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GALE DUALITY FOR COMPLETE INTERSECTIONS

by Frédéric BIHAN & Frank SOTTILE (*)

Abstract. — We show that every complete intersection defined by Laurent
polynomials in an algebraic torus is isomorphic to a complete intersection defined
by master functions in the complement of a hyperplane arrangement, and vice
versa. We call systems defining such isomorphic schemes Gale dual systems be-
cause the exponents of the monomials in the polynomials annihilate the weights
of the master functions. We use Gale duality to give a Kouchnirenko theorem for
the number of solutions to a system of master functions and to compute some
topological invariants of master function complete intersections.

Résumé. — Nous montrons que toute intersection complète définie par des po-
lynômes de Laurent dans un tore algébrique est isomorphe à une intersection com-
plète définie par des "fonctions master" dans le complémentaire d’un arrangement
d’hyperplans, et vice versa. On appelle les systèmes définissant de tels schémas iso-
morphes des systèmes "Gale duaux" car les exposants des monômes apparaissant
dans les polynômes annulent les poids des fonctions master. On utilise la dualité
de Gale pour donner un théorème de Kouchnirenko sur le nombre de solutions
d’un système de fonctions master et pour calculer certains invariants topologiques
d’intersections complètes définies par des fonctions master.

Introduction

A complete intersection with support W is a subscheme of the torus
(C×)m+n having pure dimension m that may be defined by a system

f1(x1, . . . , xm+n) = f2(x1, . . . , xm+n) = · · · = fn(x1, . . . , xm+n) = 0

of Laurent polynomials with support W.

Keywords: Sparse polynomial system, hyperplane arrangement, master function, fewno-
mial, complete intersection.
Math. classification: 14M25, 14P25, 52C35.
(*) Sottile supported by the Institute for Mathematics and its Applications, NSF
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878 Frédéric BIHAN & Frank SOTTILE

Let p1(y), . . . , pl+m+n(y) be degree 1 polynomials defining an arrange-
ment A of hyperplanes in Cl+m and let β = (b1, . . . , bl+m+n) ∈ Zl+m+n be
a vector of integers. A master function of weight β is the rational function

p(y)β := p1(y)b1 · p2(y)b2 · · · pl+m+n(y)bl+m+n ,

which is defined on the complement MA := Cl+m \ A of the arrangement.
A master function complete intersection is a pure subscheme of MA which
may be defined by a system

p(y)β1 = p(y)β2 = · · · = p(y)βl = 1

of master functions.
We describe a correspondence between systems of polynomials defining

complete intersections and systems of master functions defining complete
intersections that we call Gale duality, as the exponent vectors of the mono-
mials in the polynomials and the weights of the master functions annihilate
each other. There is also a second linear algebraic duality between the de-
gree 1 polynomials pi and linear forms defining the polynomials fi. Our
main result is that the schemes defined by a pair of Gale dual systems
are isomorphic. This follows from the simple geometric observation that a
complete intersection with support W is a linear section of the torus in an
appropriate projective embedding, and that in turn is a torus section of a
linear embedding of a hyperplane complement. We explain this geometry
in Section 1.

In Section 2 we describe this duality concretely in terms of systems of
polynomials and systems of master functions, for this concrete version is
how it has been used.

The value of this duality is that it allows us to transfer results about solu-
tions to polynomial systems to results about solutions to master functions
and vice versa. The version of this valid for positive real number solutions
was used to give a new upper bound on the number of positive solutions of
a zero-dimensional complete intersection of fewnomials [7], to give a con-
tinuation algorithm for finding all real solutions to such a system without
also computing all complex solutions [2], and to give a new upper bound on
the sum of the Betti numbers of a fewnomial hypersurface [8]. The version
valid for the real numbers leads to a surprising upper bound for the number
of real solutions to a system of fewnomials with primitive exponents [1].
In Section 3, we offer two results about master function complete intersec-
tions that follow from well-known results about polynomial systems. The
first is an analog of Kouchnirenko’s bound [3] for the number of points in
a zero-dimensional master function complete intersection and the other is
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GALE DUALITY FOR POLYNOMIALS 879

a formula for the Euler characteristic of a master function complete inter-
section.

