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OPEN BOOKS ON CONTACT FIVE-MANIFOLDS

by Otto VAN KOERT (*)

Abstract. — By using open book techniques we give an alternative proof
of a theorem about the existence of contact structures on five-manifolds due to
Geiges. The theorem asserts that simply-connected five-manifolds admit a contact
structure in every homotopy class of almost contact structures.

Résumé. — En utilisant des techniques de livres ouverts, nous donnons une
autre démonstration d’un théorème de Geiges sur l’existence de structures de
contact sur des variétés de dimension cinq. Ce théorème affirme que les varié-
tés simplement connexes de dimension cinq admettent une structure de contact
dans toute classe d’homotopie de structures presque de contact.

1. Introduction

At the ICM of 2002 Giroux announced his results on the relation between
contact manifolds and open book decompositions. The easy part of his re-
sults (and the part that we shall use) is a generalization of a construction
due to Thurston and Winkelnkemper [10]; one can adapt certain open book
decompositions to contact structures, thus giving a procedure to construct
contact structures using open books. Roughly speaking Giroux’s construc-
tion goes as follows. Take a compact Stein manifold P or more generally an
exact symplectic manifold with boundary and a symplectomorphism ψ of
P that is the identity near the boundary of P . The mapping torus of (P,ψ)
can be shown to admit a natural contact structure. On the other hand,
a neighborhood of the binding ∂P × D2 has a natural contact structure

Keywords: Contact topology, open books.
Math. classification: 53D35, 57R17.
(*) This paper is a part of my thesis, which I wrote under supervision of H. Geiges at
the university of Cologne. I am indebted to him for his support and patience. I would
also like to thank the anonymous referee for pointing out a nicer argument for a part of
the construction. Currently I am supported by the F.N.R.S., Belgium.



140 Otto VAN KOERT

that can be glued to the contact structure on the mapping torus, therefore
giving rise to a closed contact manifold with an adapted contact structure.

In this paper, we will use Giroux’s construction to reprove a theorem
on the existence of contact structures on five-manifolds due to Geiges [3].
More precisely, we shall reprove the following theorem.

Theorem 1.1 (Geiges). — Let M be a simply-connected five-manifold.
Then M admits a contact structure in every homotopy class of almost
contact structures.

The main idea of our alternative proof is very simple. Using the classi-
fication of simply-connected five-manifolds, we can reduce the problem to
finding contact structures on certain model manifolds. We do this by ex-
plicit construction using Giroux’s procedure. Although this is not necessary
in the construction of Giroux, we will always take Stein surfaces as pages.
Since the classification of simply-connected five-manifolds is determined by
the homology groups and the second Stiefel-Whitney class, it suffices to
track these topological invariants.

2. Preliminaries

We start by recalling Giroux’s construction in a bit more detail. Let
P be a compact Stein manifold of real dimension 2n and take a strictly
plurisubharmonic function f . The function f defines an exact symplectic
form dβ = −d(dcf) = −d(df ◦ J), where J is the complex structure on P .
Let now ψ : P → P be a symplectomorphism that is the identity near the
boundary of P . In general, ψ does not preserve β, which we would like to
have. However, it turns out that the pull-back of β under ψ can be assumed
to be exact due to the following lemma of Giroux [4].

Lemma 2.1 (Giroux). — The symplectomorphism ψ can be isotoped to
a symplectomorphism ψ′ that is the identity near the boundary and that
satisfies

ψ′∗β = β − dh.

Proof. — Let us denote the one-form ψ∗β − β by µ. Since dβ is non-
degenerate, we find a unique solution Y to the equation iY dβ = −µ. The
flow of the vector field Y preserves dβ, because µ is closed,

0 = −dµ = diY dβ = LY β.

Since ψ is the identity near the boundary, µ and hence Y vanish near
the boundary. If we denote the time t flow of Y by ϕt, then we see that
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OPEN BOOKS 141

ψ′ = ψ ◦ϕ1 is a symplectomorphism that is the identity near the boundary.
Note that LY µ = 0, so ϕ∗tµ = µ for all t. We check that the difference of
the pullback of β and β is indeed exact. We have

(ψ ◦ ϕ1)∗β − β = ϕ∗1(µ+ β)− β = µ+ ϕ∗1β − β.

On the other hand, we can express the difference ϕ∗1β − β as

ϕ∗1β − β =
∫ 1

0

d

dt
ϕ∗tβ =

∫ 1

0

ϕ∗tLY β =
∫ 1

0

ϕ∗t (iY dβ + d(iY β))

= −µ+
∫ 1

0

dϕ∗t (iY β).

Moving µ to the left-hand-side, we see that µ + ϕ∗1β − β is exact, which
shows the claim of the lemma. �

Using this lemma we can make a mapping torus with a natural contact
structure. The form

α = dϕ+ β

is a contact form on P × R that descends to the perturbed mapping torus

A := P × R/(x, ϕ) ∼ Ψ(x, ϕ) = (ψ(x), ϕ+ h(x)).

We see that α indeed gives A a well defined contact form, because

Ψ∗α = dϕ+ dh+ ψ∗β = dϕ+ dh+ β − dh = α.

