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CODIMENSION ONE MINIMAL FOLIATIONS AND
THE FUNDAMENTAL GROUPS OF LEAVES

by Tomoo YOKOYAMA & Takashi TSUBOI (*)

ABSTRACT. — Let F be a transversely orientable transversely real-analytic codi-
mension one minimal foliation of a paracompact manifold M. We show that if the
fundamental group of each leaf of F is isomorphic to Z, then F is without holo-
nomy. We also show that if mo(M) =2 0 and the fundamental group of each leaf of
F is isomorphic to Z* (k € Z>0), then F is without holonomy.

RESUME. — Soit F un feuilletage minimal de codimension un transversalement
orientable, transversalement analytique réel sur une variété M paracompacte. On
démontre que le feuilletage F est sans holonomie si le groupe fondamental de toute
la feuille de F est isomorphe & Z. On démontre aussi que le feuilletage F est sans
holonomie si le groupe d’homotopie 72 (M) = 0 et que le groupe fondamental de
toute la feuille de F est isomorphe & Z* (k € Z>o).

1. Introduction

Let F be a codimension one smooth foliation of a closed manifold M.
We study the relationship between the topology of the leaves of M and the
topology of M. If each leaf of the foliation F is simply connected, then the
foliation F is without holonomy. Then the classical result of Tischler [10]
says that M fibers over the circle S', all leaves of F are diffeomorphic to
a covering space of the fiber, and all leaves are dense if the leaves are not
compact.

We would like to know how is the foliation if the fundamental group of
each leaf is isomorphic to an elementary group. In this direction, we show
the following theorems. A foliation is said minimal if all leaves are dense.
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THEOREM 1.1. — Let F be a transversely orientable transversely real-
analytic codimension one minimal foliation of a paracompact manifold M.
Assume that the fundamental group of each leaf of F is isomorphic to Z.
Then the foliation F is without holonomy.

THEOREM 1.2. — Let F be a transversely orientable transversely real-
analytic codimension one minimal foliation of a paracompact manifold M.
Assume that mo(M) = 0 and the fundamental group of each leaf of F is
isomorphic to Z*(k € Z~). Then the foliation F is without holonomy.

Remark 1.3. — For foliations of closed manifolds, if we assume that the
end set of each leaf is homeomorphic to neither the Cantor set nor the
empty set, then the assumption of minimality in Theorems 1.1 and 1.2 are
satisfied by a result of Duminy (see [2]). For, if the foliation is not minimal
and there are no compact leaves, then there is an exceptional minimal set
and the end set of a semi-proper leaf of the exceptional minimal set is the
Cantor set.

Remark 1.4. — The assumption of transverse real-analyticity in Theo-
rems 1.1 and 1.2 is only used to guarantee that there are no null homotopic
closed transverse curves for the foliations ([5]).

Thus for example, for a codimension one real-analytic foliation F of a
closed manifold M, if all leaves of F are homeomorphic to S x R* (k = 2),
then the foliation is without holonomy. In this case, M is an S*-bundle over
T**+1. For, by the classical result of Novikov ([8]), the universal covering
M is homeomorphic to RM1 x R, where R*1 is the universal covering of
S x R*, and 71 (M) /i.(m (L)) is free abelian, where i : L — M is the
inclusion map of a leaf L. Thus M is aspherical and homotopy equivalent
to an S'-bundle over T#*1. Then by the result of Farrell-Jones [4], M is
homeomorphic to the S'-bundle over TF+1.

In a similar way, for a codimension one real-analytic foliation F of a
closed manifold M with mo(M) = 0, if all leaves of F are homeomorphic
to T% x R" (k4 ¢ > 3), then the foliation is without holonomy and M is a
T*-bundle over T+,

We note that if the fundamental group of each leaf is isomorphic to a com-
plicated group, it is no longer true that the foliation is without holonomy.
In fact, we give an example (Example 3.2) of foliation with nontrivial ho-
lonomy of closed 3-manifold whose leaves are diffeomorphic. Etienne Ghys
told us that he also knew of this example.
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2. Proof of main theorems

To prove our main theorems, we introduce the notion of trivial fences
and mi-carriers.

