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RIEMANN-ROCH THEOREM FOR HIGHER
BIVARIANT K-FUNCTORS

by Roni N. LEVY (*)

Abstract. — One defines a Riemann-Roch natural transformation from alge-
braic to topological higher bivariant K-theory in the category of complex spaces.

Résumé. — On définie une transformation naturelle de type Riemann-Roch
entre les K-théories algébrique et topologique supérieures bivariantes dans la caté-
gorie des espaces complexes.

Introduction

The general form of Riemann-Roch theorem for K0-functors was given
by Baum-Fulton-Macpherson in [3]. It asserts that there exists a uniquely
determined natural transformation (called also Riemann-Roch transforma-
tion) from the Grothendieck group Kalg

0 (X) of the category of coherent
sheaves on the complex variety X to the topological K-functor Ktop

0 (X)
(the main point being the commutativity with the operation of direct im-
age under proper morphisms). In the above cited paper the theorem was
proved in the algebraic category, i.e., in the case when X can be embed-
ded in a regular variety X̃, and any coherent sheaf on X has a projective
resolution on X̃. This theorem was generalized (again in the algebraic cat-
egory) in the work of Fulton-Macpherson [5], part II, where the bivariant
K-groups Kalg

0 (f) and Ktop
0 (f) are defined for any morphism f : X → Y of

algebraic varieties, and the corresponding Riemann-Roch transformation is
constructed.

Keywords: Perfect sheaf, classifying space of the category, K-groups.
Math. classification: 19L10,19D99.
(*) The author was partially supported by the contract MM-1401/04 with the Bulgarian
Ministry of Science and Education and by the contract 103/2007 with Sofia University.



572 Roni N. LEVY

In the same work [5], I. 10.12, it was conjectured that one can build the
theory of higher bivariant K-groups Kalg

i (f), i > 0, together with a nat-
ural transformation Kalg

i (f) → Ktop
i (f), generalizing the transformation

constructed there. The purpose of the present paper is to prove this in the
analytic category, i.e. in the category of coherent holomorphic sheaves on
complex spaces.

An important fact, used in the proof of Riemann-Roch type theorems
in the algebraic category, is the existence of a projective resolution for any
coherent sheaf on a regular algebraic variety; in this way, one can attach
to such a sheaf the underlying complex of vector bundles, determining an
element of the corresponding K-theory. In the analytic category this is no
longer true: projective resolutions exist only locally. Because of this, the
proof of R.-R. theorem, given in [9], was based on the functional-analytic
approach to K-theory producing a construction which could be called an
infinite-dimensional resolution of a coherent sheaf. Recall ([2], Appendix)
that the space of continuous Fredholm complexes of Banach spaces is a
classifying space for the topological K-theory. It turns out that, subject to
some technical restrictions, the same is true for complexes of Frechet spaces.
In [9] for any coherent sheaf on a complex space one constructs a complex
of Frechet spaces such that the complex of its holomorphic sections is a
resolution of this sheaf. Forgetting the holomorphic structure, we obtain
a representative of the needed element of the corresponding topological
K-group.

The higher algebraic K-groups of an algebraic variety were introduced
by Quillen in [10]. Another (equivalent) definition, better suited to work
with complexes of sheaves, was developed by Waldhausen in [12]. In both
definitions the K-groups of a given category are defined as shifted homotopy
groups of the classifying space of a suitable category; we will call them
Waldhausen and Quillen classifying spaces of the given category. In the
work [6] Gillet proved theorems of Riemann-Roch type for higher K-groups
in the algebraic category.

Since the construction of [9] is functorial, it extends almost immediately
to higher (monovariate) K-groups. However, the extension to the higher
bivariate K-group is not so direct, and is a subject of the present paper.
For this purpose, we use two equivalent definitions of the higher bivariant
R.-R. functor. One of it uses the infinite dimensional resolution mentioned
above and is applied to the proof of commutativity of the R.-R. functor with
the operation of direct image. Our second definition, used in the proof of
the commutativity of the functor with the bivariant product, is constructed
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HIGHER BIVARIANT RIEMANN-ROCH THEOREM 573

by combining the local resolutions of a coherent sheaf, and is inspired by
the Forster - Knorr hyperresolution of a coherent sheaf (see [4]). Roughly
speaking, if L is a coherent sheaf on the regular complex space X, {Ui}i∈I

is an open covering of X, and Li
• - a free resolution of L on Ui, then one can

construct on Ui∩Uj a free resolution L
{i,j}
• of L containing the restrictions

of Li
• and Lj

• as subcomplexes, and so on. We come to an object, defined
in section 1, which will be called local system of complexes of sheaves.
Gluing together the underlying system of complexes of vector bundles, one
obtains a globally defined complex of bundles, determining an element of
topological K-group.

Note that the notion of almost complex embedding introduced in [9]
permits us to drop the assumption of the existence of regular embedding,
but leads to more complicated details.

The content of the paper is the following: in the first section one investi-
gates the connections between the classifying spaces of abstractly defined
categories of local and global objects. We use these results in the second
section in order to prove the homotopy equivalence between the classi-
fying spaces of various categories, defining the higher algebraic K-groups
Ki(f) of the morphism f . In the third section two equivalent definitions
of the Riemann-Roch functor, mentioned above, are given. Finally, in sec-
tion 4 we extend the definitions from [5] of the operations of direct image
and product in bivariant K-theory to the higher bivariant K-functors, de-
fined in section 2, and show that they commute with the Riemann-Roch
functor, constructed in section 3. The proof of the commutativity of the
Riemann-Roch functor with the direct images uses the infinite-dimensional
construction and arguments from [9]. The proof of the commutativity with
products uses the finite-dimensional construction and essentially repeats
the arguments of Fulton-Macpherson [5].

Throughout the paper we tried to keep close to the definitions and nota-
tions of [5]. The definitions of the classifying spaces of Quillen and Wald-
hausen are used; we would like to mention also the enlightening role of the
general part of the paper [11]. We make a systematic use of theorem 1.9.8
of that paper, asserting that any functor between two complicial biWald-
hausen categories inducing an invertible functor between the corresponding
derived categories determines a homotopy equivalence between Waldhausen
classifying spaces. In particular, if A is a full biWaldhausen subcategory of
the biWaldhausen category B, and any object of B is weakly equivalent to
some object of A, then the K-groups of A and B coincide.

TOME 58 (2008), FASCICULE 2



574 Roni N. LEVY

1. Categories of local systems

Now we are going to define categories of local objects, which will be
used in the paper. Let K be a finite simplicial complex having I as a set
of vertices. In other words, K ⊂ 2I has the property that if α ∈ K and
β ⊂ α, then β ∈ K too. Suppose that for any α ∈ K an Abelian category
Fα is given, and for any couple β, α, β ⊂ α ∈ K, there is an exact functor
Rβ,α : Fβ → Fα (restriction functor), such that for any γ ⊂ β ⊂ α ∈ K
the equality Rγ,α = Rβ,α ◦ Rγ,β is satisfied. Next, suppose that for any
α ∈ K one has a complicial biWaldhausen category Aα, associated with
the Abelian category Fα (see [11], def. 1.2.11), and the functors Rβ,α map
Aβ into Aα. To simplify the situation, we will suppose that the weak equiv-
alences in Aα are exactly the quasi-isomorphisms of complexes, the cofibra-
tions are the admissible degree-wise split monomorphisms, and fibrations -
the admissible epimorphisms.

Such a system A of categories and functors will be called a local system
of biWaldhausen categories on K, and a morphism from the local system of
categories A to A′ will be defined as a system of functors Tα : Aα → A′α,
commuting with the restriction functors.

Remark 1.1. — In fact, the situation when we will use the definitions
and results of this section is the following: U = {Ui}i∈I is an open covering
of the topological space X, K = N (U) is the nerve of U (i.e. one has α ∈ K
iff Uα := ∩Ui, i ∈ α is non-empty), Fα is a category of sheaves on Uα, and
Rβ,α is the morphism of restriction from Uβ to Uα.

In the situation above one can give

Definition 1.2. — Denote by LocA the category of local systems of
A-complexes, defined as follows:

Objects L =
{
{L•,α}α∈K , {E•,β,α}β⊂α∈K

}
of LocA are the systems

consisting of the following data:
(1) A family of complexes L•,α, α ∈ K in Fα, belonging to Aα, for any

finite non-empty subset α ∈ K.
(2) A family of monomorphic quasi-isomorphisms of complexes in Aα

(called in the sequel connecting morphisms)

E•,β,α : Rβ,α (L•,β) → L•,α
for any α, β with β ⊂ α ∈ K, such that for any γ ⊂ β ⊂ α ∈ K
the equality E•,γ,α = E•,β,α ◦ E•,γ,β is satisfied, and E•,α,α is the
identity morphism for any α.

ANNALES DE L’INSTITUT FOURIER
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Sometimes we will drop the requirement that E•,αβ are quasi-isomor-
phisms, and will refer to such a system as non-quasi-isomorphic (nq-) local
system.

A morphism F from L′ to L′′ in the category LocA consists of the family
of morphisms of complexes F•,α : L′•,α → L′′•,α in Aα, commuting with the
monomorphisms E•,α,β .

