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A MEAN VALUE THEOREM FOR THE SQUARE OF
CLASS NUMBER TIMES REGULATOR OF

QUADRATIC EXTENSIONS

by Takashi TANIGUCHI

Abstract. — Let k be a number field. In this paper, we give a formula for
the mean value of the square of class number times regulator for certain families
of quadratic extensions of k characterized by finitely many local conditions. We
approach this by using the theory of the zeta function associated with the space
of pairs of quaternion algebras. We also prove an asymptotic formula of the corre-
lation coefficient for class number times regulator of certain families of quadratic
extensions.

Résumé. — Soit k un corps de nombres. Dans cet article, nous donnons une
formule pour la valeur moyenne du carré du nombre de classe multiplié par le
régulateur pour certaines familles d’extensions quadratiques de k caractérisées par
un nombre fini de conditions locales. Notre approche utilise la théorie de la fonction
zêta associée à l’espace de paires d’algèbres de quaternions. Nous prouvons aussi
une formule asymptotique pour le coefficient de corrélation du nombre de classe
multiplié par le régulateur de certaines familles d’extensions quadratiques.

1. Introduction

We fix an algebraic number field k. Let M, M∞ and Mf denote respec-
tively the set of all places of k, all infinite places and all finite places. For
v ∈ M let kv denote the completion of k at v and if v ∈ Mf then let qv
denote the order of the residue field of kv. We let ∆k, r1, r2, and ek be
respectively the absolute discriminant, the number of real places, the num-
ber of complex places, and the number of roots of unity contained in k. We
denote by ζk(s) the Dedekind zeta function of k.

Let S ⊃ M∞ be a finite set of places. We fix an S-tuple LS = (Lv)v∈S
where each Lv is a separable quadratic algebra of kv, i.e., either kv × kv or

Keywords: Density theorem, prehomogeneous vector space, quaternion algebra, local
zeta function.
Math. classification: 11M41.



626 Takashi TANIGUCHI

a quadratic extension of kv. Let Q(LS) be the following family of quadratic
extensions of k;

Q(LS) := {F | [F : k] = 2, F ⊗ kv ∼= Lv for all v ∈ S}.

Let hF and RF be the class number and the regulator of F , respectively. We
would like to find the average value of h2

FR
2
F for F ∈ Q(LS). For F ∈ Q(LS)

we denote by ∆F/k the relative discriminant of F/k and by N(∆F/k) its
absolute norm. Let

Q(LS , X) := {F ∈ Q(LS) | N(∆F/k) 6 X}.

The following is one of the main results of this paper.

Theorem 1.1 (Theorem 10.12). — Let LS = (Lv)v∈S be an S-tuple
such that Lv is a field for at least two places of S. Then the limit

lim
X→∞

1
X2

∑
F∈Q(LS ,X)

h2
FR

2
F

exists, and its value is equal to

(Ress=1ζk(s))3∆2
ke

2
kζk(2)2

2r1+r2+122r1(LS)(2π)2r2(LS)

∏
v∈S∩Mf

ev(Lv)
∏
v∈Mf

(1−3q−3
v +2q−4

v +q−5
v −q−6

v ).

Here we denote by r1(LS) and r2(LS) respectively the number of real and
complex places of F ∈ Q(LS , X) (these numbers do not depend on the
choice of F ) and also for v ∈ Mf we put

ev(Lv)=


2−1(1 + q−1

v )(1− q−2
v ) Lv ∼= kv × kv,

2−1(1− q−1
v )3 Lv is quadratic unramified,

2−1N(∆Lv/kv
)−1(1−q−1

v )(1−q−2
v )2 Lv is quadratic ramified.

We discuss on the condition of LS in Remark 10.13.
We explain one more theorem we prove in this paper. We fix a quadratic

extension k̃ of k. Let Mrm, Min and Msp be the sets of finite places of
k which are respectively ramified, inert and split on extension to k̃. We
assume Mrm does not contain places which divide 2. For any quadratic
extension F of k other than k̃, the compositum of F and k̃ contains exactly
three quadratic extensions of k. Let F ∗ denote the quadratic extension
other than F and k̃. Take any F ∈ Q(LS) and put L∗v = F ∗⊗ kv for v ∈ S,
which does not depend on the choice of F .

Theorem 1.2 (Theorem 11.2). — Assume S ⊃ Mrm ∪M∞. Let LS =
(Lv)v∈S be an S-tuple. Assume two of Lv’s and two of L∗v’s are fields. Then

ANNALES DE L’INSTITUT FOURIER



SQUARE OF CLASS NUMBERS 627

the limit

lim
X→∞

∑
F∈Q(LS ,X) hFRFhF∗RF∗(∑

F∈Q(LS ,X) h
2
FR

2
F

)1/2 (∑
F∈Q(LS ,X) h

2
F∗R

2
F∗

)1/2

exists, and the value is equal to∏
v∈Min\S

(
1− 2q−2

v

1 + q−1
v + q−2

v − 2q−3
v + q−5

v

)
.

It is an interesting phenomenon that the value is a product of factors
indexed over Min. For example, if we take k̃ such that k̃ splits at all the
small places of k, then hFRF and hF∗RF∗ are strongly correlated.

We prove these density theorems by applying Tauberian methods to the
zeta functions associated with prehomogeneous vector spaces. In the beau-
tiful work of Wright and Yukie [18], they showed that 8 types of prehomo-
geneous vector space possess significant interest in arithmetic, and laid out
a program to prove a series of density theorems. One advantage to using
those zeta functions is that we can prove density theorems over general
number field k rather than just Q, as we stated above.

This paper is concerned with the representation

G′ = GL(2)×GL(2)×GL(2), V ′ = k2 ⊗ k2 ⊗ k2,

which is referred to as the D4 case in [18]. It was found in [18] that the
principal parts of the zeta function of this type are closely related to the as-
ymptotic behavior of the mean value of h2

FR
2
F of quadratic extensions F/k.

However, the global theory of prehomogeneous vector spaces is difficult in
general and more than ten meaningful cases including the case (G′, V ′) are
left open.

Our approach to work on this topic is to consider inner forms. Let B

be a quaternion algebra of k and Bop the opposite algebra. We regard
B× and (Bop)× as algebraic groups over k. In this paper, we consider the
representation

G = B× × (Bop)× ×GL(2), V = B⊗ k2,

which is an inner form of (G,V ). Note that if B splits then (G,V ) is equiv-
alent to (G′, V ′). We call (G,V ) the space of pairs of quaternion algebras.
As we saw in [15], the orbit space of V also carries a rich structure. The
non-split case is useful because the global theory becomes much easier than
the split case. In this paper we consider (G,V ) when B is a division algebra
over a number field k. For this case, we determined the principal parts of
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628 Takashi TANIGUCHI

the global zeta function in [15] using Fourier analysis. The necessary result
is quoted in Theorem 4.2.

As we will see in Proposition 10.3, the global zeta function is still an
approximation of the counting function of h2

FR
2
F for quadratic extensions,

and we could not directly deduce Theorem 1.1 from the global theory [15].
The aim of this paper is to fill this gap by carrying out what is called the
filtering process originally developed by Datskovsky and Wright [3] and
Datskovsky [1]. This process requires a local theory in some detail. We
consider the localizations of (G,V ) at each place of k. We note that the
localizations of (G,V ) are equivalent to (G′, V ′) all but finite number of
places at which B ramifies. An outer form of the representation (G′, V ′) is
studied by Kable and Yukie [6, 7, 8] and some of their results are useful
for us. After we prove Theorem 10.12, we study the correlation coefficient
in the final section combined with the results of [6].

In the filtering process we change the order of limits and at present this
hides information of the error term in Theorem 1.1. It is likely that the
zeta function possesses much information on the error term also and the
improvement of the filtering process is an important problem.

We note that there are several approach to studying the distributions of
class numbers of quadratic extensions. In particular there is a good deal
of works on moments of hFRF for quadratic fields F over Q. For example,
Granville and Soundararajan [4] recently obtained the mean value of a
general complex power of hFRF for quadratic fields F with an estimate
of the error term, which is much stronger than that given in Theorem 1.1
when k = Q. Their method is based on the Pólya-Vinogradov inequality
which is understood only over Q, and it may be difficult to apply their
method to other base fields. Some related results on relative quadratic
extensions over a totally real field of class number one were obtained by
Peter [10] using the space of binary quadratic forms. The approach using
zeta functions of prehomogeneous vector spaces is completely independent
of the base number field, and the study with non-principal characters will
provide further arithmetic results as in [2], [5], or [12, 13]. All of these
methods have different strengths and technical improvements will yield
further arithmetic information in each approach.

For the remainder of this section, we will give the contents of the paper.
In Section 2, we introduce the notations used throughout the paper. More
specialized notations are introduced when required. In Section 3, we define
the space of pairs of quaternion algebras, and recall from [15] its basic
properties. In Section 4, we first define various invariant measures on the
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groups and the representation spaces. After that we introduce the global
zeta function and review its analytic properties.

From Section 5 to Section 9, we consider the local theory. We establish
the necessary local theory to obtain the density theorem in these sections. In
Section 5, we define a measure on the stabilizer of semi-stable points, which
is in some sense canonical. In Section 6, we define the local zeta function
and the local density. Also we quote from [6] an estimate of the standard
local zeta function, which we need in order to apply the filtering process
in the proof of the mean value theorem in Section 10. In Sections 7, 8 and
9, we compute the local densities. Section 7 is for finite unramified places
(the places B splits), Section 8 for finite ramified places, and Section 9
for infinite places. The unramified cases were almost done in [6, 7] and we
essentially quote their result, but we will give a refinement for dyadic places
by applying the method developed in [14]. After that we study the ramified
cases.

In Section 10 we go back to the adelic situation. We first define some
invariant measures and show that our zeta function is more or less the
counting function of the unnormalized Tamagawa numbers of the stabiliz-
ers. After that we apply the filtering process to our case and find the mean
value of the Tamagawa numbers. Then with an explicit computation, we
give a formula for the mean value of the square of class numbers times
regulators for a certain family of quadratic extensions. In Section 11, we
define the correlation coefficient of class number times regulator of qua-
dratic extensions. Then we explicitly compute the value in some cases by
combining the results of [6] and this paper.

Acknowledgments. The author express his gratitude to his advisor T.
Terasoma for the constant discussions and suggestions. The author also
would like to thank to Professor A. Yukie who suggested to consider the
topic in Section 11, and to A. C. Kable who pointed out several references
including [4], [10] with useful comments. The author was also inspired by
their series of work [6, 7, 8]. Special thanks goes to the author’s colleague
Uuye Otogonbayar, who read the manuscript and gave many comments.

2. Notation

In this section we collect basic notations used throughout in this paper.
If X is a finite set then #X will denote its cardinality. The standard

symbols Q, R, C and Z will denote respectively the rational, real and com-
plex numbers and the rational integers. The set of positive real numbers

TOME 58 (2008), FASCICULE 2



630 Takashi TANIGUCHI

is denoted R+. For a complex number z, let <(z),=(z) and z̄ be the real
part, the imaginary part, and the complex conjugate of z. If R is any ring
then R× is the set of invertible elements of R, and if V is a scheme defined
over R and S is an R-algebra then VS denotes its S-rational points. Let us
denote by M(2, 2) the set of 2× 2 matrices.

We fix an algebraic number field k. Let M, M∞, Mf, Mdy, MR and MC
denote respectively the set of all places of k, all infinite places, all finite
places, all dyadic places (those dividing the place 2 of Q), all real places
and all complex places. Let O be the ring of integers of k. If v ∈ M then
kv denotes the completion of k at v and | |v or | |kv

denotes the normalized
absolute value on kv. If v ∈ Mf then Ov denotes the ring of integers of kv,
pv the maximal ideal of Ov and qv the cardinality of Ov/pv. For t ∈ k×v , we
define ordv(t) so that |t|v = q

−ordv(t)
v . For a practical purpose in Sections 7

and 8, we do not fix a uniformizer in Ov here. For any separable quadratic
algebra Lv of kv, let OLv

denote the ring of integral elements of Lv. That
is, if Lv is a quadratic extension then OLv

is the integer ring of Lv and if
Lv = kv × kv then OLv

= Ov ×Ov.
If k1/k2 is a finite extension of either local fields or number fields then

we shall write ∆k1/k2 for the relative discriminant of the extension; it is an
ideal in the ring of integers of k2. For conventions, we let ∆k2×k2/k2 be the
integer ring of k2. If the extension k1/k2 is of number fields, let N(∆k1/k2)
be the absolute norm of ∆k1/k2 . The symbol ∆k1 will stand for N(∆k1/Q),
the classical absolute discriminant of k1 over Q. We use the notation Nk1/k2

for the norm in k1/k2.
Returning to k, we let r1, r2, hk, Rk and ek be respectively the number of

real places, the number of complex places, the class number, the regulator
and the number of roots of unity contained in k. It will be convenient to
set

Ck = 2r1(2π)r2hkRke−1
k .

We refer to [17] as the basic reference for fundamental properties on
adeles. The ring of adeles and the group of ideles are denoted by A and
A×, respectively. The adelic absolute value | | on A× is normalized so that,
for t ∈ A×, |t| is the module of multiplication by t with respect to any
Haar measure dx on A, i.e., |t| = d(tx)/dx. Let A0 = {t ∈ A× | |t| = 1}.
Suppose [k : Q] = n. For λ ∈ R+, λ ∈ A× is the idele whose component
at any infinite place is λ1/n and whose component at any finite place is 1.
Then we have |λ| = λ.

