these Lie
algebroids, in the opposite direction. Of course, this map is just the map
N : (X•(M),dπ0) → (X•(M),dπ1) introduced above. �

It follows that we have an induced map in cohomology

N : H•
π0

(M) → H•
π1

(M).

Note, however, that in general N does not map the modular class of π0 to
the modular class of π1. For a choice of volume form µ ∈ Ωtop(M), let us
denote denote by X1

µ and by X0
µ the modular vector fields associated with

π1 and π0 respectively.

Lemma 3.2. — If µ and µ′ are any two volume forms then:

X1
µ −NX0

µ = X1
µ′ −NX0

µ′ .

Moreover, this vector field is Poisson relative to π1.
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Proof. — Let g ∈ C∞(M) be a non-vanishing function such that µ′ = gµ.
By relation (2.4), we have

X1
µ′ −NX0

µ′ = X1
gµ −NX0

gµ

= X1
µ −X1

ln |g| −N (X0
µ −X0

ln |g|)

= X1
µ −NX0

µ,

where we used that X1
f = NX0

f , for any function f .
The modular vector field X1

µ is a Poisson vector field relative to π1. On
the other hand, N maps the vector field X0

µ, which is Poisson relative to
π0, to a Poisson vector field relative to π1. Hence, the sum X1

µ −NX0
µ is a

Poisson vector field relative to π1. �

Let us set XN := X1
µ − NX0

µ (which, by the lemma, is independent of
the choice of µ). Note that XN is a vector field intrinsically associated with
the Poisson-Nĳenhuis manifold (M,π0,N ).

Definition 3.3. — The vector field XN is called the modular vector
field of the Poisson-Nĳenhuis manifold (M,π0,N ).

The modular vector field XN of (M,π0,N ) will play a fundamental role
in the sequel. Our next proposition gives further justification for this name
and explains the possible failure in XN being a hamiltonian vector field:

Proposition 3.4. — Let (M,π0,N ) be a Poisson-Nĳenhuis manifold.
The Poisson cohomology class [XN ] ∈ H1

π1
(M) equals half the relative

modular class of the Lie algebroid morphism:

N ∗ : (T ∗M, [ , ]π1 , π
]
1) → (T ∗M, [ , ]π0 , π

]
0).

Proof. — By Proposition 2.5 and Example 2.2 we find:

mod(T ∗Mπ1 , T
∗Mπ0 ,N ∗) = mod(T ∗Mπ1)− (N ∗)∗mod(T ∗Mπ0)

= 2 mod(π1)− 2Nmod(π0)

= 2 [X1
µ]− 2N [X0

µ]

= 2 [X1
µ −NX0

µ] = 2 [XN ],

for any volume form µ. �

We emphasize that XN is a canonical representative of the relative mod-
ular class of N ∗, which does not depend on any choice of measure.
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3.3. Hamiltonian character of the modular vector field

As we saw above, the modular vector field XN of a Poisson-Nĳenhuis
manifold (M,π0,N ) is a Poisson vector field relative to π1, which may fail
to be hamiltonian. Let us now look at its behavior relative to π0. We have:

Theorem 3.5. — Let (M,π0,N ) be a Poisson-Nĳenhuis manifold. Then
the modular vector field XN is hamiltonian relative to π0 with hamiltonian
equal to minus one half the trace of N :

(3.3) XN = X0
− 1

2 trN .

Before we prove this theorem, let us observe that this result is intimately
related to Proposition 2.4, where we showed that the modular class of the
Lie algebroid of a Nĳenhuis tensor N is represented by the 1-form d(trN ).
In fact, observe that the compatibility condition of a Poisson-Nĳenhuis
structure states that the two Lie algebroids

T ∗Mπ1 := (T ∗M, [ , ]Nπ0 , ρ = Nπ]
0)

T ∗MN∗

π0
:= (T ∗M, [ , ]N

∗

π0
, ρ = π]

0N ∗)

actually coincide. Therefore they have the same modular classes, and from
the general Lie algebroid version of Proposition 2.4 we obtain:

mod(T ∗Mπ1) = mod(T ∗MN∗

π0
) = [dπ0(trN )] +N ∗mod(T ∗Mπ0).