Let us call the morphism F a cofibration if all F•,α are degree-wise split
monomorphisms, and a weak equivalence if all F•,α are quasi-isomorphisms.
Consider the Abelian category FK consisting on all non-quasi-isomorphic
local systems of elements of F(Uα) (considered as complexes of length one);
any element of LocA can be considered as a complex of elements of F , and
so LocA becomes a complicial biWaldhausen category,associated with the
Abelian category FK (in the sense of the definition in [11], cited above).

Let us call the morphism R a cofibration if all R•,α are degree-wise
split monomorphisms, and is a weak equivalence if all R•,α are quasi-
isomorphisms. Consider the Abelian category F of all non-quasi-isomorphic
local systems of elements of F(Uα); any element of LocA can be consid-
ered as a complex of elements of F , and so LocA become a complicial
biWaldhausen category,associated with the Abelian category F (see [11],
def. 1.2.11).

Denote by GlobF the subcategory of FK consisting of all systems
{Fα}α∈K such that for any β ⊂ α ∈ K the object Rβ,α (Fβ) is isomor-
phic to Fα in Fα. Analogously, denote by GlobA the subcategory of LocA
consisting on all local systems L =

{
{L•,α}α∈K , {E•,β,α}β⊂α∈K

}
such

that all the connecting morpisms E•,β,α are degree-wise isomorphisms; we
will call the objects of GlobA global systems. The elements of GlobA can
be considered as complexes of elements of GlobF .

Examples of categories of local systems, such as local systems of com-
plexes of coherent sheaves, of complexes of free sheaves, etc., on a complex
space, will be considered in the next section. In the rest of the present
section we state some lemmas which will be used to show that the Wald-
hausen K-groups of all these categories coincide (and define the algebraic
K-functor of this complex space).

One can consider also the dual definition: let us call colocal system of
A-complexes any familyM•,α as in (1), endowed for any β ⊂ α with quasi-
isomorphic epimorphisms P•,β,α :M•,α → Rβ,α (M•,β) satisfying P•,γ,α =
P•,γ,β ◦ P•,β,α. Taking the same definitions as above for morphisms, cofi-
brations and weak equivalences, we obtain again a biWaldhausen category,
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576 Roni N. LEVY

which will be denoted by ColocA. The global systems can be considered
both as local and cololcal systems

Lemma 1.3. — The Waldhausen classifying spaces of the categories
LocA and ColocA are homotopy equivalent.

Proof. — We will construct an equivalence of exact categories CO :
LocA → ColocA. Let L = {L•,α}α∈K be a local system of complexes
in A with connecting isomorphisms E•,β,α. Suppose that the set I is or-
dered. Fix α ∈ K, and denote by α the star of α in K, i.e. the simplicial
complex of all subset of α. Then the complexes {Rβ,α (L•,β)}β⊂α and the
maps E•,β,α form a simplicial system of objects of Aα over the simplicial
complex α. Denote by COL = COLα

•,• the corresponding cochain complex
of complexes, defined in the standard way. More precisely, let

COLα
•,k =

⊕
|β|=k,β⊂α

Rβ,α (L•,β)

be a bicomplex, whose second differentials Eα
•,k : COLα

•,k → COL
α
•,k+1 are

defined in the standard way: the component of Eα
•,k mapping Rβ′,α (L•,β′)

into Rβ′′,α (L•,β′′) is equal to ε(β′, β′′) Rβ′′,α (Eβ′,β′′). Here we have |β′| =
k, |β′′| = k + 1, and ε(β′, β′′) is zero unless β′ ⊂ β′′; in the latter case, if
β′′ = β′ ∪ {i}, then ε(β′, β′′) = (−1)l, where l is the number of elements of
β′ greater than i.

Now, denote by COLα
• the total complex of the bicomplex COLα

•,•. This
complex belongs to Aα. We shall show that the family {COLα

• }α⊂I is
a colocal system; indeed, if β ⊂ α, then β is a subcomplex of α, and
Rβ,α

(
COLβ

•,k

)
is a direct summand in COLα

•,k. The natural projection

P•,k,β,α : COLα
•,k → Rβ,α

(
COLβ

•,k

)
is a quasi-isomorphism and com-

mutes with the differential Eα
•,k; it is easy to check that P•,k+1,β,α ◦Eα

•,k =
Eα
•,k ◦ P•,k,β,α. This construction gives the desired exact functor CO.
Let us point out more of its properties. There exist for β ⊂ α a natu-

ral embedding of complexes (not commuting with the differentials) Qβα :

Rβα

(
COLβ

•

)
→ COLα

• which are right inverse maps to Pβα. Next, tak-
ing the summand with β = α in the definition of COLα

• , we obtain an
monomorphisms of complexes Gα : L•,α → COLα

• [− |α|+1] (1) . The natural
left inverse epimorphism for Gα – the projection onto this direct summand
(not commuting with the differentials) – will be denoted by Hα.

Taking the same construction with the corresponding modification, we
can construct an exact functor C̃O : ColocA → LocA. LetM = {Mα

• }α⊂I

(1) Here L [k]• is the k-th right shift of L•: L [k]n = Ln−k.

ANNALES DE L’INSTITUT FOURIER
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be a colocal system with connecting epimorphisms Pβα. Consider the bi-
complex

C̃OM•,k,α =
⊕

|β|=k,β⊂α

Mβ
•

with second differentials determined by ε(β′, β′′) Rβ′′β′ (Pβ′′,β′), and let
C̃OM•,k,α be its total complex shifted left:

C̃OM•,α = tot
(
C̃OM•,•,α

)
[− |α|+ 1]

The quasi-isomorphic embeddings C̃OM•,α → C̃OM•,β are defined in the
natural way for any α ⊂ β.

We will construct a quasi-isomorphic natural transformation from the
functor C̃O◦CO to the identity functor of the category LocA. Take L = L•,α
and COL = COLα

• as above, and let M = {Mα
• } = COLα

• , L̃ = L̃•,α =
C̃O ◦ CO ◦ L.

Now, denote by πα : L̃•,α → L•,α the direct sum of maps (−1)|α|−|β|Eβα◦
Hβ : Mβ

• → L•,α for all β, β ⊂ α. It is easy to see that π = {πα}α∈I is
a morphism of local systems. We will prove that for any fixed α ⊂ I the
morphism πα is a quasi-isomorphism; indeed, denote by G̃α : L•,α → L̃•,α
the superposition of Gα and the natural embedding of Mα

• in L̃•,α. (Note
that G̃α is not a morphism of local systems, i.e., does not commute with
connecting morphisms.) Then G̃α is a homotopy inverse for πα. Indeed,
it is easy to see that πα ◦ G̃α is equal to identity in L•,α. The homotopy
between G̃α ◦ πα and the identity functor in L̃•,α can be defined by the
family of maps Qβ,β′′ for β′ ⊂ β′′ ⊂ α, |β′′| − |β′| = 1.

In the same way one can construct a quasi-isomorphic natural transfor-
mation from CO ◦ C̃O to the identity functor in ColocA. Now the assertion
of the lemma will follow from([11], th. 1.9.8). �

Note that one can define the functors CO, C̃O can be defined on the
category of nq-local systems. Then the morphism π : C̃O ◦ CO ◦ L → L is
a (non-quasi-isomorphic) morphism of local systems.

Now suppose that the system of categories Aα satisfy the following ad-
ditional requirements:

i) Any finite complex of objects of Fα, quasi-isomorphic to some com-
plex in Aα, belongs to Aα too.

ii) For any β ⊂ α ∈ K there exists an exact functor Sβ,α : Fα → Fβ

such that the following relations are satisfied:
1) Sα,β ◦ Sβ,γ = Sα,γ for any γ ⊂ β ⊂ α ∈ K, Sα,α = Id.
2) Rβ,α ◦ Sα,β = Id in Fα for any β ⊂ α ∈ K.

TOME 58 (2008), FASCICULE 2



578 Roni N. LEVY

3) If α, β ∈ K, α ∩ β 6= ∅, then

Rα∩β,β ◦ Sα,α∩β =
{

Sα∪β,β ◦Rα,α∪β if α ∪ β ∈ K,

0 if α ∪ β /∈ K.

In the case mentioned above, i.e. when Fα are categories of sheaves on the
open sets Uα and Rβα are the restriction functors, the functors Sα,β are
the operators of extension by zero of sheaves from Uα to the larger set Uβ .

Lemma 1.4. — Under the conditions i/ and ii/ above, the classifying
spaces of the categories LocA and GlobA are homotopy equivalent.

Proof. — Using ii/, one can define the "zero extension" functors Sα :
Fα → GlobF by the formula (SαL)β = Rα∩β,β ◦ Sα,α∩β (L) if α ∩ β is
non-empty and zero in the opposite case, where L ∈ Fα.

Now we will construct a functor C : LocA → GlobA inducing a homotopy
equivalence of classifying spaces. Let L = {L•,α}α∈K be a local system of
A-complexes with connecting isomorphisms E•,β,α. Consider the following
bicomplex in GlobF :

CL•,k =
∏
|α|=k

Sα (L•,α)

endowed with a second differential as in the definition of COLα
•,k in lemma

1.3. Then the Cech complex CL• of L is defined as the total complex of
this bicomplex. In the case when Fα are categories of sheaves on the open
sets Uα, and L is a sheaf globally defined on X, then the complex CL•
coincides with the canonical resolution of the sheaf L on X, connected
with the covering {Ui} (see [8], II.5.2).