For a finite extension L/k, let AL denote the adele ring of L. We define
A×L ,A0

L,CL etc., similarly. The adelic absolute value of L is denoted by

ANNALES DE L’INSTITUT FOURIER
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| |L. There is a natural inclusion A → AL, under which an adele (av)v
corresponds to the adele (bw)w with bw = av if w|v. Using the identification
L⊗k A ∼= AL, the norm map NL/k can be extended to a map from AL to
A. It is known (see p. 139 in [17]) that |NL/k(t)| = |t|L for t ∈ Ã. Suppose
[L : k] = m. For λ ∈ R+, we denote by λL ∈ A×L the idele whose component
at any infinite place is λ1/mn and whose component at any finite place is
1, so that |λL|L = λ. Clearly λ = λmL and hence |λ|L = λm. When we have
to show the number field on which we consider λ, we use the notation such
as λk.

If V is a vector space over k we write VA for its adelization. Let S(VA) and
S(Vkv

) be the spaces of Schwartz–Bruhat functions on each of the indicated
domains.

For v ∈ Mf, we choose a Haar measure dxv on kv to satisfy
∫
Ov
dxv = 1.

We write dxv for the ordinary Lebesgue measure if v is real, and for twice
the Lebesgue measure if v is imaginary. We choose a Haar measure dx on
A to satisfy dx =

∏
v∈M dxv. Then

∫
A/k dx = |∆k|1/2 (see [17], p. 91).

For v ∈ Mf, we normalize the Haar measure d×tv on k×v such that∫
O×v

d×tv = 1. Let d×tv(x) = |x|−1
v dxv if v ∈ M∞. We choose a Haar mea-

sure d×t on A× so that d×t =
∏
v∈M d×tv. Using this measure, we choose a

Haar measure d×t0 on A0 by∫
A×

f(t) d×t =
∫ ∞

0

∫
A0
f(λt0) d×λd×t0,

where d×λ = λ−1dλ. Then
∫

A0/k×
d×t0 = Ck (see [17], p. 95).

Let ζk(s) be the Dedekind zeta function of k. We define

Zk(s) = |∆k|s/2
(
π−s/2Γ

(s
2

))r1 (
(2π)1−sΓ(s)

)r2
ζk(s) .

This definition differs from that in [17], p.129 by the inclusion of the |∆k|s/2
factor. It is adopted here as the most convenient for our purposes. It is
known ([17], p.129) that

Ress=1 ζk(s) = |∆k|−
1
2 Ck and so Ress=1 Zk(s) = Ck .

Let H denote the quaternion algebra of Hamiltonians over R. We choose
and fix an element j ∈ H so that H = C ⊕ Cj as a left vector space
over C and the multiplication law is given by j2 = −1 and jα = ᾱj for
α ∈ C. Let us express elements of H as x = x1 + x2j where x1, x2 ∈ C. We
choose a Haar measure on H so that dx = dx1dx2, where dx1 and dx2 are
twice the Lebesgue measure on C as above. If we let |x|H = |x1|C + |x2|C,
then |x|−2

H dx defines a Haar measure on H×. For practical purposes, we
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632 Takashi TANIGUCHI

choose d×t(x) = π−1|x|−2
H dx as the normalized measure on H×. We put

H0 = {t ∈ H× | |t|H = 1}.

3. Review of the space of pairs of quaternion algebras

In this section, we define the prehomogeneous vector space of pairs of
quaternion algebras which are at the heart of this work and reviewing their
fundamental properties. Arithmetic plays no role here, so in this section
we consider the representation over an arbitrary field K. We later use the
result in this section both local and global situations.

Let B be a quaternion algebra over K. This algebra is isomorphic to
either the algebra M(2, 2) consisting of 2× 2 matrices or a division algebra
of dimension 4. Let T and N be the reduced trace and the reduced norm,
respectively. We denote by Bop the opposite algebra of B. We introduce a
group G1 and its linear representation on B as follows. Let

G11 = B×, G12 = (Bop)×, and G1 = G11 ×G12.

That is, G1 is equal to B××B× set theoretically and the multiplication law
is given by (g11, g12)(h11, h12) = (g11h11, h12g12). If there is no confusion,
we drop ‘op’ and simply write G12 = B× instead. We regard G1 as an
algebraic group over K. The quaternion algebra B can be considered as a
vector space over K. We define the action of G1 on B as follows:

(g1, w) 7−→ g11wg12, g1 = (g11, g12) ∈ G1, w ∈ B.

This defines a representation B of G1. We consider the standard represen-
tation of G2 = GL(2) on K2. The group G = G1 × G2 acts naturally on
V = B ⊗K2. The representation (G,V ) is the main object of this paper.
This is a K-form of

(3.1) (GL(2)×GL(2)×GL(2),K2 ⊗K2 ⊗K2),

and if B is split, (G,V ) is equivalent to the above representation over K.
The representation (3.1) was studied in [18] in some detail, and our review
is a slight generalization [15] of that.

We describe the action more explicitly. Throughout this paper, we ex-
press elements of V ∼= B⊕B as x = (x1, x2). We identify x = (x1, x2) ∈ V
with the liner form x(v) = v1x1 + v2x2 in two variables v = (v1, v2). Then
the action of g = (g11, g12, g2) ∈ G on x ∈ V is defined by

(gx)(v) = g11x(vg2)g12.
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We put Fx(v) = N(x(v)). This is a binary quadratic form in variables
v = (v1, v2). We let P (x) (x ∈ V ) be the discriminant of Fx(v), which is
a polynomial in V . That is, if we express Fx(v) = a0(x)v2

1 + a1(x)v1v2 +
a2(x)v2

2 , then P (x) is given by P (x) = a1(x)2−4a0(x)a2(x). Let χi (i = 1, 2)
be the character of Gi defined by

χ1(g1) = N(g11)N(g12), χ2(g2) = det g2,

respectively. We define χ(g) = χ1(g1)2χ2(g2)2. Then one can easily see that

P (gx) = χ(g)P (x)

and hence P (x) is a relative invariant polynomial with respect to the char-
acter χ. Let V ss = {x ∈ V | P (x) 6= 0}, and we call this the set of
semi-stable points. That is, x ∈ V is semi-stable if and only if Fx(v) does
not have a multiple root in P1 = {(v1 : v2)}.

Let T̃ = ker(G→ GL(V )). Then it is easy to see that

T̃ = {(t11, t12, t2) | t11, t12, t2 ∈ GL(1), t11t12t2 = 1},

which is contained in the center of G. Throughout this paper, we will
identify T̃ with GL(1)2 via the map

T̃ −→ GL(1)2, (t11, t12, (t11t12)−1) 7−→ (t11, t12).

We are now ready to recall the description of the space of non-singular
GK-orbits in VK .

Definition 3.1. — For x ∈ V ss
K , we define

Zx = ProjK[v1, v2]/(Fx(v)),

K̃(x) = Γ(Zx,OZx).

That is, K̃(x) is the global section of the scheme Zx. Also we define K(x)
to be the splitting field of Fx(v).

Note that K̃(x) may not be a field. Since V ss
K is the set of x such that Fx

does not have a multiple root, Zx is a reduced scheme over K and K̃(x)
is a separable commutative K-algebra of dimension 2. By definition, we
immediately see that K̃(x) ∼= K ×K if Fx(v) has K-rational factors and
K̃(x) ∼= K(x) if Fx(v) is irreducible over K.

The following lemma is useful for our practical purposes. For the proof,
see [15, Lemma 3.3].

Lemma 3.2. — Any GK-orbit in V ss
K contains an element of the form

wu = (1, u) for some u ∈ BK .

TOME 58 (2008), FASCICULE 2
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Note that for u ∈ BK , wu = (1, u) is semi-stable if and only if u is a
separable quadratic element of BK . For wu ∈ V ss

K , Fwu
(v1,−1) = N(v1 −

u) is the characteristic polynomial of u and hence K̃(x) is isomorphic to
K[u] ⊂ BK as a K-algebra.

Definition 3.3. — Let A2(BK) be the set of isomorphism classes of
separable commutative K-algebras of dimension 2 that are embeddable
into BK .

Note that if BK is non-split, then any element of A2(BK) is a quadratic
extension of K. The following proposition is proved in [18], [15].

Proposition 3.4. — The map x 7→ K̃(x) gives a bĳection between
GK\V ss

K and A2(BK).

For x ∈ V ss
K , let Gx be the stabilizer of x and G◦x its identity component.

Both are algebraic groups defined over K. We have shown in [15] that
G◦x

∼= (GL(1)
K̃(x)

)2 as an algebraic group over K. We close this section
with a detailed description of the K-rational points of the stabilizer Gwu .

We first recall the isomorphism G◦wu K
∼= (K[u]×)2. Since {1, u} is a basis

of K[u] as a K-vector space, for any s1, s2 ∈ K[u]×, {s1s2, s1s2u} is also a
K-basis of K[u]. Hence there exists a unique element gs1s2 ∈ GL(2)K such
that gs1s2 t(s1s2, s1s2u) = t(1, u). Since K[u] is a commutative algebra,
s1s2u = s1us2. Therefore we have (s1, s2, gs1s2) ∈ Gwu K . The following
proposition is proved in [15, Lemma 3.4].

Proposition 3.5. — The map

ψu : (K[u]×)2 −→ G◦wu K , (s1, s2) 7−→ (s1, s2, gs1s2)

gives an isomorphism of the two groups.

Finally we consider the structure of Gwu K/G
◦
wu K

. Let σ be the non-
trivial K-automorphism of K[u]. Then there exists ν ∈ BK \K[u] such that
ν2 ∈ K, BK = K[u]⊕K[u]ν as a K[u]-vector space, and the multiplication
law is given by να = ασν for α ∈ K[u].

Proposition 3.6. — Let a = u+uσ ∈ K. We have [Gwu K : G◦wu K
] = 2

and Gwu K/G
◦
wu K

is generated by the class of τ =
(
ν−1, ν,

(
1 0
a −1

))
.

Proof. — A simple computation shows τwu = wu. On the other hand,
by [18] we have [Gwu K̄ : G◦

wu K̄
] = 2 because (G,V ) is a K-form of (3.1).

Since [Gwu K : G◦wu K
] 6 [Gwu K̄ : G◦

wu K̄
], the proposition follows. �

By Lemma 3.2, we have [GxK : G◦xK ] = 2 for any x ∈ V ss
K .
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4. Invariant measures and the global zeta function

For the rest of this paper, we fix a number field k and a non-split quater-
nion algebra B over k. In this section, we define various invariant measures
in both local and adelic situations and summarize the necessary results.
For the proof, see [16] for example. In this paper, we always choose the
adelic measure as the product of local measures. After that we introduce
the global zeta function of the prehomogeneous vector space (G,V ) and
recall from [15] its most basic analytic properties.

We define MB to be the set of places v of k such that B is ramified at
v. For v ∈ M, let Bv denote B ⊗k kv. Then, by definition, v ∈ MB if and
only if Bv is a division algebra. It is well known that MB is a finite set.

We give a normalization of invariant measure on Gkv
and Vkv

. First we
consider the places v /∈ MB. For each of these v, we fix once and for all a
kv-isomorphism Bv

∼= M(2, 2)kv and identify these algebras. Then

Gkv = GL(2)kv ×GL(2)kv ×GL(2)kv , Vkv = M(2, 2)kv ⊕M(2, 2)kv .

We choose a Haar measure dxv on Vkv so that

dxv = dx1vdx2v, dxiv = dxi11vdxi12vdxi21vdxi22v (i = 1, 2)

for

xv = (x1v, x2v), xiv =
(
xi11v xi12v
xi21v xi22v

)
(i = 1, 2).

For v ∈ Mf , we put VOv = M(2, 2)Ov ⊕ M(2, 2)Ov , which is a compact
subgroup of Vkv

. We note that
∫
VOv

dx = 1. If v ∈ Mf , we put a maximal
compact subgroup Kv of Gkv

as

Kv = GL(2)Ov ×GL(2)Ov ×GL(2)Ov ,

and normalize the measure dgv on Gkv so that the total volume of Kv
is 1. For v ∈ M∞, we first give a measure for GL(2)F where F = R
or C. As in Section 2, we shall take Lebesgue measure to be the stan-
dard measure on the real numbers and twice the Lebesgue measure to
be the standard measure on the complex numbers. If hv = (hijv)16i,j62,
then dµ(hv) = dh11vdh12vdh21vdh22v/|det(hv)|2F defines a Haar measure
on GL(2)F . We put dhv = pF dµ(hv) where pR = π−1 and pC = (2π)−1.
Using this measure, we define dgv for v ∈ M∞ as dgv = dg11vdg12vdg2v
where g = (g11, g12, g2) ∈ Gkv = (GL(2)kv )3.

Next we consider the case v ∈ MB. For v ∈ Mf , let OBv
be the ring

consisting of integral elements of Bv. We put VOv
= OBv

⊕OBv
, which is a

compact subgroup of Vkv
. We choose a Haar measure dxv on Vkv

= Bv⊕Bv
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so that the volume of OBv ⊕ OBv is 1. Also we put a maximal compact
subgroup Kv of Gkv

as

Kv = O×Bv
×O×Bv

×GL(2)Ov ,

and normalize the measure dgv on Gkv
so that the total volume of Kv is 1.

Now the remaining case is for v ∈ M∞ ∩ MB, which is an element of
MR. We fix an isomorphism Bv

∼= H. Then

Gkv
= H× ×H× ×GL(2)R, Vkv = H⊕H.

