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A LINEAR EXTENSION OPERATOR FOR WHITNEY
FIELDS ON CLOSED O-MINIMAL SETS

by Wiesław PAWŁUCKI (*)

Dedicated to my wife Jolanta

Abstract. — A continuous linear extension operator, different from Whitney’s,
for Cp-Whitney fields (p finite) on a closed o-minimal subset of Rn is constructed.
The construction is based on special geometrical properties of o-minimal sets earlier
studied by K. Kurdyka with the author.

Résumé. — On construit un opérateur d’extension linéaire et continu pour les
champs de Whitney de classe Cp (p fini) sur un sous-ensemble fermé o-minimal de
Rn. La construction, différente de celle de Whitney, est basée sur des propriétés
géométriques spéciales des ensembles o-minimaux, étudiées avant par K. Kurdyka
et l’auteur.

1. Introduction

In 1997 K. Kurdyka and the author gave in [6] the following o-minimal
version of the Whitney extension theorem:

Theorem 1.1 ([6]). — Given any o-minimal structure on the ordered
field of real numbers R, a compact definable subset E ⊂ Rn, a definable
Cp-Whitney field F on E, where p ∈ N \ {0}, then for any integer q > p,
there exists a definable Cp-extension f : Rn −→ R of F which is Cq on
Rn \ E.

However, the extension operator F 7→ f from [6] is not linear and it
was not clear how the construction from [6] based on o-minimal geometry
could be adapted to get an extension operator for all Whitney fields on

Keywords: Whitney field, extension operator, o-minimal structure, subanalytic set.
Math. classification: Primary 26B05, 14P10. Secondary 32B20, 03C64.
(*) Research partially supported by the KBN grant 5 PO3A 005 21 and the European
Community IHP-Network RAAG (HPRN-CT-2001-00271).
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any compact (or more generally closed) o-minimal subset E of Rn. The
present paper is devoted to this question. The main goal here is to prove
the following

Theorem 1.2. — Let E be a closed o-minimal subset of Rn and p ∈ N.
Let Ep(E) denote the Fréchet algebra of all Cp-Whitney fields on E.

Then there exists a continuous linear extension operator L : Ep(E) −→
Cp(Rn) which has the following properties

(1) L is a finite composition of operators each of which either preserves
definability or (only if p > 0) is an integration with respect to a
parameter;

(2) operators preserving definability in (1) are only of the following
five types: substituting with a definable mapping; taking a linear
combination with definable coefficients; differentiation; restriction
to a definable subset and extending by zero;

(3) there exists a constant M > 0 such that if ω is a modulus of conti-
nuity of a field F , then Mω is a modulus of continuity of LF .

Since L involves integration, it may not preserve definability in the initial
o-minimal structure where E is definable. For example, if F is a (globally)
subanalytic Cp-Whitney field, then LF can a priori involve the function
t 7→ t log t, not subanalytic at 0. By a result of Lion and Rolin [7], we get
in this case the following

Corollary 1.3. — LetA denote the algebra of real functions generated
by (globally) subanalytic functions and their logarithms; i.e. A consists
of all functions of the form P (h1, . . . , hm, log h1, . . . , log hm), where hi :
Rn −→ R (i = 1, . . . ,m) are subanalytic, m ∈ N\{0}, P ∈ R[Y1, . . . , Y2m],
and where we adopt the convention: log t = 0, for t 6 0. Let E be a closed
subanalytic subset of Rn and p ∈ N.

Then there exists a continuous linear extension operator L : Ep(E) −→
Cp(Rn) which has the following properties:

(1) if F is a Cp-Whitney field on E all derivatives of which Fκ are
(restrictions to E of) functions in A, then LF ∈ A;

(2) there exists a constant M > 0 such that if ω is a modulus of conti-
nuity of a field F , then Mω is a modulus of continuity of LF .

The case p = 0 in Theorem 1.2, when integration is not used seems worth
being stated separately

Corollary 1.4. — Let E be a closed o-minimal subset of Rn and let
C(E) denote the Fréchet space of all real continuous functions on E
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A LINEAR EXTENSION OPERATOR 385

Then there exists a continuous linear extension operator L : C(E) −→
C(Rn) preserving definability and such that there exists M > 0 such that,
if ω is a modulus of continuity for F ∈ C(E), then Mω is a modulus of
continuity for LF .

By an o-minimal subset of an Euclidean space Rn we mean a subset
definable in any o-minimal structure on the ordered field of real numbers
R (see [2, 3] for the definition and fundamental properties).

We refer the reader to [13], [4], [8], [11] or/and [12] for basic facts on
Whitney fields. It will be convenient for us to adopt the following definition
of a Whitney field.

Let p ∈ N \ {0} and let A be a locally closed subset of Rn; i.e. contained
and closed in some open subset G ⊂ Rn. A Cp-Whitney field on A is a
polynomial

F (u,X) =
∑
|κ|6p

1
κ!
Fκ(u)Xκ ∈ C(A)[X] = C(A)[X1, . . . , Xn],

which fulfills the following condition

(∗) for each c ∈ A and each α ∈ Nn such that |α| 6 p

Dα
XF (a, 0)−Dα

XF (b, a−b) = o(|a−b|p−|α|), when A 3 a→ c, A 3 b→ c,

or equivalently (see [8], Chapter I, Theorem 2.2) - the condition

(∗∗) for each c ∈ A

F (a, x− a)− F (b, x− b) = o(|x− a|p + |x− b|p),

uniformly with respect to x ∈ Rn, when A 3 a→ c, A 3 b→ c.

We will denote by Ep(A) the real algebra of all Cp-Whitney fields on A.
It is a Fréchet algebra with the topology defined by the following system
of seminorms

||F ||Kp = |F |Kp + sup
a,b∈K
a6=b
|α|6p

|Dα
XF (a, 0)−Dα

XF (b, a− b)|
|a− b|p−|α|

,

where K is a compact subset of A and | . |Kp is a seminorm defined by

|F |Kp = sup
a∈K
|α|6p

|Fα(a)|.

Let Cp(G) denote the usual Fréchet algebra of real functions of class Cp

(Cp-functions) on G. Then we have the following homomorphism of Fréchet
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algebras

T : Cp(G) −→ Ep(A), T f(a,X) = T p
a f(X) =

∑
|κ|6p

1
κ!
Dκf(a)Xκ,

and the Whitney extension theorem [13] says that there exists a linear
continuous mapping

W : Ep(A) −→ Cp(G) such that T ◦W = idEp(A),

called an extension operator .