Now the complex COLα
•,k is a direct summand in (CL•,k)α, the natural

projection Pα : CL•,α → COLα
• is a quasi-isomorphism, and by i/ we

have (CL•)α ∈ Aα and therefore CL• ∈ GlobA. Considering GlobA as a
subcategory of ColocA, we obtain two functors, C and CO, from LocA
to ColocA, and a quasi-isomorphic natural transformation P = {Pα} :
C → CO. Since, by 1.3, the functor CO determines a homotopy equivalence
of derived categories, then the same is true for the functor C. �

In the same way one can construct the Cech complex of a colocal system,
determining an equivalence of categories CoC : ColocA → GlobA.

Remark 1.5. — We will need a relative version of the constructions from
1.3 and 1.4. Take simplicial complexes K and P with sets of vertices I and
J corr., and denote by K × P the set of all subsets γ ⊂ I × J such that
there exist α ∈ K, β ∈ P with γ ⊂ α× β.
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Suppose one has a system of Abelian categories Fγ , biWaldhausen cate-
gories Aγ , and exact functors Rγ′,γ , γ′ ⊂ γ ∈ K × P as in the beginning of
the section. Then for any fixed β ∈ P the set of categoriesAβ = {Aα×β}α∈K
and functors Rα′×β,α×β for α′ ⊂ α ∈ K form a local system of categories
on K. For any β′ ⊂ β ∈ P the functors Rα×β′,α×β , α ∈ K, define a mor-
phism of local system of categories from Aβ′

to Aβ . The categories of global
objects

{
GlobAβ

}
β∈P form a local system of categories on P.

Denote by COβLα
• and CβL• respectively the colocal system and the Cech

complex for the system Aβ , constructed as in 1.3 and 1.4. Since all the
constructions are compatible with the connecting monomorphisms of the
system with respect to β, then COβLα

• is a local system with respect to β

and a colocal system with respect to α, and CβL• is a local system of objects
in

{
GlobAβ

}
β∈P . As above, these functors induce homotopy equivalences

between the corresponding categories. In particular, the functor C̃Oβ is
adjoint to the functor COβ .

Let A = {Aα}α∈K be a local system of categories as above. Denote by
A0

α the category of all finite complexes of projective objects from Fα, and
let A0 =

{
A0

α

}
α∈K. Suppose that any complex L• from Aα has a finite

projective resolution, i.e., a complex L• from A0
α and a quasi-isomorphism

R• : L• → L•. Then we have:

Lemma 1.6. — Under the conditions above any (nq-) local system from
LocA is quasi-isomorphic to some (nq-) local system from LocA0.

Proof. — Denote the category of all non-quasi-isomorphic local systems
from A by B, and let B0 be its subcategory, consisting of all systems,
composed by complexes from A0. We will prove that any system L from B
is quasi-isomorphic to some system L from B0. If the system L is in LocA,
i.e. all its connecting morphisms are quasi-isomorphisms, then the same
will be true for the system L, which is the statement of the lemma.

Take the local system L =
{
{L•,α}α∈K , {E•,β,α}β⊂α∈K

}
∈ B. We will

construct a non-quasi-isomorphic local system L = {L•,α}α∈K ∈ B
0 and a

morphism of local systems G = {G•,α}α∈K : L•,α → L•,α, such that any of
the morphisms of complexes G•,α, α ∈ K, induces an epimorphisms in all
homology groups. Then, applying the inductive procedure from [11], 1.9.5,
and SGA 6, I.1.4, after a finite number of steps one obtains a system from
B0, quasi-isomorphic to the original system L.

In order to construct the system L, take for any α ∈ K a complex L̃•,α
from A0

α, and a quasi-isomorphism of complexes G̃•,α : L̃•,α → L•,α.

TOME 58 (2008), FASCICULE 2



580 Roni N. LEVY

Put L•,α =
∏

β⊂α Rβ,α

(
L̃•,β

)
, and define the morphism of complexes

G•,α : L•,α → L•,α as a direct sum of morphisms E•,β,α ◦ Rβ,α

(
G̃•,β

)
:

Rβ,α

(
L̃•,α

)
→ L•,α, β ⊂ α. For α′ ⊂ α′′ the complex Rα′,α′′ (L•,α′) is a

direct summand in L•,α′′ . Taking the corresponding natural embeddings as
connecting maps, one can consider {L•,α}α∈K as a non-quasi-isomorphic
local system, and the set of morphisms G = {G•,α}α∈K is a morphism of
local system. It is easy to see that any G•,α induces an epimorphisms in
all homology groups. �

Remark 1.7. — If L = {L•,α} is a (nq-) local system of complexes from
LocA, and for any α ∈ K one has a complex L•,α ∈ A0

α and a quasi-
isomorphism G•,α : L•,α → L•,α, then there exists a (nq-) local system
L = {L•,α}α∈K in A0, quasi-isomorphism of local systems G = {G•,α}α∈K :
L → L, and a family of quasi-isomorphic embeddings of complexes i•,α :
L•,α → L•,α such that for any α ∈ K one has G•,α = G•,α ◦ i•,α.

We will need also a substitute for the covering morphisms property of
the resolutions for the local systems constructed above. Suppose that the
assumptions of the lemma above are satisfied. Take the nq-local systems
L = {L•,α}, M = {M•,α} of complexes from A, and a morphism of local
systems ϕ = {ϕ•,α} : L → M. Let L = {L•,α} and M = {M•,α} be
objects of LocA0, and εL : L → L, εM : M → M be quasi-isomorphisms
of nq-local systems. Denote, as in 1.2, L̃ =

{
C̃O ◦ COL

}
•,α

, and M̃ ={
C̃O ◦ COM

}
•,α

. Let πL : L̃ → L, πM : M̃ → M be the epimorphic

morphisms of local systems constructed in the proof of lemma 1.3. We
have

Lemma 1.8. — Under the assumptions above there exists a morphism
of local systems ϕ̃ = {ϕ̃•,α} : L̃→ M̃ , such that the diagram

L̃
πL→ L

εL→ L
ϕ̃ ↓ ϕ ↓
M̃

πM→ M
εM→ M

is commutative.
In particular, any two systems from LocA0, quasi-isomorphic to the same

system from LocA, are homotopy equivalent.

Proof. — In the notations of 1.3, it will be sufficient to construct a se-
ries of morphisms of complexes ϕ̃α

• : COLα
• → COMα

• commuting with
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connecting projections Pα,β such that its restrictions to L•,α are covering
morphisms for the morphisms ϕ•,α.

One can suppose that ϕ̃α
• are constructed for all α with |α| < n, and we

have to construct ϕ̃α
• for a given α with |α| = n. For this, let us denote by

CO′Lα
• the factor-complex of COLα

• consisting of all summands L•,β with
β 6= α. This complex coincides with the total complex of the bicomplex,
obtained from COLα

•,• truncating its rightmost column, coinciding with
L•,α. Then, we have a canonical morphism of complexes τα : CO′Lα

• →
L•,α, and COLα

• coincides with the cone of this morphism. The morphisms
ϕ̃β
• , β ⊂ α, β 6= α, constructed by the inductive assumption, determine a

morphism of complexes ϕ̃′
α

• : CO′Lα
• → CO

′Mα
• .

Now, choose arbitrary morphism of complexes Φ•,α : L•,α →M•,α cover-
ing the given morphism ϕ•,α. It is easy to see that the diagram of complexes

CO′L•,α
τα→ L•,α

ϕ̃′
α

• ↓ Φ•,α ↓
CO′M•,α

τα→ M•,α

is commutative up to homotopy. Choosing a homotopy S•,α : CO′L•,α →
M•,α [−1] for it, we can see that the triple ϕ̃′

α

• ,Φ•,α, S determines a mor-
phism between the cones of the horizontal morphisms of the diagram, i.e.,
morphism ϕ̃α

• : COLα
• → COMα

• , satisfying our requirements. �

We will need also the following generalization of the lemma above. Sup-
pose that the assumptions of lemma 1.6 are satisfied. Take the nq-local
systems Lk = {Lk,•,α}α∈K, k = 1, . . . ,K of complexes from A, and mor-
phisms of local systems δk = {δ•,α} : Lk → Lk+1, satisfying δk+1 ◦ δk = 0.
In other words, we have a complex L• = 0 → L1 → . . . → LK → 0 of
nq-local systems. One can form its total complex tot (L•) = {tot (L•,•,α)}
which is again a nq-local system of complexes from A. We will denote by
σkL• the "brutal" truncation of the complex L•, i.e. the complex σkL• :
0 → Lk → . . . → LK → 0. Then tot (σkL•) form a decreasing filtration of
tot (L•).

Suppose also that for any k there are fixed local systems of complexes
Lk = {Lk,•,α}α∈K from LocA0, and quasi-isomorphisms of local systems

εk : Lk → Lk. For any k, denote L̃k =
{
C̃O ◦ CO L

}
k
, and let πk : L̃k → Lk

be the natural quasi-isomorphism of local systems, constructed in the proof
of lemma 1.3. We have

Lemma 1.9. — In the conditions above there exist:
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(1) A nq-local system E = {E•,α} from LocA0 endowed with a decreas-
ing filtration by local subsystems E = E1 ⊃ . . . ⊃ EK ⊃ EK+1 =
{0} such that Ek/Ek+1 ≈ L̃k, and

(2) A quasi-isomorphism e : E → tot (L•) of local systems such that e

maps Ek into tot (σkL•), and the morphism from L̃k ≈ Ek/Ek+1

to
Lk ≈ tot (σkL) /tot (σk+1L), induced by e, coincides with εk ◦ πk.