Using Proposition 2.5, this leads immediately to the statement:

2[XN ] = mod(T ∗Mπ1 , T
∗Mπ0 ,N ∗)

= mod(T ∗Mπ1)−N ∗mod(T ∗Mπ0)

= [dπ0(trN )] = −[(π]
0)d(trN )].

By working at the level of representatives of these cohomology classes,
one can give a proof of Theorem 3.5. However, we prefer to give a local
coordinate proof which is a direct translation of this argument.

Proof of Theorem 3.5. — Note that it is enough to prove that the two
sides of (3.3) agree in any local coordinate system. Hence, let us choose
local coordinates (x1, . . . , xm), so that:

π0 =
∑
i<j

πij
0

∂

∂xi
∧ ∂

∂xj
,

N =
∑
i,j

N i
j

∂

∂xi
∧ dxj ,

µ = fdx1 ∧ · · · ∧ dxm.
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In these local coordinates, the compatibility condition (3.2) for a Poisson-
Nĳenhuis structure reads:

0 = [dxi,dxj ]π1 − [dxi,dxj ]N
∗

π0

=
∑
k,l

(
πlj

0

∂N i
k

∂xl
+ πil

0

∂N j
k

∂xl
− πlj

0

∂N i
l

∂xk
−N l

k

∂πij
0

∂xl
+N j

l

∂πil
0

∂xk

)
dxk.

If in each coefficient of dxk we contract j and k, we see that the two last
terms cancel out, and we obtain:∑

k,l

(
2πlk

0

∂N i
k

∂xl
+ πil

0

∂Nk
k

∂xl

)
= 0, (i = 1, . . . ,m).

Using this identity and Proposition 2.1, we conclude that:

XN = X1
µ −NX0

µ

=
∑
i,j

∂πij
1

∂xj

∂

∂xi
−N

∑
i,j

∂πij
0

∂xj

∂

∂xi

=
∑
i,j,k

(
∂πik

0 N
j
k

∂xj
−N i

k

∂πkj
0

∂xj

)
∂

∂xi

=
∑
i,l,k

πlk
0

∂N i
k

∂xl

∂

∂xi

= −1
2

∑
i,l,k

πil
0

∂Nk
k

∂xl

∂

∂xi
= X0

− 1
2 trN .

�

Remark 3.6. — We recall (see [20, page 58]) that one has a commutative
diagram of morphisms of Lie algebroids:

(T ∗M, [·, ·]π1)
N∗

//

π]
0

��

π]
1

&&LLLLLLLLLLLLLLLLLLLLLL
(T ∗M, [·, ·]π0)

π]
0

��
(TM, [·, ·]N ) N // (TM, [·, ·])

The relative modular class of the morphism N on the bottom horizontal
arrow is represented by d(trN ). On the other hand, Theorem 3.5 states
that the relative modular class of the morphism N ∗ on the top arrow is
represented by −(π]

0)d(trN ) = (π]
0)
∗d(trN ). Hence this diagram codifies
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nicely the relationship between all (relative and absolute) modular classes
involved in a Poisson-Nĳenhuis manifold.

4. Integrable hierarchies and the modular class

We now consider integrable hierarchies of hamiltonian systems and ob-
serve that they are closely related to the modular vector field introduced
above.

