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RESURGENCE OF THE EULER-MACLAURIN
SUMMATION FORMULA

by Ovidiu COSTIN & Stavros GAROUFALIDIS (*)

Abstract. — The Euler-MacLaurin summation formula compares the sum of a
function over the lattice points of an interval with its corresponding integral, plus a
remainder term. The remainder term has an asymptotic expansion, and for a typical
analytic function, it is a divergent (Gevrey-1) series. Under some decay assumptions
of the function in a half-plane (resp. in the vertical strip containing the summation
interval), Hardy (resp. Abel-Plana) prove that the asymptotic expansion is a Borel
summable series, and give an exact Euler-MacLaurin summation formula.

Using a mild resurgence hypothesis for the function to be summed, we give a
Borel summable transseries expression for the remainder term, as well as a Laplace
integral formula, with an explicit integrand which is a resurgent function itself. In
particular, our summation formula allows for resurgent functions with singularities
in the vertical strip containing the summation interval.

Finally, we give two applications of our results. One concerns the construction of
solutions of linear difference equations with a small parameter. Another concerns
resurgence of 1-dimensional sums of quantum factorials, that are associated to
knotted 3-dimensional objects.

Résumé. — La formule sommatoire d’Euler-MacLaurin exprime la somme d’une
fonction sur un réseau de points d’un intervalle comme l’addition de l’intégrale cor-
respondante et d’un reste. Dans les cas typiques, ce reste est donné par une série
asymptotique divergente du type Gevrey-1. Sous des hypothèses adéquates de dé-
croissance de la fonction dans le demi-plan supérieur ou sur une bande verticale
contenant l’intervalle de sommation, Hardy et Abel-Plana ont prouvé que cette
série asymptotique est Borel sommable. Supposant que la fonction à resommer
est résurgente, notre théorème principal fournit une expression, pour le reste, à la
fois sous forme d’une trans-série Borel sommable et, à la fois, sous forme d’une
transformée de Laplace dont l’intégrand est explicite et lui-même donné par une
fonction résurgente. Notre résultat s’applique au problème d’existence de solutions
d’équations différentielles linéaires avec petit paramètre, ainsi qu’à celui de la ré-
surgence des sommes unidimensionelles de factorielles quantiques associées à des
objets noués en dimension 3.

Keywords: Euler-MacLaurin summation formula, Abel-Plana formula, resurgence, resur-
gent functions, Bernoulli numbers, Borel transform, Borel summation, Laplace trans-
form, transseries, parametric resurgence, co-equational resurgence, WKB, difference
equations with a parameter, Stirling’s formula, Quantum Topology.
Math. classification: 34M30, 34M40.
(*) O.C. was supported in part by NSF grants DMS-0406193 and DMS-0600369 and
S.G was supported in part by NSF grant DMS-0505445.



894 Ovidiu COSTIN & Stavros GAROUFALIDIS

1. Introduction

1.1. The Euler-MacLaurin summation formula

The Euler-MacLaurin summation formula relates summation to integra-
tion in the following way (see [21, Sec.8]):

(1.1)
N∑

k=1

f

(
k

N

)
= N

∫ 1

0

f(s)ds +
1
2
(f(1)− f(0)) + R(f,N)

where the remainder R(f,N) has an asymptotic expansion

(1.2) R(f,N) ∼ R̂(f,N)

in the sense of Poincaré, where

(1.3) R̂(f,N) =
∞∑

n=1

B2n

(2n)!

(
f (2n−1)(1)− f (2n−1)(0)

) 1
N2n−1

∈ C[[N−1]].

and Bm are the Bernoulli numbers defined by the generating series

(1.4)
p

ep − 1
=

∞∑
n=0

Bn

n!
pn.

Typically, the formal power series R̂(f,N) is divergent and Gevrey-1,
due to the fact that the n-th derivative in (1.3) is not divided by an n!.
In the present paper, we discuss an exact form of the Euler-MacLaurin
summation formula, under a resurgence hypothesis of the function f(x);
see Proposition 1.4 below.

1.2. Two applications of our exact Euler-MacLaurin summation
formula

Our exact form of the Euler-MacLaurin summation formula has two ap-
plications: in Quantum Topology (where one sometimes needs to apply
the Euler-MacLaurin summation formula to a resurgent function that has
singularities in the vertical strip which is perpendicular to the range of
summation), and in Borel summability (with respect to ε) of difference
equations with a small ε-parameter. Let us discuss these applications.

Consider a triple t = (a, b, ε) where a, b ∈ Z, b > 0, ε = ±1 and the
expression

(1.5) It(q) =
∞∑

n=0

qa
n(n+1)

2 (q)b
nεn

ANNALES DE L’INSTITUT FOURIER



RESURGENCE OF THE EULER-MACLAURIN SUMMATION FORMULA 895

where (q)n is the quantum factorial defined by:

(1.6) (q)n =
n∏

k=1

(1− qk), (q)0 = 1.

Although It(q) does not makes sense when q is inside or outside the unit
disk, it does makes sense when

(a) q is a complex root of unity; in that case It(q) ∈ C.
(b) q = e1/x; in that case It(q) ∈ Q[[1/x]].