We set measures dgv and dxv on Gkv
and Vkv

as the product measures,
where we consider the measures on H×,H as in Section 2 and GL(2)R as
above. For v ∈ M∞, we put

Kv =


O(2,R)3 v ∈ MR \MB,

U(2,C)3 v ∈ MC \MB,

H0 ×H0 ×O(2,R) v ∈ MB,

which is a maximal compact subgroup of Gkv .
Using these local measures, we define the measures dg and dx on GA and

VA by
dg =

∏
v∈M

dgv and dx =
∏
v∈M

dxv.

If we put
∆B = ∆4

k

∏
v∈MB∩Mf

q2v and ∆V = ∆2
B,

then it is well known that the volume of VA/Vk with respect to the measure
dx is ∆1/2

V . Hence our choice of measure dx on VA in this paper is ∆1/2
V

times that of [15], in which we defined so that the volume of VA/Vk is equal
to 1.

Our definition of measure dgv on Gkv can naturally be considered as
the product measure dgv = dg11vdg12vdg2v for gv = (g11v, g22v, g2v) and
we shall do so below. For example, if v ∈ Mf ∩ MB, the Haar measures
dg11v, dg12v and dg2v on G11kv

, G12kv
and G2kv

are normalized so that∫
O×

Bv

dg11v =
∫
O×

Bv

dg12v =
∫

GL(2)Ov

dg2v = 1.

We define the measures dg11, dg12 and dg2 on G11A, G12A and G2A by

dg11 =
∏
v∈M

dg11v, dg12 =
∏
v∈M

dg12v and dg2 =
∏
v∈M

dg2v.

Clearly, we have dg = dg11dg12dg2.
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Since T̃ ∼= GL(1)×GL(1) is a split torus, the first Galois cohomology set
H1(k′, T̃ ) is trivial for any field k′ containing k. This implies that the set of
k′-rational point of G̃ coincides with Gk′/T̃k′ . Therefore (G/T̃ )A = GA/T̃A
and (G/T̃ )A/(G/T̃ )k = GA/T̃AGk. We put the measures d×̃tv and d×̃t on
T̃v and T̃A respectively to satisfy d×̃tv = d×t1vd

×t2v, d×̃t = d×t1d
×t2 for

t̃v = (t1v, t2v, (t1vt2v)−1), t̃ = (t1, t2, (t1t2)−1). Using these, we normalize
the invariant measure dg̃v and dg̃ on Gkv

/Tkv
and GA/TA so that dgv =

dg̃vd
×̃tv, dg = dg̃d×̃t. Note that dg̃ =

∏
v∈M dg̃v since dg =

∏
v∈M dgv and

d×̃t =
∏
v∈M d×̃tv.

We put

G0
1iA = {g1i ∈ G1iA | |N(g1i)| = 1} (i = 1, 2),

G0
2A = {g2 ∈ G2A | |det(g2)| = 1}.

Then the maps

R+ ×G0
1iA −→ G1iA, (λ1i, g

0
1i) 7−→ λ1ig

0
1i (i = 1, 2),

R+ ×G0
2A −→ G2A, (λ2, g

0
2) 7−→ λ2g

0
2 ,

give isomorphisms of these groups. We choose Haar measures dg0
1i and dg0

2

on G0
1iA and G0

2A so that dg1i = 2d×λ1idg
0
1i, dg2 = 2d×λ2dg

0
2 . Then it is

known that ∫
G0

1iA/G1ik

dg0
1i = ∆1/2

k CkZk(2)
∏

v∈MB∩Mf

(qv − 1),∫
G0

2A/G2k

dg0
2 = ∆1/2

k CkZk(2).

We now define the global zeta function.

Definition 4.1. — For Φ ∈ S(VA) and a complex variable s, we define

Z(Φ, s) =
∫
GA/T̃AGk

|χ(g̃)|s
∑
x∈V ss

k

Φ(g̃x) dg̃,

and call it the global zeta function.

It is known that the integral converges if <(s) is sufficiently large and
can be continued meromorphically to the whole complex plane. In [15], we
described the principal parts of Z(Φ, s) by means of certain distributions.
However, we used a slightly different formulation in [15], and we need some
arguments to translate the results from that paper. Also, in this paper we
only consider the rightmost pole of Z(Φ, s) because this is enough to deduce
the density theorems.
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We put G0
1A = G0

11A × G0
12A. The domain of integration used in [15] is

R+ ×G0
A/Gk, where G0

A = G0
1A ×G0

2A. Let T̃ 0
A = G0

A ∩ T̃A. Then we have

(R+ ×G0
A)/T̃ 0

A
∼= GA/T̃A

via the map which sends the class of (λ, g0
11, g

0
12, g

0
2) to class of (g0

11, g
0
12, λg

0
2).

In [15] R+×G0
A is made to act on VA by assuming that (λ, 1) acts by mul-

tiplication by λ, and the above isomorphism is compatible with the actions
of the two groups on VA. We will compare the measure dg̃ on GA/T̃A with
the measure d×λdg0 on R+×G0

A used in [15]. The argument in [15] is valid
for any choice of measure on G0

1A and we consider dg0
11dg

0
12. We note that

the measure dg0
2 on G0

2A in the present situation is ∆1/2
k C2

k times that of
used in [15].

We have GA/T̃A ∼= (R3
+ ×G0

A)/(R2
+ × T̃ 0

A) where R2
+ × T̃ 0

A is included in
R3

+ × G0
A via (λ1, λ2, t̃

0) 7→ (λ1, λ2, λ
−1
1 λ−1

2 , t̃0) and R3
+ × G0

A maps onto
GA/T̃A via (λ1, λ2, λ3, g

0) 7→ (λ1, λ2, λ3)g0. With this identification we have
chosen the measure dg̃ to be compatible with the measure 8d×λ1d

×λ2d
×λ3

dg0 on R3
+×G0

A and d×λ1d
×λ2d

×̃t0 on R2
+× T̃ 0

A, where the volume of T̃ 0
A/T̃k

under d×̃t0 is C2
k. Moreover, |χ(1, λ)| = λ4, and so if Z∗(Φ, s) denotes the

zeta function studied in [15], then we have Z(Φ, s) = 8∆1/2
k Z∗(Φ, 4s). In

[15], it is shown that Z∗(Φ, s) has a holomorphic continuation to the region
<(s) > 6 except for a possible simple pole at s = 8 with residue

Zk(2)C−1
k

∫
G0

1A/G1k

dg0
11dg

0
12 ·
∫
VA

Φ(x)dx.

where the measure dx on VA is ∆−1/2
V times that of in this paper. Thus we

arrive at:

Theorem 4.2. — Assume that the Schwartz-Bruhat function Φ∈S(VA)
has a product form Φ = ⊗v∈MΦv and each Φv ∈ S(Vkv

) is Kv-invariant.
The zeta function Z(Φ, s) has a meromorphic continuation to the region
Re(s) > 3/2 only with a possible simple pole at s = 2 with residue

R1

∏
v∈M

∫
Vkv

Φv(xv)dxv,

where we put

R1 = 2∆−5/2
k CkZk(2)3

∏
v∈Mf∩MB

(1− q−1
v )2.

This completes our review of the analytic properties of the global zeta
function. To arrive at the density theorem from this, we need various prepa-
rations from local theory. We do it in the next five sections.
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5. The canonical measure on the stabilizer

In this section we shall define a measure on G◦x kv
for x ∈ V ss

kv
which is

canonical in the sense made precise by Proposition 5.1. Recall that there
exists a unique division quaternion algebra B up to isomorphism over a
local field F other than C, and that for any separable quadratic extension
L/F , there exists a injective homomorphism L → B of F -algebras. Hence
by Proposition 3.4, the set of rational orbits Gk\V ss

kv
corresponds to the set

of all separable quadratic algebras of kv if v /∈ MB and to the set of all
separable quadratic extensions of kv if v ∈ MB.

Following [6], we attach to each orbit in V ss
kv

where v ∈ M, an index or
type which records the arithmetic properties of v and the extension of kv
corresponding to the orbit. The orbit corresponding to kv × kv will have
the index (ur sp). (This case does not occur when v ∈ MB.) The orbit
corresponding to the unique unramified quadratic extension of kv will have
the index (rm ur) or (ur ur) according as v is in MB or not. An orbit
corresponding to a ramified quadratic extension of kv will have the index
(rm rm) if v ∈ MB and (ur rm) if v /∈ MB.

We first give a normalization of the measure on the stabilizer G◦x kv
for

elements of V ss
kv

of the form wu = (1, u). We recall that kv[u] is isomorphic
to either kv × kv or a quadratic extension of kv as a kv-algebra. By using
this isomorphism, we can construct an isomorphism of multiplicative group

kv[u]× ∼=

{
k×v × k×v wu has type (ur sp),
L×v,wu

otherwise,

where Lv,wu is the splitting field of Fwu(v) if this quadratic form is irre-
ducible. Using the normalized measure of k×v and L×v,wu

in Section 2 (we
consider the product measure on k×v × k×v ), we induce a measure d×u s on
kv[u]× as the pullback measure via the above isomorphism. We note that
this normalization does not depend on the choice of the isomorphism.

For an element of the form wu = (1, u), we constructed an isomorphism

ψu : kv[u]× × kv[u]× −→ G◦wu kv
, (s1, s2) 7−→ g′′wu,v = (s1, s2, gs1s2)

in Section 3. Using this isomorphism and the product measure d×u s1d×u s2
on kv[u]× × kv[u]×, we define a Haar measure dg′′wu,v on G◦wu kv

by

dg′′wu,v = (ψu)∗(d×u s1d
×
u s2),

the pushout measure. For a general element x ∈ V ss
kv

we choose an ele-
ment g ∈ Gkv

so that x = gwu for some wu ∈ V ss
kv

, which is possible by
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Lemma 3.2. Then

ig : G◦wu kv
−→ G◦x kv

, g′′wu,v 7−→ g′′x,v = gg′′wu,vg
−1

gives an isomorphism of groups. We define the measure dg′′x,v on G◦x kv
by

dg′′x,v = (ig)∗(dg′′wu,v).

We let dg̃′′x,v on G◦x kv
/T̃kv such that dg′′x,v = dg̃′′x,vd

×̃tv. Note that we defined
the measure d×̃tv on T̃kv

in Section 3.
We have to check that these normalizations are well-defined.

Proposition 5.1.

(1) The above definition of dg′′x,v does not depend on the choice of u
and g.

(2) Moreover, suppose that x, y ∈ V ss
kv

and that y = gxyx for some
gxy ∈ Gkv

. Let igxy
: G◦y kv

→ G◦x kv
be the isomorphism igxy (g) =

g−1
xy ggxy. Then

dg′′y,v = i∗gxy
(dg′′x,v) and dg̃′′y,v = i∗gxy

(dg̃′′x,v) .

Proof. — By the construction of the measures, a formal consideration
shows that it is enough to prove (2) for x = (1, u1), y = (1, u2) where
u1, u2 ∈ Bkv

. We write

gxy = (α, β, g2), g2 =
(
p q

r s

)
.

Then, since y = gxyx, we have

(5.1) β = (p+ qu1)−1 · α−1, u2 = α · r + su1

p+ qu1
· α−1.

Therefore if we let

η : Bv −→ Bv, η(θ) = α−1 · θ · α,

we have η(u2) = (r + su1)/(p + qu1)−1 ∈ kv[u1] and hence η induces an
isomorphism of kv-algebras

(5.2) η : kv[u2] −→ kv[u1]

and an isomorphism of groups

(5.3) η : kv[u2]× −→ kv[u1]×.

Since (5.2) is an isomorphism of kv-algebras, (5.3) is a measure preserving
map.
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Now we show that the diagram

(5.4)

(kv[u2]×)2
ψu2−−−−→ G◦y kv

(η,η)

y yigxy

(kv[u1]×)2
ψu1−−−−→ G◦x kv

is commutative. Let s1, s2 ∈ kv[u2]×. We compare

(5.5) ψu1 ◦ (η, η)(s1, s2) and igxy ◦ ψu2(s1, s2).

Note that by Proposition 3.5, the G2-part of an element of G◦x is uniquely
determined by its G1-part and hence to prove the above elements are same,
it is enough to verify that their G1-parts coincide. By the definition of the
maps, we immediately see

ψu1 ◦ (η, η)(s1, s2) = (α−1s1α, α
−1s2α, ∗),

igxy ◦ ψu2(s1, s2) = (α, β, g2)−1(s1, s2, ∗)(α, β, g2)

= (α−1s1α, βs2β
−1, ∗).

Note that we defined G12 to be the multiplicative group of the opposite
algebra of B. We consider the G12-part of the latter element. By (5.1), we
have

αβ = α(p+ qu1)−1α−1 = η−1
(
(p+ qu1)−1

)
∈ kv[u2]

and hence commute with s2 ∈ kv[u2]. Therefore αβs2 = s2αβ and hence
βs2β

−1 = α−1s2α. This shows that theG1-parts of (5.5) coincide and hence
the diagram (5.4) is commutative. Since (η, η) : (kv[u2]×)2 → (kv[u1]×)2 is
measure preserving, the commutativity of the above diagram establishes
the first claim of (2) and the second claim follows from the observation
that igxy

|
T̃kv

is the identity map. �

6. The local zeta function and the local density

In this section, we make a canonical choice of a measure on the stabilizer
quotient Gkv/G

◦
x kv

and define the local zeta function. We also choose a
standard orbital representative for each Gkv

-orbit in V ss
kv

, and define the
the local density Ev for v ∈ M which will show up later in the Euler factor
in the density theorem.