A subset E of Rn is said to be 1-regular (with a constant C > 1) if any
two points a, b of E can be joined in E by a rectifiable arc γ : [0, 1] −→ E

of length |γ| 6 C|a− b|.

If F ∈ Ep(A) and K is a compact 1-regular subset of A with a constant
C, then

|F |Kp 6 ||F ||Kp 6 2n
p
2Cp|F |Kp (See [12], p.76, (2.5.1)).

Consequently, if every compact subset L of A is contained in a 1-regular
compact subset K of A, then the topology of Ep(A) is defined by the system
of seminorms | . |Kp .

As was shown by Glaeser [4] (see also [8], [12] or [11]) it is convenient to
use a notion of a modulus of continuity in connection with Whitney fields.
By a modulus of continuity we will understand any continuous, increas-
ing and concave function ω : [0,+∞) −→ [0,+∞), vanishing at 0. By a
modulus of continuity of a Cp-Whitney field

F (u,X) =
∑
|κ|6p

1
κ!
Fκ(u)Xκ

on a subset A of Rn we will understand such a modulus of continuity ω

that
|Dα

X(a, 0)−Dα
X(b, a− b)| 6 ω(|a− b|)|a− b|p−|α|,

whenever |α| 6 p and a, b ∈ A. For a Cp-function f ∈ Cp(G) on an open
subset G, by its modulus of continuity we will understand a modulus of
continuity of the Cp-Whitney field Tf on G.

Every Cp-Whitney field on a compact subset of Rn admits a modulus
of continuity. If a Cp-Whitney field F on a subset A has a modulus of
continuity ω, then it is easily seen that F extends by uniform continuity to
a Cp-Whitney field on A with the same modulus of continuity. Whitney’s
extension operator [13] has the following property (see [4]):

ANNALES DE L’INSTITUT FOURIER



A LINEAR EXTENSION OPERATOR 387

There exists a constant M depending only on p and n such that, for
every F ∈ Ep(A) admitting a modulus of continuity ω, Mω is a modulus
of continuity for WF . (In fact a localization by a partition of unity is
necessary.)

We have also the following

Proposition 1.5. — Let F be a Cp-Whitney field on a (locally) closed
1-regular with constant C subset A.

(1) If ω is a modulus of continuity of F on A, then |Fα(a)− Fα(b)| 6
ω(|a− b|), whenever |α| = p, a, b ∈ A.

(2) If ω is a modulus of continuity such that |Fα(a)−Fα(b)| 6 ω(|a−b|),
whenever |α| = p, a, b ∈ A, then n

p
2Cpω is a modulus of continuity

of F on A.

Proof. — (1) being trivial, for (2) see again [12], (2.5.1), p.76. �

Shortly, our construction of the extension operator L is as follows. First
we show how to extend Cp-Whitney fields from a linear subspace Rk × 0
of Rn. Then we generalize the construction to the set of the form Ω × 0,
where Ω is open in Rk for fields flat on ∂Ω×0, simply by Hestenes Lemma.
Using induction on dimension of A, this gives an extension operator for
A = Γ, where Γ = Ω×0 assuming we have it already built for the boundary
∂Γ = Γ \ Γ of Γ which in this case is ∂Ω × 0. The next generalization
is by taking A = Γ, where Γ is a Λp-regular leaf of dimension k in the
sense of [6], and again assuming the fields are flat on ∂Γ. Additionally, the
extension can be chosen vanishing outside a conical neighbourhood of Γ; i.e.
the set {x ∈ Ω × Rn−k : d(x,Γ) < εd(x, ∂Γ)}, where Ω is the orthogonal
projection of Γ to Rk × 0 and ε is a positive arbitrary constant. The next
generalization is to the closure of a finite tower of Λp-regular leaves lying
over a common open Λp-regular cell in Rk. To finish the construction we
will prove that every closed definable k-dimensional subset A admits a finite
decomposition A = M0 ∪ · · · ∪Ms such that each Mi is a finite tower of
definable Λp-regular leaves in a suitable linear coordinate system and for
any i, j ∈ {0, . . . , s}, where i 6= j,M i and M j are simply separated relative
to ∂Mi; i.e. d(x,Mj) > Cd(x, ∂Mi), for each x ∈ Mi, with some positive
constant C. (The proof of this Λp-regular Decomposition Theorem is based
on [6] and [10].)

TOME 58 (2008), FASCICULE 2
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2. Extension operator for a linear subspace

Observe that if Ω is an open subset of Rk and A = Ω × 0 ⊂ Rk ×
Rn−k = Rn, then the algebra Ep(A) can be identified with the algebra of
polynomials

F (u,W ) =
∑
|α|6p

1
α!
Fα(u)Wα =

∑
|α|6p

1
α!
Fα(u)Wα1

1 . . .Wαl

l ,

where l = n − k and Fα ∈ Cp−|α|(Ω), for each α ∈ Nl such that |α| 6 p

(cf. [4], Chap.III, (8.4)).
Let us now consider the case k = n − 1 and A = Rk × 0. Then the

extension operator will be produced using regularization of functions Fα

by convolution. Strictly, we have the following

Proposition 2.1. — Let σ ∈ {0, . . . , p}, g ∈ Cp−σ(Rk), ϕ ∈ Cp(Rk).
Assume that suppϕ is compact and put

ϕw(v) =
1
wk

ϕ(
v

w
)

and G(u,w) =
1
σ!

(g ? ϕw)(u)wσ =
1
σ!

∫
Rk

g(u− v)ϕw(v)wσdv,

for u ∈ Rk and w ∈ R, w > 0.
Then G : Rk × (0,+∞) −→ R is a Cp-function and for every (α, β) ∈

Nk × N such that |α|+ β 6 p

lim
w→0

D(α,β)G(u,w) =


0 , if β < σ

Dαg(u)
∫
ϕ , if β = σ∑

|γ|=β−σ

ωγσD
α+γg(u) , if β > σ

uniformly on compact subsets with respect to u, where ωγσ are some con-
stants depending only on γ, σ and ϕ.