DEFINITION 2.1 (Trivial fence). — Let F be a transversely oriented
foliation of a manifold M and T a foliation transverse to F. For a compact
subset K of a leaf Ly of F and for € > 0, an embedding F : K x[0,e] — M
is called a trivial positive fence if F(K x {t}) is contained in a leaf L; of
F, F|K x {0} is the inclusion K C Lo and F({z} x [0,¢]) is an orientation
preserving embedding to a leaf T, of T. A trivial negative fence F : K x
[-£,0] — M and a trivial two-sided fence F : K X [—e,e] — M are
defined in a similar way.

Remark 2.2. — For an arcwise connected compact subset K of a leaf L,
a trivial positive fence on K exists, if and only if the holonomy on the
positive side along any loop in K is trivial. If L is a leaf without holonomy,
there is a trivial two-sided fence on any arcwise connected compact subset
K of L.

DEFINITION 2.3 (mp-carrier). — An arcwise connected subset K of a
leaf L of F is called a m-carrier for L if 1 (K) — w1 (L) is surjective.

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1. — By a result of [3], the union of leaves without
holonomy is a residual saturated subset of M. Let L be a leaf of F without
holonomy and K = S C Lg be a my-carrier for Lg. Let F : K x[0,¢] — M
be a trivial positive fence on K and put Fi(x) = F(z,t)

If the image of (F}). : m(K) — m1(L;) is of finite index, then L, is
without holonomy. For, for a loop 7 in Ly, its power «* is in (F}). (71 (K))
and the holonomy along v* is trivial by the existence of the trivial fence F.
Since the holonomy group of a leaf of a codimension one foliation is torsion-
free, the holonomy along ~ is trivial.

Assume that for a non empty open interval (dp,d1) C [0,e] and any
t € (d0,01), (Fi)«(m(K)) is of finite index. Then F is without holonomy
by the minimality of F, i.e. the saturation of F;(K x (dg,01)) is the whole
manifold M.

Now, if (F}).«(m1(K)) is of infinite index for some ¢ € [0,¢], then that
71 (L) = Z implies that (F}).(m1(K)) = 0.

Thus if F is with nontrivial holonomy, then {t € [0, ] | (F}).(m1(K)) = 0}
is a dense subset of [0, ¢].
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Assume that F is with nontrivial holonomy. Let p : M — M be the
universal covering of M. Let F = p*F be the pullback foliation of M. By
the above argument, for a leaf L without holonomy of F and any lift L of
L, p|L is a diffeomorphism and 71 (L) = Z. For a leaf L with nontrivial
holonomy, the real-analyticity of F implies that its lift L is simply con-
nected. For, otherwise, L is a finite cover of L and L is still with nontrivial
holonomy. However the argument of Haefliger [5] shows that transversely
orientable real-analytic foliations on simply connected manifolds are with-
out holonomy.

Thus the foliation 7 of M is without holonomy and F contains the
residual subset formed by the non-simply connected lifts of leaves L of F
without holonomy, and simply connected leaves formed by the lifts of leaves
with nontrivial holonomy.

For a lift fo of a leaf Ly of F without holonomy, p|iv0 is a diffeomor-
phism, and the positive trivial fence F : K x [0,e] — M lifts to a unique
positive trivial fence F : K x [0,e] — M where K = (p|iv0)’1(K). Hence
{te[0,e] | (F)«(m1(K)) = 0} is a dense subset of [0, £].

The following lemma 2.4 shows that in this situation, the union of simply
connected leaves is a residual subset of M and this completes the proof of
Theorem 1.1. g

LEMMA 2.4. — Let F be a foliation without holonomy of a simply con-
nected manifold M. Let p : M — R be a continuous submersion such
that a leaf of F is a connected component of p~1(y) (y € R). Assume that

(%) for any compact subset K of a leaf L and any two-sided trivial
fence F : K X [—e,e] — M, there exists t € (—e,¢) such that
(Fy)«(m(K)) =0 C 71 (Ly).