4.1. The hierarchy of a non-degenerate PN manifold

Theorem 3.5 above shows that for any non-degenerate Poisson-Nĳenhuis
manifold the modular vector field XN is hamiltonian relative to π0 and
Poisson relative to π1. So, the question arises whether this vector field is
also Hamiltonian relative to π1 with respect to another function of N , i.e.,
whether it is a bi-hamiltonian vector field. Of course, the obstruction is the
Poisson cohomology class [XN ], the modular class of the Poisson-Nĳenhuis
manifold. An important case where this class vanishes and which fits many
examples is the following:

Theorem 4.1. — Let (M,π0,N ) be a Poisson-Nĳenhuis manifold and
assume that N is non-degenerate. Then the modular vector field XN is
bi-hamiltonian and hence determines a hierarchy of flows which is given
by:

(4.1) Xi+j = π]
idhj = π]

jdhi, (i, j ∈ Z)

where

(4.2) h0 = −1
2

log(detN ), hi = − 1
2i

trN i, (i 6= 0).

Proof. — Let us start by verifying that XN is bi-hamiltonian:

(4.3) XN = X1
− 1

2 log(| detN|) = X0
− 1

2 trN .

By Theorem 3.5, we just need to prove the first equality.
We claim that the first equality holds on the open dense set of common

regular points of π0 and π1. In fact, for any such regular point we can
choose an open neighborhood U where both π0 and π1 admit invariant
volume forms µ0 and µ1. It is easy to see that we can take these two
volume forms to be related by N :

µ1 = N−1µ0 =
1

|det(N )| 12
µ0.
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where n = 1
2 dimM . It follows from relation (2.4) that the modular vector

fields for π1 relative to these two n-forms are related by:

0 = X1
µ1

= X1
µ0

+X1
1
2 log(| detN|).

Since X0
µ0

= 0, we can compute the modular vector field XN as follows:

XN = X1
µ0
−NX0

µ0
= X1

− 1
2 log(| detN|).

This proves our claim, so XN is bi-hamiltonian.
Now, it remains to prove the multi-hamiltonian structure for the higher

flows. This follows by an iterative procedure. For example, let us check the
multi-hamiltonian structure of the 2nd flow in the hierarchy:

(4.4) X2 = X2
− 1

2 log(detN ) = X1
− 1

2 trN = X0
− 1

4 trN 2 .

First, we note that, from what we just proved, we have:

XN 2 = X2
µ −N 2X0

µ = X0
− 1

2 trN 2 = X2
− 1

2 det(logN 2).

which shows equality of two terms in (4.4). On the other hand, we have:

X1
− 1

2 trN = X2
µ −NX1

µ

= X2
µ −N 2X0

µ +N 2X0
µ −NX1

µ

= XN 2 −NXN

= X0
− 1

2 trN 2 −NX0
− 1

2 trN = X0
− 1

2 trN 2 −X1
− 1

2 trN

which gives:
X1
− 1

2 trN = X0
− 1

4 trN 2 ,

so giving equality with the remaining term in (4.4).
By iteration, looking at the vector fields XN i , one obtains the multi-

hamiltonian formulation of the remaining higher order flows. For negative
values of the index we apply the proposition to N−1 to obtain

X1
− 1

2 log(| detN|) = X0
1
2 trN−1 ,

and then we proceed as in the case of positive indices. �

Remark 4.2. — F. Magri pointed out to us that both relations:

k N ∗d(N k−1) = (k − 1)d(trN k),

N ∗d(log |detN|) = d(trN ),

which are well known to people working in integrable systems (see, e.g.,
[4, 19]), also lead to the bi-hamiltonian hierarchy of the theorem. The two
relations above appear also in [2] and [3] respectively as was pointed out
by the anonymous referee.

TOME 58 (2008), FASCICULE 1



124 Pantelis A. DAMIANOU & Rui Loja FERNANDES

Note that N always has double eigenvalues. For the hierarchy to be com-
pletely integrable, we need n = 1

2 dimM independent spectral invariants
detN , trN , trN 2, . . . This will follow if N has n = 1

2 dimM independent
eigenvalues.

4.2. Master symmetries and modular vector fields

When N is degenerate the results in the previous paragraph do not
apply. In this situation, there is a procedure due to Oevel [26] to produce
integrable hierarchies from master symmetries, and it is natural to look how
the modular vector fields fit into this scheme. We start with the following
result which is of independent interest:

Proposition 4.3. — Let π0 and π1 be Poisson tensors such that π1 =
£Zπ0, for some vector field Z. Also fix a volume form µ ∈ Ωtop(M). Then
their modular vector fields are related by

(4.5) X1
µ = £ZX

0
µ +X0

divµ(Z).