To prove Proposition 2.1 one needs the following

ANNALES DE L’INSTITUT FOURIER



A LINEAR EXTENSION OPERATOR 389

Lemma 2.2. — For any r ∈ R and λ ∈ {0, . . . , p}
∂λ

∂wλ

[
wrϕ

( v
w

)]
= wr−λϕλ(

v

w
),

where ϕλ is a Cp−λ-function on Rk with a compact support and
∫
ϕλ =

(k + r)(k + r − 1) · · · (k + r − λ+ 1)
∫
ϕ.

Proof of Lemma 2.2. —

∂

∂w

[
wrϕ

( v
w

)]
= rwr−1ϕ

( v
w

)
+wr

k∑
i=1

∂ϕ

∂vi

( v
w

) (
− vi

w2

)
= wr−1ϕ1

( v
w

)
,

where ϕ1(v) = rϕ(v)−
k∑

i=1

vi
∂ϕ

∂vi
(v). Moreover, integrating by parts,

∫
ϕ1 = r

∫
ϕ−

k∑
i=1

∫
vi
∂ϕ

∂vi
= (r + k)

∫
ϕ

and Lemma 2.2 follows by induction. �

Proof of Proposition 2.1. — G is of class Cp on Rk × (0,+∞), because

G(u,w) =
∫
g(v)

1
wk

ϕ

(
u− v

w

)
wσdv.

(I) Assume first that β 6 σ and |α| 6 p− σ. Then

D(α,β)G(u,w) =
1
σ!

∫
Dαg(u− v)wσ−β−kϕβ

( v
w

)
dv =

1
σ!
wσ−β

∫
Dαg(u− v)

1
wk

ϕβ

( v
w

)
dv −→ 1

σ!
0σ−βDαg(u)

∫
ϕβ ,

when w → 0, the convergence being uniform on compact subsets with
respect to u. Consequently, the limit is 0, if β < σ and Dαg

∫
ϕ, if β = σ.

(II) Now assume that β 6 σ and |α| > p − σ. Then α = γ + δ, where
|γ| = p− σ and δ 6= 0.

D(γ,β)G(u,w) =
1
σ!

∫
Dγg(u− v)wσ−β−kϕβ

( v
w

)
dv =

1
σ!

∫
Dγg(v)wσ−β−kϕβ

(
u− v

w

)
dv.

D(α,β)G(u,w) =
1
σ!

∫
Dγg(v)wσ−β−kw−|δ|Dδϕβ

(
u− v

w

)
dv =

1
σ!
wσ−β−|δ|

∫
Dγg(u− wv)Dδϕβ(v)dv.

Notice that σ − β − |δ| = p − |α| − β > 0 and
∫
Dδϕβ(v)dv = 0, since ϕβ

has a compact support. Consequently, D(α,β)G(u,w) −→ 0, when w → 0.

TOME 58 (2008), FASCICULE 2
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(III) Finally, let β > σ. Then |α| 6 p− β < p− σ and β = σ + ρ, where
ρ > 0. By the case (I),

D(α,σ)G(u,w) =
1
σ!

∫
Dαg(u− vw)ϕσ(v)dv.

Dαg being of class p− σ − |α| > ρ, one obtains

D(α,β)G(u,w) =D(0,ρ)(D(α,σ)G)(u,w)

=
1
σ!

∑
|µ|=ρ

∫
Dα+µg(u− vw)(−v)µϕσ(v)dv,

which tends to
∑
|µ|=ρ

ωµσD
α+µg(u) uniformly on compact subsets with re-

spect to u, when w → 0, where ωµσ =
1
σ!

∫
(−v)µϕσ(v)dv. �

Proposition 2.3. — Let ϕ ∈ Cp(Rk) be with compact support and
such that

∫
ϕ = 1. Then the formula

L(gW σ)(u,w) =
(
w

|w|

)σ [
1
σ!

(g ? ϕ|w|)(u)|w|σ

−
∑

0<|γ|6p−σ

1
(σ + |γ|)!

ωγσL(DγgW σ+|γ|)(u, |w|)

 ,
for σ ∈ {1, . . . , p}, g ∈ Cp−σ(Rk), u ∈ Rk and w ∈ R \ {0}, completed
by putting

L(gW σ)(u, 0) = 0, and L(gW 0) = L(g) = g, for g ∈ Cp(Rk),

defines (inductively) a continuous linear extension operator L = Lp :
Ep(Rk × 0) −→ Cp(Rk+1).

Moreover, there exists a constant M > 0 (depending only on k, p and ϕ)
such that if ω is a modulus of continuity of a field F ∈ Ep(Rk × 0), then
Mω is a modulus of continuity of the Cp-function LF .

Proof. — This follows immediately from Proposition 2.1. �

Now we generalize our extension operator to any linear subspace of Rn.

Proposition 2.4. — Let Rk × 0 ⊂ Rn = Rk × Rl, where l > 1. Then
the formula

Lp(gWα1
1 · · ·Wαl

l ) = Lp(Lp−αl
(gWα1

1 · · ·Wαl−1
l−1 )Wαl

l ),

ANNALES DE L’INSTITUT FOURIER
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where α = (α1, . . . , αl) ∈ Nl, |α| 6 p and g ∈ Cp−|α|(Rk), defines by induc-
tion on l a linear continuous extension operator L = Lp : Ep(Rk × 0) −→
Cp(Rn).

Moreover, there is a constant M > 0 such that if ω is a modulus of
continuity for F ∈ Ep(Rk×0), then Mω is a modulus of continuity for LF .

Proof. — This follows easily by induction from Proposition 2.3. �

3. A generalization to the ideal of Cp-Whitney fields on
Ω× 0 p-flat on ∂Ω× 0 (Ω- an open Λp-regular cell in

Rk = Rk × 0 ⊂ Rk × Rl)

If A is any locally closed subset of Rn and B any closed subset of A,
Ep(A,B) will denote the ideal of all Cp-Whitney fields F on A p-flat on B;
i.e. Fα(u) = 0, when |α| 6 p and u ∈ B. It is closed in Ep(A).