The boundary of the page K = ∂P inherits a natural contact form
γ = β|TK , since P is a compact Stein manifold. We use this to "com-
plete" A into an open book. Glue B := K ×D2 along its boundary to A.
This can be done in a natural way, since ψ was assumed to be the identity
near the boundary of P .

This construction involving a mapping torus is sometimes called an ab-
stract open book. Note that one can put a contact form α̃ on B that
matches the contact form on A, thus giving rise to a closed contact manifold
X := A ∪∂ B. This contact form α̃ has the form

α̃ = h1(r)γ + h2(r)dϕ,

where (r, ϕ) are polar coordinates on D2 and h1 and h2 are functions that
are sketched in Figure 2.1. For the choice of functions indicated in Figure 2.1
the form α̃ is in fact a contact form, since the contact condition can be
rewritten as

α̃ ∧ dα̃n = hn−1
1

h1h
′
2 − h2h

′
1

r
γ ∧ dγn−1 ∧ dr ∧ rdϑ.
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142 Otto VAN KOERT

This is a non-vanishing form, since h1h′2−h2h′1
r 6= 0 by our choice of func-

tions h1 and h2. Also note that by choosing these functions suitably, we
can ensure that the contact form α̃ matches the contact form α near the
boundary of A. Hence we get a well defined contact form on the entire
abstract open book. We will call the abstract open book together with the
contact form given by the above construction an abstract contact open
book. In this procedure the contact structure is determined by the page
P and the monodromy ψ up to isotopy.

h1

∝ r2

h2

exponential falloff

Figure 2.1. The functions h1 and h2

Remark 2.2. — If two manifolds, say M and N , are constructed via
this procedure, then their connected sum M#N can also be constructed
this way. Indeed, if M is an abstract contact open book coming from the
pair (P1, ψ1) and N is constructed from (P2, ψ2), then we may consider
the boundary connected sum P1\P2, which is again a Stein manifold. Note
that the symplectomorphisms ψ1 and ψ2 can be glued to a symplectomor-
phism ψ1\ψ2 of P1\P2, since both symplectomorphisms are the identity
near the boundary. Then the abstract contact open book constructed from
(P1\P2, ψ1\ψ2) provides an open book decomposition for M#N . This pro-
cedure is called a book-connected sum.

2.1. Classification of simply-connected five-manifolds

We now recall Barden’s classification of simply-connected five-manifolds
[2]. For a simply-connected manifold M we can regard the second Stiefel-
Whitney class as a map w2(M) : H2(M) → Z2.
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OPEN BOOKS 143

Theorem 2.3 (Barden). — Two simply-connected five-manifolds M1

and M2 are diffeomorphic if and only if there exists an isomorphism of
groups A : H2(M1) → H2(M2) such that

w2(M1) = w2(M2) ◦A.

Before we give a description of the decomposition of a simply-connected
five-manifold into prime manifolds, we would like to point out that a nec-
essary condition for the existence of a contact form is the existence of
an almost contact structure. The existence of an almost contact structure
is governed by purely topological considerations. For instance, a simply-
connected five-manifold M admits an almost contact structure if and only if
the third integral Stiefel-Whitney class W3(M) = 0, see Lemma 7 from [3].

A simply-connected five-manifold can be uniquely decomposed into a
connected sum of prime manifolds Mk for 1 6 k 6 ∞ with possibly one
extra summand Xj with j = −1 or 1 6 j 6 ∞. The second Stiefel-Whitney
class of Xj , the class w2(Xj), is always non-trivial.

The manifold Mk has homology group H2(Mk) ∼= Zk⊕Zk for 1 < k <∞.
The manifold M∞ can be identified with S2 × S3. In the decomposition
above we always take k to be a prime power if k 6= ∞. The manifold M1 is
S5 and is only needed in a decomposition of M if M ∼= S5. These manifolds
all carry an almost contact structure since W3(Mk) = 0.

The manifold X−1 is known as the Wu-manifold and satisfies H2(X−1) =
Z2. It does not carry an almost contact structure since W3(X−1) 6= 0. For
1 6 j < ∞ we have H2(Xj) = Z2j ⊕ Z2j . Again W3(Xj) 6= 0, so we do
not need to consider these manifolds because they cannot have a contact
structure. Finally the manifold X∞ can be identified with S2×̃S3, the non-
trivial S3−bundle over S2 and has H2(X∞) ∼= Z. Among the "X"-manifolds
X∞ is the only one with vanishing W3, so we shall need to consider S2×̃S3.

Using this decomposition we see that it suffices to compute the second
homology group and the second Stiefel-Whitney class in order to determine
which contact five-manifold we have.

2.2. Some general arguments for computing the homology
of open books

In our construction we will always use a simply-connected page. This im-
plies that the abstract open book will also be a simply-connected manifold.
Indeed, if we use P to denote the page of the open book and A to denote
the mapping torus of P , we see that the homotopy exact sequence of a
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144 Otto VAN KOERT

fibration implies that π1(A) = Z. Now consider the completed open book
X, obtained by gluing B := ∂P ×D2 to A along a collar neighborhood of
its boundary. Note that the generator of the fundamental group of A gets
killed in B; the curve {point} × S1 lying in the boundary of A represents
the generator. In B, this curve bounds the disk {point}×D2. On the other
hand, we can always choose a curve lying in ∂P × {point} to represent a
generator of π1(B). However, such a curve will always be contractible in A,
since it lies in a page. An application of the Seifert-Van Kampen theorem
shows that the open book is simply-connected.