Proof. — The proof is straightforward if we use the definition of the
modular class in terms of the homological operator Dµ:

X1
µ = Dµ(π1)

= Dµ([Z, π0])

= [Z,Dµ(π0)]− [Dµ(Z), π0]

= £ZX
0
µ +X0

divµ(Z).

�

Now, in Oevel’s approach, one assumes that we have a bi-hamiltonian
system defined by the Poisson tensors π0 and π1 and the hamiltonians h1

and h0:

(4.6) X1 = X0
h1
≡ π]

0dh1 = X1
h0
≡ π]

1dh0.

If, additionally, π0 is symplectic, one can define the recursion operator in
the usual way:

N = π]
1 ◦ (π]

0)
−1,

the higher flows Xi := N i−1X1, and the higher order Poisson tensors πi :=
N iπ0. Note that N can now be degenerate. Now one can generate master-
symmetries by the following method:
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Theorem 4.4 ([26]). — Suppose that Z0 is a conformal symmetry for
both π0, π1 and h0, i.e., for some scalars λ, µ, and ν we have

£Z0π0 = λπ0, £Z0π1 = µπ1, £Z0h0 = νh0.

Then the vector fields

Zi = N iZ0

are master symmetries and we have

£Zihj = (ν + (j − 1 + i)(µ− λ))hi+j ,(4.7)

£Ziπj = (µ+ (j − i− 2)(µ− λ))πi+j ,(4.8)

[Zi, Zj ] = (µ− λ)(j − i)Zi+j .(4.9)

To simplify the notation, we will set:

ci,j = (µ+ (j − i− 2)(µ− λ))

so, for example, [Zi, πj ] = ci,jπi+j . Also, we fix a volume form µ ∈ Ωtop(M),
so the jth Poisson bracket in the hierarchy has the modular vector field

Xj
µ = Dµ(πj).

The following proposition establishes relations among these modular vector
fields:

Theorem 4.5. — For the hierarchy above:

[Xj
µ, Zi] = ci,jX

i+j
µ +Xj

fi
,

£Xi
µ
πj = −£Xj

µ
πi,

where fi = Dµ(Zi) = divµ(Zi).

Proof. — To prove the first relation, one simply applies Proposition 4.3
repeatedly. For the second relation, we observe that:

£Xi
µ
πj = [Xi

µ, πj ]

=
1

cj−i,i

[
Xi

µ, [Zj−i, πi]
]
.
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Using the super–Jacobi identity for the Schouten bracket and the fact that
Xi

µ is Poisson relative to πi, the last term reduces to
[
Zj−i, X

i
µ], πi

]
. There-

fore

£Xi
µ
πj =

1
cj−i,i

[
[Zj−i, X

i
µ], πi

]
= − 1

cj−i,i

[
[Zi, X

i−j
µ ], πi

]
= − 1

cj−i,i

[
cj−i,iX

j
µ +Xi

fj−i
, πi

]
= −[Xj

µ, πi] = −£Xj
µ
πi.

�

Note that, even when N is non-degenerate, there is no reason for the
hierarchy of flows produced by this method to coincide with the hierar-
chy of flows canonically associated with the Poisson-Nĳenhuis manifold. In
general, one would obtain two distinct hierarchies. However, as we shall see
in the next section, in most of the examples it is often the case that this
two hierarchies coincide. This is due to the fact that, in many examples,
the initial bi-hamiltonian system (4.6) has a multiple of trN as one of the
hamiltonians.

5. Examples

In this section we will illustrate the results of this paper on some well-
known integrable systems such as the Harmonic oscillator, the Calogero-
Moser system and various versions of the Toda lattice.