We choose a left invariant measure dg′x,v on Gkv/G
◦
x kv

such that dgv =
dg′x,vdg

′′
x,v. Recall that we defined invariant measures dgv and dg′′x,v on Gkv

and G◦x kv
in Sections 4 and 5, respectively. If gxy ∈ Gkv satisfies y = gxyx
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and igxy is the inner automorphism g 7→ g−1
xy ggxy of Gkv then igxy (G◦y kv

) =
G◦x kv

and so igxy
induces a homeomorphismGkv

/G◦y kv
→ Gkv/G

◦
x kv

, which
we also write igxy

.

Proposition 6.1. — We have i∗gxy
(dg′x,v) = dg′y,v.

Proof. — Since the group Gkv is unimodular, i∗gxy
(dgv) = dgv. On the

other hand, we have i∗gxy
(dg′′x,v) = dg′′y,v by Proposition 5.1. Hence,

dg′y,vdg
′′
y,v = dgv = i∗gxy

(dgv)

= i∗gxy
(dg′x,vdg

′′
x,v) = i∗gxy

(dg′x,v)i
∗
gxy

(dg′′x,v)

= i∗gxy
(dg′x,v)dg

′′
y,v.

Therefore i∗gxy
(dg′x,v) = dg′y,v. �

Definition 6.2. — For v ∈ M and x ∈ V ss
kv

we let bx,v > 0 be the
constant satisfying the following equation∫

Gkv/G
◦
x kv

f(g′x,vx) dg
′
x,v = bx,v

∫
Gkvx

f(y)|P (y)|−2
v dy

for any function f on Gkvx ⊂ Vkv integrable with respect to dy/|P (y)|2v.

This is possible because dy/|P (y)|2v is a Gkv -invariant measure on V ss
kv

and each of the orbits Gkv
x is an open set in V ss

kv
.

Proposition 6.3. — If x, y ∈ V ss
kv

and Gkvx = Gkvy then bx,v = by,v.

Proof. — Let f(y) be as in Definition 6.2 and y = gxyx for gxy ∈ Gkv .
Then taking into Proposition 6.1 into account, we have∫

Gkvx

f(y)|P (y)|−2
v dy = b−1

x,v

∫
Gkv/G

◦
x kv

f(g′x,vx) dg
′
x,v

= b−1
x,v

∫
Gkv/G

◦
y kv

f(g−1
xy g

′
y,vy) dg

′
y,v

= b−1
x,vby,v

∫
Gkvx

f(y)|P (y)|−2
v dy.

Note that the last step is justified because dg′y,v is left Gkv -invariant. There-
fore bx,v = by,v. �

Definition 6.4. — For Φ ∈ S(Vkv ) and s ∈ C we define

Zx,v(Φv, s) =
∫
Gkv/G

◦
x kv

|χ(g′x,v)|svΦv(g′x,vx) dg′x,v

and call it the local zeta function.
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By the definition of bx,v and the equation P (g′x,vx) = χ(g′x,v)P (x), we
have

Zx,v(Φ, s) =
bx,v

|P (x)|sv

∫
Gkvx

|P (y)|s−2
v Φ(y) dy .

This integral converges absolutely at least when Re(s) > 2. For x, y ∈ V ss
kv

lying in the same orbit, by the above equation and Proposition 6.3, we
obtain the following.

Proposition 6.5. — If x, y ∈ V ss
kv

and Gkvx = Gkvy then

Zx,v(Φv, s) =
|P (y)|sv
|P (x)|sv

Zy,v(Φv, s).

By this proposition, we see that the local zeta functions for the same
Gkv -orbit are related by a simple equation. In section 10, we define and
consider certain Dirichlet series arising from the global zeta function. There,
collecting the orbital zeta functions lying in the same Gkv -orbit will be
fundamental. For this purpose, we fix a representative element for each
Gkv -orbit in V ss

kv
, which also has some good arithmetic properties if v ∈ Mf .

Definition 6.6. — For each of Gkv -orbits in V ss
kv

, we choose and fix an
element x which satisfies the following condition.

(1) If v ∈ Mf , then x is of the form (1, u) and u generates O
k̃v(x)

over

Ov via the identification kv[u] ∼= k̃v(x).
(2) If v ∈ M∞, then |P (x)|v = 1.

We call such fixed orbital representatives as the standard orbital represen-
tatives.

If v ∈ Mf , for any standard representative x = (1, u) ∈ V ss
kv

, u is a root
of Fx(v1,−1) and so the discriminant P (x) of Fx(v) generates the ideal
∆kv(x)/kv

.

Definition 6.7. — For any v ∈ Mf , let Φv,0 be the characteristic func-
tion of VOv

. Also we put

Zx,v(s) = Zx,v(Φv,0, s).

We call Zx,v(s) for any standard orbital representative x a standard local
zeta function of x.

To describe estimates of Dirichlet series, we introduce the following no-
tation.

Definition 6.8. — Suppose that we have Dirichlet series Li(s)=
∑∞
m=1

`i,mm
−s for i = 1, 2. If |`1,m| 6 `2,m for all m > 1 then we shall write

L1(s) 4 L2(s).
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We set S0 = M∞ ∪ Mdy ∪ MB. To carry out the filtering process, we
need a uniform estimate of the standard local zeta functions. The follow-
ing proposition concerning the standard local zeta functions for v /∈ S0 is
proved in [6, Corollary 8.24, Proposition 9.25]. Since S0 is a finite set, the
result is enough for our purposes.

Proposition 6.9. — Let v /∈ S0 and x ∈ V ss
kv

be one of the standard
representatives. Then Zx,v(s) can be expressed as

Zx,v(s) =
∑
n>0

ax,v,n
qnsv

with ax,v,0 = 1 and ax,v,n > 0 for all n. Also let us define

Lv(s) =
1 + 29q−2(s−1)

v − 21q−4(s−1)
v + 7q−6(s−1)

v

(1− q
−(2s−1)
v )(1− q

−2(s−1)
v )4

.

Then Zx,v(s) 4 Lv(s).

Now we define the local density.

Definition 6.10. — Assume x ∈ V ss
kv

is a standard orbital representa-
tive. We define

εv(x) =
|P (x)|2v
bx,v

.

Also we define the local density at v by

Ev =
∑
x

εv(x)

where the sum is over all standard representatives for orbits in Gkv\V ss
kv

.

These values play essential roles in the density theorem. The purpose
in the next three sections are to compute the local densities. To make
the density theorem more precise, it is better to evaluate εv(x) separately
rather than the sum Ev. We compute for v ∈ Mf in Sections 7, 8 and for
v ∈ M∞ in Section 9. For v /∈ MB, those were already almost carried out
in [6, 7] and except for a refinement for dyadic places in Proposition 7.4,
we quote their result.

Remark 6.11. — We briefly compare the definition of standard orbital
representatives and the value εv(x) in [6] and in this paper for v /∈ MB, to
confirm that we can directly use their result. Let G′kv

denote the group of
the representation Vkv

used in [6]. Then one can easily see that the isomor-
phism G′kv

→ Gkv given by (g1, g2, g3) 7→ (g1, tg2, g3) is compatible with
their actions on Vkv

. If we identify these groups using the isomorphism,
we immediately see that our choice of measure on Gkv

coincides to that
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of in [6], and moreover, measures on G◦x kv
also. The latter claim holds be-

cause both papers used the isomorphism in Proposition 3.5 to normalize
the measures on G◦x kv

. The normalizations of the measures on Gkv
/G◦x kv

are slightly different, but from the definitions we can easily see that the
constants bx,v’s coincide. Although our choices of the standard orbital rep-
resentatives x for v ∈ Mf are also slightly different, the values of |P (x)|v
coincide since the standard orbital representatives x in [6] are also chosen
so that P (x) generate ∆kv(x)/kv

. Since εv(x) is determined only by |P (x)|v
and bx,v, this shows that our εv(x)’s coincide with those of [6].

7. Computation of the local densities
at finite unramified places

In this and the next sections, we assume v ∈ Mf . We first introduce some
notations for these sections. For any v ∈ Mf we shall put 2Ov = pmv

v . Of
course mv = 0 unless v ∈ Mdy. If x ∈ V ss

kv
then let ∆kv(x)/kv

= p
δx,v
v . For

v /∈ Mdy, δx,v is either 0 or 1. It is well-known that if v is dyadic then δx,v
takes one of the values 0, 2, . . . , 2mv, 2mv + 1.

We now assume v /∈ MB. The following propositions are proved in [6,
Lemma 7.3] and [7, Propositions 4.14, 4.15, 4.25].

Proposition 7.1. — Assume v /∈ MB. Let x ∈ V ss
kv

be one of the
standard representatives.

(1) If x has type (ur sp) then εv(x) = 2−1(1 + q−1
v )(1− q−2

v )2.
(2) If x has type (ur ur) then εv(x) = 2−1(1− q−1

v )3(1− q−2
v ).

Proposition 7.2. — Assume v /∈ MB. Let x ∈ V ss
kv

be one of the
standard representatives.

(1) If v /∈ Mdy and x has type (ur rm) then εv(x) = 2−1q−1
v (1−q−1

v )(1−
q−2
v )3.

(2) If v ∈ Mdy then∑
26δx,v=2`62mv

εv(x) = (1− q−1
v )2(1− q−2

v )3q−`v ,

∑
δx,v=2mv+1

εv(x) = (1− q−1
v )(1− q−2

v )3q−(mv+1)
v ,

where x runs through all the standard representative with the given
condition of discriminants.
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Proposition 7.3. — Let v /∈ MB. Then

Ev = (1− q−2
v )(1− 3q−3

v + 2q−4
v + q−5

v − q−6
v ).

These results are already enough to prove our density theorems. However,
if we know the each value of εv(x) also for v ∈ Mdy in the Proposition 7.2,
then the density theorems become finer. In this section we refine Proposi-
tion 7.2 to the following.

Proposition 7.4. — Assume v /∈ MB. Let x ∈ V ss
kv

be a standard
representative with the type (ur rm). Then

εv(x) = 2−1|∆kv(x)/kv
|−1
v (1− q−1

v )(1− q−2
v )3.

It is well known that there are 2ql−1
v (qv − 1) numbers of quadratic ex-

tensions of kv with the absolute value of the relative discriminant q2lv if
1 6 l 6 mv and 2qmv

v numbers of quadratic extensions of kv with the
absolute value of the relative discriminant q2mv+1

v . Hence this is in fact a
refinement of Proposition 7.2. We give the proof of this proposition after
we prove Lemma 7.9.

Let L/kv be a quadratic ramified extension, $ a uniformizer of L, and
$τ the conjugate of $ with respect to L/kv, henceforth fixed. We put
a1 = $ +$τ , a2 = $$τ . Following [6], we let
(7.1)

x = (x1, x2), where x1 =
(

0 1
1 a1

)
and x2 =

(
1 a1

a1 a2
1 − a2

)
.

Then Fx(v) = −(v2
1 + a1v1v2 + a2v

2
2) = −(v1 +$v2)(v1 +$τv2) and hence

L ∼= kv(x) and P (x) generates the ideal ∆kv(x)/kv
. Therefore we can replace

the standard representative for the orbit corresponding to L to this x to
compute εv(x) = |P (x)|2vb−1

x,v.
The following lemma is a consequence of [6, Lemma 7.3] and [7, Propo-

sition 3.2].

Lemma 7.5. — We have εv(x) = vol(Kvx).

We compute vol(Kvx) with a slight modification of the method in [7],
along the lines of [14]. To begin we introduce some notations, which we also
use to consider similar problems in Section 8. We regard Kv as the set ofOv-
rational points GOv

of a group scheme G = GL(2)×GL(2)×GL(2) defined
over Ov acting on a module scheme V = M(2, 2) ⊕ M(2, 2) also defined
over Ov. Then, since x is an Ov-rational point of V , we can consider the
stabilizer of x as a group scheme also defined over Ov, in the sense of [9].
Let Gx denote this group scheme. Note that this definition of Gx differs
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from [7, 8]. Let i be a positive integer. For an Ov-scheme X, let rX,i denote
the reduction map XOv

→ XOv/pi
v
. If the situation is obvious we drop X

and write ri instead. For rational points y1, y2 ∈ XOv , we use the notation
y1 ≡ y2 (piv) if ri(y1) = ri(y2). We also use the notation “y mod piv” for
ri(y).

For the element x of the form (7.1), let

Ax(c, d) =
(

c d

−a2d c+ a1d

)
.

Then if Ax(ci, di) ∈ GL(2)Ov for i = 1, 2, by computation we see that the
element

(Ax(c1, d1), Ax(c2, d2), Ax(c1, d1)−1Ax(c2, d2)−1) ∈ Kv
stabilizes x. Let NxOv

denote the subgroup of Kv consisting of elements of
the form above. We naturally regard NxOv

as the set of Ov-rational points
of a group scheme Nx, which is a subgroup of Gx, defined over Ov.

Proposition 7.6. — We have Nx ∼= (O×kv(x))
2 as group schemes over

Ov.

Proof. — Let R be any Ov-algebra. Then we could see that the map

(Ax(c1, d1), Ax(c2, d2), Ax(c1, d1)−1Ax(c2, d2)−1) 7→ (c1 +$d1, c2 +$d2)

gives an isomorphism between NxR and {(Okv(x)⊗OvR)×}2, and this map,
denoted by ψx,R, satisfies the usual functorial property with respect to ho-
momorphism of Ov-algebras. This shows that there exists an isomorphism
ψx : Nx → (O×kv(x))

2 as groups schemes over Ov such that ψx,R is the in-
duced isomorphism for all R. �

We now consider the orbit Kvx. The approach in [7] is to consider modulo
pv congruence condition on VOv

to compute the sum
∑
x vol(Kvx) where

x runs through all the standard representatives with the given relative
discriminant. Let n = δx,v + 2mv + 1 as in [14]. Then, as we demonstrate
below, deliberation of the congruence relation modulo pnv allows us to treat
the single orbit Kvx. We note that the idea of considering modulo a certain
high power of prime ideal is already presented in [7] and used to compute
εv(x) in some other cases.