Let first Ω be any open subset of Rk. By the Hestenes Lemma (see [12],
Lemma 4.3, p.80)

Ep(Ω× 0, ∂Ω× 0) ={F =
∑
|α|6p

1
α!
FαWα : Fα ∈ Cp−|α|(Ω),

lim
u→a

DβFα(u) = 0, if a ∈ ∂Ω, |β| 6 p− |α|},

and putting

F̃α(u) =
{
Fα(u) , if u ∈ Ω
0 , if u ∈ Rk \ Ω

and F̃ =
∑
α

1
α!
F̃αWα,

one obtains a linear continuous extension operator

Ep(Ω× 0, ∂Ω× 0) 3 F −→ F̃ ∈ Ep(Rk × 0, (Rk \ Ω)× 0)

preserving modulus of continuity.
Now we will consider the case when Ω is an open Λp-regular cell in

Rk (cf. [6]). We will first recall the notion of Λp-regular mapping. Let
ψ : D −→ Rm be a mapping on an open subset D ⊂ Rn. We say that ψ
is Λp-regular (on D) if it is of class Cp and there is a constant C > 0 such
that

|Dκψ(x)| 6 C/d(x, ∂D)|κ|−1, whenever 1 6 |κ| 6 p and x ∈ D.

Remark 3.1. — Let ψ be Λp-regular on D. Then

(1) it is Λp-regular on every open D′ ⊂ D;

TOME 58 (2008), FASCICULE 2
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(2) if A ⊂ Ω is a 1-regular subset, then the restriction ψ|A is Lipschitz
and thus it has a continuous extension ψ|A to A.

We shall say (after [6]) that S is an open Λp-regular (definable in a given
o-minimal structure) cell in Rn iff

(1) S is an open interval in R, when n = 1;
(2) S = {(x′, xn) : x′ ∈ T, ψ1(x′) < xn < ψ2(x′)}, where T is an

open Λp-regular (definable) cell in Rn−1 and each ψi (i = 1, 2) is
a function on T being either real Λp-regular (definable) function
on T , or identically equal to −∞, or identically equal to +∞, and
ψ1(x′) < ψ2(x′), for all x′ ∈ T , when n > 1.

Remark 3.2. — Such a cell S is 1-regular and if ψi is finite it is Lipschitz
on T , thus it admits a continuous extension ψi to T .

For any open (definable) Λp-regular cell in Rn, one defines, by induction
on n, a sequence ρj : S −→ R ∪ {+∞} (j = 1, . . . , 2n) of the functions
associated with the cell S:

(1) When n = 1 and S = (a1, a2), we put

ρ1(x) =
{
x− a1 , if a1 ∈ R
+∞ , if a1 = −∞ and

{
ρ2(x) = a2 − x , if a2 ∈ R
+∞ , if a2 = +∞.

(2) When n > 1 and S = {(x′, xn) : x′ ∈ T ψ1(x′) < xn < ψ2(x′)},
let σj (j = 1, . . . , 2n − 2) be the functions associated with T . We
put, for any x = (x′, xn) ∈ S, ρj(x) = σj(x′) for j = 1, . . . , 2n− 2
and

ρ2n−1(x) =
{
xn − ψ1(x′) , if ψ1 : T → R
+∞ , if ψ1 ≡ −∞ and

ρ2n(x) =
{
ψ2(x′)− xn , if ψ2 : T → R
+∞ , if ψ2 ≡ +∞.

Remark 3.3 ([6], Lemma 3). — There exists a constant Θ > 0 such that

Θmin
j
ρj(x) 6 d(x, ∂S) 6 min

j
ρj(x), for x ∈ S.

(We adopt the convention: d(x, ∅) = +∞.)

Remark 3.4 ([6], Lemma 4). — The functions ρj which are finite are
Λp-regular on S, Lipschitz on S and definable, if S is so.

Lemma 3.5 (cf. [6], Lemma 5). — Let ϕν : Ω −→ R (ν = 1, . . . ,m)
be Λp-regular functions on an open subset Ω ⊂ Rk. Assume that r(u) :=

ANNALES DE L’INSTITUT FOURIER
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(
m∑

ν=1

ϕ2
ν(u))

1
2 6= 0 for each u ∈ Ω. Then there exists a constant C̃ > 0 such

that for each u ∈ Ω∣∣∣∣Dα

(
1
r

)
(u)

∣∣∣∣ 6
C̃

r(u) min(r(u), d(u, ∂Ω))|α|
, where 0 6 |α| 6 p ;

consequently
∣∣∣∣Dα

(
1
r

)
(u)

∣∣∣∣ 6
C̃

min(r(u), d(u, ∂Ω))|α|+1
.

Proof. — Induction on |α|. �

Proposition 3.6 (cf. [6], Lemmas 6-7). — Let Ω be an open subset of
Rk, let f ∈ Cp(Ω × Rl) and r ∈ Cp(Ω), and let t : Ω −→ (0,+∞) be any
positive function such that t(u) 6 d(u, ∂Ω) for any u ∈ Ω. Let ε > 0 and
put

∆ε := {(u,w) ∈ Ω× Rl : |w| < εt(u)}.

Assume that there exists a constant C̃ > 0 such that |Dα
(1
r

)
| 6 C̃

t|α|+1
,

when α ∈ Nk, and for each c ∈ ∂Ω, Dκf(u,w) = o(t(u)p−|κ|), when ∆ε 3
(u,w) → (c, 0) and κ ∈ Nk × Nl, |κ| 6 p.

Let ξ : R −→ R be any Cp-function. Fix i ∈ {1, . . . , l} and put

g(u,w) := ξ
( wi

r(u)
)
f(u,w), for (u,w) ∈ Ω× Rl.

Then for each c ∈ ∂Ω, Dκg(u,w) = o(t(u)p−|κ|), when
∆ε 3 (u,w) → (c, 0) and κ ∈ Nk × Nl, |κ| 6 p.

Proof. — Put h(u,w) = ξ
( wi

r(u)
)
. By the Leibniz formula

Dκg =
∑
λ6κ

(
κ
λ

)
DλhDκ−λf , so it suffices to check that there exists a

constant C ′
ε > 0 such that |Dλh(u,w)| 6 C ′

εt(u)
−|λ|, when (u,w) ∈ ∆ε and

|λ| 6 p. First, it is easy to see this for h0(u,w) :=
wi

r(u)
using Lemma 3.5.

Then for h = ξ ◦ h0 we have

∂h

∂xj
= (ξ′ ◦ h0)

∂h0

∂xj
, where (x1, . . . , xn) = (u1, . . . , uk, w1, . . . , wl)

and Dλ

(
∂h

∂xj

)
=

∑
µ6λ

(
λ

µ

)
Dµ(ξ′ ◦ h0)Dλ−µ

(
∂h0

∂xj

)
, if |λ| 6 p − 1, so we

conclude by induction. �
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Remark 3.7. — Suppose that f is a Cp-function on the whole space
Rk × Rl and such that for each c ∈ ∂Ω, Dκf(u, 0) = o(t(u)p−|κ|), when
Ω 3 u→ c and κ ∈ Nk × Nl, |κ| 6 p.