Another application is afforded by tropical geometry [11]. Each subva-
riety in the torus (C×)m+n has an associated tropical variety, which is a
fan in Rm+n. Gale duality allows us to associate certain tropical varieties
to master function complete intersections in the complement of a hyper-
plane arrangement. We believe it is an interesting problem to extend this
to arbitrary subvarieties of the hyperplane complement defined by master
functions.

1. The geometry of Gale duality

Let l, m, and n be nonnegative integers with l, n > 0. We recall the stan-
dard geometric formulation of a system of Laurent polynomial in terms of
toric varieties, then the less familiar geometry of systems of master func-
tions, and then deduce the geometric version of Gale duality.

1.1. Sparse polynomial systems

An integer vector w = (a1, . . . , am+n) ∈ Zm+n is the exponent vector of
a monomial

xw := xa1
1 x

a2
2 · · ·xam+n

m+n ,

which is a function on the torus (C×)m+n. LetW = {w0, w1, . . . , wl+m+n}⊂
Zm+n be a set of exponent vectors. A (Laurent) polynomial f with support
W is a linear combination of monomials with exponents in W,

(1.1) f(x) :=
l+m+n∑

i=0

cix
wi where ci ∈ C .

A complete intersection with support W is a subscheme of (C×)m+n of
pure dimension n which may be defined by a system

(1.2) f1(x1, . . . , xm+n) = · · · = fn(x1, . . . , xm+n) = 0

of polynomials with support W. Since multiplying a polynomial f by a
monomial does not change its zero scheme in (C×)m+n, we will always
assume that w0 = 0 so that our polynomials have a constant term.

Consider the homomorphism of algebraic groups

ϕW : (C×)m+n −→ {1} × (C×)l+m+n ⊂ Pl+m+n

x 7−→ (1, xw1 , . . . , xwl+m+n) .

TOME 58 (2008), FASCICULE 3



880 Frédéric BIHAN & Frank SOTTILE

This map ϕW is dual to the homomorphism of free abelian groups
Zl+m+n ιW−−−→ Zm+n which maps the ith basis element of Zl+m+n to wi.
Write ZW for the image, which is the free abelian subgroup generated by
W.

The kernel of ϕW is the dual Hom(CW,C×) of the cokernel CW :=
Zm+n/ZW of the map ιW . The vector configuration W is primitive when
ZW = Zm+n, which is equivalent to the map ϕW being a closed immersion.

If we let [z0, z1, . . . , zl+m+n] be coordinates for Pl+m+n, then the poly-
nomial f (1.1) equals ϕ∗W(Λ), where Λ is the linear form on Pl+m+n,

Λ(z) =
l+m+n∑

i=0

cizi .

In this way, polynomials on (C×)m+n with support W are pullbacks of
linear forms on Pl+m+n. A system (1.2) of such polynomials defines the sub-
scheme ϕ∗W(L), where L ⊂ Pl+m+n is the linear space cut out by the forms
corresponding to the polynomials fi. An intersection L∩ ϕW((C×)m+n) is
proper if its codimension equals the sum of the codimensions of L and of
ϕW((C×)m+n) in Pl+m+n. The following well-known proposition describes
this correspondence.

Proposition 1.1. — Every complete intersection with support W is
the pullback along ϕW of a proper intersection of ϕW((C×)m+n) with a
linear space L, and any such pullback is a complete intersection with sup-
port W.

When W is primitive, the map ϕW is a scheme-theoretic isomorphism
between a complete intersection with support W and the corresponding
proper intersection.

1.2. Master functions

Let p1(y), . . . , pl+m+n(y) be pairwise nonproportional degree 1 polyno-
mials on Cl+m. Their product

∏
i pi(y) = 0 defines a hyperplane arrange-

ment A. Let β ∈ Zl+m+n be an integer vector, called a weight for the
arrangement A. The corresponding monomial p(y)β in these polynomials
is a master function for the arrangement A. As the components of β can
be negative, its natural domain of definition is the complement MA of the
hyperplane arrangement.