Definition 7.7. — We define D = {y ∈ VOv | y ≡ x (pnv )}.

Lemma 7.8. — We have D ⊂ Kvx.

Proof. — Let y ∈ D. First we show y ∈ Gkv
x. Since P (y) ≡ P (x) (pnv )

and ordv(P (x)) = δx,v, we have P (y)/P (x) ≡ 1 (p2mv+1
v ). Then by Hensel’s
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lemma, we have P (y)/P (x) ∈ (k×v )2. Therefore the splitting fields of Fx(v)
and Fy(v) coincide and hence by Lemma 3.4, we have y ∈ Gkvx. The rest
of argument is exactly the same as that of [6, 7] and we omit it. �

Lemma 7.9. — We have [GxOv/pn
v

: NxOv/pn
v
] = 2qδx,v

v .

Proof. — The same argument as in the proof of [7, Proposition 4.15]
shows that each right coset space of NxOv/pn

v
\GxOv/pn

v
contains exactly

one element of the form g = (g1, g2), g1 = (g11, g12) with

g11 =
(

1 0
u s

)
, g22 =

(
1 v

0 t

)
, g2 =

(
α β

γ δ

)
.

Hence we will consider when such an element actually lies in GxOv/pn
v
.

Suppose that g is in the form above and gx = x in VOv/pn
v
. We put y =

(y1, y2) = (g1, 1)x. Then by computation we have

y1 =
(

0 t

s ∗

)
, y2 =

(
1 v + a1t

u+ a1s ∗

)
.

Therefore, by comparing the (1,1), (1,2) and (2,1)-entries of x1 and αy1 +
βy2, we have β = 0 and s = t = α−1. Also under the condition s = t, from
x1 = γy1 + δy2 we have δ = 1, u = v and γ = s−1(a1 − u− a1s). Hence

αy1 + βy2 =
(

0 1
1 2u+ a1s

)
,

γy1 + δy2 =
(

1 a1

a1 −u2 + (2u+ a1s)a1 − a1su− a2s
2

)
and therefore we see that gx = x if and only if

2u+ a1s = a1 and u2 + a1su+ a2s
2 = a2 in Ov/pnv .

This system is exactly as the one we considered in [14, Lemma 4.7] and it
has 2qδx,v

v solutions in all. �

We are now ready to prove Proposition 7.4. Let rn be the reduction map
GOv → GOv/pn

v
. Then by Lemma 7.8, we have

vol(Kvx) = vol(GOvx) = #(GOv/r
−1
n (GxOv/pn

v
)) · vol(D).

Since

GOv/r
−1
n (GxOv/pn

v
) ∼= GOv/pn

v
/GxOv/pn

v
,
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by Lemma 7.9 we have

vol(Kvx) = vol(D) ·
#(GOv/pn

v
)

2qδx,v
v ·#(NxOv/pn

v
)

= q−8n
v ·

{
q4nv (1− q−1

v )(1− q−2
v )
}3

2qδx,v
v ·

{
q2nv (1− q−1

v )
}2

= 2−1q−δx,v
v (1− q−1

v )(1− q−2
v )3.

Since |∆k(x)/k|v = q
δx,v
v , we obtained the desired result.

8. Computation of the local densities
at finite ramified places

In this section we assume v ∈ MB and so Bv is a non-split quaternion
algebra of kv. We briefly recall the algebraic structure of Bv and prepare the
notations to begin with. We take a commutative subalgebra Fv of Bv such
that Fv is a quadratic unramified extension of kv and henceforth fixed in
this section. Let σ denote the non-trivial element of Gal(Fv/kv). Then for
any prime element πv ∈ kv, Bv can be identified with Fv ⊕Fv

√
πv as a left

vector space of Fv and the multiplication law is given by
√
πvα = ασ

√
πv

for α ∈ Fv. The involution of Bv is denoted by a 7→ a∗. Then for α, β ∈ Fv,
(α + β

√
πv)∗ = ασ − β

√
πv. Hence the reduced trace T and the reduced

norm N of Bv are given by

T(α+ β
√
πv) = α+ ασ, N(α+ β

√
πv) = αασ − πvββ

σ,

for α, β ∈ Fv. The map u 7→ ordv(N(u)) defines a discrete valuation of Bv,
and it is well known that OBv

= {u | |N(u)|v 6 1},O×Bv
= {u | |N(u)|v =

1}. If we restrict the reduced norm to any quadratic subfield Lv, it coincides
with the norm map NLv/kv

of the extension Lv/kv. Hence OBv ∩Lv = OLv

and O×Bv
∩Lv = O×Lv

. We fix an element θ ∈ OFv so that OFv = Ov[θ]. By
computation we have the following.

Lemma 8.1. — We have

OBv = {α+ β
√
πv | α, β ∈ OFv},

O×Bv
= {α+ β

√
πv | α ∈ O×Fv

, β ∈ OFv}.
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For any quadratic ramified extension Lv of kv contained in Bv, we can also
write

OBv = {α+ βθ | α, β ∈ OLv},

O×Bv
= {α+ βθ | α, β ∈ OLv , α ∈ O×Lv

or β ∈ O×Lv
},

and moreover, by changing θ if necessary, the multiplication law is given by
θα = ατθ for α ∈ Lv where τ denotes the non-trivial element of Gal(Lv/kv).

As in Section 7, we can and shall regard Kv as the set of Ov-rational
points GOv

of a group scheme G defined over Ov acting on a module scheme
V also defined over Ov. For example, the group GOv

= O×Bv
× (OBv )× ×

GL(2)Ov
acts on the module VOv

= OBv
⊕OBv

. Then any standard orbital
representative x is an element of VOv

and as in Section 7, we regard the
stabilizer Gx as a group scheme defined over Ov. If x ∈ VOv

, then Fx(v) ∈
Sym2O2

v. We also regard Sym2O2
v as a module scheme over Ov and the map

x 7→ Fx(v) as a morphism of schemes. We continue to use the notation ri
defined in Section 7. Further, for any quadratic extension Lv of kv, we use
the abbreviation OLv

/piv for ri(OLv
), where we regard OLv

as a scheme
over Ov. For example,

OFv/p
i
v = (Ov/piv)[θ] = {α+ βθ | α, β ∈ Ov/piv}.

In this section, we will express g ∈ Gkv as

g = (g11, g12, g2), g2 =
(
p q

r s

)
.

Proposition 8.2. — Let x be one of the standard representatives. Then
there exists an injective homomorphism (O×

k̃v(x)
)2 → Gx as a group scheme

over Ov.

Proof. — Let x = (1, u). We construct the injective homomorphism

ψuR : {(O
k̃v(x)

⊗R)×}2 −→ GxR

for any commutative Ov-algebra R.
We put R̃(x) = O

k̃v(x)
⊗ R. Note that R̃(x) = R[u] is a subalgebra of

OBv ⊗ R and is commutative. Since {1, u} is a Ov-basis of Ov[u], this is
also an R-basis of R̃(x). Let s1, s2 ∈ R̃(x)×. Then {s1s2, s1s2u} is also an
R-basis of R̃(x), and so there exists a unique element g = gs1s2 ∈ GL(2)R
such that g t(s1s2, s1s2u) = t(1, u). Hence

ψuR : (s1, s2) 7−→ (s1, s2, gs1s2)
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gives an injective homomorphism from (R̃(x)×)2 to GxR, and as in the
proof of Proposition 7.6, we can regard this map as the induced one from
the morphism of schemes. �

Let Nx ⊂ Gx be the image of this homomorphism.

Proposition 8.3. — Let x ∈ V ss
kv

be one of the standard representa-
tives. Then ∫

Kv∩G◦x kv

dg′′x,v = 1.

Proof. — Let x = (1, u) be a standard representative. We claim that
ψ−1
u (Kv∩G◦x kv

) = (Ov[u]×)2 where ψu is defined in Section 5. The inclusion
ψ−1
u (Kv ∩G◦x kv

) ⊂ (O×kv [u])
2 follows from O×Bv

∩ kv(x) = O×kv(x). Let s1, s2
be elements of O×kv [u]. Then since {s1s2, s1s2u} also forms an Ov-basis of
Okv [u], we have gs1s2 ∈ GL(2)Ov . This shows the reverse inclusion. Now
the proposition follows from the definition of dg′′x,v. �

The following simple observation will be sometimes useful in the con-
crete calculations below. This easily follows from Proposition 3.5 and the
properties of the norm map of the quadratic extension of local fields.

Lemma 8.4. — We define

ς : Gkv −→ Z2, as g 7−→ (ordv(N(g11)), ordv(N(g12))).

Then the image ς(G◦x kv
) is (2Z)2 if x corresponds to the quadratic unram-

ified extension and Z2 if x corresponds to a quadratic ramified extension.

From now on we consider the case kv(x) is unramified and ramified sep-
arately. We first consider the former case. Till Proposition 8.10, we as-
sume x has type (rm ur). We note that in this case the polynomial (Fx(v)
mod pv) ∈ Sym2(Ov/pv)2 is irreducible and especially Fx(0, 1) ∈ O×v . By
changing the choice of the included unramified extension Fv and the gen-
erator of the integer ring θ if necessary, we may assume x = (1, θ). Let us

write θ = a+ bθσ, a ∈ Ov, b ∈ O×v and set τθ =
(

1 0
a b

)
∈ GL(2)Ov . We

fix a prime element πv ∈ kv and put τx = (
√
πv
−1,

√
πv, τθ), which then

generates the non-trivial class of Gx kv
/G◦x kv

.

Lemma 8.5. — Let x have type (rm ur). Then KvGx kv = KvG◦x kv
q

τxKvG◦x kv
.

Proof. — Since ordv(N(
√
πv
−1)) = ordv(π−1

v ) = −1, we have τx /∈
KvG◦x kv

as a consequence of Lemma 8.4. Now the lemma follows since
τx normalizes the group Kv. �
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Lemma 8.6. — Let x have type (rm ur). Then εv(x) = 2−1vol(Kvx).

Proof. — By the definition of dg′x,v, Proposition 8.3 and Lemma 8.5,

1 =
∫
Kv

dgv =
∫
KvG◦x kv

/G◦
x kv

dg′x,v ·
∫
Kv∩G◦x kv

dg′′x,v

=
∫
KvG◦x kv

/G◦
x kv

dg′x,v

=
1
2

∫
KvGx kv/G

◦
x kv

dg′x,v.

Hence, if we let Φv be the characteristic function of Kvx, by Definition 6.2
we have

2 =
∫
KvGx kv/G

◦
x kv

dg′x,v =
∫
Gkv/G

◦
x kv

Φv(g′x,vx) dg
′
x,v

= bx,v

∫
Gkvx

Φv(y)|P (y)|−2
v dy

= bx,v

∫
Kvx

|P (y)|−2
v dy.

Since |P (y)|v = |P (x)|v for all y ∈ Kvx, we have εv(x) = |P (x)|2vb−1
x,v =

2−1vol(Kvx). �

We will compute vol(Kvx). In the case kv(x) is unramified extension, it
is enough to consider the congruence relation modulo pv.

Definition 8.7. — We define D = {y ∈ VOv | y ≡ x (pv)}.

Lemma 8.8. — We have D ⊂ Kvx.

Proof. — Let y ∈ D. Since (Fy(v) mod pv) = (Fx(v) mod pv) ∈ Sym2

(Ov/pv)2, the splitting field of Fy(v) is the quadratic unramified extension.
Hence, y ∈ Gkv

x. Let y = gx, g = (g11, g12, g2) ∈ Gkv
. Note that

|χ(g)|v = |N(g11)N(g12) det(g2)|2v = 1

since |P (y)|v = |P (x)|v. We will show that g ∈ KvGx kv . By Lemma 8.4,
multiplying an element of G◦x kv

and τx if necessary, we may assume that g
satisfies either one of the following conditions.

(A) |N(g11)|v = |N(g12)|v = 1, (hence |det(g2)|v = 1.)
(B) |N(g11)|v = qv, |N(g12)|v = 1, (hence |det(g2)|v = q−1

v .)
From the definition of the representation we have

Fy(v) = N(g11)N(g12)Fx(vg2)
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and hence

Fy(1, 0) = N(g11)N(g12)NFv/kv
(p+ qθ),

Fy(0, 1) = N(g11)N(g12)NFv/kv
(r + sθ).

On the other side, since Fx(v) ≡ Fy(v) (pv), both Fy(1, 0) and Fy(0, 1)
are units of Ov. If g satisfies the condition (B), then ordv(NFv/kv

(p+ qθ))
must be 1. But this is a contradiction since Fv/kv is the quadratic unram-
ified extension. Hence we assume g satisfies the condition (A). Then both
NFv/kv

(p+qθ) and NFv/kv
(r+sθ) are elements of O×v and so p, q, r, s ∈ Ov.

Since |det(g2)|v = 1, we conclude g2 ∈ GL(2)Ov
. Thus g ∈ Kv and the

lemma follows. �

Lemma 8.9. — We have GxOv/pv
= NxOv/pv

.

