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PERIODIC CONSERVATIVE SOLUTIONS
OF THE CAMASSA–HOLM EQUATION

by Helge HOLDEN & Xavier RAYNAUD (*)

Abstract. — We show that the periodic Camassa–Holm equation ut −uxxt +
3uux−2uxuxx−uuxxx = 0 possesses a global continuous semigroup of weak conser-
vative solutions for initial data u|t=0 in H1

per. The result is obtained by introducing
a coordinate transformation into Lagrangian coordinates. To characterize conser-
vative solutions it is necessary to include the energy density given by the positive
Radon measure µ with µac = (u2 + u2

x)dx. The total energy is preserved by the
solution.

Résumé. — Nous montrons que l’équation de Camassa–Holm périodique ut −
uxxt + 3uux − 2uxuxx − uuxxx = 0 possède un semi-groupe continu de solutions
globales pour des conditions initiales u|t=0 dans H1

per. Le résultat est obtenu en
utilisant un changement de variable où l’équation est réécrite en variables lagran-
giennes. Pour décrire les solutions, il est nécessaire d’introduire la densité d’énergie
donnée par la mesure de Radon positive µ qui satisfait µac = (u2+u2

x)dx. L’énergie
totale est préservée par la solution.

1. Introduction

The Camassa–Holm equation

(1.1) ut − uxxt + 3uux − 2uxuxx − uuxxx = 0

was first studied extensively in 1993 [7, 8]. It can be derived as a model
for shallow water waves [30]. Furthermore, the equation can be derived in
the context of geodesic flows of a certain invariant metric on the Bott–
Virasoro group [31, 3]. Of all possible geodesic flows (1.1) is the only one
that is integrable and endows the diffeomorphism group with a regular
geometric structure [17, 18].

Keywords: Camassa–Holm equation, periodic solution.
Math. classification: 65M06, 65M12, 35B10, 35Q53.
(*) This research was supported in part by the Research Council of Norway.



946 Helge HOLDEN & Xavier RAYNAUD

The equation possesses many fascinating properties that has made it
a popular equation. In particular, it is bi-Hamiltonian, completely inte-
grable [19, 12], has infinitely many conserved quantities, and has solitary
waves, called (multi)peakons, that interact like KdV-solitons [4]. Peakons
are known to be orbitally stable [21]. Another interesting aspect is that it
enjoys wave-breaking in finite time in the sense that the spatial derivative
ux of the solution blows up while the solution u itself as well as its energy,
the H1-norm, both remain finite [15]. Continuation of the solution beyond
wave breaking has been a challenge. Several entropy conditions that single
out the proper continuation have been analyzed.

The Cauchy problem for (1.1) has been studied in two different settings;
on the full line R and the periodic case on [0, 1]. We here address the latter
case, and for reasons of space we restrict the general references mainly to
the periodic case. Constantin and Moulinet have proved [20, p. 60] that
for initial data u|t=0 = ū ∈ H1([0, 1]) such that m̄ = ū − ūxx is a non-
negative Radon-measure, the equation (1.1) possesses a unique solution
u ∈ C1((0,∞), L2([0, 1])) ∩ C((0,∞),H1([0, 1])). Furthermore, the quanti-
ties

∫
[0,1]

u dx,
∫
[0,1]

(u2 + u2
x) dx, and

∫
[0,1]

(u3 + uu2
x) dx are all conserved

quantities. Regarding blow-up, Constantin and Escher [14] have derived
the following result. Let u0 ∈ H3([0, 1]). Then there exists a maximal
T > 0 such that (1.1) has a unique solution u ∈ C([0, T ),H3([0, 1])) ∩
C1([0, T ),H2([0, 1])). If ū is non-zero and

∫
[0,1]

(ū3 + ūū2
x) dx = 0, then T

is finite. See also [11, 32].
The question about how to continue the solution beyond wave-breaking

can be nicely studied in the case of multipeakons (we here give the de-
scription on the full line). Multipeakons are given by (see, e.g., [27] and
references therein)

(1.2) u(t, x) =
n∑

i=1

pi(t)e−|x−qi(t)|,

where the (pi(t), qi(t)) satisfy the explicit system of ordinary differential
equations

q̇i =
n∑

j=1

pje
−|qi−qj |, ṗi =

n∑
j=1

pipj sgn(qi − qj)e−|qi−qj |.

Observe that the solution (1.2) is not smooth even with continuous func-
tions (pi(t), qi(t)); one possible way to interpret (1.2) as a weak solution of
(1.1) is to rewrite the equation (1.1) as

ut +
(1

2
u2 + (1− ∂2

x)−1
(
u2 +

1
2
u2

x

))
x

= 0.