Since the classification of simply-connected five-manifolds is mainly con-
trolled by homology, some general arguments to compute the homology of
open books turn out to be useful. First of all, we shall stick to the nota-
tion introduced in Section 2, namely we shall denote the mapping torus of a
compact Stein manifold P by A, the thickened binding by B and the closed
manifold by X := A ∪∂ B. We can, in fact, glue along a collar neighbor-
hood of the boundary. Therefore, we can apply the Mayer-Vietoris sequence
straight away to X and its "parts" A and B to compute the homology of X.

The homology of the mapping torus A, being a fiber bundle over S1, can
be determined from the Wang sequence [11], but see also [1]. This works
as follows. Suppose P is a manifold and ϕ a diffeomorphism of P . If the
mapping torus A is defined by

A := P × [0, 1]/(x, 0) ∼ (ϕ(x), 1),

then we have the following long exact sequence in homology, called the
Wang sequence,

→ H3(A; Z) → H2(P ; Z)
ϕ∗−id→ H2(P ; Z) incl∗→ H2(A; Z) → .

The homology of B is simply the homology of the boundary of a page
K = ∂P . Finally we have the homotopy equivalence A ∩ B ∼ K × S1, so
the homology of A ∩ B can be determined using the Künneth formula for
K × S1.

In order to simplify the sequences, we will use the following simple ar-
gument. If ϕ : G→ G is a surjective homomorphism of finitely generated
abelian groups, then ϕ is an isomorphism. This can be seen as follows.
Write G = Zk ⊕ T , where Zk is a free abelian group of rank k and T is a
torsion group. Write ϕ = (f, g), where f : G → Zk and g : G → T . Of
course, f cannot depend on the torsion part of G, so f can be regarded as a
surjective homomorphism from Zk to Zk. This means f must be injective,
since this would also be true if we extended f to a linear surjection from
Qk to Qk. This implies that if we restrict g to T , we get a surjective map
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from T to T . Since these are finite sets with an equal number of points, the
map g|T must be injective as well, which in turn implies that ϕ is injective.

We will apply this for instance in the following situation. Consider the
Mayer-Vietoris sequence of the pair (A,B) in X, where A and B are as
above. Since we already saw that X is simply-connected, we also have that
H1(X) = 0, and hence a part of the Mayer-Vietoris sequence looks like

H1(A ∩B)
f→ H1(A)⊕H1(B) → 0.

Note that by the Künneth formula H1(A∩B) ∼= H1(A)⊕H1(B). Applying
the above argument at this point shows that the map f is an isomorphism.
This can also be seen in different ways, for instance using the fundamental
groups of the involved spaces.

3. Contact open books for S2 × S3 and S2×̃S3

Our construction starts by taking a simple Stein manifold P := Σk, the
2-disk-bundle over S2 with Euler number −k with k > 2. We remark that
these manifolds carry often more than one Stein structure as can be seen
in Figure 3.1. Here we use the Kirby diagram description of Stein surfaces
due to Gompf [5]; by attaching two-handles in a suitable way to Legendrian
knots, one can ensure that the resulting manifold carries a Stein structure,
i.e. we choose the framing of a Legendrian knot K to be equal to the contact
framing minus 1. First we will show that we get contact open books for

all smoothly isotopic to

−1
−1−1

−4

Figure 3.1. Different Stein structures on Σ4

S2 × S3 and S2×̃S3, then we will show that the different realizations from
Figure 3.1 can give rise to different contact structures on S2 × S3 and
S2×̃S3.

TOME 58 (2008), FASCICULE 1



146 Otto VAN KOERT

Let Sk denote the contact boundary of Σk. It is well known that the
manifold Sk can be identified with the circle bundle over S2 with Euler
number −k. We will use the identity as monodromy, so the mapping torus
of the pair (Σk, id) is diffeomorphic to A := Σk × S1. A neighborhood of
the binding will be written as B := Sk×D2. By gluing A and B in a collar
neighborhood of their boundary we obtain a contact manifold X := A∪∂B.

To see what manifold X is, consider the rank 4 disk bundle Σk×D2 over
S2. We can rewrite its boundary as

∂(Σk ×D2) = Σk × S1 ∪∂ Sk ×D2 = A ∪∂ B = X.

In other words, the manifold X is a 3-sphere bundle over S2. To see what
sphere bundle it is, we look more closely at the vector bundle associated to
the disk bundle Σk, which we shall denote by σk. If we denote the trivial
bundle of rank 2 by ε2, then Σk × D2 is the disk bundle associated to
σk ⊕ ε2. Recall now that rank 4 vector bundles over S2 are classified by
their second Stiefel-Whitney class. In our case, this class is given by

w2(σk ⊕ ε2) = w2(σk) = k mod 2.