Proof. — In the proof of this lemma, if we have y ≡ y′ (pv) for any
two Ov-rational points of an Ov-scheme, we drop (pv) and simply write
y ≡ y′ instead. Clearly GxOv/pv

⊃ NxOv/pv
and hence we prove the reverse

inclusion. Let g = (g11, g12, g2) ∈ GxOv/pv
. We choose representatives of

g11, g12, g2 in G11Ov
, G12Ov

, G2Ov
and use the same notation for them. By

Lemma 8.1 and Proposition 8.2, multiplying by an element of NxOv/pv
if

necessary, we assume that

g11 = 1 + α
√
πv, g12 = 1 + β

√
πv,

where α, β ∈ OFv . Put y = (y1, y2) = (g11, g12, 1)x. Then by computation
we have

y1 ≡ 1 + (α+ β)
√
πv, y2 ≡ θ + (αθσ + βθ)

√
πv.

Since t(y1, y2) ≡ g−1
2

t(1, θ) and 1, θ ∈ OFv , we have r1(y1), r1(y2) ∈ OFv/pv.
Hence α + β ≡ 0, αθσ + βθ ≡ 0. Then since θ − θσ ∈ O×Fv

, we have
α ≡ β ≡ 0 and hence g11 ≡ g12 ≡ 1. Then g2 ≡ I2 and this shows
GxOv/pv

⊂ NxOv/pv
. �

Proposition 8.10. — Let x has type (rm ur). Then εv(x) = 2−1(1 −
q−2
v )(1− q−1

v ).

Proof. — By Lemma 8.8, we have

vol(Kvx) = vol(GOv
x) = #(GOv

/r−1
1 (GxOv/pv

)) · vol(D).

Since

GOv
/r−1

1 (GxOv/pv
) ∼= GOv/pv

/GxOv/pv
,
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by Lemma 8.9 we have

vol(Kvx) = vol(D) ·
#(GOv/pv

)
#(NxOv/pv

)

= q−8
v · (q2v(q

2
v − 1))2 · (q2v − 1)(q2v − qv)

(q2v − 1)2

= (1− q−2
v )(1− q−1

v ).

Now the proposition follows from Lemma 8.6. �

Next we consider orbits corresponding to quadratic ramified extensions.
From now on to Proposition 8.15, we assume x has type (rm rm). Let x =
(1, $). Then $ is a prime element of Lv = kv($) ∼= kv(x). Let τ denote the
non-trivial element of Gal(Lv/kv). Then Fx(v1, v2) = (v1+$v2)(v1+$τv2)
is an Eisenstein polynomial and ($ − $τ )2 ∈ Ov generates the relative
discriminant ∆kv(x)/kv

= p
δx,v
v .

Lemma 8.11. — Let x have type (rm rm). Then εv(x) = vol(Kvx).

Proof. — We can prove this lemma exactly the same as Lemma 8.6.
The only difference is that we can take the generator τ of Gx kv

/G◦x kv
in

Proposition 3.6 from Kv and hence KvGx kv = KvG◦x kv
. �

We put n = δx,v+2mv+1. As in the case x has type (ur rm) in Section 7,
we consider the congruence relation of modulo pnv to compute vol(Kvx).

Definition 8.12. — We define D = {y ∈ VOv | y ≡ x (pnv )}.

Lemma 8.13. — We have D ⊂ Kvx.

Proof. — Let y ∈ D. Then as in the proof of Lemma 7.8, we have y ∈
Gkv

x. The rest of argument is similar to that of Lemma 8.8 and we shall
be brief. Let y = gx, g ∈ Gkv

. By Lemma 8.4, multiplying by an element
of G◦x kv

if necessary, we may assume that

|N(g11)|v = |N(g12)|v = 1, and hence |det(g2)|v = 1.

Since Fy(v) ∈ Sym2O2
v, we have

Fy(1, 0) = N(g11)N(g12)Nkv(x)/kv
(p+ q$) ∈ Ov,

Fy(0, 1) = N(g11)N(g12)Nkv(x)/kv
(r + s$) ∈ Ov.

Hence both Nkv(x)/kv
(p + q$) and Nkv(x)/kv

(r + s$) are elements of Ov
and so p, q, r, s ∈ Ov. Since |det(g2)|v = 1, we conclude g2 ∈ GL(2)Ov .
Hence g ∈ Kv and the lemma follows. �

Lemma 8.14. — We have [GxOv/pn
v

: NxOv/pn
v
] = 2qδx,v

v .
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Proof. — We shall count the number of elements of the right coset space
NxOv/pn

v
\GxOv/pn

v
. Let g′ ∈ GxOv/pn

v
. By Lemma 8.1 and Proposition

8.2, the right coset NxOv/pn
v
g′ contains an element g = (g1, g2) with g1 =

(g11, g12) of one of the following forms

(A) g11 = 1 + αθ, g12 = 1 + βθ,
(B) g11 = 1 + αθ, g12 = β + θ,
(C) g11 = α+ θ, g12 = 1 + βθ,
(D) g11 = α+ θ, g12 = β + θ,

where α, β ∈ OLv
/pnv , and also they are determined by the coset NxOv/pn

v
g′

only. We will count the possibilities for g for each of the above cases. We
choose representatives of α, β in OLv

and use the same notation.
From now on we consider the case v /∈ Mdy and v ∈ Mdy separately. We

first consider the case v /∈ Mdy. In this case δx,v = 1 and n = 2. Also since
2 ∈ O×v , by changing θ and x = (1, $) if necessary, we may assume that
θ2 ∈ O×v and $τ = −$. Let y = (y1, y2) = (g1, 1)x.

First consider the case (A). By computation we have

y1 = 1 + αβτθ2 + (α+ β)θ, y2 = $(1− αβθ2) +$(β − α)θ.

Since t(y1, y2) ≡ g−1
2

t(1, $) (p2
v), we have r2(y1), r2(y2) ∈ OLv/p

2
v. Hence

α+ β ≡ 0 (p2
v) and $(β − α) ≡ 0 (p2

v).

It is easy to see that there are qv possibilities for pairs of (α, β) modulo p2
v

satisfying the above condition. On the other hand, for each of these pairs,
we have y1 ≡ 1 (p2

v) and y2 ≡ $ (p2
v), and hence (1, g2)y ≡ x (p2

v) if and
only if g2 ≡ I2 (p2

v).
Next we consider the case (B). In this case, we have

y1 = β + αθ2 + (1 + αβτ )θ, y2 = $(β − αθ2) +$(1− αβτ )θ.

Again since t(y1, y2) ≡ g−1
2

t(1, $), we have r2(y1), r2(y2) ∈ OLv/p
2
v. Hence

1 + αβτ ≡ 0 (p2
v) and $(1− αβτ ) ≡ 0 (p2

v),

but this is impossible since 2 ∈ O×v . Hence any right coset of GxOv/p2
v

does
not contain elements of the form (B).

The remaining two cases are similar. We can see that there are no pos-
sibilities for g of the form (C) and qv possibilities for g of the form (D).
These give the desired description for v /∈ Mdy.

We next consider the case v ∈ Mdy. In this case we may choose θ so that
θ2 = θ + c for some c ∈ O×v . Again we let y = (y1, y2) = (g1, 1)x.
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Let us consider the case when g is of the form (A). By computation we
have

y1 = 1 + cαβτ + (α+ β + αβτ )θ,

y2 = ($ + cαβτ$τ ) + (α$τ + β$ + αβτ$τ )θ.

Hence as before, we need

β + α+ αβτ ≡ 0 (pnv ) and β$ +$τ (α+ αβτ ) ≡ 0 (pnv ).

Under the first equation, the second equation is equivalent to β($−$τ ) ≡
0 (pnv ). If we write β = β1 +β2$ where β1, β2 ∈ Ov/pnv , this equation holds
if and only if{

β1, β2 ∈ p
n−δx,v/2
v /pnv 2 6 δx,v 6 2mv,

β1 ∈ pn−mv
v /pnv , β2 ∈ pn−mv−1

v /pnv δx,v = 2mv + 1.

Hence there are qδx,v
v possibilities for β. Also for each of these β, 1 + βτ is

invertible and so α is uniquely determined by the first equation.
Then for each of these pairs (α, β), we have y1 ≡ 1 (pnv ) and y2 ≡ $ (pnv ),

and hence (1, g2)y ≡ x (pnv ) is equivalent to g2 ≡ I2 (pnv ). Hence there are
q
δx,v
v choices of g of the form (A) in all.
The remaining three cases are similar. There are no possibilities for g of

the form (B) and (C), and q
δx,v
v choice of g of the form (D). We have thus

proved the lemma. �

Proposition 8.15. — Suppose the standard representative x has type
(rm ur). Then εv(x) = 2−1|∆kv(x)/kv

|−1
v (1 + q−1

v )(1− q−2
v )2.

Proof. — By Lemma 8.13, vol(Kvx) = #(GOv/r
−1
n (GxOv/pn

v
)) · vol(D).

Since

GOv
/r−1
n (GxOv/pn

v
) ∼= GOv/pn

v
/GxOv/pn

v
,

by Lemma 8.14 we have

vol(Kvx) = vol(D) ·
#(GOv/pn

v
)

2qδx,v
v ·#(NxOv/pn

v
)

= q−8n
v ·

{
q4nv (1− q−2

v )
}2 · q4nv (1− q−1

v )(1− q−2
v )

2qδx,v
v ·

{
q2nv (1− q−1

v )
}2

= 2−1q−δx,v
v (1 + q−1

v )(1− q−2
v )2.

Now the proposition follows from Lemma 8.11. �
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9. Computation of the local densities at infinite places

In this section, we compute εv(x) at infinite places. We assume v ∈ M∞
in this section. For the unramified places, the values were already computed
in [7], and the remaining case is for places v ∈ MB ∩ M∞. Note that
this case does not occur if v ∈ MC and that for these places V ss

kv
is the

single Gkv
-orbit. In the computation we need to know the 8 × 8 Jacobian

determinant associated with the map g 7→ gx in some coordinate system.
This calculation is carried out using the Maple computer algebra package
[11].

Proposition 9.1. — Let v ∈ MB ∩M∞. Then εv(x) = π3/2.

Proof. — Since |P (x)|v = 1 if x is a standard representative, εv(x) =
b−1
x,v. We proved in Proposition 6.3 that if y ∈ Gkvx then by,v = bx,v.

Therefore we will compute bx,v for x = (1,
√
−1) instead of the standard

representative.
We define

ι : C× −→ GL(2)R as t 7−→
(

<(t) =(t)
−=(t) <(t)

)
,

which is an injective homomorphism. Then the isomorphism in Proposi-
tion 3.5 can be expressed as

ψ√−1 : (C×)2 −→ G◦xR, (s1, s2) 7−→ (s1, s2, ι(s1s2)−1).

Recall that the measure dg′′x,v on G◦xR was defined as the pushout measure
of d×s1d×s2.

Let H′ = {(u+ j)s | u ∈ C, s ∈ C×} and D = H′×H′×GL(2)R. Then D
is an open dense subset of Gkv

and we will compare the measures on this
set. Any element g of D can be written uniquely as g = g′x,vg

′′
x,v where

g′x,v = (u1 + j, u2 + j, g3), g′′x,v = (s1, s2, ι(s1s2)−1)

with

u1, u2 ∈ C, g3 =
(
a11 a12

a21 a22

)
∈ GL(2)R, and s1, s2 ∈ C×,

and when g′x,v is written in this form, <(ui),=(ui) and aij for i, j = 1, 2
may be regarded as coordinates on GR/G

◦
xR. An easy computation shows

that

dg′x,v =
1
π3

· du1

(|u1|C + 1)2
· du2

(|u2|C + 1)2
· dµ(g3)
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with respect to these coordinates. Note that we are setting dui twice
the Lebesgue measure on C as usual and that we defined dµ(g3) to be
da11da12da21da22/|det(g3)|2R.

We consider the Jacobian determinant of the map

GR/G
◦
xR → GRx, g′x,v 7→ g′x,vx.

To do this, we choose their respective R-coordinates. For GR/G
◦
xR, we

regarded <(ui), =(ui) and aij for i, j = 1, 2 as its R-coordinates. For GRx,
which is an open subset of VR = H⊕H, by expressing elements of GRx as

y = (y11 + y12j, y21 + y22j), yij ∈ C (i, j = 1, 2),

we regard <(yij),=(yij) for i, j = 1, 2 as R-coordinates of GRx. Then with
respect to the coordinate systems above, the Jacobian determinant of the
map is found to be 4(|u1|C + 1)2(|u2|C + 1)2|det(g3)|2R by using Maple
[11]. Note that this map is a double cover since [GxR : G◦xR] = 2. As
P (g′x,vx) = χ(g′x,v)P (x) and

|χ(g′x,v)|R = (|u1|C + 1)2(|u2|C + 1)2|det(g3)|2R, |P (x)|R = 4,

it follows that the pullback measure of dy/|P (y)|2R to GR/G
◦
xR is

1
2
· du1

(|u1|C + 1)2
· du2

(|u2|C + 1)2
· dµ(g3).

We note that we chose the measure dy on VR to be 24 times to that of
product of Lebesgue measures

∏
i,j [d{<(yij)}d{=(yij)}]. Comparing this

measure and dg′x,v, we have bx,v = 2/π3 and hence the proposition follows.
�

Combining [7, Propositions 5.2, 5.4] and the above proposition, we obtain
the following.

Proposition 9.2. — Assume v ∈ M∞. Let x ∈ V ss
kv

be one of the
standard representatives.

(1) If v ∈ MR then εv(x) = π3/2 for any type of the standard repre-
sentative.