Then the union of simply connected leaves is a residual subset.

Proof. — First we take an increasing sequence of compact submanifolds
M; of M with several nice properties.

For each point z € M , take a closed foliated product neighbourhood U =
D" x [—¢,¢] such that D"~ ! x {x} is on a leaf of F and {x} x [—¢,&] is on
a leaf of the transverse foliation 7. Since M is paracompact, it is covered by
countably many such distinguished neighbourhoods U; =2 Df_l X [—€4, €]
(i € Zz0). Put M; = | J D}'™" x [—ex, ). Then M = | J M;. By modifying

k<i i
M;, we may assume that M; is a compact submanifolds of M with boundary
and codimension two corners. OM; is a union of compact submanifolds
of leaves and compact submanifolds transverse to F. Moreover, we may
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assume that, for any leaf fo of F , EO N M; is a compact submanifolds of
zo.

We observe that if fo contain no components of tangential boundary
of M;, then there is a two-sided trivial fence F : (M; N L) X [—¢,¢] —
M (¢ > 0) such that F((M; N Lo) x {t}) is contained in a leaf L and
p(p(Im(F))) N M; = Im(F), where Im(F) is the image of the fence F.
For a component (M; N Eo) jof M;n Lo, if Ly contains no components of
tangential boundary of M; and the induced map 1 ((M; ﬁzo)j) — m(Lo)
is the zero map, then for sufficiently small ¢ in [—¢,¢], 71 ((M; N Et)j) —
m (Zt) is the zero map. The reason is as follows. Take a finite generating set
of Wl((MiﬂZO)j). For a generator [v] of wl((Miﬂf/O)j), there is a continuous
map h : D? — Zo such that Oh = ~. Then this h extends to h: D?x
[—¢’,e'] — M such that h({x} x [—¢’,¢]) C Th(x) and n(D? x {t}) C L,.
Since 71 ((M; N Zt)j) is generated by the loops [Fi(y)] and these bound
h(D? x {t}), m1((M; N Ly);) — m1(Ly) is the zero map.

By the assumption (%), for the trivial two-sided fence F,

{t € [—¢,¢€] ‘ m ((M; N Zt)j) — m1(Ly) is the zero map}

is a dense subset of [—¢,¢], and this is an open subset by the above argu-
ment.

Since p~! (p(Im(F)))NM; = Im(F), the number of connected components
of Im(F') is finite and the number of the connected components of the
tangential boundary of M; is finite,

Gi={sepM;) | m((M;N Z)j) — m (L) is the zero map B
for any connected component (M; N L); of M; N L
for any leaf L in p~1(s)}

contains an open dense subset of p(M;).
Put G; = (R\ p(M;)) UGY. Then G; contains an open dense subset of
oo

R. Thus G = ﬂ G; is a residual subset of R. Now, for s € G, any leaf of
i=1
p~1(s) is simply connected . Hence the union of simply connected leaves

contains p~!(G) which is a residual subset of M. O

Thus Theorem 1.1 is shown. The proof of Theorem 1.2 also uses the
homomorphism (F), : w1 (K) — 7m1(L;) for the trivial fence F'.

Proof of Theorem 1.2. — Let Lg be a leaf of F without holonomy. Let
K be a mi-carrier for Ly. K can be taken as a bouquet of k circles. Let F :
K X [—&,e] — M be a two-sided trivial fence. As in the proof of Theorem
1.1, if F is with nontrivial holonomy, then there are no non-empty open

TOME 58 (2008), FASCICULE 2



728 Tomoo YOKOYAMA & Takashi TSUBOI

intervals (g, d1) C [—¢, €] such that the image of (Fy).« : w1 (K) — m1(L¢)
(t € (dp,01)) is of finite index.
Thus there are sg and ug such that —¢ < s <0 < ug < ¢,

(Fy)w(m(K)) C mi(Ly,) = ZF

and
(Fug)s(m1(K)) C 1 (L) = z"
are of infinite index. Thus NSO = Ker((Fsy)«) C m1(Lo) = Z" and NSO =
Ker((Fy,)«) C m1(Lo) = Z" are nontrivial.
First we show that N N N_ = 0.