ANNALES DE L’INSTITUT FOURIER



PERIODIC SOLUTIONS OF THE CAMASSA–HOLM EQUATION 947

Wave breaking may appear when at least two of the qi’s coincide. If all the
pi(0) have the same sign, the peakons move in the same direction, the so-
lution experiences no wave breaking, and one has a global solution. Higher
peakons move faster than the smaller ones, and when a higher peakon
overtakes a smaller, there is an exchange of mass, but no wave breaking
takes place. Furthermore, the qi(t) remain distinct. However, if some of
pi(0) have opposite sign, wave breaking may incur. For simplicity, consider
the case with n = 2 and one peakon p1(0) > 0 (moving to the right)
and one antipeakon p2(0) < 0 (moving to the left). In the symmetric case
(p1(0) = −p2(0) and q1(0) = −q2(0) < 0) the solution will vanish point-
wise at the collision time t∗ when q1(t∗) = q2(t∗), that is, u(t∗, x) = 0 for
all x ∈ R. Clearly, at least two scenarios are possible; one is to let u(t, x)
vanish identically for t > t∗, and the other possibility is to let the peakon
and antipeakon “pass through” each other in a way that is consistent with
the Camassa–Holm equation. In the first case the energy

∫
(u2 +u2

x) dx de-
creases to zero at t∗, while in the second case, the energy remains constant
except at t∗. Clearly, the well-posedness of the equation is a delicate matter
in this case. The first solution could be denoted a dissipative solution, while
the second one could be called conservative. Other solutions are also pos-
sible. Global dissipative solutions of a more general class of equations were
recently derived by Coclite, Holden, and Karlsen [10, 9]. In their approach
the solution was obtained by first regularizing the equation by adding a
small diffusion term εuxx to the equation, and subsequently analyzing the
vanishing viscosity limit ε → 0.

Recently, a rather different approach to the Camassa–Holm equation was
taken by Bressan and Constantin [5]. The method has been further studied
and extended to the hyperelastic-rod wave equation, see [28, 29]. As a first
step one reformulates the Camassa–Holm equation (1.1) as the following
system

ut + uux + Px = 0,(1.3a)

P − Pxx = u2 +
1
2
u2

x.(1.3b)

The equations are further reformulated as a semilinear system of ordinary
differential equations taking values in a Banach space. This formulation
allows one to continue the solution beyond collision time, giving a global
conservative solution where the energy is conserved for almost all times.
Thus in the context of peakon-antipeakon collisions one considers the solu-
tion where the peakons and antipeakons “pass through” each other. Local
existence of the semilinear system is obtained by a contraction argument.

TOME 58 (2008), FASCICULE 3



948 Helge HOLDEN & Xavier RAYNAUD

Furthermore, the reformulation allows for a global solution where all sin-
gularities disappear. Going back to the original function u, one obtains a
global solution of the Camassa–Holm equation. The well-posedness, i.e., the
uniqueness and stability of the solution, is resolved as follows. In addition
to the solution u, one includes a family of non-negative Radon measures µt

with density u2
x dx with respect to the Lebesgue measure. The pair (u, µt)

constitutes a continuous semigroup, in particular, one has uniqueness and
stability. See also [6, 23].

In this paper we follow [28, 29] rather than [5], and reformulate the equa-
tion using a transformation that corresponds to the transformation between
Eulerian and Lagrangian coordinates. Let u = u(t, x) denote the solution,
and y(t, ξ) the corresponding characteristics, thus yt(t, ξ) = u(t, y(t, ξ)).
Our new variables are y(t, ξ),

(1.4) U(t, ξ) = u(t, y(t, ξ)), H(t, ξ) =
∫ y(t,ξ)

y(t,0)

(u2 + u2
x) dx

where U corresponds to the Lagrangian velocity while H could be inter-
preted as the Lagrangian cumulative energy distribution. In the periodic
case one defines

Q =
1

2(e− 1)

∫ 1

0

sinh(y(ξ)− y(η))(U2yξ + Hξ)(η) dη

(1.5)

− 1
4

∫ 1

0

sgn(ξ − η) exp
(
− sgn(ξ − η)(y(ξ)− y(η))

)
(U2yξ + Hξ) dη,

P =
1

2(e− 1)

∫ 1

0

cosh(y(ξ)− y(η))(U2yξ + Hξ)(η) dη(1.6)

+
1
4

∫ 1

0

exp
(
− sgn(ξ − η)(y(ξ)− y(η))

)
(U2yξ + Hξ) dη.