Figure 1.1 shows two curves defined by master functions in the comple-
ment of the arrangement st(s− t− 1

2 )(s+ t− 1) = 0.

ANNALES DE L’INSTITUT FOURIER



GALE DUALITY FOR POLYNOMIALS 881

s2(s+ t− 1)3

t2(s− t− 1
2 )

= 1
s(s− t− 1

2 )3

t3(s+ t− 1)
= 1

Figure 1.1. Master function curves.

A master function complete intersection in MA with weights
B = {β1, . . . , βl} is a subscheme of MA of pure dimension m which may be
defined by a system

(1.3) p(y)β1 = p(y)β2 = · · · = p(y)βl = 1

of master functions. The weights B ⊂ Zl+m+n are necessarily linearly in-
dependent. The weights are primitive if ZB = QB ∩ Zl+m+n, so that they
generate a saturated subgroup. Linear independence and primitivity are
equivalent to the subgroup zβ1 = · · · = zβl = 1 of the torus (C×)l+m+n

having dimension m+n and being connected.
The polynomials 1, p1(y), . . . , pl+m+n(y) define an affine map

ψp : Cl+m −→ Pl+m+n

y 7−→ [1, p1(y), . . . , pl+m+n(y)] .

This map is injective if and only if the arrangement A is essential, which
means that the space of all degree 1 polynomials in y is spanned by
{1, p1(y), . . . , pl+m+n(y)}.

The hyperplane arrangement A is the pullback along ψp of the coordi-
nate hyperplanes in Pl+m+n and its complement MA is the inverse im-
age of the torus (C×)l+m+n ⊂ Pl+m+n. Here, Pl+m+n has coordinates
[z0, z1, . . . , zl+m+n] with ψ∗p(zi) = pi.

Thus the equation p(y)β = 1 is the pullback along ψp of the equation
zβ = 1, which defines a subgroup of (C×)l+m+n. In particular, the master

TOME 58 (2008), FASCICULE 3



882 Frédéric BIHAN & Frank SOTTILE

function complete intersection (1.3) is the pullback along ψp of the subgroup
T of (C×)l+m+n defined by zβ1 = · · · = zβl = 1.

We summarize some properties of this corrspondence between master
function complete intersections and proper intersections of a linear space
and a torus.

Proposition 1.2. — Every master function complete intersection in
MA is the pullback along ψp of a proper intersection of ψp(Cl+m) with
a subgroup T of (C×)l+m+n, and any such pullback is a master function
complete intersection in MA.

When ψp is injective, the map ψp is a scheme-theoretic isomorphism be-
tween a master function complete intersection in MA and the corresponding
proper intersection.

Since no polynomial pi vanishes in MA, we may clear denominators and
rewrite the equation pβ = 1 as an equation of polynomials, or as a binomial
of the form pβ+ −pβ− = 0, where β± is the vector of positive entries in ±β.
For example, the two equations in Figure 1.1 becomes the system

s2(s+ t− 1)3 − t2(s− t− 1
2 ) = s(s− t− 1

2 )3 − t3(s+ t− 1) = 0 .

Remark 1.3. — In the system (1.3) of master functions, each master
function is set equal to 1. This is no essential restriction for if we instead
set each master function to a different non-zero constant, then we may scale
the degree 1 polynomials pi appropriately to absorb these constants. This
is possible as the weights B are linearly independent.

1.3. Gale duality

Propositions 1.1 and 1.2 form the basis of our notion of Gale duality.
Suppose that T ⊂ (C×)l+m+n ⊂ Pl+m+n is a connected subgroup of di-
mension m+n and that L ⊂ Pl+m+n is a linear space of dimension l+m
such that T∩L is proper. Let L0 ' Cl+m be those points of L with nonzero
initial (zeroth) coordinate.