Then for each c ∈ ∂Ω, Dκf(u,w) = o(t(u)p−|κ|), when ∆ε 3 (u,w) →
(c, 0) and κ ∈ Nk ×Nl, |κ| 6 p. This follows immediately from the Taylor
formula

Dκf(u,w) =
∑

|λ|6p−|κ|

1
λ!
Dκ+(0,λ)f(u, 0)wλ + o(|w|p−|κ|),

when u→ c, w → 0.
Let now Ω be an open Λp-regular cell in Rk and ρj (j = 1, . . . , 2k) - the

functions associated with Ω. We define an extension operator

L : Ep(Ω× 0, ∂Ω× 0) −→ Cp(Rn) , where Rn = Rk × Rl,

by the following formula

LF (u,w) =


l∏

i=1

2k∏
j=1

ξ

(
Q

wi

ρj(u)

)
(LF̃ )(u,w), if u ∈ Ω

0, if u ∈ Rk \ Ω,

where Q is any real number >
√
lΘ−1, Θ is a constant from Remark 3.3

and ξ : R −→ R is a (definable, if we wish) Cp-function equal to 1 in a
neighborhood of 0, and equal to 0 outside the open interval (−1, 1).

To check that LF ∈ Cp(Rn) we use repeatedly Proposition 3.6 with
r = ρj 6≡ +∞ and t(u) = d(u, ∂Ω)(at the beginning we take f = LF̃ as
in Remark 3.7) and the Hestenes Lemma. The factors involving ρj ≡ +∞
being obviously 1 can be omitted in the above formula.

Observe that if ε is any constant from (0, 1), we can choose Q in such a
way that LF is p-flat outside the set

∆ε(Ω× 0) :={x ∈ Rn : d(x,Ω× 0) < εd(x, ∂Ω× 0)}

={(u,w) ∈ Ω× Rl : |w| < ε√
1− ε2

d(u, ∂Ω)}.

Remark 3.8. — If r and t are as in Proposition 3.6 and F ∈ Ep(Ω ×
0, ∂Ω × 0) is such that, for each c ∈ ∂Ω, Fκ(u, 0) = o(t(u)p−|κ|), when
Ω 3 u → c and |κ| 6 p, the above formula for an extension of F can be
modified by putting

L′F (u,w) =


l∏

i=1

ξ

(√
l
wi

r(u)

)
LF (u,w), if u ∈ Ω

0, if u ∈ Rk \ Ω.
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Then L′F is p-flat, outside the neighborhood {(u,w) ∈ Ω×Rl : |w| < r(u)}
of Ω× 0 and outside ∆ε(Ω× 0).

In order that LF (or L′F ) and F have the same (up to a multiplicative
constant) modulus of continuity we will prove the following

Proposition 3.9. — Under the assumptions of Proposition 3.6 assume
additionally that Ω is 1-regular, r ∈ Cp+1(Ω) such that

|Dα
(1
r

)
| 6 c̃

t|α|+1
, when α ∈ Nk, |α| 6 p+ 1

and t is Lipschitz. Then there exists a constant M > 0 such that if ω is a
modulus of continuity for f on ∆ε satisfying

|Dκf(u,w)| 6 ω(t(u))t(u)p−|κ|,

when (u,w) ∈ ∆ε and |κ| 6 p, then Mω is a modulus of continuity for g
on ∆ε satisfying

|Dκg(u,w)| 6 Mω(t(u))t(u)p−|κ|,

when (u,w) ∈ ∆ε and |κ| 6 p.

Proof. — In view of the proof of Proposition 3.6, it suffices to check that,
for a constant M > 0, Mω is a modulus of continuity for g on ∆ε. First
observe that ∆ε is 1-regular, because Ω is so and the function t is Lipschitz.
There exists a constant C > 1 such that |t(u1) − t(u2)| 6 C|u1 − u2|, for
any u1, u2 ∈ Ω.

Fix any κ ∈ Nk+l such that |κ| = p, any λ 6 κ and any two points
xi = (ui, wi) ∈ ∆ε (i = 1, 2). We have to estimate

|Dλh(x1)Dκ−λf(x1)−Dλh(x2)Dκ−λf(x2)|.

Case I : t(ui) 6 2C|x1 − x2| (i = 1, 2).

Then |Dλh(xi)Dκ−λf(xi)| 6 C ′
εt(ui)−|λ|ω(t(ui))t(ui)p−|κ−λ|

6 C ′
εω(2C|x1 − x2|) 6 2CC ′

εω(|x1 − x2|).

Case II : t(u1) > 2C|x1 − x2|.

Then |u1−u2| 6 C|x1−x2| <
1
2
t(u1) 6

1
2
d(u1,Ω); thus [x1, x2] ⊂ Ω×Rl.

We have |Dλh(x1)[Dκ−λf(x1)−Dκ−λf(x2)]| 6 |Dλh(x1)|×[ ∑
16|µ|6p−|κ−λ|

1
µ!
|Dκ−λ+µf(x1)||x1−x2||µ|+ω(|x1−x2|)|x1−x2|p−|κ−λ|] 6

M1ω(t(u1))t(u1)−1|x1 − x2|+M2ω(|x1 − x2|) 6 M ′ω(|x1 − x2|),
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where M1,M2 and M ′ are positive constants and we use: ω(s)t 6 ω(t)s if
t 6 s.

On the other hand |[Dλh(x1)−Dλh(x2)]Dκ−λf(x2)| 6

sup
x∈[x1,x2]

k+l∑
j=1

|Dλ+(j)h(x)||x1 − x2||Dκ−λf(x2)|.

For any x = (u,w) ∈ [x1, x2], 2|t(u1)− t(u)| 6 2C|u1 − u| 6 2C|x1 − x2|
< t(u1) and 2|w1 − w| 6 2C|x1 − x2| < t(u1); thus 1

2 t(u1) < t(u) < 3
2 t(u1)

and |w| 6 |w1|+ |w1 − w| < εt(u1) + t(u) 6 (2ε+ 1)t(u).