LEMMA 2.5. — N2 NN =0.

Proof. — Assume that N N Np is nontrivial. Let v : S — Lg be
a loop representing a nontrivial element of N N N? . Let (M, F) be the
pull-back foliation of the universal covering M of M. Since (Fup) s (v, )=0,7v
lifts to a map 5 : S' — Ly C M to the universal cover. Since 771(L0) is free
abelian and [§] € 1 (Lo) is nontrivial, [§] € Hy(Lo; Z) is nontrivial. Since
F is transversely real-analytic, F is defined by a continuous submersion
M — Rand M \270 always have two connected components, M+ and M.
Since [y] € N, there is a continuous map hy : D* — F(7y x [0, uq]) U Ly,
such that v = Oh,. hy lifts to a continuous map h+ D? — CI(M+)
M* U Ly such that 5 = 8h+

In a similar way, there are a continuous map h_ : D2 — F(yx[s0,0])U
L, such that v = Oh_ and its lift h_:D*— Cl( )= M~ U Ly such
that v = Oh_.

By the Mayer-Vietoris sequence for M = Cl(],\\/[/*) U CI(MJF), we see
that 5 induces a nontrivial element of Hy (M ; Z) and this contradicts the
assumption that 0 = 7o (M) = (M) = Ho(M; Z). Thus N2 NNJ = 0.

O

We continue the proof of Theorem 1.2.

Put tg = 0, K% = K and F/* = F, : K — L,. We have, 5o < to < ug
and N!0 N N! = 0. Note that for 0 = tg < t < ug, (F{°).|N is injective.
For otherwise, N0 N N}° =0, contradicting Lemma 2.5

Let Ly, (to < t1 < ug) be a leaf without holonomy. Take a m;-carrier K
for Ly, containing F;°(K"). Then we have a two-sided trivial fence F* :
K™ x [t1—e1,t14+€1] — M. For this fence, by the same argument as before,
we can find s1 and u; such that tg < s; <t; <wuy <ug and N NN =0,
where F/* : K — L; and N/* = Ker((F/*), : m(K") — m1(Ly))
(t = s1, u1) are nontrivial.

ANNALES DE L’INSTITUT FOURIER
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Now note that N 1 (F}°),(N!) = 0. For otherwise, there is a loop 7 in
K such that F}° o~y represents a nontrivial element in N N (F}).(N%)
and [y] € N!o. Since for sy <t <y, Ff°(K'") C F/*(K"), Flro F{° oy =
F!° o~ and this represents 0. This contradicts the injectivity of (F).|Nfo.

Put A% = N0 and A" = N1 @(F/),(A%). Then rk(A%) > rk(A%)>0.
Note that for [y] € A", we have a description of the homotopy

(Fe)« (F) [ N THES) [ = 0.

Note also that for t; < t < uy, (F}').|A" is injective and A" N N2 = 0.
For otherwise, the argument of Lemma 2.5 gives rise to a nontrivial element
in 7o (M).

For s1 < t; < wy, we take Ly, (t1 < t2 < uy) without holonomy. We
take a mi-carrier K'2 for L, containing F!(K''). Then, using a two-
sided trivial fence Fttz, we find so and uy (t1 < s2 < to < w2 < uq)
such that Nf2 N Nf2 = 0, where N/ = ker(F/?), : m (K') — m(Ly)
(t = s2,up) are nontrivial. Since for sy < t < ug, F/*(Kh) C F?(K*),
N2 N (F{).(A%) = 0. Put A" = N2 @ (F/!).(A"). Then, rk(A') >
rk(A"). For ty < t < ug, (F}?),|A" is injective and A2 N N2 = 0. Note
that, for [y] € A'2,

(P« (F) | A THED ) (F) LA™ TH(E2) ] = 0.