Proof. — Suppose that the complex of local systems Ek+1 and the re-
striction ek+1 of the morphism e to Ek+1 are already constructed. We will
find a morphism ∂k : L̃k [−1]→ Ek+1 such that the diagram:

L̃k [−1] ∂k−→ Ek+1

εk ◦ πk ↓ ek+1 ↓
Lk [−1] δk−→ tot (σk+1L•)

is commutative. Then one can define Ek as the cone(2) of ∂k, and the
morphism ek : Ek → tot (σk) – as the morphism between the cones of the
horizontal arrows of the diagram above, determined by the vertical arrows.
It is easy to check that the properties (1) and (2) are fulfilled.

As a first approximation to the construction of ∂k, take a morphism of
complexes of local systems, constructed in 1.7: ∂̂k : L̃k → L̃k+1 such that
the diagram:

L̃k
∂̂k−→ L̃k+1

εk ◦ πk ↓ εk+1 ◦ πk+1 ↓
Lk

δk−→ Lk+1

is commutative.
Now we will construct the morphism ∂k : L̃k [−1] → Ek+1. One may

suppose that the morphisms ∂l with the properties as above are already
constructed for l > k. Since Ek+1 is defined as the cone of the morphism
∂k+1 : L̃k+1 [−1] → Ek+2, then there exists a projection of complexes
Pk+1 : Ek+1 → L̃k+1, and one can find ∂k such that ∂̂k [−1] = Pk ◦ ∂k.
Indeed, the superposition ∂k+1 ◦ ∂̂k [−1] : L̃k [−1] → Ek+2 covers the zero
morphism δk+1 ◦ δk : Lk → tot (σk+2L) and therefore is homotopicaly
equivalent to zero. Let S̃k : L̃k [−1] → Ek+2 [−1] be the corresponding
homotopy. Then the map ∂k =

(
∂̂k, S̃k

)
is a morphism of complexes from

(2) Here and below we choose the enumeration of the stages of the cone of a morphism
L• → M• in such a manner that the stages of M• keep its initial enumeration and the
numbers of the stages of L• decrease by one.
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L̃k [−1] to the cone of ∂k+1, i.e. to Ek+1, and satisfies the requirement
above. �

Remark 1.10. —

a) The construction of the covering morphism ϕ̃ in lemma 1.7 depends
on the choice of the covering morphisms Φ•,α and the homotopies
S•,α. Since this choice is unique up to a homotopy, then the con-
struction of ϕ̃ is unique up to a homotopy equivalence. The same
arguments show that the construction of the local system E in
lemma 1.8 is unique up to a homotopy equivalence.

b) Suppose there are given two complexes L′•, L′′• of local systems in
A, morphism of complexes of local systems ϕ = {ϕ•} : L′• → L′′• ,
and fixed resolutions L′k, L′′k for L′k and L′′k corresp. Denote by E′,
E′′ the corresponding complexes of local systems of A0 constructed
in the lemma above. Then, using the same arguments as in the
proof of the lemma, one can construct a morphism Eϕ : E′ → E′′

of complexes of local systems, covering the morphism ϕ.

2. Higher bivariant algebraic K-theory for complex spaces

Let X, Y be complex spaces, and f - a closed morphism from X to Y .
The higher bivariant algebraic K-groups Ki

(
X

f→ Y
)

, or simply Ki(f),
can be defined in the same way as the absolute one, using the equivalent
definitions of Quillen [10] and Waldhausen [12] (for a detailed review of all
results in higher K-theory, used here, see [11]). In this section we give
a list of biWaldhausen categories (i.e., categories with cofibrations and
weak equivalences), consisting of complexes of sheaves, and producing the
bivariant K-groups as homotopy groups of the corresponding Waldhausen
classifying space. As usual, the cofibrations in these categories will be taken
to be the set of all monomorphisms (or the monomorphisms, having a
complementable image - see [11], 1.9.2), and the weak equivalences to be
the quasi-isomorphisms.

Recall (SGA 6 and [5],II.1.) that a complex of sheaves L• on X is called
f -perfect, if for any sufficiently small open sets W in X, V in Y with
f(W ) ⊂ V , and a suitable closed embedding W

e→ U of W in the regular
domain U , the direct image (e, f)∗L• is quasi-isomorphic on the space U×V

to a finite complex of finite-dimensional free OU×V -modules. A sheaf on X

will be called f -perfect, if it is perfect as a complex, concentrated in degree
0. We shall adopt the following notations:
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C1: by Per0(f) we will denote the category of all f -perfect sheaves on
X;

C2: by CPer0(f) we will denote the category of all finite complexes of
f -perfect sheaves;

C3: by Per(f) we will denote the category of all f -perfect complexes of
nuclear Frechet sheaves on X.

As shown in [6] (see for detailed proof [11] 1.11.7), the natural inclusion
of Per0(f) in CPer0(f) induces a homotopy equivalence of corresponding
Waldhausen classifying spaces; the homotopy groups of these spaces will
be denoted by Ki(f). As we shall see below, Per(f) produces the same K-
groups; in order to prove the equivalence and to describe the operations in
bivariant K-theory, we shall consider some equivalent localized categories.
We will define it using an embedding in a regular space, although the
corresponding definitions could be made independently.

Let us fix a regular closed embedding % : X → X̃ of the complex space
X in the complex manifold X̃, a contractible Stein covering {Wi}i∈I of
X, and contractible Stein domains Ui ⊂ X̃ such that Ui

⋂
X = Wi. Then

the set U = {Wi, %Wi
, Ui}i∈I forms an atlas for the complex space X. As

usual for any non-empty finite subset α = (i1 . . . ik) ∈ I, we will denote
Wα = Wi1

⋂
. . .

⋂
Wik

, resp. Uα = Ui1

⋂
. . .

⋂
Uik

. Let us fix also a con-
tractible Stein covering {Vj}j∈J of the complex space Y , and suppose that

the covering {Ui} is subordinated to
{

f−1 (Vj)× X̃
}

. Then Vj × Ui cover

Y × X̃.
Having this, one can define new categories of complexes on Y × X̃ or on

Vβ ×Uα, β ⊂ J , α ⊂ I. Consider the embedding (f ×%) : X → Y × X̃, and
denote by JX the sheaf of ideals in OY×X̃ such that %∗OX = OY×X̃/JX .
We will say that the complex L• of free finite-dimensional OVβ×Uα

-modules
is supported on X iff all its sheaves of homologies are annihilated by the
ideal JX , i.e., are direct images of sheaves on X under the embedding above.

Now one can extend the notion of the perfect complex. Let L• be a
complex of OY×X̃ -modules on Y × X̃. The complex L• will be called f -
perfect, if for any α ⊂ I, β ⊂ J its restriction on Vβ×Uα is quasi-isomorphic
to a suitable finite complex L• of free finite-dimensional OVα×Uα

modules,
supported on X.

We shall introduce the notation:
C4: P̃ er(f) - the category of all f -perfect complexes of nuclear Frechet

sheaves of OY×X̃ -modules on Y × X̃.
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It is easy to see that the complex L• is f -perfect on X if and only if its
direct image under % is f -perfect on Y × X̃, so the category Per(f) can be
considered as a full subcategory of P̃ er(f).

Let us fix, as above, the covering {Vj × Ui}j∈J,i∈I of Y × X̃. We shall
use the following categories of local (and colocal) systems on the nerve of
this covering:

C5: LocFfd(f) - the category, consisting of local systems of finite com-
plexes of free finite-dimensional OY×X̃ -modules on Y × X̃.

C6: LocCPer0(f) - the category of local systems of finite complexes of
perfect sheaves on X.

C7: LocPer(f) - the category of local systems of f -perfect complexes of
nuclear Frechet sheaves on X.

C8: LocP̃ er(f) - the category of all local systems of f -perfect complexes
of nuclear Frechet sheaves on Y × X̃.

Evidently, any globally defined complex can be considered as a local
system of complexes; for this, one can take the set of restrictions of this
complex on the subsets Vβ × Uα, with isomorphisms as connecting maps.
In this way, C3 and C4 can be considered as full subcategories of C7 and
C8 respectively.

In general, we have the following diagram, where all the arrows are em-
beddings of full subcategories:

C1 −→ C2 −→ C3 −→ C4
↓ ↓

C6 −→ C7 −→ C8 ←− C5

The rest of this section is devoted to the proof of

Proposition 2.1. — The Waldhausen classifying spaces of all the cat-
egories C1 – C8 listed above have the same homotopy type.

Proof. — Lemma 1.6 shows that the embedding C5 → C8 induces a
homotopy equivalence of classifying spaces.

Next. applying lemma 1.4, one can see that the global-local embeddings
C3→ C7 and C4→ C8 are homotopy equivalences also.

It remains to prove the homotopy equivalence of the embeddings C2→
C3 → C4 and C6 → C7 → C8. For this, we shall use the Waldhausen
Fibration theorem, ([12], 1.6.4), and the equivalence of Waldhausen and
Quillen definitions in the case when weak equivalences coincide with iso-
morphisms ([12], 1.9, and [6], Th. 6.2). The following assertion is an imme-
diate consequence of these theorems:

TOME 58 (2008), FASCICULE 2



586 Roni N. LEVY

Lemma 2.2. — Suppose A and B are complicial Waldhausen categories,
and Ae and Be are its subcategories, consisting of all exact complexes. Let
F : A → B be an exact functor, such that the induced maps of Quillen
classifying spaces

BQF : BQA → BQB , BQFe : BQAe → BQBe

are homotopy equivalences. Then F induces a homotopy equivalence be-
tween Waldhausen classifying spaces of A and B.