So for k even the bundle σk ⊕ ε2 is trivial and for k odd the bundle σk ⊕ ε2
is the unique non-trivial bundle of rank 4 over S2. As a result, we see that
X is diffeomorphic to S2 × S3 for k even. For k odd, the manifold X is
diffeomorphic to S2×̃S3 ∼= X∞.

3.1. Chern classes of contact structures

Let us take a look at Figure 3.1. Legendrian unknots representing Σk have
rotation numbers going from −k + 2,−k + 4, · · · , k − 2. Fix a Legendrian
unknot representing Σk and denote its rotation number by r. Now Theorem
11.3.1 from the book of Gompf and Stipsicz [6] tells us how to compute the
Chern class.

Theorem 3.1 (Gompf). — Suppose P is a Stein surface obtained by
two-handle attachment along a Legendrian link L. Then c1(P ) is repre-
sented by a cocycle whose value on each oriented two-handle h attached
along a component K of L is given by r(K).

We have just a single Legendrian unknot, so application of this theorem
shows that

c1(Σk) = r ∈ Z ∼= H2(Σk).

We now want to establish the relation between the Chern class of the con-
tact structure corresponding to the open book decomposition we described
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and the Chern class of Σk, the page of the open book. We may regard the
pull-back p∗1TΣk as a subbundle of TA. If we denote the symplectic form
on Σk by ω, then we may write the contact form on A as α = dt + β,
where t is the local coordinate on S1 = R/Z, and β satisfies dβ = p∗1ω.
We obtain a complex structure J for p∗1TΣk by pulling back the (almost)
complex structure on Σk that is compatible with ω.

Next, we construct a vector bundle isomorphism from p∗1TΣk to the
contact structure ξ = kerα. Define

ϕ : p∗1TΣk → ξ

v 7→ v − β(v)
∂

∂t
.

In the definition of this map, we regard both p∗1TΣk and ξ as subbundles
of the tangent bundle. The vector field ∂

∂t generates the standard rotation
in the S1-direction.

The inverse of ϕ can be obtained as follows,

ϕ−1(v) = H(Tp1(v)),

where we use H to denote the obvious lift from TΣk to TA. In other words,
the inverse of ϕ projects out the ∂

∂t -component of an element in ξ ⊂ TA.
This map ϕ can be used to give ξ a complex structure. Put J̃ := ϕ◦J ◦ϕ−1.
This makes ϕ into a complex vector bundle isomorphism from (p∗1TΣk, J)
to (ξ, J̃), because by construction J̃ ◦ ϕ = ϕ ◦ J . We check now that J̃ is
a complex structure for ξ compatible with dα = dβ. We set ṽ = ϕ(v) and
w̃ = ϕ(w). Then

dβ(J̃ ṽ, J̃ w̃) = dβ(ϕ(Jv), ϕ(Jw)) = dβ(Jv, Jw) = dβ(v, w)

= dβ(ϕ(v), ϕ(w)) = dβ(ṽ, w̃)

These steps hold true, because ϕ adds an S1-component and dβ does not
contain any dt part, so dβ(ϕ(. . .), ϕ(. . .)) = dβ(. . . , . . .). Also, J is a com-
plex structure on (p∗1TΣk, J) compatible with dβ. For the same reasons,
the following holds:

dβ(ṽ, J̃ ṽ) = dβ(ϕ(v), ϕ(Jv)) = dβ(v, Jv) > 0 if ṽ 6= 0.

This proves that J̃ is a complex structure compatible with the contact
structure ξ. Since (p∗1TΣk, J) and (ξ, J̃) are isomorphic as complex vector
bundles by ϕ (which covers the identity), their Chern classes are the same.
We had already computed the Chern class of Σk, so we have proved that
c1(ξ) = r ∈ Z ∼= H2(A).
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148 Otto VAN KOERT

We resort to a Mayer-Vietoris argument to complete our computation of
the Chern class of X. Consider the Mayer-Vietoris sequence for cohomology
with integer coefficients. The part that is relevant to us looks like

0 → H1(A)
∼=Z

⊕H1(B)
∼=0

α→ H1(A ∩B)
∼=Z

f→ H2(X)
∼=Z

(i∗,j∗)→ H2(A)⊕H2(B)
∼=Z⊕Zk

.

Since the map α is injective, it has to map 1 to some non-zero integer, say
m. If m is not equal to ±1, then we see that f(m) = 0, but f(1) 6= 0 by
exactness. However H2(X) has no torsion, so we see that m = ±1 and thus
the map α is an isomorphism. Again, by exactness the map f has to be
the zero homomorphism. So we see that the map (i∗, j∗) is injective. We
can say a bit more, namely that i∗ is injective. This can be seen by noting
that H2(B) is torsion. We show that i∗ is an isomorphism by looking at
the sequence of the pair (X,A). The piece of the sequence that interests
us, looks like

H2(X) i∗→ H2(A) → H3(X,A).

By excision, we have H3(X,A) ∼= H3(B, ∂B). The latter group is seen to
be isomorphic to H2(B) = 0 by Poincaré duality. This shows that i∗ is
surjective.