Given t as above, consider the power series:

LNP
t (p) = 1 +

∞∑
n=0

It(e
2πi
n )pn(1.7)

LP
t (p) = B(It(e1/x))(1.8)

where B is the Borel transform defined below in Definition 1.2. Our present
results, together with [11] and additional arguments, imply the following
theorem, which will be presented in detail in a forthcoming publication
[10].

Theorem 1.1. — [10] For all t as above, the power series LNP
t (p) and

LP
t (p) are resurgent functions.

In particular, it follows that the generating series LNP
t (p) of the Kashaev

invariants of the two simplest knots, the 31 and 41 (corresponding to t =
(0, 1, 1) and t = (−1, 2,−1)) are resurgent functions.

Another application of our exact Euler-MacLaurin formula is to prove
parametric resurgence (i.e., resurgence with respect to ε) of a formal (WKB)
solution to a linear difference equation with a small parameter:

(1.9) y(x + ε, ε) = a(x, ε)y(x, ε)

The formal solution of (1.9) is of the form:

(1.10) y(x, ε) = exp

(
1
ε

∞∑
k=0

Fk(x)εk

)
.

Under suitable hypothesis on a(x, ε), Theorem 4.1 below proves resurgence
of the above series for x fixed, and constructs an actual solution to (1.9)
which is asymptotic to the formal solution (1.10).

TOME 58 (2008), FASCICULE 3



896 Ovidiu COSTIN & Stavros GAROUFALIDIS

1.3. Known forms of the Euler-MacLaurin summation formula

Before we state our results, let us recall what is already known. Suppose
that f satisfies the following assumption:

f is analytic and satisfies the following bound:

(1.11) f(x) = O(|x|−s)

for some 0 < δ < 1 and s > 0, uniformly in the right-half plane
<(x) > δ.

For such functions f , Hardy proved in [18, Sec.13.15] that R̂(f,N) is Borel
summable, and that the Borel sum agrees with the original sum. In other
words, the Borel tranform of R̂(f,N) can be extended to the ray [0,∞),
it is integrable of at most exponential growth, and replacing R̂(f,N) with
the corresponding Borel sum replaces the asymptotic relation (1.2) with an
exact identity.

In a different direction, suppose that
f is continuous in the vertical strip 0 6 <(x) 6 1, holomorphic in
its interior, and f(x) = o(e2π|=(x)|) as |=(x)| → ∞ in the strip,
uniformly with respect to <(x).

Then, the Abel-Plana formula states that (see [21, Sec.8.3]):
(1.12)

N∑
k=1

f

(
k

N

)
= N

∫ 1

0

f(u)du +
1
2
(f(1)− f(0))

+ i

∫ ∞

0

f
(

iy
N

)
− f

(
1 + iy

N

)
− f

(
− iy

N

)
+ f

(
1− iy

N

)
e2πy − 1

dy.

1.4. What is a resurgent function?

The notion of a resurgent function was introduced and studied by Écalle;
see [14]. For our purposes, a resurgent function is one that admits endless
analytic continuation (expect at a countable set of non-accumulating sin-
gular points) in the complex plane, and is exponentially bounded, that is,
satisfies an estimate:

(1.13) |f(z)| < Cea|z|

for large z. Examples of resurgent functions are meromorphic functions,
algebraic functions, or Borel transforms of solutions of generic differential
equations with analytic coefficients. The nth coefficient of the Taylor series

ANNALES DE L’INSTITUT FOURIER



RESURGENCE OF THE EULER-MACLAURIN SUMMATION FORMULA 897

of a resurgent function around a regular point has a manifest asymptotic
expansion with respect to 1/n that include small exponential corrections;
see for example [9, Sec.7]. This property of resurgent functions is key in
applications to quantum topology, where a main problem is to show the
existence of asymptotic expansions. For example, an asymptotic expansion
of the coefficients of the power series (1.3) is almost trivial (for a fixed
function f). On the other hand, the existence of asymptotic expansion
for the coefficients of I31(e

1/x) and I41(e
1/x) (or more generally, It(e1/x))

is a highly non-trivial fact that follows from the resurgence of the Borel
transform of It(e1/x); see [10].

For an introduction to resurgent functions anèjd their properties, we refer
the reader to the survey articles [4, 5, 12, 13, 20, 22] and for a thorough
study, the reader may consult Écalle’s original work [14, 15]. Let us point
out, however, that our main results (Theorems 1.3 and 3.2 below) do not
require any substantial knowledge of resurgence.

1.5. Statement of the results

Let us recall a useful definition.

Definition 1.2. — The (formal) Borel transform of a formal power
series in 1/N is a formal power series in p defined by:

(1.14) B : C[[N−1]] −→ C[[p]], B

( ∞∑
n=0

an
1

Nn+1

)
=

∞∑
n=0

an

n!
pn.

Let Gf (p) denote the Borel transform of the power series R̂(f,N).

Theorem 1.3. — If f(x) is resurgent and f ′(x) is continuous at x = 0, 1
then Gf (p) is given by:

(1.15) Gf (p) =
1

4π2

∞∑
n=1

1
n2

(
f ′
(
1 +

p

2πin

)
+ f ′

(
1− p

2πin

)
− f ′

( p

2πin

)
− f ′

(
− p

2πin

))
In particular, Gf (p) is resurgent with singularities given by

(1.16) N = {2πinω, 2πin(ω − 1) | n ∈ Z∗, ω = singularity of f ′}.