Consequently x ∈ ∆2ε+1 and

|Dλ+(j)h(x)| 6 C ′
2ε+1t(u)

−|λ|−1 6 2|λ|+1C ′
2ε+1t(u1)−|λ|−1

and

|Dκ−λf(x2)| 6 ω(t(u2))t(u2)|λ| 6
(3
2
)|λ|+1

ω(t(u1)))t(u1)|λ|.

The needed inequality follows. �

Remark 3.10. — Suppose that f is a Cp-function on the whole space
Rk × Rl and ω is its modulus of continuity such that

|Dκf(u, 0)| 6 ω(t(u))t(u)p−|κ|,

when u ∈ Ω and κ ∈ Nk+l, |κ| 6 p.

Then there exists a constant M ′′ > 0 such that

|Dκf(u,w)| 6 M ′′ω(t(u))t(u)p−|κ|,

when (u,w) ∈ ∆ε, and κ ∈ Nk+l, |κ| 6 p.

Indeed, this follows immediately from

|Dκf(u,w)−
∑

|λ|6p−|κ|

1
λ!
Dκ+(0,λ)f(u, 0)wλ| 6 ω(|w|)|w|p−|κ|.

Remark 3.11. — If Ω is an open Λp+1-regular cell in Rk and ξ is a Cp+1-
function, then there exists a positive constant M , such that, for any F ∈
Ep(Ω×0, ∂Ω×0) (respectively, fulfilling additional conditions: |Fκ(u, 0)| 6
ω(r(u))r(u)p−|κ|, when u ∈ Ω, κ ∈ Nk+l, |κ| 6 p) if ω is a modulus of
continuity for F , then Mω is a modulus of continuity for LF (respectively,
for L′F ).
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4. A generalization to the ideal of Cp-Whitney fields on
the closure of a Λp-regular leaf p-flat on its boundary

Now we will transpose the extension operator L to the closure of any
Λp-regular leaf. A subset E ⊂ Rn is called a (definable) Λp-regular leaf of
dimension k in Rn if it is the graph E = {(u, ϕ(u)) : u ∈ Ω} of a (definable)
Λp-regular mapping ϕ : Ω −→ Rl defined on an open (definable) Λp-regular
cell Ω in Rk. A reduction of this case to the previous one will be by the
following Lipschitz automorphism

Ω× Rl 3 (u,w) 7−→ (u,w + ϕ(u)) ∈ Ω× Rl

and the following

Proposition 4.1 (cf. [6], Proposition 3). — Let ϕ : Ω −→ Rl be a Λp-
regular mapping defined on an open subset Ω ⊂ Rk. Let t : Ω −→ (0,+∞)
be any function such that t(u) 6 d(u, ∂Ω), for each u ∈ Ω. Let E be any
closed subset of Ω× Rl and

F (u,w;U,W ) =
∑

|α|+|β|6p

1
α!β!

F (α,β)(u,w)UαW β

{
U = (U1, . . . , Uk),
W = (W1, . . . ,Wl)

a Cp-Whitney field on E such that, for any c ∈ ∂Ω
F (α,β)(u,w) = o(t(u)p−|α|−|β|), when u→ c and |α|+ |β| 6 p.

Let Fϕ(u, v;U, V ) be a polynomial in (U, V ) of degree 6 p such that

Fϕ(u, v;U, V ) =
∑

|α|+|β|6p

1
α!β!

F (α,β)(u, v + ϕ(u))Uα

(
V +

∑
16|κ|6p

1
κ!
Dκϕ(u)Uκ)β

mod(U, V )p+1

defined for (u, v) ∈ Eϕ, where Eϕ = {(u, v) ∈ Ω× Rl : (u, v + ϕ(u)) ∈ E}.

Then Fϕ is a Cp-Whitney field on Eϕ such that, for any c ∈ ∂Ω
F

(α,β)
ϕ (u, v) = o(t(u)p−|α|−|β|), when u→ c and |α|+ |β| 6 p.

Proof. — It is easy to check that Fϕ fulfills the condition (∗∗) from
Introduction, thus it is a Cp-Whitney field on Eϕ. Besides

Fϕ(u, v;U, V ) =
∑

|α|+|β|6p

1
α!β!

F (α,β)(u, v + ϕ(u))Uα×

∑
γ+

∑
κ

δκ=β

β!
γ!

∏
δκ!

V γ
∏
κ

[
1

κ!|δκ |
U |δκ |κ(Dκϕ(u))δκ

]
mod(U, V )p+1,
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thus

F (σ,γ)
ϕ (u, v) =

∑
α+

∑
κ
|δκ |κ=σ

[ . ]F (α,γ+
∑

κ
δκ)(u, v + ϕ(u))

∏
κ

(Dκϕ(u))δκ ,

where [ . ] denotes constants. To conclude notice that

F (α,γ+
∑

κ
δκ)(u, v + ϕ(u))

∏
κ

(Dκϕ(u))δκ =

o(1)t(u)p−|α|−|γ|−
∑

κ
|δκ |C

∏
κ
d(u, ∂Ω)−|δκ ||κ|+|δκ | =

o
(
t(u)p−|σ|−|γ|).

�

Remark 4.2. — If E = {(u, ϕ(u)) : u ∈ Ω} (resp. E = Ω×Rl), then Fϕ

extends to a Cp-Whitney field on Eϕ = Ω × 0 (resp. Eϕ = Ω × Rl) p-flat
on ∂Eϕ = ∂Ω× 0 (resp. ∂Eϕ = ∂Ω× Rl).

Proof. — The both cases follow from the Hestenes Lemma. �

Proposition 4.3. — Under the assumptions of Proposition 4.1, assume
additionally that the mapping ϕ is Λp+1-regular, E and Ω are both 1-
regular and E and ∂Ω × Rl are simply separated (∗) . Then there exists a
constant M > 0 such that, for each F ∈ Ep(E, ∂E), if ω is a modulus of
continuity of F , then Mω is a modulus of continuity of Fϕ.

Moreover, if |Fκ(u,w)| 6 ω(t(u))t(u)p−|κ|, when (u,w) ∈ E and |κ| 6 p,
then |Fκ

ϕ (u, v)| 6 Mω(t(u))t(u)p−|κ|, when (u, v) ∈ Eϕ and |κ| 6 p.