The restriction of the first Chern class of the contact structure ξX on
X to A is given by c1(ξX) = r. Since we just checked i∗ to be an iso-
morphism, it follows that c1(ξX) = r ∈ Z ∼= H2(X). There is an ambigu-
ity in this notation, namely it depends on which generator of H2(X) we
take.

These ambiguities do not matter for the point we want to make, which
is showing that all possible Chern classes of ξX can be realized by our
open books (i.e. both positive and negative elements in H2(X)). Indeed,
the isomorphism i∗ : H2(X) → H2(A) only depends on the topological
structure of Σk and Sk, and not on the Stein structure of Σk. Hence we
can change the sign of the first Chern class of ξX without affecting the
orientation of X, for example by replacing the Legendrian knot representing
Σk by its mirror.

Notice that for (X ∼= S2 × S3, ξX) we can realize all even Chern classes
and for (X ∼= S2×̃S3, ξX) we can realize all odd Chern classes. Namely,
observe that the rotation number r of the diagram in Figure 3.1 can
attain any even value, provided that we have chosen k even and large
enough for that purpose. The same argument works for odd rotation num-
bers.

ANNALES DE L’INSTITUT FOURIER



OPEN BOOKS 149

4. Open books for prime manifolds

In this section we will construct open book decompositions of the re-
maining prime manifolds, i.e. those simply-connected five-manifolds with
torsion H2 and trivial Stiefel-Whitney class. In order to cover these remain-
ing cases, we turn our attention to a well studied class of Stein manifolds,
namely Brieskorn varieties. Note that for the cases we still need to cover,
it is necessary to use a non-trivial monodromy.

4.1. Brieskorn varieties

Consider the polynomial

Pt(z) =
n∑

i=0

zai
i − t

for z = (z0, . . . , zn) ∈ Cn+1 and t ∈ C. The zero set of this polynomial
is a Stein manifold if t 6= 0. If t = 0, the zero set of Pt has a singularity
at 0 if one of the exponents is larger than 1. We will denote the zero
set of the polynomial Pt by Σa, where a indicates that this set depends
on the exponents a = (a0, . . . , an). We will call the set Σa a Brieskorn
variety. There is a group action of Zai

on Σa obtained by multiplying
the ith coordinate by ath

i roots of unity for each i = 0, . . . , n. These Stein
manifolds can be made into compact Stein manifolds by restricting Σa to
a ball BR = {z ∈ Cn+1 | |z| 6 R} in Cn+1 with sufficiently large radius.
By abuse of notation, we will also denote this set by Σa. The boundary of
this compact Stein manifold is a Brieskorn manifold with exponents a,
provided that t is small enough. This property of Brieskorn manifolds can
for instance be found in theorem 14.3 of [7].

We would like to use Brieskorn varieties as pages with the corresponding
Brieskorn manifolds as binding in open books. In order to produce a non-
trivial symplectomorphism, we consider the action of the generator of Za0

on Σa as monodromy, i.e. we use the “rotation” map

ϕ : Σa → Σa

(z0, . . . , zn) 7→ (ζa0z0, z1, . . . , zn),

where ζa0 is the ath
0 root of unity e2πi/a0 . Since this is even a biholomor-

phism, we get a symplectomorphism of the page, but we still need to show
that we can isotope this map symplectically to the identity near the bound-
ary of the page. We will describe this in the following interlude.
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4.1.1. The rotation maps ϕ are symplectically isotopic to the identity

Instead of considering the polynomial P , we take the function

g =
n∑

i=0

zai
i − f(r),

where r =
√∑n

i=0 |zi|2 and the function f is a real valued function to be
specified later. We denote the zero set of g by Σ̃a. Note that this set is in
general not a Stein manifold. We will, however, show that it is symplectic
for suitable f , as one might suspect if f varies slowly. To be more precise,
take a vector X ∈ TCn+1|g−1(0). The condition that X be tangent to Σ̃a is

iXdg = iX

(
n∑

i=0

aiz
ai−1
i dzi −

1
2
∂f

∂r

n∑
i=0

(
z̄i

r
dzi +

zi

r
dz̄i)

)
= 0.

Let now ω0 denote the standard symplectic form on Cn+1 and suppose that
ω0|Σ̃a

is degenerate for the vector X at some point of Σ̃a. Then we have

iXω0 = (λdg + λ̄dḡ)

for some λ ∈ C, because we know ω0 is non-degenerate on Cn+1. Using this
relation, we deduce that

iXdzj =
2
i

(
−
(
∂f

∂r

zj

2r

)
(λ+ λ̄) + aj z̄

aj−1
j λ̄

)
.

Now we return to check the tangency condition of X. The previous relations
now give us

0 = iXdg =
2
i
λ̄

∑
j

a2
j |zj |2(aj−1) − ∂f

∂r

∑
j

aj

2r
(zaj

j + z̄
aj

j )


The coefficient of λ̄ has a term involving a2

i |zi|2(ai−1) in it. Now assume
that the exponents are larger than 1 and that the derivative ∂f

∂r < 1− ε for
some positive ε. This means that the term with a2

i |zi|2(ai−1) will dominate
for large r, i.e. the coefficient of λ̄ will be non-zero and therefore λ̄ = 0.
Since |λ̄| = |λ|, it follows that λ must be zero, which in turn implies that X
is zero. This last step shows that Σ̃a can be made symplectic for suitable
f . To be more precise we choose f with the following properties.