Let us consider a function f(x) that satisfies the following:

TOME 58 (2008), FASCICULE 3



898 Ovidiu COSTIN & Stavros GAROUFALIDIS

(A1) f is resurgent with no singularities in the vertical strip 0 6 <(x) 6
1, and f(u) = o(e2π|=(u)|) as |=(u)| → ∞ in the strip, uniformly
with respect to <(u).

Then, we have the following exact form of the Euler-MacLaurin summa-
tion formula.

Proposition 1.4. — Under the hypothesis (A1), for every N ∈ N we
have:

(1.17)
N∑

k=1

f

(
k

N

)
= N

∫ 1

0

f(s)ds +
1
2
(f(1)− f(0)) +

∫ ∞

0

e−NpGf (p)dp.

In particular, the left-hand side of the above equation is the evaluation at
N of an analytic function in the right hand plane.

Our proof of Proposition 1.4 allows to generalize to the case that f is
resurgent with singularities in the vertical strip 0 6 <(x) 6 1; see Theorem
3.2 in Section 3.2. In that case, every singularity λ of f in the vertical
strip gives rise to exponentially small corrections, and the right hand side
of Equation (1.17) is replaced by a transseries.

Finally, let us give an integral formula for Gf (p) which is useful in study-
ing the behavior of Gf (p) for large p.

Theorem 1.5. — With the assumptions of Theorem 1.3 we have:

(1.18) Gf (p) =
1

(2πi)3

∫ ∞

0

∫
γ0

u

eu − 1

(
f(s)
s2

(e
pu

2πis + e−
pu

2πis )

− f(1 + s)
(1 + s)2

(e
pu

2πi(1+s) + e−
pu

2πi(1+s) )

)
dsdu

where γ0 is a small circle around 0 oriented counterclockwise.

Let us end the introduction with some remarks.

Remark 1.6. — Theorem 1.3, and especially Theorem 3.2 below provide
a new construction of resurgent functions. Best known resurgent functions
are those that satisfy a difference or differential equation, linear or not; see
for example [2, 3, 7] and [15].

On the other hand, due to the position and shape of their singularities,
the resurgent functions Gf (p) of Theorem 1.3 do not seem to satisfy any
differential equations with polynomial coefficients.

For example, consider the function f(x) = (x − ω)−m where ω 6∈ [0, 1]
which satisfies the linear differential equation with polynomial coefficients:

(x− ω)f ′(x)−mf(x) = 0.

ANNALES DE L’INSTITUT FOURIER



RESURGENCE OF THE EULER-MACLAURIN SUMMATION FORMULA 899

f is resurgent, with only one singularity at x = ω. The corresponding resur-
gent function Gf (p) of Theorem 1.3 Gf (p) has infinitely many singularities
on the rays 2πiωR+, 2πiωR−, 2πi(ω − 1)R+, 2πi(ω − 1)R−. It seems un-
likely that Gf (p) satisfies a linear (or a nonlinear) differential equation with
polynomial coefficients.

Remark 1.7. — Let us point out that Theorem 1.3 implies that the
shape of the singularities of Gf (p) is the same as that of f ′(x). For example,
if f ′(x) is simply ramified, then so is Gf (p). We recall that a resurgent
function h(x) is simply ramified if, locally, at each singularity ω of h(x) we
have:

(1.19) h(x) = P

(
1

x− ω

)
+

1
2πi

log(x− ω)r(x− ω) + s(x− ω)

where s, r are convergent germs, and P is a polynomial.

1.6. Acknowledgement

An early version of this paper was presented by the second author at
talks in Columbia University, Université Paris VII and Orsay in the spring
and fall of 2006. The authors wish to thank J. Écalle for encouraging con-
versations. The second author wishes to thank G. Masbaum, W. Neumann,
D. Thurston for their hospitality.

2. Proof of Theorem 1.3

2.1. Computation of the Borel transform Gf (p)

Let ~ denote the Hadamard product of power series:

(2.1)

( ∞∑
n=0

bnpn

)
~

( ∞∑
n=0

cnpn

)
=

∞∑
n=0

bncnpn.

It is classical, and easy to check, that the Hadamard product A ~ B of
two functions A(p) and B(p) analytic at p = 0 is also given by an integral
formula:

(2.2) (A ~ B)(p) =
1

2πi

∫
γ

A(s)B
(p

s

)
ds,

where γ is a suitable contour around the origin. For a detailed explanation
of the above formula, see [19, p.302] and also [1, p.245].

TOME 58 (2008), FASCICULE 3



900 Ovidiu COSTIN & Stavros GAROUFALIDIS

Let Gf (p) denote the formal Borel transform of the power series in (1.2).
Since Bm = 0 for odd m > 1, we have:

Gf (p) = B

( ∞∑
n=1

B2n

(2n)!

(
f (2n−1)(1)− f (2n−1)(0)

) 1
N2n−1

)

=
∞∑

n=1

B2n

(2n)!

(
f (2n−1)(1)− f (2n−1)(0)

) p2n−2

(2n− 2)!

=
∞∑

m=2

Bm

m!