Proof. — Observe that Eϕ is 1-regular. Let σ ∈ Nk, γ ∈ Nl be such that
|σ|+ |γ| = p and let (ui, vi) ∈ Eϕ, (i = 1, 2). We have to estimate

|F (σ,γ)
ϕ (u1, v1)− F (σ,γ)

ϕ (u2, v2)| 6∑
α+

∑
κ
|δκ |κ=σ

[ . ]|F (α,γ+
∑

κ
δκ)(u1, v1 + ϕ(u1))

∏
κ

(Dκϕ(u1))δκ−

F (α,γ+
∑

κ
δκ)(u2, v2 + ϕ(u2))

∏
κ

(Dκϕ(u2))δκ |.

Fix λ = (α, γ +
∑

κ δκ) and put xi = (ui, vi + ϕ(ui)) and

θ(u) =
∏
κ

(Dκϕ(u))δκ .

(∗) See the beginning of Section 5 for the definition of simple separation.
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Case I : |x1 − x2| > 1
2d(ui, ∂Ω) for i = 1, 2.

|Fλ(xi)θ(ui)| 6 ω(d(xi, ∂E))d(xi, ∂E)p−|λ||θ(ui)| 6

ω(Cd(ui, ∂Ω))[Cd(ui, ∂Ω)]p−|λ||θ(ui)| 6

ω(2C|x1−x2|)[Cd(ui, ∂Ω)]p−|λ|
∏
κ
d(ui, ∂Ω)−|δκ ||κ|+|δκ|| 6 Mω(|x1−x2|).

Case II : |x1 − x2| 6 1
2d(u1, ∂Ω).

|Fλ(x1)θ(u1)− Fλ(x2)θ(u2)| 6

|Fλ(x1)− Fλ(x2)||θ(u2)|+ |Fλ(x1)||θ(u1)− θ(u2)| 6[ ∑
16|µ|6p−|λ|

1
µ!
|Fλ+µ(x1)||x2 − x1||µ| + ω(|x1 − x2|)|x1 − x2|p−|λ|

]
|θ(u2)|+

|Fλ(x1)| sup
z∈[u1,u2]

k∑
j=1

|D(j)θ(z)||u1 − u2| 6

[ ∑
16|µ|6p−|λ|

1
µ!
ω(d(x1, ∂E))d(x1, ∂E)p−|λ|−|µ||x1 − x2|d(u1, ∂Ω)|µ|−1+

ω(|x1 − x2|)d(u1, ∂Ω)p−|λ|
]
|θ(u2)|+

ω(d(x1, ∂Ω))|x1 − x2| sup
z∈[u1,u2]

k∑
j=1

|D(j)θ(z)|

[
C1ω(d(u1, ∂Ω))|x1 − x2|d(u1, ∂Ω)|p−|λ|−1+

ω(|x1 − x2|)d(u1, ∂Ω)p−|λ|
]
|θ(u2)|+

C2ω(d(u1, ∂Ω))|x1 − x2| sup
z∈[u1,u2]

∏
κ
d(z, ∂Ω)−|δκ ||κ|+|δκ |−1.

Now it suffices to observe that ω(d(u1, ∂Ω))|x1−x2| 6 ω(|x1−x2|)d(u1, ∂Ω)
and d(z, ∂Ω) > d(u1, ∂Ω)− |z − u1| > d(u1, ∂Ω)− |x1 − x2| > 1

2d(u1, ∂Ω),
if z ∈ [u1, u2]. �

Assume now that E = {(u, ϕ(u)) : u ∈ Ω} is a Λp-regular leaf of dimen-
sion k in Rn. We define an extension operator L : Ep(E, ∂E) −→ Cp(Rn)
by the formula

LF =
{

(LFϕ)−ϕ, on Ω× Rl

0, on (Rk \ Ω)× Rl.
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For any constant ε > 0, we can specify this operator in such a way that for
each F ∈ Ep(E, ∂E), LF is flat outside the neighborhood ∆ε(E) := {x ∈
Rn : d(x,E) < εd(x, ∂E)}.

5. A generalization to a finite tower of Λp-regular leaves

Here we will generalize the extension operator L to the ideal Ep(E, ∂E),
where E is a finite disjoint union E = E1 ∪ · · · ∪Es of graphs of Λp-regular
mappings ϕσ : Ω −→ Rl (σ = 1, . . . , s) defined on a common open Λp-
regular cell Ω ⊂ Rk. Put rσ(u) := |ϕσ(u)− ϕs(u)| for σ = 1, . . . , s− 1 and
u ∈ Ω.

We first define LF for any F ∈ Ep(E,E1 ∪ · · · ∪ Es−1 ∪ ∂Es).

Then we put

LF =


[ s−1∏

σ=1

l∏
i=1

ξ

(√
l
wi

rσ(u)

)
L

(
(F |Es)ϕs

)]
−ϕs

, on Ω× Rl

0, on (Rk \ Ω)× Rl,

which gives an extension operator according to Proposition 3.6 (used re-
peatedly with t(u) := min

(
{rσ(u)}, d(u, ∂Ω)

)
), Remark 3.8 and Proposi-

tion 4.1.

Let now consider a general case where F is any element of Ep(E, ∂E).
Proceeding by induction, assume that L(F |E1 ∪ · · · ∪ Es−1) has already
been defined. Then H := F − TL(F |E1 ∪ · · · ∪Es−1)|E ∈ Ep(E,E1 ∪ · · · ∪
Es−1 ∪ ∂Es) and we put

LF = LH + L(F |E1 ∪ · · · ∪ Es−1).

For any ε > 0, we can specify this operator in such a way that LF is p-flat
outside the set ∆ε(E) := {x ∈ Rn : d(x,E) < εd(x, ∂E)}.

6. Extension operator for a closed definable subset of Rn

Definition 6.1 (cf. [10]). — Let A,B,Z ⊂ Rn. We say that A and B

are simply Z-separated if one of the following equivalent conditions holds
(1) ∃M > 0∀x ∈ A, d(x,B) > Md(x,Z);
(2) ∃C > 0∀x ∈ Rn, d(x,A) + d(x,B) > Cd(x,Z). (If (1) holds, one

can take C = M/(M + 1).)
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We say that A and B are simply separated if they are simply A ∩ B-
separated.

Proposition 6.2. — Let Ei ⊃ E′
i (i = 1, . . . , s) be closed subsets of

Rn and let C > 0 be a constant such that, for any i, j ∈ {1, . . . , s}, i 6= j

and any x ∈ Rn

d(x,Ei) + d(x,Ej) > Cd(x,E′
i).