Definition 1.4. — Suppose that we are given
(1) An isomorphism ϕW : (C×)m+n → T and equations zβ1 = · · · =

zβl = 1 defining T as a subgroup of (C×)l+m+n. Necessarily, W
and B = {β1, . . . , βl} are primitive.

(2) A linear isomorphism ψp : Cl+m → L0 and linear forms Λ1, . . . ,Λn

on Pl+m+n defining L.

ANNALES DE L’INSTITUT FOURIER



GALE DUALITY FOR POLYNOMIALS 883

Let A ⊂ Cl+m be the pullback of the coordinate hyperplanes of Pl+m+n.
We say that the polynomial system

(1.4) ϕ∗W(Λ1) = · · · = ϕ∗W(Λn) = 0

in (C×)m+n is Gale dual to the system of master functions

(1.5) ψ∗p(zβ1) = · · · = ψ∗p(zβl) = 1

in MA and vice-versa.

This definition contains two different linear algebra dualities. The weights
B form a Z-basis for the free abelian group of integer linear relations among
the nonzero exponent vectors of W. Similarly, the linear forms {Λ1, . . . ,Λn}
form a basis for the space of linear relations among the coordinate functions
{1, p1, . . . , pl+m+n} defining the map ψp.

The following is immediate.

Theorem 1.5. — A pair of Gale dual systems (1.4) and (1.5) define
isomorphic schemes.

2. The algebra of Gale duality

We give an explicit algorithmic version of Gale duality. Let

W = {0, w1, . . . , wl+m+n} ⊂ Zm+n

be a primitive collection of integer vectors and suppose that

(2.1) f1(x1, . . . , xm+n) = · · · = fn(x1, . . . , xm+n) = 0

defines a complete intersection with support W in the torus (C×)m+n.
Then the polynomials fi are linearly independent. We may reorder the
exponent vectors so that the coefficients of xw1 , . . . , xwn in (2.1) form an
invertible matrix and then transform (2.1) into an equivalent system where
the coefficients of xw1 , . . . , xwn form a diagonal matrix.

(2.2)

xw1 = g1(x) =: p1(xwn+1 , . . . , xwl+m+n)
...

xwn = gn(x) =: pn(xwn+1 , . . . , xwl+m+n)

Here, for each i = 1, . . . , n, gi(x) is a polynomial with support
{0, wn+1, . . . , wl+m+n} which is a degree 1 polynomial function
pi(xwn+1 , . . . , xwl+m+n) in the given l+m arguments. For i = n+1, . . . ,
l+m+n, set pi(xwn+1 , . . . , xwl+m+n) := xwi .

TOME 58 (2008), FASCICULE 3



884 Frédéric BIHAN & Frank SOTTILE

An integer linear relation among the exponent vectors in W,

b1w1 + b2w2 + · · · + bl+m+nwl+m+n = 0 ,

is equivalent to the monomial identity

(xw1)b1 · (xw2)b2 · · · (xwl+m+n)bl+m+n = 1 ,

which gives the consequence of the system (2.2)(
p1(xwn+1 , . . . , xwl+m+n)

)b1 · · ·
(
pl+m+n(xwn+1 , . . . , xwl+m+n)

)bl+m+n = 1 .

Define y1, . . . , yl+m to be new variables which are coordinates for Cl+m.
The degree 1 polynomials pi(y1, . . . , yl+m) define a hyperplane arrangement
A in Cl+m. Note that A is essential since it contains all the coordinate
hyperplanes of Cl+m. Let B := {β1, . . . , βm} ⊂ Zl+m+n be a basis for the
Z-module of integer linear relations among the nonzero vectors in W. These
weights B define a system of master functions

(2.3) p(y)β1 = p(y)β2 = · · · = p(y)βl = 1

in the complement MA := Cl+m \ A of the arrangement.

Theorem 2.1. — The system of polynomials (2.1) in (C×)m+n and the
system of master functions (2.3) in MA define isomorphic schemes.