Let us consider the embedding C2→ C4 (the same arguments hold for
C2 → C3). Denote by A the category of all perfect complexes on Y × X̃

with the property that the kernels of all the differentials are complemented
subsheaves. Let Ã = A ∩ C2 be the category of all complexes of perfect
sheaves with this property. Denote by B the category of complexes from A
with fixed subsheaves, complementing the kernels of the differentials, and
again B̃ = B ∩C2. Let C be the category with the same set of objects as B
with morphisms all the morphisms from B, preserving the complements of
kernels of differentials. Put C̃ = C∩C2. Finally, let D be the subcategory of
C2 consisting of all complexes with zero differentials. We have the following
commuting diagram of functors and categories:

D −→ C −→ B −→ A −→ C4
↑ ↑ ↑ ↑ ↑
D −→ C̃ −→ B̃ −→ Ã −→ C2

It is sufficient to prove that all horizontal arrows are homotopy equiv-
alences. The arguments used here will be identical for both rows of the
diagram. Let first consider the embedding A −→ C4. For any complex,
consisting of sheaves Ln and differentials dn : Ln → Ln+1, there exists a
filtration by subcomplexes τ ′

k
L, τ ′′

k
L, defined in the following way:

for n < k,
(
τ ′

k
L

)
n

=
(
τ ′′

k
L

)
n

= Ln(
τ ′

k
L

)
k

= imdk−1,
(
τ ′′

k
L

)
k

= ker dk

for n > k,
(
τ ′

k
L

)
n

=
(
τ ′′

k
L

)
n

= 0
If the complex Ln is perfect, or a finite complex of perfect sheaves, then

the same is true for the complexes τ ′
k
L, τ ′′

k
L. We have · · · ⊂ τ ′

k
L ⊂

τ ′′
k
L ⊂ τ ′

k+1
L ⊂ . . .. The factor-complex τ ′′

k
L/ τ ′

k
L is non-zero only

at the stage k, and the next factor τ ′
k+1

L/ τ ′′
k
L is exact and concen-

trated in the stages k, k + 1. Obviously these factor-complexes belong to
A. Therefore, any object in C4, resp. C4e, possesses a finite filtration,
whose factor-objects belong to A, resp. to Ae. Then we can use the Quillen
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devissage theorem ([10], th. 5.4) asserting that the embeddings A → C4,
Ae → C4e induce homotopy equivalences of Quillen classifying spaces.
Now, using lemma 2.3, one sees that A → C4 is a homotopy equivalence
of Waldhausen categories. The same argument shows that Ã → C2 is a
homotopy equivalence also.

Next, it is clear that the forgetful functors B → A, B̃ → Ã are homotopy
equivalences. To prove the homotopy equivalence of the embeddings C → B,
C̃ → B̃, it is sufficient to note that any morphism between two complexes
with fixed complements of the kernels of differentials is homotopic to a
morphism, preserving these complements, and to apply theorem 1.9.8 of
[11].

Finally, D is a full subcategory of C or C̃. For any complex L• from C
there exists an epimorphic quasi-isomorphism L• → H• where H• denotes
the complex of all homology sheaves of L• with zero differentials. This
determines an exact functor from C to D which is left adjoint and homo-
topy right adjoint to the embedding. Therefore, the embeddings D → C,
D → C̃ are homotopy equivalences. Thus, the homotopy equivalence of the
embeddings C2→ C3→ C4 is proved.

The proof of the homotopy equivalence of the embeddings C6→ C7→
C8 can be proved following the same lines. Indeed, for the local systems
of complexes on can introduce filtrations similar to these considered above.
We omit the details. �

3. The Riemann-Roch functor

Given compact topological spaces A, B, B ⊂ A, denote by CBun(A,B)
(CBun(A) if B = ∅) the complicial biWaldhausen category of all finite con-
tinuous complexes of finite-dimensional vector bundles on A, exact on B,
and by CBun(f) - the category CBun(Y ×X̃, Y ×X̃/X). We shall describe
briefly a natural map from the Waldhausen K-groups Ki (CBun(A,B))
of this category to the topological K-groups Ki(A,B). Let EA be the
(discrete) category of all finite-dimensional vector bundles on A. Denote
by KQ

∗ (A,B) the Quillen relative K-groups of the pair (EA, EB); that is,
KQ

i (A,B) is the i + 1-th homotopy group of the homotopy fibre of the
restriction map BQEA → BQEB . Now one can apply the results of [6]
p.6, establishing the equality of Quillen and Waldhausen K-groups, to the
pair of categories (EA, EB); one obtains a natural map Ki (CBun(A,B))→
KQ

i (A,B) (see [6], th. 6.2).
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The way to pass from the groups KQ
∗ (A,B) to the topological K-groups

is described in another paper of Gillet - [7], p.6.1, where the equivalence
between Q and +-constructions is used: indeed, there is a natural transfor-
mation of functors

BGLd(C(A))+ → BGL(C(A))

where GLd(C(A)) denotes the group of invertible matrices over C(A) en-
dowed with the discrete topology, and GL(C(A)) - the same with the
compact-open topology. It induces a natural map of groups KQ

i (A) →
Ki(A), and, in the relative version, KQ

i (A,B)→ Ki(A,B). We have:

Lemma 3.1. —

(1) To any exact functor α from the given complicial biWaldhausen
category A to the category CBun(A,B) there corresponds a map
α∗ : K∗(A) → K∗(A,B) from the Waldhausen K-groups of A to
the topological K-groups of (A,B).

(2) Let I = [0, 1], and denote by

Rj : CBun(A× I,B × I)→ CBun(A,B), j = 0, 1,

the functors determined by the restrictions to the corresponding
endpoint of I. Suppose that αj : A → CBun(A,B), j = 0, 1, are
two exact functors, and there exists an exact functor α : A →
CBun(A× I,B × I) such that αj = Rj ◦ α, j = 0, 1. Then α0 and
α1 induce identical maps to topological K-groups: α1

∗ = α0
∗.

Proof. — (1): one defines αi as a composition of the map Ki(A) →
Ki(CBun(A,B)), induced by α, with the maps Ki (CBun(A,B))
→ KQ

i (A,B) → Ki(A,B) defined above. To prove (2), it is sufficient to
note that αj

∗ = Rj
∗ ◦ α∗, j = 0, 1. �

We shall now define a Riemann-Roch functor, acting from some of cat-
egories of complexes of sheaves, considered in the previous section, to a
suitable category, equivalent to CBun(f). We will need two equivalent def-
initions for this functor, the first using the finite-dimensional resolutions,
while the second one - the infinite-dimensional resolutions constructed by
the use of Koszul complexes.

3.1. Definition 1

Let LocCBun(A,B), resp. LocCBun(f) be the category of all local sys-
tems of complexes of finite-dimensional vector bundles corresponding to the
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covering U . (We will suppose that all the elements of U and all their finite
intersections are contractible.) Then CBun(f) and LocCBun(f) are com-
plicial Waldhausen categories, and there is a natural inclusion of CBun(f)
in LocCBun(f). We will show that it induces a homotopy equivalence be-
tween the classifying spaces. For this, in view of theorem 1.9.8 of [11], it
is sufficient to prove that any local system is quasi-isomorphic to some
globally defined complex of vector bundles.

We will say that the local system of complexes of bundles {L•,α}α⊂I ,
connected with the covering U = {Ui}i∈I of the topological space K, is
transversal, if for any two subsets α, β ⊂ I, any integer n, and any x ∈
Uα

⋂
Uβ , the intersection of Ln,α(x) and Ln,β(x) in Ln,α

⋃
β(x) coincides

with Ln,α
⋂

β(x) (3) . It is easy to see that any local system of bundles is
quasi-isomorphic to a transversal system. Indeed, for any local system of
bundles L•,α, the system C̃O ◦ CO ◦ L•,α (see lemma 1.3) is transversal.

In order to establish the homotopy equivalence from above, it is sufficient
to prove:

Lemma 3.2. — Let {L•,α}α⊂I be a transversal local system of com-
plexes of vector bundles connected with the covering U = {Ui}i∈I of the
topological space K. Then there exists a continuous complex H• of vector
bundles on K, and an embedding of local systems L•,α → H•, such that
on any domain Uα we have H• = L•,α

⊕
M•,α, where M•,α is a suitable

continuous and exact complex of vector bundles on Uα.

Proof. — First, let us note that if such a complex H• is constructed,
one can assume that the corresponding vector bundles are trivial in all
the stages except in one, say in degree zero. Indeed, this can be done by
addition of exact summands.

In the proof we shall use an induction on the number n of elements of
the covering U . Denote K ′ = U1

⋃
. . .

⋃
Un−1, and let K = K ′ ⋃ Un. Let

H ′
• and M ′

•,α be the complexes constructed by the inductive assumption on
K ′ for α not containing n. One can introduce an accorded system of scalar
products in all the bundles involved such that the bundles M ′

n,α coincide
with the orthogonal complements of Ln,α in H ′

n.
Let K ′′ = K ′ ⋂ Un. Take the system L′′•,α = L•,α

⊕
M ′
•,α′ for α =

α′
⋃
{n} on K ′′, corresponding to the covering Ui

⋂
Un, i 6= n, of K ′′.