5.1. Harmonic oscillator

This classical integrable system has a well-known bi-hamiltonian struc-
ture which we now recall (see [5]).

On R2n with the standard symplectic structure and canonical coordinates
(qi, pi), consider the following hamiltonian function:

h1 =
n∑

i=1

1
2
(p2

i + q2i ) .
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The resulting hamiltonian system is completely integrable with the follow-
ing integrals of motion in involution:

Ii =
1
2
(p2

i + q2i ), (i = 1, . . . , n).

For its bi-hamiltonian structure one takes the Poisson structure associated
with the canonical symplectic form:

π0 =
n∑

i=1

∂

∂pi
∧ ∂

∂qi
,

and the new Poisson structure:

π1 =
n∑

i=1

Ii
∂

∂pi
∧ ∂

∂qi
.

These form a compatible pair of Poisson structures, and we also have:

(5.1) X1 =
n∑

i=1

pi
∂

∂qi
− qi

∂

∂pi
= π]

0dh1 = π]
1dh0,

where
h0 = log I1 + · · ·+ log In.

It is easy to see that this is the bi-hamiltonian formulation of the first
flow in the integrable hierarchy of the Poisson-Nĳenhuis manifold (π0,N ),
where the Nĳenhuis tensor is the diagonal (1,1) tensor:

N = diag(I1, . . . , In, I1, . . . , In).

In fact, with this definition, we find π1 = Nπ0 and:

detN =
n∏

i=1

I2
i ,

so that:
1
2

log(detN ) = log I1 + · · ·+ log In = h0,

1
2

trN = I1 + · · ·+ In = h1.

Hence, the bi-hamiltonian formulation (5.1) coincides with the one of the
first flow of the hierarchy (4.1) canonically associated with the Poisson-
Nĳenhuis manifold (π0,N ).

In this example, we have a master symmetry Z such that £Zπ0 = π1

which is given by:

Z = −
n∑

i=1

1
4
Ii

(
qi
∂

∂qi
+ pi

∂

∂pi

)
.
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If we let µ0 = dp1 ∧ dq1 ∧ · · · ∧ dpn ∧ dqn, which is a Liouville form for π0,
we compute:

−divµ0(Z) =
1
2

trN = h1,

as expected.
There is however one point that we overlooked: strictly speaking these

results are true only on the manifold M = R2n − ∪n
i=1{Ii = 0} where

N is invertible. In fact, on R2n the relative modular vector field XN is
not hamiltonian relative to π1! In fact, if XN = π]

1dH for some smooth
function H ∈ C∞(R2n) then, on points away from Ii = 0, H must differ
from h0 = log I1 + · · ·+ log In by a constant, and this is clearly impossible.
Therefore, on R2n the relative modular class [XN ] is non-trivial, and there
is no canonical bi-hamiltonian hierarchy.

Note that this examples is universal: any integrable hierarchy associated
with a non-degenerate Poisson-Nĳenhuis manifold (M,π0,N ) locally (in
action-variables coordinates) looks like this one.

5.2. The rational Calogero-Moser system

The Calogero-Moser system is a well-known finite-dimensional integrable
system (in fact, super-integrable). One can define this system on R2n, with
the standard symplectic structure and canonical coordinates (qi, pi), by the
hamiltonian function:

h2 =
1
2

n∑
i=1

p2
i +

g2

2

∑
j 6=i

1
(qi − qj)2

.

The Calogero-Moser system admits a Lax pair formulation where the
Lax matrix L is given by

Lij = piδij + g
i(1− δij)
qi − qj

.

The system is then completely integrable with involutive first integrals
given by:

Fi = tr (Li), (i = 1, . . . , n).

Moreover, following Ranada [27], consider also the functionsGi =tr(QLi−1),
where Q is the diagonal matrix diag(q1, . . . , qn). It was shown in [6] that
these functions are independent and lead to the algebraic linearization of
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the system. Using these functions as coordinates, we can write the hamil-
tonian vector field in the form:

X1 =
n∑

i=1

Fi
∂

∂Gi
.