(2) If v ∈ MC then εv(x) = 4π3.

All of these finish the necessary preparations from local theory and we
are now ready to go back to the adelic situation.
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10. The mean value theorem

In this section, we will deduce our mean value theorem by putting to-
gether the results we have obtained before. We will see in Proposition 10.3
that the global zeta function is approximately the Dirichlet generating se-
ries for the sequence C2

L for quadratic extensions L of k which are em-
beddable into B. If it were exactly this generating series, the Tauberian
theorem would allow us to extract the mean value of the coefficients from
the analytic behavior of this series. However, our global zeta function con-
tains an additional factor in each term. We will surmount this difficulty
by using the technique called the filtering process, which was originally
formulated by Datskovsky and Wright [3].

Let x ∈ V ss
k . We define measures dg′′x and dg̃′′x on G◦xA and G◦xA/T̃A to

be dg′′x =
∏
v∈M dg′′x,v and dg̃′′x =

∏
v∈M dg̃′′x,v, where we defined dg′′x,v and

dg̃′′x,v in Section 5. We choose a left invariant measure on GA/G
◦
xA. Since

G◦x is isomorphic to (GL(1)
k̃(x)

)2 as an algebraic group over k, the first
Galois cohomology set H1(k′, G◦x) is trivial for any field k′ containing k.
This implies that the set of k′-rational points of Gk′/G◦x k′ coincides with
(G/G◦x)k′ . Therefore GA/G

◦
xA = (G/G◦x)A. Hence if we let dg′x =

∏
v dg

′
x,v

(we defined dg′x,v in Section 6), then this defines an invariant measure on
GA/G

◦
xA. We have dg = dg′xdg

′′
x since dgv = dg′x,vdg

′′
x,v for all v, and hence

dg̃ = dg′xdg̃
′′
x .

We first determine the volume of G◦xA/T̃AG
◦
x k under dg̃′′x , which is the

weighting factor of the Dirichlet series arising from our global zeta function.

Proposition 10.1. — Suppose x∈V ss
k . Then the volume ofG◦xA/T̃AG

◦
xk

with respect to the measure dg̃′′x is (2Ck(x)/Ck)2.

Proof. — Identifying T̃ with (GL(1)k)2 and G◦x with (GL(1)k(x))2, we
define T̃ 0

A = (A0)2 and G◦0xA = (A0
k(x))

2. Let d×̃t0 and dg′′x0 be the measures
on T̃ 0

A and G◦0xA, such that dg′′x = d×λ1d
×λ2dg

′′
x

0, d×̃t = d×λ1d
×λ2d

×̃t0 for

g′′x = (λ1k(x)
, λ2k(x)

)g′′x
0, t̃ = (λ1k

, λ2k
)t̃0.

Note that if λ ∈ R+ then the absolute value of λk as an idele of k(x) is
λ2. Therefore, dg′′x = 22d×λ1d

×λ2dg
′′
x

0 for g′′x = (λ1k
, λ2k

)g′′x
0. Since dg′′x =

d×̃tdg̃′′x this implies that 22dg′′x
0 = d×̃t0dg̃′′x . Therefore

22

∫
G◦0

x A/G
◦
x k

dg′′x
0 =

∫
G◦0

x A/G
◦
x k
T̃ 0

A

dg̃′′x

∫
T̃ 0

A /T̃k

d×̃t0

= vol(G◦0xA/T̃
0
AG

◦
x k)

∫
T̃ 0

A /T̃k

d×̃t0 .
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Since ∫
G◦0

x A/G
◦
x k

dg′′x
0 = C2

k(x) and
∫
T̃ 0

A /T̃k

d×̃t0 = C2
k,

this proves the proposition. �

For x ∈ V ss
k and Φ = ⊗Φv ∈ S(VA) we define the orbital zeta function of x

to be Zx(Φ, s) =
∏
v∈M Zx,v(Φv, s). Note that we defined Zx,v(Φv, s) in Sec-

tion 6. If x lies in the orbit of the standard representative ωv,x in V ss
kv

then we
shall write Ξx,v(Φv, s) = Zωv,x,v(Φv, s) and Ξx(Φ, s) =

∏
v∈M Ξx,v(Φv, s).

We call Ξx(Φ, s) the standard orbital zeta function.

Proposition 10.2. — For x ∈ V ss
k and Φ = ⊗Φv ∈ S(VA) we have

Zx(Φ, s) = N(∆k(x)/k)−sΞx(Φ, s) .

Proof. — By Proposition 6.5, we have

Zx(Φ, s) =

(∏
v∈M

|P (ωv,x)|v
|P (x)|v

)s
Ξx(Φ, s).

Since P (x) ∈ k×, we have
∏
v∈M |P (x)|v = 1 by the Artin product formula.

Also since P (ωv,x) generate the local discriminant ∆kv(x)/kv
of kv(x) if

v ∈ Mf and |P (ωv,x)|v = 1 if v ∈ M∞, we have∏
v∈M

|P (ωv,x)|v =
∏
v∈Mf

|P (ωv,x)|v =
∏
v∈Mf

|∆kv(x)/kv
|v = N(∆k(x)/k)−1.

Thus we have the proposition. �

Proposition 10.3. — If Φ = ⊗Φv ∈ S(VA) then we have

Z(Φ, s) =
2
C2
k

∑
x∈Gk\V ss

k

C2
k(x)

N(∆k(x)/k)s
Ξx(Φ, s).

Proof. — By the usual manipulation, we have

Z(Φ, s) =
∑

x∈Gk\V ss
k

∫
G◦

x A/T̃AG◦x k

dg̃′′x

[Gx k : G◦x k]

∫
GA/G◦x A

|χ(g′x)|sΦ(g′xx)dg
′
x.

For each x ∈ Gk\V ss
k , the last integral in the above equation is equal to

Zx(Φ, s) since Φ = ⊗vΦv and dg′x =
∏
v dg

′
x,v. Now the proposition follows

from [Gx k : G◦x k] = 2 and Propositions 10.1, 10.2. �

We are now ready to describe the filtering process. This process was
originally used in [3] and was also used in [6]. Since our situation is quite
similar to [6], we follow this reference.
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We fix a finite set S ⊇ S0 of places of k. Let T denote any finite subset
T ⊇ S of M. Let Ξx,v(s) = Ξx,v(Φv,0, s). (We defined S0 and Φv,0 in
Section 6.)

Definition 10.4. — For each finite subset T ⊇ S of M, we define

Ξx,T (s) =
∏
v/∈T

Ξx,v(s) and LT (s) =
∏
v/∈T

Lv(s),

where Lv(s) is as in Proposition 6.9.

By Proposition 6.9, we have the following.

Proposition 10.5. — Both Ξx,T (s) and LT (s) are Dirichlet series. We
let

Ξx,T (s) =
∞∑
m=1

a∗x,T,m
ms

and LT (s) =
∞∑
m=1

l∗T,m
ms

.

Then 0 6 a∗x,T,m 6 l∗T,m for all m and a∗x,T,1 = 1. Also LT (s) converges
absolutely and locally uniformly in the region Re(s) > 3/2.

We consider T -tuples ωT = (ωv)v∈T where each ωv is one of the standard
orbital representatives for the orbits in V ss

kv
. If x ∈ V ss

k and x ∈ Gkvωv then
we write x ≈ ωv and if x ≈ ωv for all v ∈ T then we write x ≈ ωT .

Definition 10.6. — We define

ξωT
(s) =

∑
x∈Gk\V ss

k
,x≈ωT

C2
k(x)

N(∆k(x)/k)s
Ξx,T (s)

and

ξωS ,T (s) =
∑

x∈Gk\V ss
k
,x≈ωS

C2
k(x)

N(∆k(x)/k)s
Ξx,T (s) ,

which is the sum of ξωT
(s) over all ωT = (ωv)v∈T which extend the fixed

S-tuple ωS .

The following lemma is exactly the same as [6, Lemma 6.17] and we omit
the proof.

Lemma 10.7. — Let v ∈ M, x ∈ V ss
kv

and r ∈ C. Then there exists a
Kv-invariant Schwartz-Bruhat function Φv such that the support of Φv is
contained in Gkv

x, Zx,v(Φv, s) is an entire function and Zx,v(Φv, r) 6= 0.

Proposition 10.8. — Let T ⊇ S be a finite set of places of k and
ωT be a T -tuple, as above. The Dirichlet series ξωT

(s) has a meromorphic
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continuation to the region Re(s) > 3/2. Its only possible singularity in this
region is a simple pole at s = 2 with residue

R2

∏
v∈MB∩Mf

(1− q−1
v )2

∏
v∈T

εv(ωv),

where
R2 = ∆−5/2

k C3
kZk(2)3.

Proof. — For each v ∈ T we choose Kv-invariant Schwartz-Bruhat func-
tion Φv such that supp(Φv) ⊆ Gkv

ωv. Let Φ =
⊗

v∈T Φv ⊗
⊗

v/∈T Φv,0 ∈
S(VA). For v ∈ T we have Ξx,v(Φv, s) = 0 unless x ≈ ωv and hence by
Proposition 10.3 we have

Z(Φ, s) =
2
C2
k

∑
x∈Gk\V ss

k
,x≈ωT

C2
k(x)

N(∆k(x)/k)s

(∏
v∈T

Ξx,v(Φv, s)
)

Ξx,T (s)

=
2
C2
k

(∏
v∈T

Zωv,v(Φv, s)
)
ξωT

(s).

Using Lemma 10.7 and Theorem 4.2, this formula implies the first state-
ment. Also by the equation just before Proposition 6.5, we have

Zωv,v(Φ, 2) = εv(ωv)−1

∫
Vkv

Φv(x)dxv.

Since
∫
Vkv

Φv,0(x) dxv = 1 for v /∈ T , by Theorem 4.2 we have the residue
of ξωT

(s). �

As a corollary to this proposition, we obtain the following.

Corollary 10.9. — The Dirichlet series ξωS ,T (s) has a meromorphic
continuation to the region Re(s) > 3/2. Its only possible singularity in this
region is a simple pole at s = 2 with residue

R2

∏
v∈MB∩Mf

(1− q−1
v )2

∏
v∈S

εv(ωv) ·
∏

v∈T\S

Ev.

We are now ready to prove a preliminary version of the density theorem.
Since the proof is exactly same as that of [6, Theorem 6.22], we omit it.
Note that by Proposition 7.3, the product

∏
v∈MEv converges to a positive

number.

Theorem 10.10. — Let S ⊃ S0 be a finite set of places of k and ωS an
S-tuple of standard orbital representatives. Then

lim
X→∞

1
X2

∑
x∈Gk\V ss

k ,x≈ωS

N(∆k(x)/k)6X

C2
k(x) =

1
2
R2

∏
v∈MB∩Mf

(1−q−1
v )2

∏
v∈S

εv(ωv) ·
∏
v/∈S

Ev .

ANNALES DE L’INSTITUT FOURIER



SQUARE OF CLASS NUMBERS 663

We will rewrite Theorem 10.10 as a mean value theorem for the square
of class number times regulator of quadratic extensions. Let S ⊃ M∞ be
a finite set of places. As in Section 1, we let LS = (Lv)v∈S be an S-tuple
where each Lv is a separable quadratic algebra of kv, and put

Q(LS) = {F | [F : k] = 2, F ⊗ kv ∼= Lv for all v ∈ S},
Q(LS , X) = {F ∈ Q(LS) | N(∆F/k) 6 X}

where X is a positive number.
To state our main theorem, we define the constants as follows.

Definition 10.11.
(1) For v ∈ Mf and Lv a separable quadratic algebra over kv, we put

ev(Lv) =


2−1(1 + q−1

v )(1− q−2
v ) Lv ∼= kv × kv,

2−1(1− q−1
v )3 Lv is quadratic unramified,

2−1|∆Lv/kv
|−1
v (1− q−1

v )(1− q−2
v )2 Lv is quadratic ramified.

(2) Let S ⊃ M∞. For an S-tuple LS = (Lv)v∈S of separable quadratic
algebras, we define

e∞(LS) = 2−r1(Ls)(2π)−r2(Ls)

where we put

r1(LS) = #{v ∈ MR | Lv ∼= R× R} × 2,

r2(LS) = #{v ∈ MR | Lv 6∼= R× R}+ 2r2.

(3) For v ∈ Mf , we put

Ev = 1− 3q−3
v + 2q−4

v + q−5
v − q−6

v .

Also we define

Rk = 2−(r1+r2+1)e2kC
3
k.

Note that the constants ev(Lv) are (1 − q−2
v )−1 times those we have

listed in Propositions 7.1, 7.4 and (1 − q−1
v )2(1 − q−2

v )−1times those we
have evaluated in Propositions 8.10, 8.15.

The following theorem is one of the main results of this paper.