It follows from the transversality of the original local system that L′′•,α is a
transversal local system also. Indeed, take {n} ⊂ β ⊂ α, α′ = α\ {n}, β′ =

(3) If L• is a complex of vector bundles on the space X, and x ∈ X, then we will denote
by L•(x) the corresponding complex of vector spaces.
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β\ {n}. Then we have L•,β
⋂

L•,α′ = L•,β′ and therefore we have a natu-
ral embedding of factor-bundles L•,β/L•,β′ ⊂ L•,α/L•,α′ . Now, identifying
L•,α

⊕
M ′
•,α′ with L•,α/L•,α′

⊕
H ′
•, resp. L•,β

⊕
M ′
•,β′ with L•,β/L•,β′

⊕
H ′
•, one obtains the connecting monomorphisms.
Denote by H ′′

• and M ′′
•,α the complexes constructed by the inductive

assumption on K ′′ starting from L′′•,α. Then H ′
• is a subcomplex of H ′′

•
on K ′′. The factor-complex H ′′

• /H ′
• is exact. By the assumption above, all

its components H ′′
n/H ′

n for n 6= 0 are stably trivial; therefore, the same is
true for n = 0. Adding a suitable finite complex of trivial bundles to H ′′

• ,
one can suppose that the components of H ′′

• /H ′
• are trivial bundles, and

therefore this complex can be extended as an exact complex on the whole
K ′.

In the same way, the exact complex H ′′
• /L•,{n} can be extended up to

an exact complex on Un. Then, taking the direct sum of H ′
• with the first

extension on K ′, and the direct sum of L•,{n} with the second extension
on Un, we obtain a globally defined on K complex, which extends H ′′

• on
K and satisfies the conditions of the lemma. �

Now, one can construct the Riemann-Roch homomorphism from the
category LocFfd(f) of local systems of finite complexes of free finite-
dimensional modules to the category CBun(f). Indeed, forgetting the an-
alytic structure, one can consider any finite complex of finite-dimensional
free OY×X̃ -modules as a complex of trivial bundles, which gives us an exact
functor α(f) : LocFfd(f)→ LocCBun(f). This functor, as it was pointed
out in lemma 3.1(1),determines a mapping from the K-groups of the cate-
gory LocFfd(f) (or any of the equivalent categories considered in the pre-
vious paragraph) to the topological K-groups of the pair Y × X̃, Y × X̃/X,
providing the necessary homomorphism of the algebraic into the topological
K-groups.

3.2. Definition 2

We shall describe briefly the main construction from [9] with suitable
modifications. Let U be a bounded Stein domain in the regular n-dimen-
sional complex space X̃, L is a Frechet sheaf of O

X̃
-modules on X̃ and the

functions z(x) = z1(x), . . . , zn(x), defined in a neighborhood of U , form a
coordinate system on U . The coordinate functions on U can be considered
as sections of the sheaf OU . The operators (Mz1 , . . . ,Mzn) of multiplication
by the coordinate functions form a commuting n-tuple of operators acting

ANNALES DE L’INSTITUT FOURIER



HIGHER BIVARIANT RIEMANN-ROCH THEOREM 591

on the Frechet space ΓU (L) of the sections of the sheaf L on U . We will de-
note the Koszul complex of the operators (Mz1 −λ1I), . . . , (Mzn

−λnI) by
K• (U,L) (λ); it is a finite complex of Frechet spaces with differentials holo-
morphically depending on the coordinates λ ∈ Cn, and exact out of the do-
main Ũ = z (U) ⊂ Cn. Recall that the m-th stage Km (U,L) (λ) is equal to
the direct sum of

(
n
m

)
copies of the Frechet space ΓU (L). The corresponding

complex K• (U,L) (x) := K• (U,L) (z(x)) is holomorphic on some neighbor-
hood of of U in X. One can extend the vector-function z(x) to the whole X̃

as a smooth function with values in Cn\Ũ ; then the complex K• (U,L) (x)
defined above is smooth, holomorphic near U , and exact out of U . As in
[9], 2.3, one can see that if O

X̃
K• (U,L) (x) denotes the complex of sheaves

of holomorphic sections of the complex K• (U,L) (x), then the natural epi-
morphism of evaluation at the point x: K• (U,OU ) (x) → C determines a
quasi-isomorphism of complexes of sheaves O

X̃
K• (U,L) (x)→ L|U , where

the sheaf L|U coincides with the sheaf L on the domain U and is zero
outside it. If V is another complex space, then on V × X̃ one has a quasi-
isomorphism of complexes of sheaves O

V×X̃
K• (U,L) (x)→ OV

⊗̂
L

∣∣∣
V×U

.

In particular, if L is free and finite dimensional, i.e. L = (OX)p, then the
latter sheaf coincides with (OV×U )p.

Suppose that X̃ is a product of the spaces X1 and X2 of dimension n

and m correspondingly, U1, U2 are open in X1, X2, U = U1 × U2, and the
tuples of functions z(x) = z1(x), . . . , zn(x) resp. w(x) = w1(x), . . . , wm(x)
define coordinate systems on U1 resp. U2. Denote by p1 the projection of U

on U1. Then the Koszul complex of the operators (Mz1 −λ1I), . . . , (Mzn
−

λnI), (tMw1 − µ1), . . . , (tMwm
− µm) defined for (λ1, . . . , λn, µ1, . . . , µm) ∈

Cn+m and t ∈ [0, 1], determines a homotopy on Cn+m between the complex
K• (U,L) (λ, µ) and the Koszul-Thom transform from Cn to Cn+m of the
complex K• (U1, p∗L) (λ).

Let X be a complex space, % : X → X̃ – a regular embedding of X into
the regular space X̃. Fix the locally finite covering U = {Ui}i∈I of %(X)
by bounded Stein domains such that for any finite set α = (i1, . . . , ik) ⊂ I

the domain Uα =
⋂k

j=1 Uij is also Stein (if it is non-empty). For any such
α we will fix also a coordinate system zα(x) defined in a neighborhood of
Uα. To glue together the local resolutions K• (Uα,L) (x) of the sheaf L,
corresponding to a different coordinate systems, we will use the correcting
maps rm,α′,α defined in [9], lemma 3.3. Suppose we have for any α′ ⊂ α a
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system of maps of the type

rm,α′,α(x) = Fm,α′,α(x) ◦Rα′,α : Km (Uα′ ,L) (x)

→ Km−|α|+|α′|+1 (Uα,L) (x)

where Rα′,α is the restriction operator from the space ΓUα′ (L) to ΓUα (L),
and Fm,α′,α(x) are suitable matrix-functions of the parameter x ∈ X̃, whose
entries for any fixed x are operators of multiplication in ΓUα′ (L) by some
element of ΓUα′ (OX).

Denote
KCm (U ,L) :=

⊕
α⊂I,p=m−|α|

Kp (Uα,L)

and consider the maps from KCm (U ,L) to KCm+1 (U ,L), determined by
the operators rm,α′,α(x) and the differentials of the complexes
K• (Uα,L) (x). We will call the operators rm,α′,α(x) correcting maps if
the Freshet spaces and the differentials described above form a complex,
i.e. if the product of any two consecutive differentials is zero. A simple
diagram chase (see [9], lemma 3.3) show that one can choose the matrix-
functions Fm,α′,α(x), smooth on X̃ and holomorphic in a neighborhood of
Uα, such that the corresponding rm,α′,α(x) are correcting maps. Moreover,
it is sufficient to choose such the matrix-functions when L = OX ; the maps
rm,α′,α(x) obtained in this way are correcting for any L. So the construc-
tion above provides a complex KC• (U ,L) (x) of Frechet spaces on X̃. Any
morphism Φ : L′ → L′′ of sheaves of OX -modules induces a constant mor-
phism of complexes KΦ• : KC• (U ,L′) (x)→ KC• (U ,L′′) (x) and therefore
KC• (U ,L) (x) is an exact functor of the sheaf L. Locally this complex splits
into a direct sum of an smooth exact complex and an holomorphic complex
(let us call such a complex essentially holomorphic complex). The evaluation
morphisms defined above induce a quasi-isomrphism between the complex
of sheaves of holomorphic sections of KC• (U ,L) (x), and the Cech complex
for the covering U and the sheaf L. If L• is a complex of sheaves on X, we
obtain a bicomplex KCα

• (U ,L•) (x), and its total complex will be denoted
by KCα

• (U ,L) (x); the properties stated above remain true.
This construction can be transferred to the local systems. Let L =

{L•,α}α⊂I be a local system on X̃ of complexes of Ox-modules with con-
necting maps E•,α′,α : L•,α′ → L•,α for α′ ⊂ α. Denote by K• (Uα,Lα) (x)
the total complex of the bicomplex K• (Uα,L•,α) (x). So, K• (Uα,Lα) (x) is
a holomorphic complex on Uα, and all its stages are direct sums of finitely
many copies of the Frechet space ΓUα (Lα). Then for α′ ⊂ α the map-
ping ΓUαE•,α′,α between the complexes of Frechet spaces ΓUα (L•,α′) and
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ΓUα (L•,α) induces constant morphism of complexes KE•,α′,α :
K• (Uα, Rα,α′Lα′) (x)→ K• (Uα,Lα) (x).