(
f (m−1)(1)− f (m−1)(0)

) pm−2

(m− 2)!

=

( ∞∑
m=2

Bm

m!
pm−2

)
~

( ∞∑
m=2

(
f (m−1)(1)− f (m−1)(0)

) pm−2

(m− 2)!

)
= g1(p) ~ g2(p)

where

g1(p) =
∞∑

m=2

Bm

m!
pm−2 =

1
p

(
1

ep − 1
− 1

p
+

1
2

)
(2.3)

and

(2.4) g2(p) =
∞∑

m=2

(
f (m−1)(1)− f (m−1)(0)

) pm−2

(m− 2)!

=
d

dp

( ∞∑
m=2

(
f (m−1)(1)− f (m−1)(0)

) pm−1

(m− 1)!

)
=

d

dp
(f(1 + p)− f(p)− f(1) + f(0)) = f ′(1 + p)− f ′(p).

Consider positive numbers r0 and δ such that g1(p) is analytic for |p| < r0

(eg, r0 < 2π) and g2(p) is analytic for |p| < δ–the latter is possible by
Equation (2.4) and our assumptions on f .

Now, Equation (2.2) implies that

(2.5) Gf (p) =
1

2πi

∫
γ

g1(s)g2

(p

s

) ds

s

for all p with |p| < δr, where γ is a circle around 0 with radius r < r0.
With our assumptions, when |p| < δr, the function s 7→ g2(p/s) has no

singularities outside of γ. Thus, outside of γ, the singularities of

ANNALES DE L’INSTITUT FOURIER



RESURGENCE OF THE EULER-MACLAURIN SUMMATION FORMULA 901

g1(s)g2(p/s)/s are simple poles at the points 2πin for n ∈ Z∗, with residues

Res
(

g1(s)g2

(p

s

) 1
s
, s = 2πin

)
= Res(g1(s), s = 2πin) g2

( p

2πin

) 1
2πin

= − 1
4π2n2

g2

( p

2πin

)
.

Moreover, g1(s) = O(1/s) when the distance of s from 2πiZ∗ is greater
than 0.1 and g2(p/s) = O(1) for s large, thus the integrand vanishes at
infinity.

We now enlarge the circle γ and collect the corresponding residues by
Cauchy’s theorem. Using the above calculation of the residue and Equation
(2.4), it follows that

Gf (p) =
1

4π2

∞∑
n=1

1
n2

(
g2

( p

2πin

)
+ g2

(
− p

2πin

))

=
1

4π2

∞∑
n=1

1
n2

(
f ′
(
1 +

p

2πin

)
+ f ′

(
1− p

2πin

)
− f ′

( p

2πin

)
−f ′

(
− p

2πin

))

Since f ′(x) is regular at x = 0, 1, it follows that the above series is
convergent for p ∈ C − N , where N is defined in (1.16). In addition, we
conclude that Gf (p) has endless analytic continuation with singularities
in N .

It remains to prove that Gf (p) is exponentially bounded, assuming that
f is. If f is exponentially bounded, Cauchy’s formula implies that f ′ is
exponentially bounded. Then, we have:

∣∣∣f ′ (1 +
p

2πin

)∣∣∣ 6 C exp
(
a
∣∣∣1 +

p

2πin

∣∣∣) 6 Cea exp
(

a
|p|
2π

)
.

Thus,

|Gf (p)| 6 C(ea + 1)
2π2

exp
(

a
|p|
2π

) ∞∑
n=1

1
n2

=
C(ea + 1)

12
exp

(
a
|p|
2π

)
.

This completes the proof of Theorem 1.3. �

TOME 58 (2008), FASCICULE 3



902 Ovidiu COSTIN & Stavros GAROUFALIDIS

3. An exact form of Euler-Maclaurin summation formula

3.1. Proof of Proposition 1.4

Proposition 1.4 follows easily from the Abel-Plana formula; see Appendix
A. However, we give a proof of Proposition 1.4 that allows us to generalize
to Theorem 3.2 below.

Consider a resurgent function f that satisfies the assumptions (A1), and
let us introduce the function

h(u) =
N

2
f(u)

eπiNu + e−πiNu

eπiNu − e−πiNu

and the contour ΓR,δ which is a rectangle oriented counterclockwise with
vertices −iR, 1− iR, 1 + iR, iR that excludes the points 0, 1 together with
small semicircles of radius δ at the points 0 and 1.

1C

2C4C

3C

0

iR

−iR

0 1 1

Figure 3.1. The contours C1, C2, C3, C4 of the critical strip, and a trun-
cated contour ΓR,δ

Due to our assumptions on f , the singularities of h(u) inside ΓR,δ are
simple poles at k/N with residue f(k/N)/(2πi) for k = 1, . . . , N − 1. The
residue theorem implies that

(3.1)
n∑

k=1

f

(
k

N

)
=

N

2

∫
ΓR,δ

f(u)
eπiNu + e−πiNu

eπiNu − e−πiNu
du.

Let Γ+
R,δ (resp. Γ−R,δ) denote the upper (resp. lower) part of the contour Γ.

Since f(x) has no singularities in <(u) ∈ [0, 1], the residue theorem implies
that

(3.2) −N

∫ 1

0

f(u)du =
N

2

∫
Γ+

R,δ

f(u)du− N

2

∫
Γ−

R,δ

f(u)du.