Proof. — Condition (1) in Definition 1.4 holds as W and B are both
primitive and annihilate each other. The linear forms Λi that pull back
along ϕW to define the system (2.2) are

Λi(z) = zi − pi(zn+1, . . . , zl+m+n) ,

which shows that condition (2) holds, and so the statement follows from
Theorem 1.5. �

Example 2.2. — Suppose that we have the system of polynomial equa-
tions

(2.4)
2x4y−1 − 3x3y2 − 4x4y + xy2 − 1

2 = 0

x3y2 + 2x4y − xy2 − 1
2 = 0

in the torus (C×)2. Here n = l = 2 and m = 0. We may diagonalize this to
obtain

x3y2 = x4y−1 − x4y − 1
2 ,

xy2 = x4y−1 + x4y − 1 .

ANNALES DE L’INSTITUT FOURIER
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Thus the system has the form ϕ∗W(Λ1) = ϕ∗W(Λ2) = 0, where

Λ1(z) = z1 − (z3 − z4 − 1
2 ) ,

Λ2(z) = z2 − (z3 + z4 − 1) , and

ϕW : (x, y) 7−→ (x3y2, xy2, x4y−1, x4y) = (z1, z2, z3, z4) .

These exponents W are primitive.
Let s, t be new variables and set

p1 := s− t− 1
2 p3 := s

p2 := s+ t− 1 p4 := t

Then ψp : (s, t) 7→ (p1, p2, p3, p4) parametrizes the common zeroes of Λ1

and Λ2.
Note that

(x3y2)−1(xy2)3(x4y−1)2(x4y)−2 = (x3y2)3(xy2)−1(x4y−1)(x4y)−3 = 1 ,

and so the weights (−1, 3, 2,−2) and (3,−1, 1,−3) annihilate W. These
weights are primitive. By Theorem 2.1, the polynomial system (2.4) in
(C×)2 is equivalent to the system of master functions

(2.5)
s2(s+ t− 1)3 − t2(s− t− 1

2 ) = 0

s(s− t− 1
2 )3 − t3(s+ t− 1) = 0 ,

in the complement of the hyperplane arrangement st(s+t−1)(s−t− 1
2 ) = 0.

We display these two systems in Figure 2.1, drawing also the excluded
hyperplanes (lines).

We remark that although we have two curves in the polynomial system
and two curves in the system of master functions, the individual curves are
unrelated. Theorem 2.1 merely asserts an isomorphism between the zero-
dimensional schemes in the torus (C×)2 and in the hyperplane complement
MA defined by each pair of curves.

3. Some consequences of Gale duality

Theorems 1.5 and 2.1, which assert isomorphisms of schemes, hold if C is
replaced by any other field, and even other algebraic objects. In particular,
Gale duality holds for the real numbers. Example 2.2 illustrates this fact.
The real zero-dimensional schemes defined by (2.4) in (R×)2 and by (2.5)
in MA(R) each consist of 3 reduced points with residue field R (which we
see in Figure 2.1) and 7 reduced points with residue field C. If we only

TOME 58 (2008), FASCICULE 3
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x = 0

y = 0

s = 0

t = 0

s+ t− 1 = 0

s− t− 1
2 = 0

Figure 2.1. The polynomial system (2.4) and the system of master
functions (2.5).

consider real-number solutions, that is, analytic subschemes of (R×)m+n

and of MA(R), then we may relax the requirement in Theorem 1.5 that W
and B are primitive to the condition that they generate subgroups of odd
index in their saturations.

Gale duality also holds for R+, the positive real numbers and for M+
A ,

the positive chamber of the complement MA(R) of oriented hyperplanes
A. In this guise it is Theorem 2.2 of [7]. There, positivity allows W and B
to have real-number components.