Consider for any α′ ⊂ α the maps rcm,α′,α(x) = Fm,α′,α(x)⊗KE•,α′,α ◦
Rα′,α from Km (Uα′ ,Lα′) (x) to Km−|α|+|α′|+1 (Uα,Lα) (x). Denote by
KC• (U ,L) (x) the complex constructed by the use of the maps rcm,α′,α

in the same way as the maps rm,α′,α in the case when L is a sheaf; it is
easy to see that the product of two consecutive differentials of this complex
again is equal to zero. The complex of sheaves of germs of holomorphic
sections of this complex is quasi-isomorphic via the evaluation map to the
Cech complex of the local system L.

The complex KC• (X,U ,L) (x) defines a Riemann-Roch functor in the
absolute case (Y = pt), and we are going to extend it to the bivari-
ant case. Take a covering U = {Vj × Ui}i∈I,j∈J of Y × X̃ as above. Let
{L•,α,β}α⊂I,β⊂J be a local system of finite complexes of sheaves on Y × X̃.
We will restrict to the case when all sheaves Lm,α,β are sheaves of the
type OVβ×Uα

(Fm,α,β), i.e. the sheaves of germs of holomorphic functions
with values in the (finite or infinite dimensional) Frechet space Fm,α,β .
Then the connecting maps of the system L can be considered as holo-
morphic operator-valued functions E•,(α′,β′),(α,β)(x, y) : L•,α,β → L•,α′,β′ ,
x ∈ Uα, y ∈ Vβ , acting between the corresponding Frechet spaces.

Fix β ⊂ J , and take the restricted local system on Vβ × X̃. The con-
struction above gives us a complex of Frechet spaces KC•,β (X,U ,L) (x, y),
holomorphically depending on y ∈ Vβ and essentialy holomorfic for X̃. Via
the evaluation morphism it is quasi-isomorphic to the complex of sheaves
CβL• (see remark 1.5).

Take a pair β′ ⊂ β ⊂ J . Then the set of connecting maps{
E•,(β′,α),(β,α)(x, y)

}
α⊂I

, defined for y ∈ Vβ , determines a quasi-isomorphic
monomorphism of complexes

KE•,β′,β(y) : KC•,β′ (X,U ,L) (x, y)→ KC•,β (X,U ,L) (x, y)

and it is easy to see that these morphisms form a local system of complexes
of Frechet spaces with respect to β. This leads us to the following definition:

Definition 3.3. — (C9): Define the category LocF (f) in the following
way: the objects of this category are local systems of essentially holomor-
phic complexes of nuclear Frechet spaces on Y × X̃, connected with the
covering

{
Vj × X̃

}
j∈J

. The connecting morphisms of these local system

are required to be constants with respect to X̃, i.e., are quasi-isomorphism
of complexes of Frechet spaces depending holomorphically only on Y -coor-
dinate of the parameter. The morphisms in this category are again bounded
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morphisms of local systems of complexes depending holomorphically only
on Y -coordinate.

The construction above defines an exact functor KC from the category
of local systems of complexes of locally free finite dimensional modules to
the category LocF (f). The evaluation morphism defines a quasi-isomorphic
natural transformation between this functor and the Cech functor CL• de-
fined in 1.3. (It is easy to see from this that KC is a homotopy equivalence.)

We will use the notion of uniformly Fredholm continuous complex of
Frechet spaces, defined in [9] as follows. A continuous morphism ϕ•(λ) :
X•(λ) → Y•(λ) between finite complexes of Frechet spaces, continuously
depending on the parameter, will be called an uniform quasi-isomorphism
if it induces a quasi-isomorphism of sheaves of continuous sections of these
complexes. The complex X•(λ) is called uniformly Fredholm, if it is uni-
formly quasi-isomorphic to a continuous complex of finite-dimensional vec-
tor bundles. It is shown in [9] 1.4 that any holomorphic perfect complex of
Frechet spaces is uniformly Fredholm, and any morphism inducing quasi-
isomorphism between complexes of sheaves of holomorphic sections is an
uniform quasi-isomorphism. Consider the next category:

Definition 3.4. — (C10). Denote by LocFred(A,B) the category of
all local systems, corresponding to the covering U of A, of uniformly Fred-
holm complexes of Frechet spaces on the space A, exact on its subspace
B. (We shall suppose that all the elements of the covering U and their in-
tersections with the set B are contractible.) The connecting morphisms in
this category are all the uniformly quasi-isomorphic monomorphisms with
closed image. Denote by LocFred(f) the category LocFred(Y × X̃, Y ×
X̃/X).

The category LocFred(f) can be used for a second definition of the
Riemann-Roch functor. Indeed, denote by LocCBun0(A,B) the category
LocCBun(A,B) with an additional structure on any object: a fixed trivi-
alization of all the bundles involved in the given local system on the cor-
responding element of the covering U . It is easy to see that the forgetting
functor from LocCBun0(A,B) to LocCBun(A,B) is a homotopy equiva-
lence. We have:

Lemma 3.5. — The natural embedding

LocCBun0(A,B)→ LocFred(A,B)

is a homotopy equivalence.
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Proof. — The proof uses again the Waldhausen Approximation Theorem
and is similar to the proof of statements 1.6. First, one can show that for
any local system X•,α(x) of uniformly Fredholm continuous complex of
Frechet space there exists a system L•,α(x) of complexes of vector bundles
and a morphism from L•,α(x) to X•,α(x) inducing the epimorphism in the
spaces of homologies for any x. Then the proof can be completed by the
inductive construction in the same way as in 1.6. �

Forgetting the holomorphic structure, we obtain an exact functor from
LocF (f) to LocFred(f). Now, taking the superposition of the functor
KC with this forgetting functor, we obtain the second definition of the
Riemann-Roch functor LocFfd(f) → LocFred(f). The arguments, used
in [9], show that the definition is independent on the choice of the atlas U
and the ambient space X̃.

Proposition 3.6. — The definitions 1 and 2 of the Riemann-Roch
functor are equivalent.

Proof. — We will define an intermediate functor from the category
LocFfd(f) of local system of complexes of free finite-dimensional sheaves
to the category of colocal systems of perfect complexes.
Take {L•,α,β}α⊂I,β⊂J ∈ LocFfd(f). For (x, y) ∈ Vβ × Uα denote by
KCα

•,β(L)(x, y) the complex of Frechet spaces on Vβ × Uα defined by the
formula

KCα
m,β (U ,L) :=

⊕
α′⊂α,p=m−|α′|

Kp (Uα′,β ,L)

with differentials determined by the correcting maps rm,(α′,β),(α′′,β)(x, y),
and the differentials of the complexes K• (Vβ × Uα′ ,L) (x).

The complexes KCβ
•,α(L)(x, y) form a local system with respect to β

and a colocal system with respect to α; the evaluation morphism gives an
epimorphic quasi-isomorphism between this system and the system COβLα

•
(see remark 1.5), and therefore KCβ

•,α(L)(x, y) is a colocal system of perfect
complexes.

On the other side, for (x, y) ∈ Vβ × Uα the natural projection
KC•,β(L)(x, y) → KCα

•,β(L)(x, y) is a quasi-isomorphism; indeed, apply-
ing to both sides the evaluation morphism, we obtain the quasi-isomorphic
projection Pα : CβL•,α → COβLα

• (see the proof of 1.4 and remark 1.5).
Hence we have a quasi-isomorphic natural transformation between the func-
tors KC and COβ . Forgetting the holomorphic structure, one can take the
same transformations in the category LocFred(f), which proves the asser-
tion. �
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4. Commutativity of the Riemann-Roch functor
with the operations

To complete the proof of the theorem, it is sufficient to prove that the
Riemann-Roch functor defined above commutes with the operations of tak-
ing the direct image and products, which are defined both in the algebraic
and topological bivariant K-theory. The operations in bivariant K0-theory
are described in [5]. Now we shall show that they can be extended on the
higher K-functors, and still commute with the Riemann-Roch.

4.1. Definition of direct image

Suppose now that f : X → Z, g : Y → Z are morphisms of complex
spaces, and let h : X → Y be a proper morphism such that f = g ◦ h. If
%X : X → X̃ and %Y : Y → Ỹ are regular embeddings, then % = (%X , %Y ◦h)
is a regular embedding of X in X̃ × Ỹ and the projection of X̃ × Ỹ onto Ỹ

extends the map h. Therefore, one can define the category LocP̃ er(f) by
the use of the embedding %.

Let U = {Ui}i∈I be an atlas on X, connected with %X , V = {Vj}j∈J -
an atlas on Y , connected with %Y , and F = {Fl}l∈L - a Stein covering of
Z. Then {Fl × Vj × Ui} is a covering of Z × Ỹ × X̃.

Now let {L•,α̃} , α̃ = (α, β, γ) with α ⊂ L, β ⊂ J, γ ⊂ I be a local
system of f -perfect complexes on Z × Ỹ × X̃. Denote by CαβL• the Cech
complex of this system with respect to γ, constructed as in remark 1.5.
For any α′ ⊂ α, β′ ⊂ β there exists a natural quasi-isomorphic embedding
of complexes Cα′β′L• → CαβL•. Then, the complexes CαβL• form a local
system of perfect complexes on Z × Ỹ × X̃, connected with the covering{

Fi × Vj × X̃
}

.