ANNALES DE L’INSTITUT FOURIER



RESURGENCE OF THE EULER-MACLAURIN SUMMATION FORMULA 903

Adding up Equations (3.1), (3.2) and using

1
2

z + z−1

z − z−1
+

1
2

=
1

1− z−2

1
2

z + z−1

z − z−1
− 1

2
=

1
z2 − 1

we obtain that

(3.3)
N−1∑
k=1

f

(
k

N

)
−N

∫ 1

0

f(u)du

= N

∫
Γ+

R,δ

f(u)
1− e−2πiNu

du + N

∫
Γ−

R,δ

f(u)
e2πiNu − 1

du

Now let R → ∞. Due to assumption (A1), the integrals over the hori-
zontal parts of Γ±R,δ approach zero. Next, let δ → 0. Since f is continuous,
the integral around the quarter circle that links δ to iδ tends to −f(0)/4.
The other quarter circles are treated similarly.

Thus, we have:

(3.4)
N∑

k=1

f

(
k

N

)
−N

∫ 1

0

f(u)du =
1
2
(f(1)− f(0)) +

∫
C2

f(u)− f(1)
1− e−2πiNu

du

+
∫

C4

f(u)− f(0)
1− e−2πiNu

du +
∫

C1

f(u)− f(1)
e2πiNu − 1

du +
∫

C3

f(u)− f(0)
e2πiNu − 1

du.

Consider now the corresponding function Gf (p) from Theorem 1.3. We
have:

Gf (p) = G1(p) + G2(p) + G3(p) + G4(p)

where

G1(p) =
1

4π2

∞∑
n=1

1
n2

f ′
(
1 +

p

2πin

)
G2(p) =

1
4π2

∞∑
n=1

1
n2

f ′
(
1− p

2πin

)
G3(p) = − 1

4π2

∞∑
n=1

1
n2

f ′
( p

2πin

)
G4(p) = − 1

4π2

∞∑
n=1

1
n2

f ′
(
− p

2πin

)
.

TOME 58 (2008), FASCICULE 3
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Consider the contours C1, C2, C3, C4 on the boundary of our strip, as shown
in Figure 3.1.

We claim that the Laplace transform of the Gj(p) for j = 1, . . . , 4 is
given by:

(3.5)
∫ ∞

0

e−NpGj(p) =



N

∫
Cj

f(u)− f(1)
e2πiNu − 1

du for j = 1

N

∫
Cj

f(u)− f(0)
e2πiNu − 1

du for j = 3

N

∫
Cj

f(u)− f(1)
1− e−2πiNu

du for j = 2

N

∫
Cj

f(u)− f(0)
1− e−2πiNu

du for j = 4.

Let us show this for j = 3; the other integrals are treated in the same way.
We compute as follows:∫ ∞

0

e−NpG3(p) = − 1
4π2

∫ ∞

0

∞∑
n=1

e−Np 1
n2

f ′
( p

2πin

)
dp

by interchanging sum
and integral

=
1

2πi

∫
C3

∞∑
n=1

e−2πiNnu

n
f ′(u)du by p = 2πinu

= − 1
2πi

∫
C3

log(1− e−2πiNu)f ′(u)du by (3.6)

= N

∫
C3

f(u)− f(0)
e2πiNu − 1

du by integration by parts

where

(3.6)
∞∑

n=1

e−2πiNnu

n
= − log(1− e−2πiNu)

This concludes the proof of Proposition 1.4 in case f satisfies (A1). �
Let us end this section with a remark.

Remark 3.1. — If f(x) = ecx, one may verify Equation (1.15) directly
by using the Mittag-Leffler decomposition of the function x/(ex − 1).

3.2. Euler-MacLaurin summation for functions with
singularities in the vertical strip

In this section we consider a function f that satisfies the following as-
sumptions:
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(A2) f is resurgent, and let Λ denote its set of singularities on the critical
strip 0 6 <(x) 6 1. We assume that λ 6∈ [0, 1] for all λ ∈ Λ, and
f(u) = o(e2π|=(u)|) as |=(u)| → ∞ in the strip, uniformly with
respect to <(u). We also assume that on a vertical ray λ + iR+, we
have f(u)e−2π=(u) ∈ L1(λ + iR+).

(A3) For every λ ∈ Λ there exist a holomorphic germ hλ(u) and real
numbers αλ, βλ so that for u near 0 we have:

(3.7) f(u + λ) = uαλ(log u)βλhλ(u).

(A4) For simplicity, let us also assume that <(λ) 6= <(λ′) for λ 6= λ′, and
that Λ is a finite set.

Let

(3.8) (LG)(x) =
∫ x

0

e−xpG(p)dp

denote the Laplace transform of G(p). We denote by fλ(u) the variation (or
jump) of the multivalued function f(u + λ) at u; where u lies the vertical
ray starting at 0 (see for example, [20]). We also define:

(3.9) Gf,λ,m(p) = i
1

2πm
fλ

(
ip

2πm

)
.

In case f(u+λ) is single-valued then Gf,λ,m(p) is a distribution supported
at p = 0.