Theorem 10.12. — Let S ⊃ M∞ and LS = (Lv)v∈S an S-tuple. As-
sume there are at least 2 places v such that Lv are fields. Then we have

lim
X→∞

1
X2

∑
F∈Q(LS ,X)

h2
FR

2
F = Rk∆

1/2
k ζk(2)2e∞(LS)2

∏
v∈S∩Mf

ev(Lv)
∏
v/∈S

Ev.
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Proof. — We choose v1, v2 ∈ S so that Lv1 , Lv2 are fields. We take the
quaternion algebra B of k so that MB = {v1, v2}, which is possible by the
Hasse principle. We consider the prehomogeneous vector space (G,V ) for
this B. Since the set of kv-rational orbits Gkv\V ss

kv
corresponds to the set

of all quadratic extensions of kv if v ∈ MB and to the set of all separable
quadratic algebras of kv if v /∈ MB, we can take an S-tuple ωS = (ωv)v∈S
of standard orbital representatives so that each ωv corresponds to Lv. We
claim that if a quadratic extension F of k satisfies F ∈ Q(LS) then there
exists x ∈ V ss

k so that F ∼= k(x). In fact, if F ∈ Q(LS) then F ⊗ kvi
∼= Lvi

is embeddable into Bvi
for i = 1, 2. Since Bv

∼= M(2, 2)kv for v /∈ MB,
this shows that F ⊗Bv

∼= M(2, 2)F⊗kv for all v and by the Hasse principle
we have F ⊗ B ∼= M(2, 2)F . Hence F is embeddable into B and so by
Proposition 3.4, there exists x ∈ V ss

k such that F ∼= k(x).
Therefore, applying Theorem 10.10 for ωS , we obtain

(10.1)

lim
X→∞

1
X2

∑
F∈Q(LS ,X)

C2
F =

1
2
R2

∏
v∈MB∩Mf

(1− q−1
v )2

∏
v∈S

εv(ωv) ·
∏
v/∈S

Ev .

We consider the value C2
F . Let r1(F ) and r2(F ) be the number of set of real

places and complex places, respectively. Then if F ∈ Q(LS) we immediately
see ri(F ) = ri(LS) for i = 1, 2. Also one can easily see that eF = ek all
but finitely-many quadratic extensions F of k. This finite exceptions may
be ignored in the limit, and we have

C2
F = e∞(LS)−2e−2

k h2
FR

2
F

for almost all F ∈ Q(LS). Let us consider the right hand side of (10.1). By
Proposition 9.2 and the definition of Zk(s), we have

1
2
R2

∏
v∈M∞

εv(ωv) =
C3
k

2∆5/2
k

(
∆k

πr1(2π)r2
ζk(2)

)3

(
π3

2
)r1(4π3)r2

=
1

2r1+r2+1
∆1/2
k C3

kζk(2)3 = e−2
k Rk∆

1/2
k ζk(2)3.

Since ζk(2) =
∏
v∈Mf

(1 − q−2
v )−1 and Ev = (1 − q−2

v )Ev, from (10.1) we
have

(10.2) lim
X→∞

1
X2

∑
F∈Q(LS ,X)

h2
FR

2
F = ∆1/2

k ζk(2)2Rke∞(LS)

×
∏

v∈(S∩Mf )\MB

εv(ωv)
1− q−2

v

∏
v∈S∩Mf∩MB

(1− q−1
v )2εv(ωv)

1− q−2
v

∏
v/∈S

Ev.
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As in the observation after Definition 10.11, one can see that εv(ωv)/(1−
q−2
v ) = ev(Lv) for v ∈ Mf \MB and (1 − q−1

v )2εv(ωv)/(1 − q−2
v ) = ev(Lv)

for v ∈ Mf ∩MB. Hence we obtain the desired description. �

Remark 10.13. — Let S ⊃ M∞ and LS = (Lv)v∈S any S-tuple of
separable quadratic algebras. For a finite set T of places of k, let QT be the
set of quadratic extensions L of k such that L does not split at least two
places of T . Then by Theorem 10.12, for any T so that T ∩ S = ∅, we can
see that

lim
X→∞

1
X2

∑
F∈QT ,F∈Q(LS ,X)

h2
FR

2
F

= Rk∆
1/2
k ζk(2)2e∞(LS)2

∏
v∈S∩Mf

ev(Lv)
∏

v/∈(S∪T )

Ev

×

(∏
v∈T

Ev −
∏
v∈T

(1 + q−1
v )(1− q−2

v )
2

)
and hence

lim
T↗(M\S)

lim
X→∞

1
X2

∑
F∈QT ,F∈Q(LS ,X)

h2
FR

2
F

= Rk∆
1/2
k ζk(2)2e∞(LS)2

∏
v∈S∩Mf

ev(Lv)
∏
v/∈S

Ev.

If we could change the order of limits in the left hand side of the above
formula, we obtain the statement of Theorem 10.12 for unconditional S-
tuples also. But to assert the statement is true, we probably have to know
the principal part at the rightmost pole of the global zeta function for
B = M(2, 2), which is an open problem. We conclude this section with this
conjecture.

Conjecture 10.14. — The statement of Theorem 10.12 also holds for
any unconditional S-tuple LS .

11. The correlation coefficient

In this section, we define the correlation coefficient of class number times
regulator of certain families of quadratic extensions, and give the value
in some cases. The author would like to thank A. Yukie, who suggested
working on this topic.
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We fix a quadratic extension k̃ of k. For any quadratic extension F of k
other than k̃, the compositum of F and k̃ contains exactly three quadratic
extensions of k. Let F ∗ denote the quadratic extension other than F and
k̃. Note that if we write k̃ = k[x]/(x2 − α) and F = k[x]/(x2 − β) where
α, β ∈ k then F ∗ = k[x]/(x2 − αβ). If F = k̃, we put hF∗RF∗ = 0. As in
Section 10, let S always denote the finite set of places of k containing M∞
and LS = (Lv)v∈S an S-tuple of separable quadratic algebras Lv of kv.

Definition 11.1. — We define

Cor(LS) = lim
X→∞

∑
F∈Q(LS ,X) hFRFhF∗RF∗(∑

F∈Q(LS ,X) h
2
FR

2
F

)1/2 (∑
F∈Q(LS ,X) h

2
F∗R

2
F∗

)1/2

if the limit of the right hand side exists and call it the correlation coefficient.

The asymptotic behavior of the numerator as X → ∞ was investigated
by [6, 7, 8], while the denominator is considered in this paper. Hence we
find the correlation coefficients for certain types of k̃ and LS . Let Mrm, Min

and Msp be the sets of finite places of k which are respectively ramified,
inert and split on extension to k̃. Take any F ∈ Q(LS) to put L∗v = F ∗⊗kv
and L∗S = (L∗v)v∈S , which does not depend on the choice of F . In this
section we prove the following theorem.

Theorem 11.2. — Assume Mrm ∩Mdy = ∅ and S ⊃ Mrm. Let LS =
(Lv)v∈S is an S-tuple of separable quadratic algebras such that there are
at least two places v with Lv are fields. Further assume that there are at
least two places v with L∗v are fields. Then we have

Cor(LS) =
∏

v∈Min\S

(
1− 2q−2

v

1 + q−1
v + q−2

v − 2q−3
v + q−5

v

)
.

We first recall from [6] the asymptotic behavior of the function∑
F∈Q(LS ,X)

hFRFhF∗RF∗

as X →∞. We define the constants as follows.

Definition 11.3.

(1) Let v ∈ Mf \ Mrm and Lv a separable quadratic algebra over kv.
We define fv(Lv) as follows.

(i) If v ∈ Msp, then we put fv(Lv) = ev(Lv).
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(ii) If v ∈ Min, then we define

fv(Lv) =


2−1(1− q−1

v )(1 + q−2
v )

Lv ∼= kv × kv or
Lv is quadratic unramified,

2−1|∆Lv/kv
|−1
v (1− q−1

v )(1− q−4
v ) Lv is quadratic ramified.

(iii) If v ∈ Mrm \Mdy, then we define

fv(Lv) =


2−1(1− q−2

v ) Lv ∼= kv × kv,

2−1(1− q−1
v )2 Lv is quadratic unramified,

2−1q−2
v (1− q−2

v ) Lv ∼= k̃v,

2−1q−2
v (1− q−1

v )2 Lv is quadratic ramified and Lv 6∼= k̃v.

(2) For an S-tuple LS = (Lv)v∈S we define f∞(LS) = e∞(LS).
(3) For v ∈ Mf \Mrm, we put

Fv =

{
Ev v ∈ Msp,

(1 + q−2
v )(1− q−2

v − q−3
v + q−4

v ) v ∈ Min.

Then the following is a refinement of [6, Corollary 7.17] in case of Mdy ∩
Mrm = ∅.

Proposition 11.4. — Assume Mdy ∩ Mrm = ∅ and S ⊃ Mrm. Then
the limit

lim
X→∞

1
X2

∑
F∈Q(LS ,X)

hFRFhF∗RF∗

exists and the value is equal to

Rkζk̃(2)∆1/2

k̃
∆−1/2
k f∞(LS)f∞(L∗S)

∏
v∈S∩Mf

fv(Lv)
∏
v/∈S

Fv.

Proof. — The only new part is that we determine the constant fv(Lv)
for v ∈ Mdy and Lv a quadratic ramified extension, whereas in [6] only the
sum of fv(Lv) for Lv’s with the same relative discriminants were given. We
consider the constants fv(Lv) for these cases. For v ∈ Msp, we see from [6]
that Proposition 7.4 gives not only ev(Lv) but also the value fv(Lv). Let
v ∈ Min. Then a similar argument from Lemma 7.5 to Lemma 7.9 again
leads us to the problem to count the number of the system of congruence
equations considered in [14, Lemma 4.7], and the result follows. Since the
argument is much the same as the case of v ∈ Msp, we choose not to include
the details here. �
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We next consider the second term in the denominator.
We compare ∆L∗v/kv

and ∆Lv/kv
. For v ∈ Mrm, we put sgn(Lv) = −1 if

Lv is a quadratic ramified extension and sgn(Lv) = 1 otherwise. Then in
the case v /∈ Mrm ∩Mdy, the results are described as follows.

Lemma 11.5. — We have ∆L∗v/kv
= p

sgn(Lv)
v ∆Lv/kv

if v ∈ Mrm \Mdy,
while ∆L∗v/kv

= ∆Lv/kv
if v ∈ Msp ∪Min.

Proof. — For v ∈ Msp, since L∗v = Lv we have ∆L∗v/kv
= ∆Lv/kv

. If
v ∈ Mrm \Mdy, then Lv is quadratic ramified if and only if L∗v is not. Also
∆Lv/kv

is pv if Lv quadratic ramified and is Ov otherwise, and the result
follows. We consider the case v ∈ Min. If Lv is not quadratic ramified, then
one of Lv and L∗v is the quadratic unramified extension and the other is
kv × kv. Hence their relative discriminants are concurrent. Assume Lv is
quadratic ramified. If v /∈ Mdy then Lv and L∗v are the distinct quadratic
ramified extensions of kv with relative discriminants pv, and therefore the
result follows. If v ∈ Mdy then ∆L∗v/kv

= ∆Lv/kv
is a corollary of [8,

Proposition 3.10]. Thus we obtained the desired description. �

For an S-tuple LS , we define

∆LS
=

∏
v∈Mrm

qsgn(Lv)
v .

Proposition 11.6. — Assume Mrm ∩ Mdy = ∅ and S ⊃ Mrm. Let
LS = (Lv)v∈S be an S-tuple such that there are at least two places v with
L∗v fields. Then we have

lim
X→∞

1
X2

∑
F∈Q(LS ,X)

h2
F∗R

2
F∗

= ∆2
LS
Rk∆

1/2
k ζk(2)2e∞(L∗S)2

∏
v∈S∩Mf

ev(L∗v)
∏
v/∈S

Ev.

Proof. — By Lemma 11.5 we have N(∆F∗/k) = ∆LS
N(∆F/k). Also by

definition, F ∈ Q(LS) if and only if F ∗ ∈ Q(L∗S). Hence, F ∈ Q(LS , X)
if and only if F ∗ ∈ Q(L∗S ,∆LS

X). Therefore by applying L∗S to Theo-
rem 10.12, we have the proposition. �

All of these establish the necessary preparations and now we go back to
the proof of Theorem 11.2. By Theorem 10.12 and Propositions 11.4, 11.6,
we have

Cor(LS) = N(∆
k̃/k

)1/2∆−1
LS

ζ
k̃
(2)

ζk(2)2
∏

v∈S∩Mf

fv(Lv)

{ev(Lv)ev(L∗v)}
1/2

∏
v 6∈S

Cv

Ev
.

ANNALES DE L’INSTITUT FOURIER



SQUARE OF CLASS NUMBERS 669

Note that we used the relation N(∆
k̃/k

) = ∆
k̃
/∆2

k. We naturally regard
the right hand side of the equation above as the Euler product of finite
places

∏
v∈Mf

αv. Then we immediately see αv = 1 for v ∈ Msp and

αv =
(1− q−2

v )2

1− q−4
v

· Cv

Ev
= 1− 2q−2

v

1 + q−1
v + q−2

v − 2q−3
v + q−5

v

for v ∈ Min \S. Now the remaining task is to verify αv = 1 for v ∈ S \Msp

and this is easily carried out by one by one calculation. For example, if
v ∈ S ∩Min and Lv is quadratic ramified, then we have

αv =
(1− q−2

v )2

1− q−4
v

·
2−1|∆Lv/kv

|−1
v (1− q−1

v )(1− q−4
v )

2−1|∆Lv/kv
|−1
v (1− q−1

v )(1− q−2
v )2

= 1,

and if v ∈ S ∩Mrm (note that by the assumption Mrm ∩Mdy = ∅, we have
v 6∈ Mdy in this case) and Lv is quadratic unramified, then we have

αv = q(1/2)−1
v (1− q−2

v ) · 2−1(1− q−1
v )2

2−1q
−1/2
v (1− q−1

v )2(1− q−2
v )

= 1.

The other cases are similar and we omit the routine computation here.

Remark 11.7. — The purpose of the condition on the S-tuple LS in
Theorem 11.2 is to make the use of Theorem 10.12 for LS and L∗S possible.
If Conjecture 10.14 is true, then we obtain Theorem 11.2 for unconditional
LS also.
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