1. The function f is constant 1 for r 6 R0, where R0 is chosen in such
a way that the above mentioned term will indeed dominate.
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2. For r > R1 > R0 + 1, the function f is constant 0. Note that this
condition is not necessary for symplecticity. It will, however, be
useful to make the rotation maps isotopic to the identity for large
radii.

3. Between R0 and R1, the function f goes smoothly from 1 to 0,
connecting smoothly to the already described parts of f . We will
choose f such that its derivative is smaller than 1− ε.

Now that we know that Σ̃a is symplectic, we want to see that the corre-
sponding rotation map can be isotoped to the identity. First define the map
ϕ : Cn+1 → Cn+1, sending (z0, . . . , zn) 7→ (ζa0z0, z1, . . . , zn). Now choose
the following Hamiltonian function on Cn+1;

H =
n∑

i=0

π

ai
|zi|2.

The time t flow of the Hamiltonian vector field associated to H induces the
map

ψt : (z0, . . . , zn) 7→ (e2πi t
a0 z0, . . . , e

2πi t
an zn).

Note that this map sends Σ̃a to Σ̃a for r > R1. Choose a function h that
is constant 0 for 0 6 r 6 R1 and that increases to 1 at r = R2 > R1, after
which it is constant 1. Let ψ̃t denote the time t flow of the Hamiltonian
vector field associated to H̃ = hH. The map ψ̃t sends Σ̃a to Σ̃a for all
radii. By choosing t0 ∈ Z such that t0 = −1 mod a0 and t0 = 0 mod ai for
i = 1, . . . , n, we undo the rotation in the first coordinate for large radii and
hence we see that ψ̃t is the identity near the boundary. Note this choice is
not always possible, but if a0 is relatively prime to ai for i = 1, . . . , n, it is.
Altogether, we have the map

ϕ̃ = ψ̃t0 ◦ ϕ : Σ̃a → Σ̃a,

which is the identity near the boundary of Σ̃a. Also note that the choice of
t0 is not unique.

4.1.2. Homomorphism on homology induced by the rotation map

We shall take this isotoped rotation map as the monodromy for the page
Σ̃a. In order to invoke Barden’s classification result, we need to know what
map the monodromy induces on the homology of Σ̃a. The Wang sequence
we discussed in Section 2.2 gives the homology of the mapping torus.

First, we observe that ϕ and ϕ̃ are isotopic, so they induce the same
maps on homology. And we may, in fact, work with the non-deformed Stein
manifold Σa and the rotation map defined there (which we will also refer
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to as ϕ), because Σ̃a and Σa coincide in ball of radius R0 around the origin
as subsets of Cn+1.

These Stein manifolds Σa have been studied carefully in the past (see
for instance [7]) and many results about their properties, including their
homology, are known. We will give a short summary of some of the results
that we will use. The results that we are listing are from Hirzebruch-Mayer,
[7], but date back to Pham, see [8].

In the following we will use the group action on Σa induced by multi-
plication by roots of unity. To that end, we introduce some notation. The
group of ath

j -roots of unity will be written as Gaj
∼= Zaj when we consider

it as an abstract group, and we will denote a generator of Gaj
by wj . As

a subgroup of C∗, we shall write G̃aj . The roots of unity will be indicated
by ζj . We will write Ga = Ga1 ⊕Ga2 ⊕ · · · ⊕Gan

. Let us now consider the
deformation retract of the Stein manifolds Σa indicated in the following
theorem.

Theorem 4.1 (Pham, see [7] and [8]). — The set Ua = {z ∈ Σa | z
aj

j >
0 for all j} is a deformation retract of Σa. This deformation is compatible
with the group action mentioned above.

We can parametrize the set Ua in the following way,

Ua = {(ζ0t0, . . . , ζntn) ∈ Cn+1| ζj ∈ G̃aj , tj > 0 and
n∑

i=0

t
aj

j = 1}.

On the other hand, note that the join Ga0 ∗ · · · ∗Gan may be written as

G̃a0 ∗ · · · ∗ G̃an ={(ζ0t0, . . . , ζntn)∈Cn+1 | ζj ∈G̃aj , tj >0 and
n∑

i=0

tj =1}.

These sets can be identified if we rescale the tj ’s. Notice that this identi-
fication is compatible with the group action, because Ga acts only on the
roots of unity.

General theory gives us that the join Ga0 ∗ · · · ∗Gan is an n-dimensional
simplicial complex with an n-simplex for each element in Ga. This is again
compatible with the group action in the following sense. Let e denote the
simplex corresponding to 1 ∈ Ga. The other simplices are obtained by
letting Ga act. In other words, the simplicial chain complex in degree n
can be written as

Cn(Ua) = Z(Ga)e,

where Z(Ga) denotes the group ring of Ga.
Now define

h := (1− w0)(1− w1) . . . (1− wn)e.
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In the lecture notes of Hirzebruch and Mayer [7] it is shown that h is a
cycle. In fact, one can establish an isomorphism (see [7] for more details)

H̃n(Ua) ∼= Z(Ga)h

coming from the homomorphism

Φ : Cn(Ua) ∼= Z(Ga) → Z(Ga)h

w 7→ wh.