Let ε ∈ (0, C/2]. Put Γε(Ei, E
′
i) := {x ∈ Rn : d(x,Ei) < εd(x,E′

i)}.
Suppose that, for each i = 1, . . . , s

Li : Ep(Ei, E
′
i) −→ Cp(Rn)

is an extension operator such that LiF is p-flat outside Γε(Ei, E
′
i), for any

F ∈ Ep(Ei, E
′
i).

Then the formula

LF =
s∑

i=1

Li(F |Ei)

defines an extension operator L : Ep(
⋃

iEi,
⋃

iE
′
i) −→ Cp(Rn). Moreover, if

each Li preserves (up to a multiplicative constant) a modulus of continuity,
then L has the same property.

Proof. — It suffices to check that Γε(Ei, E
′
i) ∩ Γε(Ej , E

′
j) = ∅, if i 6= j.

If there were x ∈ Γε(Ei, E
′
i) ∩ Γε(Ej , E

′
j), then

2ε[d(x,E′
i) + d(x,E′

j)] > 2[d(x,Ei) + d(x,Ej)] > C[d(x,E′
i) + d(x,E′

j)],

a contradiction. �

A proof of the following theorem will be given in the next section.

Λp-regular Decomposition Theorem 6.3. — Let E be a closed sub-
set of Rn definable in some fixed o-minimal structure on the ordered field
of the real numbers R. Let k = dimE. Let Z be any definable subset of E
of dimension < k.

Then there exists a finite decomposition

E = M1 ∪ · · · ∪Ms ∪A

such that each Mi is a finite tower of Λp-regular k-dimensional definable
leaves in an appropriate linear coordinate system, A is a closed definable
subset of dim < k containing Z and, for any i, j ∈ {1, . . . , s} (i 6= j),
M i and M j are simply ∂Mi-separated and, for any i, M i and A are simply
∂Mi-separated.
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In order to define an extension operator for any closed definable subset
E ⊂ Rn we will use induction on dimE. By the induction hypothesis we
have an extension operator

L0 : Ep(∪s
i=1∂Mi ∪A) −→ Cp(Rn),

and by Section 5 combined with Proposition 6.2 we have an extension
operator

L1 : Ep(E,∪s
i=1∂Mi ∪A) −→ Cp(Rn).

Now an extension operator for E is defined by the formula

LF = L1[F − TL0(F | ∪i ∂Mi ∪A)|E] + L0(F | ∪i ∂Mi ∪A).

7. Proof of Λp-regular Decomposition Theorem

Let P ⊂ Rn be any definable subset and V - a linear subspace of Rn

of dimension n − k. Following [10], we will say that P is perfectly situated
relative to V if, for a/any linear complement W of V in Rn, P can be
represented as a disjoint union

P =
⋃
{ϕ̂ : ϕ ∈ F}

of a finite family F of definable C1-mappings ϕ : ∆ϕ −→ V defined on con-
nected C1-submanifolds ∆ϕ ⊂ W and with bounded derivatives (ϕ̂ stands
here for the graph {u+ ϕ(u) : u ∈ ∆ϕ} of ϕ).

We will use the following

Theorem 7.1 (cf. [10], Theorem 0). — Let Σ = {σ ⊂ {1, . . . , n} :
card σ = n− k} = {σ1, . . . , σq}, where q =

(
n
k

)
.

Let Vi =
⊕

ν∈σi
Reν (i = 1, . . . , q), where e1, . . . , en is the canonical basis

in Rn.

Any definable closed subset E ⊂ Rn of dimension k is a union E =⋃q
i=1Ei of definable closed subsets Ei such that, for each i, Ei is perfectly

situated relative to Vi and, for each j 6= i, Ei and Ej are simply separated
and dim(Ei ∩ Ej) < k.

From the last theorem and easy properties of simply separated sets (see
[10], Proposition 2; (1) and (3)), it follows that it suffices to prove Λp-regular
Decomposition Theorem for each Ei and Zi = (Z ∩ Ei) ∪ (

⋃
j 6=iEi ∩ Ej)

separately, therefore - up to a permutation of variables - it suffices to prove
it assuming that E is perfectly situated relative to 0×Rl, where l = n− k.
The proof in this case is based on the following two propositions.
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Proposition 7.2 ([6], Proposition 2). — If ϕ : Ω −→ Rl is a definable
Λ1-regular mapping defined on an open Ω ⊂ Rk, then there exists a closed
definable subset Z of Ω such that dimZ < k and ϕ|Ω \ Z is Λp-regular
mapping on Ω \ Z.

Proposition 7.3 ([6], Proposition 4). — For any definable open subset
Ω ⊂ Rk, there exists a finite family S of disjoint subsets of Ω such that
dim(Ω \

⋃
S) < k and each S ∈ S is an open definable Λp-regular cell in

an appropriate linear system of coordinates in Rk.

Proof of Proposition 7.3. — See [6], Proposition 4, where the set is as-
sumed bounded, but this assumption is not essential. Alternatively, first one
can apply [10]; Theorem 1, (Bk) to get the case p = 1 of Proposition 7.3,
which is the theorem of Kurdyka [5] and Parusiński [9], and then by induc-
tion on k one gets the case of any p > 1, applying Proposition 7.2. �

To finish the proof of the theorem, first represent E as union of graphs
with bounded derivatives:

E =
⋃
{ϕ̂ : ϕ ∈ F},

as in the beginning of the section. Adding to Z all the graphs with dim ∆ϕ <

k, one can assume that

E = Z ∪
⋃
{ϕ̂ : ϕ ∈ F∗},

where F∗ = {ϕ ∈ F : ∆ϕ non-empty open in Rk}. By Proposition 7.2,
for each ϕ ∈ F∗ there exists a closed definable subset Kϕ of ∆ϕ of dim < k

such that ϕ|∆ϕ \Kϕ is Λp-regular. Let

Θ := π(Z) ∪
⋃
{∂∆ϕ ∪Kϕ : ϕ ∈ F∗},

where π : Rk × Rl −→ Rk is the canonical projection. Take a family S as
in Proposition 7.3 for the open subset

Ω :=
⋃
{∆ϕ : ϕ ∈ F∗} \Θ.

Now it suffices to define, for each S ∈ S

MS := E ∪ π−1(S) and A := E \
⋃
{MS : S ∈ S}.
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