Gale duality allows us to use knowledge about polynomial systems to
deduce results about systems of master functions, and vice versa. In fact,
this is how it arose. It was used implicitly [4, 5] and explicitly [7] to give new
upper bounds on the number of positive solutions to a system of fewnomial
equations. In [7], the bound

(3.1)
e2 + 3

4
2(l

2)nl

was given for the number of solutions to a 0-dimensional master function
complete intersection (m = 0) in the positive chamber M+

A , where A con-
sists of l+n oriented hyperplanes in Rl. By Gale duality for R+, we obtain
the new fewnomial bound of [7]: A system of n polynomials in n variables
having a total of n+l+1 distinct monomials has at most (3.1) nondegener-
ate solutions in the positive orthant Rn

+.
The proof in [7] leads to a path continuation algorithm [2] to find nonde-

generate solutions in M+
A to systems of master functions. Its novelty is that,

ANNALES DE L’INSTITUT FOURIER



GALE DUALITY FOR POLYNOMIALS 887

unlike traditional continuation algorithms for solving systems of algebraic
equations [12], it only follows real solutions. Its complexity depends upon
the dimension l and the fewnomial bound (3.1), and not on the number of
complex solutions to the system of master functions. That algorithm easily
extends to find all nondegenerate solutions in the hyperplane complement
MA(R), and through Gale duality it gives a new continuation algorithm
for all nondegenerate real solutions to a system of polynomial equations.
Moreover, the ideas underlying the algorithm lead to a generalization of [7],
giving the bound

e4 + 3
4

2(l
2)nl

for the number of nondegenerate real solutions to a master function com-
plete intersection and thus a bound for the number of nonzero nondegen-
erate real solutions to a system of n polynomials in n variables having a
total of n+l+1 distinct monomials [1].

These new fewnomial bounds are used to bound the number of connected
components [6] and the sum of the Betti numbers [8] of a fewnomial hy-
persurface. For example, Theorem 1 of [8] states that the sum of the Betti
numbers of a hypersurface in Rm+1

+ defined by a polynomial with l+m+1+1
monomial terms is bounded by

(3.2)
e2 + 3

4
2(l

2)
m+1∑
i=0

(
m+ 1
i

)
il 6

e2 + 3
4

2(l
2)(m+ 1)l · 2m .

By Gale duality, this gives a following bound for certain complete intersec-
tions of master functions.

Corollary 3.1. — Let A be an arrangement in Rl+m consisting of
l+m+1 hyperplanes. Let M+

A be a chamber of the hyperplane complement
MA. Then the sum of the Betti numbers of a smooth codimension l com-
plete intersection defined by master functions in M+

A is at most (3.2).

Proof. — The arrangement A has one hyperplane more than the dimen-
sion of the ambient space Rl+m. Therefore n = 1, and the Gale dual com-
plete intersection is a smooth hypersurface in Rm+1

+ . �

Another interesting class of applications of Gale duality is to transfer
results about polynomial systems (which have been extensively studied) to
systems of master functions, which have not yet attracted much attention.

Let B := {β1, . . . , βl} be linearly independent elements of Zl+m+n which
are primitive (that is, ZB = QB ∩ Zl+m+n). Then the quotient

Zl+m+n/ZB

TOME 58 (2008), FASCICULE 3



888 Frédéric BIHAN & Frank SOTTILE

is a free abelian group of rank m+n that we identify with Zm+n. For each
i = 1, . . . , l+m+n, let wi ∈ Zm+n be the image of the ith standard unit
vector in Zl+m+n. These generate Zm+n and so W := {0, w1, . . . , wl+m+n},
is primitive. Let

∆B := conv(0, w1, . . . , wl+m+n)

be the convex hull of W.
Our first application is a Kouchnirenko Theorem [3] for zero-dimensional

(m = 0) complete intersections of master functions.

Corollary 3.2 (Kouchnirenko’s Theorem for master functions). — Let
p1, . . . , pl+n be degree 1 polynomials which define an essential arrangement
A of l + n hyperplanes in Cl. Then the system of master functions

(3.3) pβ1 = pβ2 = · · · = pβl = 1 ,

in the hyperplane complement MA has at most

(3.4) n! volume(∆B)

isolated solutions, counted with multiplicity. When the polynomials
p1, . . . , pl+n are general, the system (3.3) has exactly (3.4) solutions.