Now, one can define h!L•,α̃ := h∗CαβL•, which is a local system on Z×Ỹ .
Combining the Forster-Knorr proof of Grauert theorem and the argument
from SGA III.4.8, one can see that the complexes involved in this system
are g-perfect, and we obtain an exact functor

h! : LocP̃ er(f)→ LocP̃ er(g).

4.2. Commutativity with direct image

Suppose that in the definition above {L•,α̃} ∈ LocFfd(f) (C5), i.e. all
{Lk,α̃} are free and finite-dimensional. Then the sheaves in all the stages
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of complexes in h!L•,α̃ are free infinite-dimensional, i.e. sheaves of germs of
holomorphic functions on Fα × Vβ with values in a suitable Frechet space.
Therefore, the second definition of the Riemann-Roch functor is applicable
to it.

The proof of the commutativity of the Riemann-Roch functor with the
functors of direct image, given in [9], holds without changes, and we will
recall the main steps used there. The space X̃ can be embedded in Ỹ ×CN

such that its normal bundle posses a complex structure (what was called
an almost complex embedding in [9]). Then, multiplying the operators of
multiplication by coordinates of X̃ by a parameter t ∈ [0, 1] as described
above, and extending the correcting maps rm,α′,α up to maps rm,α′,α,t

for t ∈ [0, 1], one obtains a continuous homotopy between the Koszul -
Thom transform of KC• (X × Y,U ,L) in Ỹ ×CN and the Koszul - Thom
transform of KC• (Y,U , h!L) for the embedding Ỹ × {0} in Ỹ × CN . It
is important to note that all the elements used in the construction of the
homotopy are functorial with respect of the sheaf L. As it was shown in the
second definition of the Riemann - Roch functor above, one can perform
this construction in the bivariant case, and replacing the sheaf L with a
local system for complexes of free finite-dimensional sheaves. Then, by 3.1
(2), one obtains the commutativity of the Riemann-Roch functor with the
operation of the direct image:

Proposition 4.1. — The functors h∗ ◦ α(f) and α(g) ◦ h! from
LocFfd(f) to LocFred(g) induce identical mappings to topological K-
groups.

4.3. Definition of products

Suppose that f : X → Y , g : Y → Z are morphisms of complex spaces.
Take the regular embeddings % : X → X̃, τ : Y → Ỹ . Let F = {Fl}l∈L

be an open Stein covering of Z. Let U = {(Wi, ϕi, Ui)}i∈I be an atlas on
X, corresponding to the embedding %, and V = {(Vj , θj , Ṽj)}j∈J be an
atlas on Y , corresponding to τ . One may suppose that the covering

{
Ṽj

}
is subordinated to

{
Fl × Ỹ

}
, and

{
Ũi

}
– to

{
Vj × X̃

}
.

One has the following commutative diagram (see [5], 3.5):
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X
(f,ρ)→ Y × X̃

(g,τ)×Id→ Z × Ỹ × X̃

f ↘ ↓ ↓ p

Y
(g,τ)→ Z × Ỹ

g ↘ ↓ q

Z

Let L = {L•,α,β}β⊂J,α⊂I be a local system from LocFfd(f). L is a local
system of complexes of free sheaves on the elements of the covering V × U
of Y ×X̃. We will denote by the same symbol its direct image on Z× Ỹ ×X̃

via the map (g, τ)× IdX̃ . LetM be a g-perfect sheaf on Y × X̃, supported
on Y . Then the local system L

⊗
p∗M =

{
L•,α,β

⊗
Y×X̃ p∗M

}
β⊂J,α⊂I

is
a local system of f ◦ g-perfect complexes of sheaves on the elements of the
covering

{
Z × Ṽj × Ũi

}
of Z × Ỹ × X̃.

Since all the sheaves Lk,α,β are free on Y × X̃, the operation of tensor
product of local systems is exact with respect of both factors and deter-
mines a biexact functor:

LocFfd(f) × Per0(g) → LocP̃ er(f ◦ g),

where the category on the right hand is considered as a category of all
local system of perfect sheaves on Z × Ỹ × X̃ with respect to the covering{

Fl × Ṽj × Ũi

}
i∈I,j∈J

. Then, by the multiplicative construction of Wald-

hausen ([12], p.342), this functor gives rise to the multiplication map in
K-groups:

Ki(f)×Kj(g)→ Ki+j(f ◦ g)

4.4. Commutativity with products

We will adapt the construction from [5]. Let, as above, L =
{L•,α,β}β⊂J,α⊂I be a local system from LocFfd(f), and let M be a glob-
ally defined g-perfect sheaf on Y . Fix a local system M = {M•,β,γ} ∈
LocFfd(g) of complexes free finite-dimensional modules on Z × Ỹ , quasi-
isomorphic to M. Then L and p∗M are local systems of complexes of
sheaves, supported on Y × X̃ ⊂ Z × Ỹ × X̃, and corresponding to the cov-
ering

{
Fl × Ṽj × Ũi

}
i∈I,j∈J

. To abbreviate the notations, we will denote

it by L = {L•,α̃} and M = {M•,α̃}, α̃ = (α, β, γ) ⊂ I × J × L.
We will denote by Ln,α̃ the standard extensions of the free sheaves Ln,α̃

on the corresponding open subsets of Z×Ỹ ×X̃. For any fixed n the sheaves
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Ln,α̃

⊗
p∗M form a nq-local system, and for any n and α̃ ⊂ I × J ×L the

complex of free sheaves Ln,α̃

⊗
p∗M•,α̃ is quasi-isomorphic to Ln,α̃

⊗
p∗M.

The system of complexes Ln,α̃

⊗
p∗M•,α̃ is not a local system in the sense

of definition 1.2. However, using 1.6 and 1.7, one can find for any n a nq-
local system Kn = {Kn,•,α̃} of complexes of free finite-dimensional sheaves
on the elements of the covering F × V × U , quasi-isomorphic to the nq-
system Ln,α̃

⊗
p∗M and containing for any α̃ the resolution Ln,α̃

⊗
M•,α̃

as a subcomplex.
Next, applying lemma 1.9, one obtains a filtered local system of finite

complexes of free sheaves E = E1 ⊃ . . ., E = {E•,α̃}, quasi-isomorphic
to L

⊗
p∗M, such that En/En+1 ≈ K̃n. Note that since L

⊗
p∗M is a

(quasi-isomorphic) local system, then so is E.
Now consider the bicategory E , consisting of the data {L,M,M,Kn, E}

satisfying all the conditions above. One can define in an obvious manner
the horizontal, vertical, and bi-morphisms in this category such that the
forgetful map Φ : E → LocFfd(f)

⊗
Per0(g), mapping the data above

into L,M, is a functor between bicategories.

Lemma 4.2. — The functor Φ is a homotopy equivalence.

Proof. — Fix M ∈ Per0(g), denote by EM the corresponding under-
lying category of the bicategory E , and by ΦM : EM → LocFfd(f) the
corresponding restriction of the functor Φ. Then it is sufficient to prove
that for any M the corresponding functor ΦM is a homotopy equivalence.
Indeed, the statements 1.6 - 1.10 show that all the objects and morphisms
in LocFfd(f) belong to the image of the functor ΦM, and the entities
{M,Kn, E} are unique up to a homotopy equivalence. Therefore, the re-
quirements of theorem 1.9.8 of [11] (or of the Waldhausen approximation
theorem) are satisfied for the functor ΦM. �

Further, the proof of Fulton-Macpherson in lemma 4.1, loc. cit., still
works in our case. Indeed, represent Y × X̃ as a homotopy retract of some
its neighborhood in Z × Ỹ × X̃. It determines a canonical extension of the
local system L up to a local system L =

{
L•,α̃

}
of continuous complexes

of finite-dimensional spaces, defined in this neighborhood.
Now we have two biexact functors from the category E to the category

LocCBun(g ◦f) (see 3.2) of local systems of continuous complexes of finite
- dimensional vector spaces, defined in a neighborhood of X in Z × Ỹ × X̃

and exact off X. The first one, say α1, is defined by the complex of local
systems E, while the second one, α2 - as the total complex of the double
complex L

⊗
p∗M . Taking the filtration, corresponding to the the trun-

cation in the direction of the differentials of L, the latter complex can be
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considered as a filtered complex. As it follow from the construction of E

and Kn, there exists a continuous embedding ϕ = {ϕ•,α̃} : L
⊗

p∗M → E,
inducing quasi-isomorphisms of local systems on the corresponding gradu-
ated complexes. The only obstacle to completing the proof as in [5], prop.
3.1.3, is the fact that the linear homotopy between the complexes is no
more a complex. However, the procedure of collapsing can reduce the proof
to the case of complexes of length two. Indeed, one may suppose that
from the beginning all the free sheaves, involved in the construction, are
endowed with Hermitian metrics; since all Hermitian metrics are homo-
topic, this gives equivalent categories. Then, collapsing both complexes up
to complexes of length two, and taking the linear homotopy, we obtain a
canonical homotopy between the functors α1 and α2, and one can apply
3.1 (2).

Taking the product with the inverse map of the homotopy equivalence
Φ : E → LocFfd(f)

⊗
Per0(g), one sees that α1 is homotopy equivalent to

the functor (L,M)→ α(g◦f)(L
⊗
M). On the other hand, the functor α2

by definition coincides with α(f)(L)
⊗

α(g)(M) (in both cases we use the
first definition of the Riemann-Roch functor α ). The homotopy equivalence
stated above proves the commutativity of the Riemann-Roch functor with
the products.
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