Then, we have the following exact form of the Euler-MacLaurin summa-
tion formula.

Theorem 3.2. — (a) If f satisfies (A1-A4) and αλ > −1 for all λ ∈ Λ,
then for every N ∈ N we have:

N∑
k=1

f

(
k

N

)
= N

∫ 1

0

f(s)ds +
1
2
(f(1)− f(0)) + (LGf )(N)(3.10)

+ Ne2πiλN
∑

λ:=(λ)>0

∞∑
m=0

e2πiλmN (LGf,λ,m)(N)

+ Ne−2πiλN
∑

λ:=(λ)<0

∞∑
m=0

e−2πiλmN (LGf,λ,m)(N)

(b) If some αλ 6 −1, Equation (3.10) is true after integration by parts
M -times where M > maxλ:αλ6−1[−αλ].

Proof. — Without loss of generality, let us assume that f has a single
singularity λ in the vertical strip 0 6 <(x) 6 1 with =(λ) > 0.
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iR

−iR

10
λ λ

Figure 3.2. The modified truncated contour ΓR,δ,λ on the left and a
Hankel contour H on the right.

Use the modified contour ΓR,δ,λ in Figure 3.2.
Let HR denote the portion of ΓR,δ,λ that consists of the truncated Hankel

contour around λ, and SR,δ = ΓR,δ,λ − HR. Equations (3.1) and (3.2)
become:

(3.11) − N

2

∫
HR

f(u)
eπiNu + e−πiNu

eπiNu − e−πiNu
du +

n∑
k=1

f

(
k

N

)
=

N

2

∫
SR,δ

f(u)
eπiNu + e−πiNu

eπiNu − e−πiNu
du

and
(3.12)

− N

2

∫
HR

f(u)du−N

∫ 1

0

f(u)du =
N

2

∫
S+

R,δ

f(u)du− N

2

∫
S−

R,δ

f(u)du.

Adding up, the extra contribution from HR becomes:

(3.13) −N

∫
HR

f(u)
1− e−2πiNu

du

Now let R → ∞. Notice that f(u + λ) is uniformly L1 for u near 0 iff
αλ > −1 for all λ. Using this and our integrability assumption (A2), it
follows that in the limit the above integral equals to

Iλ = −N

∫
H

f(u)
1− e−2πiNu

du

= −Ni

∫ ∞

0

fλ(is)
1− e−2πiN(λ+is)

ds.
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Now, λ = λ1 + iλ2 with λ2 > 0, and we may write
1

1− e−2πiN(λ+is)
=

1
1− ω−Ne2πNs

= −ωNe−2πNs
∞∑

m=0

ωNme−2Nms

where ω = e2πiλ satisfies |ω| < 1. Thus,

Iλ = −NωN
∞∑

m=0

ωNm(LGλ,m)(N).

Part (a) of Theorem 3.2 follows. Part (b) follows from the fact that if
f(u + λ) has a local expansion of the form (3.7), and F (s)(u) = f(u), then
F (u + λ) as a local expansion of the form:

(3.14) F (u + λ) = uαλ+s(log u)βλHλ(u)

for a holomorphic germ Hλ(u). Cf. also [7, Thm.1]. �

3.3. Euler-MacLaurin with logarithmic singularities at x = 0

In this section we consider functions f(x) that have a logarithmic sin-
gularity at x = 0. Motivated by our applications to quantum topology, we
consider functions f of the form:

(3.15) f(x) = c log x + g(x)

where g that satisfies (A1), and c ∈ C. Let us define

(3.16) H(p) =
1
p2

(
p

ep − 1
− 1 +

p

2

)
It is easy to see that H(p) is analytic at p = 0. In fact, the Taylor series of
H at p = 0 is given by:

(3.17)
∞∑

n=1

B2n

(2n)!
p2n−2

Theorem 3.3. — Under the above hypothesis, for every N ∈ N we
have:

(3.18)
N∑

k=1

f

(
k

N

)
= N

∫ 1

0

f(s)ds +
c

2
log N +

c

2
log(2π)

+
1
2
(g(1)− g(0)) + L(Gg + cH)(N).
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Proof. — Since f is given by (3.15), we have:
N∑

k=1

f

(
k

N

)
= c log

(
N !
NN

)
+

N∑
k=1

g

(
k

N

)
Recall now from [18, Sec.13.15] the following exact form of Stirling’s for-
mula:

(3.19) log
(

N !
NN

)
=

1
2

log N −N +
1
2

log(2π) + (LH)(N).

Applying Proposition 1.4 to g gives:
N∑

k=1

g

(
k

N

)
= N

∫ 1

0

g(s)ds +
1
2
(g(1)− g(0)) + (LGg)(N).

Adding up, and using

N

∫ 1

0

f(s)ds = N

∫ 1

0

g(s)ds + Nc

∫ 1

0

log sds = N

∫ 1

0

g(s)ds−Nc

we obtain (3.18). The result follows. �

4. Parametric resurgence of difference equations with
a parameter

Consider the first order linear difference equation with a small parame-
ter ε:

(4.1) y(x + ε, ε) = a(x, ε)y(x, ε)

where a(x, ε) is smooth. (4.1) has a unique formal solution (often called a
WKB solution) of the form:

(4.2) y(x, ε) = e
1
ε

∑∞
k=0

Fk(x)εk

where Fj(0) = 0. See for example, [6] and [16]. For simplicity, suppose that
a(x, ε) = a(x) is independent of ε. Under the stated assumptions, the next
theorem gives an exact solution to (4.1) which is asymptotic to the formal
solution (4.2).