The kernel of Φ is the ideal Ia generated by

1 + wj + w2
j + · · ·+ w

aj−1
j for j = 0, . . . , n.

Let us consider the basis of H̃n(Ua) represented by elements in Cn(Ua) of
the form

(4.1) wk0
0 wk1

1 · . . . · wkn
n with 0 6 kj 6 aj − 2 for j = 0, . . . , n.

With respect to this basis, we can give a matrix representation of ϕ∗, the
isomorphism on homology induced by the rotation map ϕ. The "rotation"
map ϕ corresponds to multiplication by w0 on Cn(Ua). That is to say that
ϕ shifts the basis in Formula 4.1 by w0. For the induced map on homology,
we use the ideal Ia to simplify the results if necessary, for instance

w0 7→ w2
0

wa0−2
0 7→ wa0−1

0 ≡ −1− w0 − . . .− wa0−2
0 mod Ia.

Hence the matrix representation of ϕ∗ consists of (a1 − 1) · . . . · (an − 1)
blocks on the diagonal that look like the (a0 − 1)× (a0 − 1)-matrix

0 0 · · · 0 −1
1 0 · · · 0

0 1
. . .

...
...

...
. . . . . . 0

0 · · · 0 1 −1


if we order the basis by its degree in w1, then by its degree in w2 and so
on.

The above representation of ϕ∗ can be used to compute the homology of
the mapping torus

A′ := Σa × I/ ∼, where (x, 0) ∼ (ϕ(x), 1).

This is done using the Wang sequence. We use the facts that H3(Σa) = 0
and that π1(Σa) = 0 (and hence also H1(Σa) = 0). The piece that is
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relevant to us looks like

0 → H3(A′) → H2(Σa)
ϕ∗−id→ H2(Σa) → H2(A′) → 0.

Using the above matrix representation of ϕ∗ we see that ϕ∗−id is injective,
because the determinant of the associated matrix is non-zero. Hence we
conclude that H3(A′) = 0 and that H2(A′) ∼= coker(ϕ∗ − id). We have

H2(A′) ∼= coker(ϕ∗ − id) ∼= Za0 ⊕ · · · ⊕ Za0 .︸ ︷︷ ︸
(a1−1)·...·(an−1)times

Indeed, each block of the matrix representation of ϕ∗ − id corresponding
to the above block has a cokernel isomorphic to Za0 , which can be seen by
performing Gauss elimination. Together with the discussion at the begin-
ning of this section this gives us the homology of the mapping torus of Σ̃a

with monodromy ϕ̃. Let A denote this mapping torus,

A = Σ̃a × I/ ∼, where (x, 0) ∼ (ϕ̃(x), 1).

Then we have

(4.2) H2(A) ∼= Za0 ⊕ · · · ⊕ Za0︸ ︷︷ ︸
(a1−1)·...·(an−1)times

.

The homotopy exact sequence of the fibration A→ S1 shows that π1(A) ∼=
Z, so we see that H1(A) ∼= Z as well. All higher homology groups (grade
larger than two) are zero.

4.1.3. Homology of the open book

Now we choose suitable exponents for the Brieskorn varieties and use
them to give the remaining prime manifolds contact open books.

First of all, we consider the Brieskorn variety Σ̃a with exponents a0 = pk,
a1 = 3 and a2 = 2, where p is a prime different from 2 and 3, and k some
positive integer. Notice that the associated Brieskorn manifold K is then
a homology sphere, i.e. H1(K) = 0. The set A denotes the mapping torus
of Σ̃a with monodromy ϕ̃ as in the previous section. As is our convention,
we define B := K ×D2 and set X := A ∪∂ B.

The arguments from Section 2.2 show that X is simply-connected. By
Poincaré duality we see that H4(X) = 0, and since K is a homology sphere
we also have H2(A ∩ B) = 0. Consider the following piece of the Mayer-
Vietoris sequence,

0 → H2(A)
∼=Z

pk⊕Z
pk

⊕H2(B)
∼=0

→ H2(X) → 0.
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Here we have used the arguments from Section 2.2 to split off a part
of the sequence. We see directly that H2(X) ∼= Zpk ⊕ Zpk . In particular,
the rank of H2(X) is zero, so H3(X) = 0 as well by Poincaré duality and
the universal coefficient theorem. This shows that the prime manifolds M
with H2(M) ∼= Zpk ⊕ Zpk admit contact open books for p 6= 2, 3. The
binding is a Brieskorn homology sphere of the form Σ(pk, 3, 2), and the
page is the Brieskorn variety Σ̃a. Together with our earlier results, this
covers all prime manifolds except those with 2- or 3-torsion in their second
homology group. To get them, we consider Brieskorn varieties with different
exponents.