The original Poisson structure becomes:

π0 =
n∑

i=1

∂

∂Fi
∧ ∂

∂Gi
,

and there exists a second compatible Poisson structure given by:

π1 =
n∑

i=1

Fi
∂

∂Fi
∧ ∂

∂Gi
,

providing a bi-hamiltonian formulation given by

X1 = π]
0dhi = π]

1dhi−1 (i = 2, . . . , n)

where

hj =
1
2j

tr
(
π]

1 ◦ (π]
0)
−1
)j

=
1
2j

∑
k

(Fk)j
, (j = 1, . . . , n).

Now we observe that if we let h0 := log(F1 · · ·Fn), then we can write the
system in the form:

X1 = π]
0dh1 = π]

1dh0.

If we set N := π]
1 ◦ (π]

0)
−1, then one checks easily that:

h0 =
1
2

log(detN ), h1 =
1
2

trN ,

so X1 is in fact the first flow of the hierarchy (4.1) canonically associated
with the Poisson-Nĳenhuis manifold (R2n, π0,N ).

5.3. Toda lattice in Moser coordinates

Our next example is related to the Toda hierarchy in the so-called Moser
coordinates. The hierarchy of Poisson tensors is due to Faybusovich and
Gekhtman [12], and can be defined as follows. Consider R2n with coordi-
nates (λ1, . . . , λn, r1, . . . , rn) and define the Poisson structures:

π0 =
n∑

i=1

ri
∂

∂λi
∧ ∂

∂ri
,

π1 =
n∑

i=1

λiri
∂

∂λi
∧ ∂

∂ri
.
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We also set h2 = 1
2

∑n
j=0 λ

2
j as the hamiltonian. Using the π0 bracket, we

obtain the following set of Hamilton’s equations

λ̇i = 0, ṙi = λiri, (i = 1, . . . , n).

This system is bi-hamiltonian, since

π]
0dh2 = π]

1dh1,

where h1 =
∑n

j=1 λj . Again, if we define

N := π]
1 ◦ (π]

0)
−1 = diag (λ1, . . . , λn, λ1, . . . , λn) ,

we have:

trN = 2
n∑

j=1

λj = 2h1, trN 2 = 4
n∑

j=1

λ2
j = 4h2.

It follows that our system is in fact the second flow in the hierarchy (4.1)
canonically associated with the Poisson-Nĳenhuis manifold (R2n, π0,N ).
The first flow of this hierarchy is (4) :

X1 = π]
0dh1 = π]

1dh0

where h0 = 1
2 log(detN ) = log λ1 + · · · + log λn, and in coordinates is

simply:
λ̇i = 0, ṙi = ri, (i = 1, . . . , n).

In this example, there is a master symmetry connecting π0 and π1 given
by:

Z = −1
2

n∑
j=1

λ2
j

∂

∂λj

so that £Zπ0 = π1. Then, as expected, we find:

div(Z) = −
n∑

j=1

λj = −h1.

This example also falls in Oevel’s scheme of Section 4.2. The vector field:

Z0 =
n∑

j=1

λj
∂

∂λj
,

is a conformal symmetry of π0, π1 and h1:

£Z0π0 = −π0, £Z0π1 = 0, £Z0h1 = h1.

(4) Note that, just like in the case of the harmonic oscillator we should exclude the points
with some λi = 0, where detN vanishes.
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Note here h1, instead of h0. This means that it is the second flow in the
hierarchy (i.e., the original flow) that falls into Oevel scheme! Recalling
now that Zi = N iZ0, we find:

Z−1 =
n∑

j=1

∂

∂λj
, Z1 = −2Z.

If we let µ be the standard volume on R2n, we see that Z−1 coincides with
the modular vector field for π0 relative to µ:

X0
µ =

n∑
j=1

∂

∂λj
= Z−1.