Theorem 4.1. — (a) For all x such that s → log a(sx) satisfies (A1)
we have:

(4.3)
1
ε

∞∑
k=0

Fk(x)εk ∼ 1
ε

∫ x

0

log a(q)dq − 1
2

log a(x) +
1
2

log a(0)

+
∫ ∞

0

e−q/εG(q, x)dq
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where
(4.4)

G(q, x) =
1

4π2

∞∑
n=1

1
n2

(
a′
(
x + q

2πin

)
a
(
x + q

2πin

) +
a′
(
x− q

2πin

)
a
(
x− q

2πin

) − a′
(

q
2πin

)
a
(

q
2πin

)
−

a′
(
− q

2πin

)
a
(
− q

2πin

) )

=
1

(2πi)3

∫ ∞

0

∫
γ0

u

eu − 1

(
log a(s)

s2

(
e

pu
2πis + e−

pu
2πis

)
− log a(x + s)

(x + s)2
(
e

pu
2πi(x+s) + e−

pu
2πi(x+s)

))
dsdu.

where γ0 is a small circle around 0 oriented counterclockwise.
(b) Moreover, (4.1) has a solution y(x, ε) of the form:

(4.5) y(x, ε) =

√
a(0)
a(x)

exp
(

1
ε

∫ x

0

log a(q)dq +
∫ ∞

0

e−q/εG(q, x)dq

)
.

Remark 4.2. — It follows that the singularities of G(q, x) are of the form
2πinλ or 2πin(λ − x) where n ∈ Z∗ and λ is a singularity of log a. These
type of singularities appear in parametric (i.e., co-equational) resurgence
of Écalle; see [15].

The proof of Theorem 4.1 indicates the close relation between the Euler-
MacLaurin summation formula and the formal solutions of a linear differ-
ence equation with a parameter.

From that point of view, resurgence of Gf (p) translates to paramet-
ric resurgence of formal solutions of linear difference equations. In the
case of formal solutions of linear differential equations with a parame-
ter, Écalle shows that their singularities are of the form n(αi − x) for
n = −1, 1, 2, 3, . . . ; see [15, Eqn.(6.9)].

Proof. — (a) Let z(x, ε) = log y(x, ε). Taking the logarithm of (4.1), it
follows that

z(kε + ε, ε) = log a(kε) + z(kε, ε).

Summing up for k = 0, . . . , N − 1 and using the variable

(4.6) x = Nε
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we obtain that:

z(x, ε)− z(0, ε) =
N−1∑
k=0

log a(kε)

= − log a(x) + log a(0) +
N∑

k=1

log a(xk/N).

Let us fix x and apply Proposition 1.4 to the function s → log a(sx). We
obtain that

z(x, ε)− z(0, ε) =

= N

∫ 1

0

log a(xs)ds− 1
2

log a(x) +
1
2

log a(0) +
∫ ∞

0

e−NpH(p, x)dp

=
1
ε

∫ x

0

log a(s)ds− 1
2

log a(x) +
1
2

log a(0) +
∫ ∞

0

e−xp/εH(p, x)dp

=
1
ε

∫ x

0

log a(s)ds− 1
2

log a(x) +
1
2

log a(0) +
∫ ∞

0

e−q/εH
( q

x
, x
) dq

x

where by Theorems 1.3 and 1.5 we have:

H(p, x) =
x

4π2

∞∑
n=1

1
n2

(
a′
(
x
(
1 + p

2πin

))
a
(
x
(
1 + p

2πin

)) +
a′
(
x
(
1− p

2πin

))
a
(
x
(
1− p

2πin

)) − a′
(
x p

2πin

)
a
(
x q

2πin

)
−

a′
(
−x p

2πin

)
a
(
−x p

2πin

) )

=
1

(2πi)3

∫ ∞

0

∫
γ0

u

eu − 1

(
log a(sx)

s2

(
e

pu
2πis + e−

pu
2πis

)
− log a((1 + s)x)

(1 + s)2
(
e

pu
2πi(1+s) + e−

pu
2πi(1+s)

))
dsdu.

Since H(q/x, x)/x = G(q, x) (where G(q, x) is given by (4.4)) and z(0, ε) =
0, it follows that for all ε > 0 and k ∈ Z we have:

(4.7) z(kε + ε, ε) = log a(kε) + z(kε, ε).

To prove (b), let us consider the difference

E(x, ε) = ε(log y(x + ε, ε)− log a(x)− log y(x, ε)).

It follows by definition that E(x, ε) is analytic in (x, ε). Thus,

E(x, ε) =
∞∑

i,j=0

cijx
iεj .
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Moreover, (4.7) implies that for all ε > 0 and all k ∈ Z we have:

0 = F (kε, ε) =
∞∑

i,j=0

cijk
iεi+j .