First we shall tackle the case of 2-torsion in homology. Consider the
Brieskorn varieties Σ̃a with exponents a0 = 2k, a1 = 3 and a2 = 3. Since
the exponents are not relatively prime, we cannot conclude that K is a
homology sphere. We can, however, compute the homology of K by using
the algorithm of Randell [9]. We get H1(K) ∼= Z2k ⊕ Z2k .

Let X := A ∪∂ B be the open book as before, but now with the new
exponents. If we consider the Mayer-Vietoris sequence for (A,B) in X with
rational coefficients, we easily see that the rank of H3(X) is zero. Together
with the arguments from Section 2.2 this reduces the remaining part of the
Mayer-Vietoris sequence for (A,B) with integer coefficients to

0 → H2(A ∩B)
∼=Z2

2k

i⊕j→ H2(A)
∼=Z4

2k

⊕H2(B)
=0

→ H2(X) → 0.

We have used to Künneth formula to determine H2(A ∩ B). The rank of
H1(K) is zero, so by Poincaré duality H2(K) = 0 and hence we also have
H2(B) = 0. Formula (4.2) gives the homology of A. Injectivity of the map
i⊕ j means that we can represent this map by a (4 × 2) matrix which
has a (2 × 2) subdeterminant that is a unit in Z2k . Hence we see that we
can extend this matrix to form a basis of Z4

2k . So after applying a basis
transformation on Z4

2k , we see that

im i⊕ j = Z2k × Z2k × {0} × {0}.

Hence by exactness, we obtain H2(X) ∼= Z2
2k .

The arguments for the 3-torsion case are almost completely the same.
The exponents for Σa are different, of course. We take a0 = 3k, a1 = 4
and a2 = 2. As before we use the algorithm of Randell [9] to compute
the homology of the Brieskorn manifold K. This time we get H1(K) ∼=
Z3k . Formula (4.2) shows that H2(A) = Z3

3k . Again, using the arguments
from Section 2.2 we can split off a part of the Mayer-Vietoris sequence.
By tensoring with Q we see that the rank of H2(X) is zero, and hence
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H3(X) = 0. This reduces the sequence to

0 → H2(A ∩B)
∼=Z3k

i⊕j→ H2(A)
∼=Z3

3k

⊕H2(B)
∼=0

→ H2(X) → 0.

The map i ⊕ j is injective, so i ⊕ j(1̄) = (a, b, c) is an element of order
3k. This means that one of the elements a, b, c is a unit in Z3k . Therefore
we can include the vector (a, b, c) into a basis of Z3

3k . With respect to
this basis we have i ⊕ j(1̄) = (1, 0, 0). By exactness, we see directly that
H2(X) ∼= Z3k ⊕ Z3k .

Remark 4.2. — An easier way to see that these prime manifolds admit
contact structures is by considering Brieskorn manifolds. Namely, we have

H2(Σ(pk, 3, 3, 3)) ∼= Zpk ⊕ Zpk for p not divisible by 3

and
H2(Σ(pk, 2, 4, 4)) ∼= Zpk ⊕ Zpk for p not divisible by 2.

This can be shown by applying Randell’s algorithm [9]. Of course, we do
not obtain the abstract open books in this way.

5. Conclusion and discussion

In Section 3 and Section 4 we constructed abstract contact open books
for the prime manifolds in Barden’s classification. Note that we can easily
obtain an abstract contact open book for S5. Simply take D4 with standard
symplectic structure as page and use the identity as monodromy. In view of
Remark 2.2, this gives abstract contact open books for all simply-connected
five-manifolds that admit an almost contact structure. Moreover, we can
realize a contact structure with any admissible Chern class, since a non-zero
Chern class can only come from an S2 × S3- or an S2×̃S3-factor. For the
latter two manifolds we have shown that we can realize all possible Chern
classes. In [3] Lemma 7, it is shown that, for an oriented five-manifold, the
almost contact structure is completely determined by the first Chern class.

We can change the orientation by replacing a contact form α by −α.
Hence we get a contact open book for every homotopy class of almost
contact structures on a simply-connected five-manifold. This completes our
alternative proof of Theorem 1.1.

Remark 5.1. — In our construction there is still a lot of freedom left,
even though we took very explicit cases. For S2 × S3 and S2×̃S3 we can,
for instance, vary the page of the abstract open book but keep the Chern
class fixed. This can for instance be done by adding two stabilizations to
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the Legendrian unknot used for the handle attachment; by adding one
stabilization on the left side and one on the right side of the Legendrian
unknot, we fix the rotation number, but decrease the framing (tb−1) by 2.
The resulting abstract contact open books have the same Chern class, but
are they contactomorphic?

For the other prime manifolds, we can vary the monodromy in the fol-
lowing way. The parameter t0 we used in isotoping the "rotation" map to
the identity near the boundary in Section 4.1.1 is not unique. The obvious
question is, whether different choices can lead to different contact struc-
tures on the same manifold. Here one should note that although we used
a Hamilton vector field for the isotopy, we did not use one with compact
support. Hence we could get different maps that are not symplectically
isotopic relative to boundary.
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