Example 3.3. — For example, the master functions of Figure 1.1 and of
the system (2.5) have weights

B := {(−1, 3, 2,−2), (3,−1, 1,−3)} .

These are primitive, so Z4/ZB ' Z2. This isomorphism is realized by send-
ing the standard basis vectors of Z4 to the columns of the matrix

W =
[

3 1 4 4
2 2 −1 1

]
.

The convex hull of these columns and the origin is the integer pentagon
in R2

which has area 17/2. Thus by Corollary 3.2, a system of master functions for
a general arrangement of 4 lines in C2 with weights B will have 17 solutions
in the complement of of the arrangement. Indeed, the system (2.5) of master

ANNALES DE L’INSTITUT FOURIER
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functions has 17 solutions in the complement of the line arrangement shown
in Figure 2.1. Similarly, the system

(2x− 3y)2(4x+ y − 7)3

(1 + x− 3y)2(x− 7y − 2)
=

(2x− 3y)(x− 7y − 2)3

(1 + x− 3y)3(4x+ y − 7)
= 1

also has 17 solutions in the complement of its line arrangement. These
claims of 17 solutions are readily checked by computer.

Proof of Corollary 3.2. — The polynomials 1, p1, . . . , pl+n parametrize a
codimension n plane Λ ⊂ Pl+n, and the system (3.3) defines the intersection

(3.5) ϕW((C×)n) ∩ Λ .

Since Λ has codimension n, this is a complete intersection with support W.
The first statement follows by Kouchnirenko’s Theorem [3].

For the second statement, observe that if Λ is a general codimension n

plane, then the intersection (3.5) is transverse and Kouchnirenko’s theorem
implies that it consists of exactly (3.4) points. But a general codimension n
plane Λ in Pl+n is parametrized by general polynomials 1, p1, . . . , pl+m+n.

�

Khovanskii [10] gave formulas for many invariants of complete intersec-
tions in the torus, including genus, arithmetic genus, and Euler charac-
teristic. By Gale duality, these are formulas for invariants of master func-
tion complete intersections. Khovanskii’s formulas for genera are rather
involved, and we leave their formulation for master function complete in-
tersections as an exercise for the interested reader. His formula for the Euler
characteristic is however quite simple. Let B and ∆B be as described before
Theorem 3.2.

Corollary 3.4. — Let p1, . . . , pl+m+n be general degree 1 polynomials
which define an essential arrangement A of l+m+n hyperplanes in Cl+m.
The Euler characteristic of the solution set of the system of master functions

(3.6) pβ1 = pβ2 = · · · = pβl = 1 ,

is

(3.7) (−1)m

(
m+n−1
n− 1

)
· (m+n)! volume(∆B) .

Proof. — We compute the Euler characteristic of the complete intersec-
tion in a torus defined by a system of polynomials Gale dual to the master
functions in (3.6). Khovanskii [10, Section 3, Theorem 1] shows that the
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Euler characteristic of a transverse intersection of hypersurfaces X1, . . . , Xn

in (C×)m+n is

(3.8)
( n∏

i=1

Di

1 +Di

)
∩ [(C×)m+n] ,

where Di is the divisor class of Xi and [(C×)m+n] is the fundamental class
of the torus (C×)m+n. This is computed in the Chow ring [9] of any toric
variety where it makes sense.

In our application of his result, the divisors are equal, say to D, and we
have

Dm+n ∩ [(C×)m+n] = (m+n)! volume(∆B) ,

by Kouchnirenko’s Theorem. Thus Khovanskii’s formula (3.8) becomes( D

1 +D

)n

∩ [(C×)m+n] =
(
D

∑
j>0

(−1)jDj
)n

∩ [(C×)m+n]

=
(
(−1)m

∑
j1+···+jn=m

1
)
·Dm+n ∩ [(C×)m+n]

= (−1)m

(
m+ n− 1
n− 1

)
· (m+n)! volume(∆B) .

�
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