Then one can show that

(1.7)


yt = U,

Ut = −Q,

Ht = U3 − 2PU,

is equivalent to the Camassa–Holm equation. Global existence of solutions
of (1.7) is obtained starting from a contraction argument, see Theorem 2.7.
The uniqueness issue is resolved by considering the set D (see Definition
3.1) which consists of pairs (u, µ) such that (u, µ) ∈ D if u ∈ H1

per and µ

ANNALES DE L’INSTITUT FOURIER



PERIODIC SOLUTIONS OF THE CAMASSA–HOLM EQUATION 949

is a positive Radon measure with period one, and whose absolutely con-
tinuous part satisfies µac = (u2 + u2

x) dx. With three Lagrangian variables
(y, U, H) versus two Eulerian variables (u, µ), it is clear that there can be
no bĳection between the two coordinates systems. However, we define a
group of transformations which acts on the Lagrangian variables and lets
the system of equations (1.7) invariant. We are able to establish a bĳec-
tion between the space of Eulerian variables and the space of Lagrangian
variables when we identify variables that are invariant under the action
of the group. This bĳection allows us to transform the results obtained
in the Lagrangian framework (in which the equation is well-posed) into
the Eulerian framework (in which the situation is much more subtle). In
particular, and this constitutes the main result of this paper, we obtain
a metric dD on D and a continuous semi-group of solutions on (D, dD).
The distance dD gives D the structure of a complete metric space. This
metric is compared with some more standard topologies, and we obtain
that convergence in H1

per implies convergence in (D, dD) which itself im-
plies convergence in L∞, see Propositions 5.1 and 5.2. The properties of the
spaces as well as the various mappings between them are described in great
detail, see Section 3. Our main result, Theorem 4.2, states that there exists
a continuous semigroup T : D×R → D such that, for any (ū, µ̄) ∈ D, if we
denote (u(t), µ(t)) = Tt(ū, µ̄), then u(t) is a weak solution of the Camassa–
Holm equation. The topology on D is of course given by the metric dD
and, by continuity of the semigroup, we mean that if (ūn, µ̄n) → (ū, µ̄) in
D, then (un(t), µn(t) → (u(t), µ(t)) in D, i.e., we use the same topology
on the set of initial data as on the set of solutions, which shows that the
complete metric dD is the appropriate metric for conservative solutions of
the Camassa–Holm equation. This result is new. The associated measure
µ(t) has constant total mass, i.e., µ(t)([0, 1)) = µ(0)([0, 1)) for all t, which
corresponds to the total energy of the system. This is the reason why our
solutions are called conservative.

Many of the ideas used in this article originate from [28] where the case of
the full line is treated and some of the proofs are indeed adaptations to the
periodic case. There is, however, one significant and important difference.
It concerns the group of transformations, here denoted G̃, acting on the
Lagrangian variables. By introducing Lagrangian variables, one introduces
a degree of arbitrariness which is captured by the group of transformation
acting on the new variables and which is removed when one takes the quo-
tient space. The determination of the correct group is crucial as it enables

TOME 58 (2008), FASCICULE 3



950 Helge HOLDEN & Xavier RAYNAUD

us to return to the Eulerian coordinates via the quotient space and to con-
struct the continuous semigroup of solutions in Eulerian coordinates. On
the full line, this group consists of the group of diffeomorphism with some
regularity condition denoted G, which is also a natural choice taking into
account the geometric interpretation of the equation, see [3, 16]. In the
periodic case, the same group G is needed but we also have to take into
account that we introduce an additional degree of freedom by considering
the cumulative energy. Indeed, the energy is like a potential and defined
up to a constant. In the case of the full line, we normalize this constant to
zero at −∞. We cannot do that in the periodic case and instead we expand
the group G to G̃ = G×R. The action of the group (R,+) corresponds to
the degree of freedom resulting from the fact that the energy is defined up
to a constant.

The method described here can be studied in detail for multipeakons, see
[27] for details on the full line. The results can be extended, as in [29], to
show global existence of conservative periodic solutions for the generalized
hyperelastic-rod wave equation

(1.8)


ut + f(u)x + Px = 0,

P − Pxx = g(u) +
1
2
f ′′(u)u2

x,

where f, g ∈ C∞(R) and f is strictly convex. Observe that if g(u) = u2

and f(u) = u2

2 , then (1.8) is the classical Camassa–Holm equation (1.1).
Furthermore, the methods presented in this paper can be used to derive

numerical methods that converge to conservative solutions rather than dis-
sipative solutions. This contrasts finite difference methods that normally
converge to dissipative solutions, see [25] for a proof of convergence of a
upwind scheme in the periodic case, and [24] for the related Hunter–Saxton
equation. See also [26].

2. Global solutions in Lagrangian coordinates

2.1. Equivalent system

We consider periodic functions. For the sake of simplicity, we will only
consider functions of unit period, that is, g(ξ + 1) = g(ξ). The results are
of course valid for any period after making the necessary adjustments. We
introduce the space V1 defined as

V1 = {f ∈ H1
loc(R) | f(ξ + 1) = f(ξ) + 1 for all ξ ∈ R}.