On the other hand

X1
µ =

n∑
j=1

λj
∂

∂λj
−

n∑
j=1

rj
∂

∂rj
,

so that:

XN = X1
µ −NX0

µ = X1
µ −NZ−1 = X1

µ − Z0 = X1
h0
,

is indeed the first flow in the hierarchy.

5.4. Bogoyavlensky-Toda systems

We consider now the example of the Cn Toda system. The Bn and Dn

Toda systems are similar and details on the computations can be found in
[8, 7].

To define the Cn system one considers R2n with the canonical symplectic
structure and the hamiltonian function:

H2 =
1
2

n∑
1

p2
j + eq1−q2 + · · ·+ eqn−1−qn + e2qn .

Let us consider the Flaschka-type change of coordinates:

ai =
1
2
e

1
2 (qi−qi+1), (i = 1, . . . , n− 1)

an =
1√
2
eqn ,

bi = −1
2
pi, (i = 1, . . . , n).

TOME 58 (2008), FASCICULE 1



132 Pantelis A. DAMIANOU & Rui Loja FERNANDES

The equations for the flow in (ai, bi) coordinates become

ȧi = ai (bi+1 − bi), (i = 1, . . . , n− 1),

ȧn = −2 anbn,

ḃi = 2 (a2
i − a2

i−1), (i = 1, . . . , n),

with the convention that a0 = 0. These equations can also be written as a
Lax pair L̇ = [B,L], where the Lax matrix L is given by:

L =



b1 a1

a1
. . . . . .
. . . . . . an−1

an−1 bn an

an −bn −an−1

−an−1
. . . . . .
. . . . . . −a1

−a1 −b1


,

and B is the skew-symmetric part of L.
In the new variables (ai, bi), the canonical Poisson bracket on R2n is

transformed into a bracket π1 which is given by

{ai, bi} = −ai, (i = 1, . . . , n− 1)

{ai, bi+1} = ai, (i = 1, . . . , n− 1)

{an, bn} = −2an.

We follow the tradition of denoting this bracket by π1 (instead of π0) being
a linear bracket of degree one. This will lead to a shift in degrees, when
compared to the formulas in the rest of the paper (to obtain the same
formulas we should denote this bracket by π0). The same comments applies
to the first integrals of the system which, following the tradition, will be
denoted by H2,H4, . . . ,H2n, where:

H2i =
1
2i

trL2i.
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In order to obtain a bi-hamiltonian formulation (see [25]), one introduces
a cubic Poisson bracket π3, defined by:

{ai, ai+1} = aiai+1bi+1, (i = 1, . . . , n− 2)

{an−1, an} = 2 an−1anbn,

{ai, bi} = −aib
2
i − a3

i , (i = 1, . . . , n− 1)

{an, bn} = −2 anb
2
n − 2 a3

n,

{ai, bi+2} = aia
2
i+1, (i = 1, . . . , n− 2)

{ai, bi+1} = aib
2
i+1 + a3

i , (i = 1, . . . , n− 1)

{an−1, bn} = a3
n−1 + an−1(b2n − a2

n),

{ai, bi−1} = −a2
i−1ai, (i = 1, . . . , n)

{an, bn−1} = −2 a2
n−1an,

{bi, bi+1} = 2 a2
i (bi + bi+1), (i = 1, . . . , n− 1).

This leads immediately ([25]) to a bi-hamiltonian system:

π]
3dh2 = π]

1dh4.

However, this is not the original system. For the original system, we fol-
low [8] and define π−1 = π1π

−1
3 π1. Then the Cn Toda system has the

bi-hamiltonian formulation:

π]
1dh2 = π]

−1dh4.

We now give a new bi-hamiltonian formulation using our Theorem 4.1. We
have the Nĳenhuis tensor:

N := π]
3 ◦ (π]

1)
−1,

and we set

H0 :=
1
2

log(detN ).