Note also that for tp < t < ug, (F}?).|A" is injective and A" N N2 = 0.
For otherwise, the argument of Lemma 2.5 again gives rise to a nontrivial
element in 7o (M).

We repeat this construction and we obtain 7i-carriers K% C L;, and
two-sided trivial fences Ftti, nontrivial subgroups NZi NG Li of 1 (K*), and
subgroups A% C 71 (Ly,) (i = 1,2, ...). Here N} = ker(F )* s (KY) —
m1(L¢). They satisfy

So <tp <81 <ty <82 <tg<--<8; <ty
LU < Uiy < o< ug < up < U

and
A = N8 (F ). (45)
Since tkA% > rkAti-1 > ... > rkA% > 0, kA" >
Here if A% NN/ # 0, we find a nontrivial element in m(M). For, let
v € A% N N[ be a loop representing nontrivial element. Since [y] € N},
~ lifts to the universal covering, 7 : S — Lt c M. By the argument
similar to that in Lemma 2.5, ¥ bounds a disk in M ULt , where MJr and
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]\Zj are the components of M \ Ly,. Since [y] € A%,
t t to\—1 t t t1\—1 ti_
()= ((E )| A%) 7 (E )« (B )| A™) ™7 - (F20)x

((FE2)u A=) 7 (FLD(FE) A=) T (R ) = 0.

Si—1

Hence ¥ bounds a disk in Z\Zj Uiti. Thus as before we see that Hs (M, Z)#0
and we find a nontrivial element in 7 (M ). This contradicts the assumption
that 0 = 7y (M) 2 7o (M) = Hy(M; Z).

Now for i > k, the fact this contradicts the fact that (L) = A |

3. Examples

The first example shows that the assumption on the minimality of folia-
tions in Theorems 1.1 and 1.2 are necessary.

Example 3.1. — Consider the compact manifold
M =S x (S' x §™\ IntD't™),

where m > 1 and D'*™ is an embedded disk in S' x S™. It is easy to
construct a foliation F of M tangent to the boundary S! x $™ and whose
interior leaves are homeomorphic to S x S™ \ {x}. Consider the double
(DM, DF) which can be constructed as a real-analytic foliation and the
compact leaf has nontrivial holonomy. It is easy to see that the fundamental
group of each leaf is isomorphic to Z. By taking the direct product with
Tk=1 we obtain an example with the the fundamental group of each leaf
being isomorphic to Z k.

Now we construct a codimension one transversely orientable minimal
foliation with nontrivial holonomy on a closed manifold whose leaves are
diffeomorphic. The construction is a modification of Hirsch’s example [6].

Example 3.2. — Let X be the surface obtained from the 2-torus by
removing 3 disks. Let 01, 02,03 be the boundary components of X. Let F
be the product foliation of X' x [0,1] (i.e., F = {X x {z}},¢0,1])- Let [ :
Y — X be a diffeomorphism such that f(01) = 01, f(02) = 05, f(F3) = O
and let M be the manifold obtained from X x [0,1] by identifying (z,1)
with (f(z),0). Then the boundary of M is diffeomorphic to a disjoint union
of two tori T? (containing d; x {0}) and T% (containing 9> x {0} and
03 x {0}). Using the natural projection to [0,1]/0 ~ 1 = R/Z, T} is
identified with 9, x R/Z and T is identified with 0, x R/2Z. We have
the induced foliation " of M and we see that F'|T7 = {0y x {t}}+cr/z

ANNALES DE L’INSTITUT FOURIER
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and F'|T5 = {02 x {t}}1erjoz- Let g : TY — T3 be a diffeomorphism
sending 01 x {t} to 02 x {2t}. Let M, be the manifold obtained from M
by the identification by g. We obtain the induced real-analytic foliation F"”
of M, which is minimal. It is easy to see that there are countably many
leaves with nontrivial holonomy. Each leaf of F” is an orientable surface
of infinite genus and its end set is the Cantor set consisting of non planar
ends. By the classifying theorem ([7], [9]) for non-compact surfaces (see
also [1]), all leaves are diffeomorphic.
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