Thus ci,j = 0 for all i, j and E(x, ε) = 0. This completes the proof of (b).
The definition of y(x, ε) by a Laplace integral and Watson’s lemma (see

[21, Sec.4.3.1]) implies that

y(x, ε) ∼ 1
ε

∞∑
k=0

φk(x)εk

for analytic functions φk(x) that satisfy φk(0) = 0. Since a formal WKB
solution given by (4.2) is unique, it follows that Fk(x) = φk(x) for all k.
Thus, (a) follows. �

Remark 4.3. — Theorem 4.1 can be generalized when

a(x, ε) =
∞∑

k=0

ak(x)εk

is analytic with respect to (x, ε), and the coefficients ak(x) are resurgent
functions. It may also be generalized to the case of higher order linear
difference equations with a parameter. This will be explained elsewhere.

Remark 4.4. — The reader may compare Theorem 4.1 with the results
of the last section of [22].

5. An integral formula for Gf (p)

In this section we give a proof of Theorem 1.5. We follow the ideas of [8]
to convert the sum of Equation (1.15) into an integral. Let us show that

(5.1)
∞∑

n=1

1
n2

f ′
( p

2πin

)
=

1
2πi

∫ ∞

0

∫
γ0

uf(s)
s2(eu − 1)

e
pu

2πis dsdu

and similarly for the sum of the other three terms in (1.15).
To prove Equation (5.1), we first expand f ′ at p = 0, then take a Laplace

transform with respect to the summation variable n, interchange the order

TOME 58 (2008), FASCICULE 3



912 Ovidiu COSTIN & Stavros GAROUFALIDIS

of summation and sum the geometric series. We obtain that:
∞∑

n=1

1
n2

f ′
( p

2πin

)
=

∞∑
n=1

∞∑
j=0

f (j+1)(0)
j!

( p

2πi

)j 1
nj+2

=
∞∑

n=1

∞∑
j=0

f (j+1)(0)pj

j!(j + 1)!(2πi)j

∫ ∞

0

e−nuuj+1du

=
∞∑

j=0

∫ ∞

0

f (j+1)(0)pj

j!(j + 1)!(2πi)j
uj+1 1

eu − 1
du

Using Cauchy’s formula

f (j+1)(0)
(j + 1)!

=
1

2πi

∫
γ0

f(s)
sj+2

ds

and interchanging summation and integration it follows that:
∞∑

n=1

1
n2

f ′
( p

2πin

)
=

1
2πi

∞∑
j=0

∫ ∞

0

∫
γ0

f(s)pj

j!sj+2

uj+1

(2πi)j

1
eu − 1

dsdu

=
1

2πi

∫ ∞

0

∫
γ0

uf(s)
s2(eu − 1)

∞∑
j=0

1
j!

( pu

2πis

)j

dsdu

=
1

2πi

∫ ∞

0

∫
γ0

uf(s)
s2(eu − 1)

e
pu

2πis dsdu.

The interchanges of summation and integration are justified by dominated
convergence. This concludes the proof of (5.1) and Theorem 1.5. �

Appendix A.

For completeness, let us show how the Abel-Plana formula implies Propo-
sition 1.4. With the notation as in Proposition 1.4, we claim that for every
N ∈ N we have:

(A.1) − i

∫ ∞

0

f
(
1 + iy

N

)
− f(1)

e2πy − 1
=

1
4π2

∞∑
n=1

1
n2

∫ ∞

0

e−Npf ′
(
1− p

2πin

)
dp

(A.2) i

∫ ∞

0

f
(
1− iy

N

)
− f(1)

e2πy − 1
=

1
4π2

∞∑
n=1

1
n2

∫ ∞

0

e−Npf ′
(
1 +

p

2πin

)
dp

(A.3) i

∫ ∞

0

f
(

iy
N

)
− f(0)

e2πy − 1
= − 1

4π2

∞∑
n=1

1
n2

∫ ∞

0

e−Npf ′
(
− p

2πin

)
dp
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(A.4) − i

∫ ∞

0

f
(
− iy

N

)
− f(0)

e2πy − 1
= − 1

4π2

∞∑
n=1

1
n2

∫ ∞

0

e−Npf ′
( p

2πin

)
dp.

Adding up, and using the Abel-Plana formula (1.12), gives a proof of Propo-
sition 1.4. Let us give the proof of (A.1) and leave the rest as an exercise.
For y > 0, we have e−2πy < 1 and the geometric series gives:

(A.5)
1

e2πy − 1
=

∞∑
n=1

e−2πny.

Interchanging summation and integration, changing variables 2πny = Np

and integrating by parts (justified by the hypothesis (A1)), we obtain that

−i

∫ ∞

0

f
(
1 + iy

N

)
− f(1)

e2πy − 1
= −i

∞∑
n=1

∫ ∞

0

e−2πny

(
f

(
1 +

iy

N

)
− f(1)

)
dy

= − iN

2π

∞∑
n=1

1
n

∫ ∞

0

e−Np
(
f
(
1− p

2πin

)
− f(1)

)
dp

=
i

2π

∞∑
n=1

1
n

∫ ∞

0

(e−Np)′
(
f
(
1− p

2πin

)
− f(1)

)
dp

=
1

4π2

∞∑
n=1

1
n2

∫ ∞

0

e−Npf ′
(
1− p

2πin

)
dp.
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