We need to check that the hamiltonian vector field of H0 with respect to
the second bracket π3 satisfies:

(5.2) π]
3dH0 = π]

1dH2,

so that this yields a bi-hamiltonian formulation for the Cn-Toda. In fact,
this follows easily from the Lenard relations for the eigenvalues of the Lax
matrix L:

π]
3dλi = λ2

iπ
]
1dλi,
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which lead to:

π]
3dH0 = π]

3d
1
2

log(detL)

=
1
2

n∑
1=1

1
λI
π]

3dλi

=
1
2

n∑
i=1

λiπ
]
1dλi

=
n∑

i=1

λ2
iπ

]
1d
λ2

i

2
= π]

1dH2.

Of course, this computation can be avoided by invoking Theorem 4.1.
The situation in the other simple Lie algebras of type BN and DN is

entirely similar. Therefore we have the following result:

Theorem 5.1. — Consider the Bn, Cn and Dn Toda systems. In each
case we define

N := π]
3 ◦ (π]

1)
−1,

where π1 is the Lie-Poisson bracket and π3 is the cubic Poisson bracket.
Also, let H0 = log(det(L)) and H2i = 1

2i trL
2i, if i 6= 0. Then we have the

following new bi-hamiltonian formulation for these systems:

π]
3dH0 = π]

1dH2 ⇐⇒ X1
trN = X3

log detN .

The function
√

detN equals the determinant of L for CN and DN and
the product of the non-zero eigenvalues of L for BN , while the function
1
2 trN = H2 is the original hamiltonian. Finally,

(5.3) π]
2k+1dH2−2k = π]

2k−1dH4−2k, (k ∈ Z).

5.5. Finite, non-periodic Toda lattice

The case of the An Toda lattice was already considered in [1], using
specific properties of this system. We use our general approach to show
how one can quickly recover those results.

The hamiltonian defining the Toda lattice is given in canonical coordi-
nates (pi, qi) of R2n by

(5.4) h2(q1, . . . , qn, p1, . . . , pn) =
n∑

i=1

1
2
p2

i +
n−1∑
i=1

eqi−qi+1 .
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For the integrability of the system we refer to the classical paper of Flaschka
[16].

Let us recall the bi-hamiltonian structure given in [13]. The first Poisson
tensor in the hierarchy is the standard canonical symplectic tensor, which
we denote by π0, and the second Poisson tensor is:

π1 =
(
An −Bn

Bn Cn

)
,

where An, Bn and Cn are n× n skew-symmetric matrices defined by

aij = 1 = −aji, (i < j)

bij = piδij ,

ci,j = eqi−qi+1δi,j+1 = −cj,i, (i < j).

Then setting h1 = 2 (p1 + p2 + · · · + pn), we obtain the bi-hamiltonian
formulation:

π]
0dh2 = π]

1dh1.

If we set, as usual,
N := π]

1 ◦ (π]
0)
−1,

then a small computation shows that Theorem 4.1 gives the following multi-
hamiltonian formulation:

Proposition 5.2. — The An Toda hierarchy admits the multi-hamil-
tonian formulation:

π]
jdh2 = π]

j+2dh0,

where h0 = 1
2 log(detN ) and h2 is the original hamiltonian (5.4).

If we change to Flaschka coordinates, (a1, . . . ,an−1,b1, . . . , bn), then there
is no recursion operator anymore (recall that this is a singular change of
coordinates, where we loose one degree of freedom). Nevertheless, the multi-
hamiltonian structure does reduce ([13]). One can then compute the mod-
ular vector fields of the reduced Poisson tensors πj relative to the standard
volume form:

µ = da1 ∧ · · · ∧ dan−1 ∧ db1 ∧ · · · ∧ dbn.

It turns out that the modular vector fields Xj
µ are hamiltonian vector fields

with hamiltonian function

h = log(a1 · · · an−1) + (j − 1) log(det(L)),

where L is the Lax matrix. For a discussion of this result we refer to [1].
Note that the analogue of (5.3) in this case of the Toda chain is

π]
jdh2−j = π]

j−1dh3−j , j ∈ Z
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where hj = 1
j trLj for j 6= 0 and h0 = ln(det(L)).
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