ANNALES DE L’INSTITUT FOURIER



PERIODIC SOLUTIONS OF THE CAMASSA–HOLM EQUATION 951

Functions in V1 map the unit interval into itself in the sense that if u is
periodic with period 1, then u ◦ f is also periodic with period 1. We define
the characteristics y : R → V1, t 7→ y(t, · ) as the solutions of

(2.1) yt(t, ξ) = u(t, y(t, ξ)).

Assuming that u is smooth, it is not hard to check that (1.3) yields

(2.2) (u2 + u2
x)t + (u(u2 + u2

x))x = (u3 − 2Pu)x.

We define the Lagrangian energy cumulative distribution as

(2.3) H(t, ξ) =
∫ y(t,ξ)

y(t,0)

(u2 + u2
x)(t, x) dx.

Using (2.2) and (2.1), we obtain

(2.4)
dH

dt
=
[
(u3 − 2Pu) ◦ y

]ξ
0
.

From (2.3), the periodicity of u and the fact that y ∈ V1, we can check
that, for all ξ ∈ R,

H(t, ξ + 1)−H(t, ξ) = H(t, 1)−H(t, 0).

Moreover, from (2.4), we can verify that H(t, 1) − H(t, 0) is constant in
time so that H(t, 1)−H(t, 0) = H(0, 1)−H(0, 0). For all t, H belongs to
the vector space V defined as follows

V = {f ∈ H1
loc(R) | there exists α ∈ R

such that f(ξ + 1) = f(ξ) + α, for all ξ ∈ R}.

We equip V with the norm ‖f‖V = ‖f‖H1([0,1]). Later we will prove that
V is a Banach space. To simplify the notation, we will denote H1([0, 1]) by
H1 and follow the same convention for the other norms we will consider.

We now derive formally a system equivalent to (1.3). From the definition
of the characteristics, it follows that

(2.5) Ut(t, ξ) = ut(t, y) + yt(t, ξ)ux(t, y) = −Px◦y (t, ξ).

This last term can be expressed uniquely in term of U , y, and H. From
(1.3b), we obtain the following explicit expression for P ,

(2.6) P (t, x) =
1
2

∫
R

e−|x−z|(u2(t, z) +
1
2
u2

x(t, z)) dz.

Thus we have

Px◦y (t, ξ) = −1
2

∫
R

sgn(y(t, ξ)− z)e−|y(t,ξ)−z|(u2(t, z) +
1
2
u2

x(t, z)) dz

TOME 58 (2008), FASCICULE 3



952 Helge HOLDEN & Xavier RAYNAUD

and, after the change of variables z = y(t, η),

(2.7) Px ◦ y(t, ξ) = −1
2

∫
R

[
sgn(y(t, ξ)− y(t, η))e−|y(t,ξ)−y(t,η)|

×
(

u2(t, y(t, η)) +
1
2
u2

x(t, y(t, η))
)

yξ(t, η)
]
dη.

We have

(2.8) Hξ = (u2 + u2
x)◦y yξ.

Therefore, (2.7) can be rewritten as
(2.9)

Px◦y (ξ) = −1
4

∫
R

sgn(y(ξ)− y(η)) exp(− |y(ξ)− y(η)|)
(
U2yξ + Hξ

)
(η) dη

where the t variable has been dropped to simplify the notation. Later we
will prove that y is an increasing function for any fixed time t. If, for the
moment, we take this for granted, then Px◦y is equivalent to Q where
(2.10)

Q(t, ξ) = −1
4

∫
R

sgn(ξ−η) exp
(
−sgn(ξ−η)(y(ξ)−y(η))

)(
U2yξ+Hξ

)
(η) dη,

and, slightly abusing the notation, we write

(2.11) P (t, ξ) =
1
4

∫
R

exp
(
− sgn(ξ − η)(y(ξ)− y(η))

)(
U2yξ + Hξ

)
(η) dη.

The derivatives of Q and P are given by

(2.12) Qξ = −1
2
Hξ −

(
1
2
U2 − P

)
yξ and Pξ = Qyξ.

For ξ ∈ [0, 1], using the fact that y(ξ + 1) = y(ξ) + 1 and the periodicity of
Hξ and U , these expressions can be rewritten as

Q =
1

2(e− 1)

∫ 1

0

sinh(y(ξ)− y(η))(U2yξ + Hξ)(η) dη

(2.13)

− 1
4

∫ 1

0

sgn(ξ − η) exp
(
− sgn(ξ − η)(y(ξ)− y(η))

)
(U2yξ + Hξ) dη

and

P =
1

2(e− 1)

∫ 1

0

cosh(y(ξ)− y(η))(U2yξ + Hξ)(η) dη(2.14)

+
1
4

∫ 1

0

exp
(
− sgn(ξ − η)(y(ξ)− y(η))

)
(U2yξ + Hξ) dη.

ANNALES DE L’INSTITUT FOURIER
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Thus Px ◦ y and P ◦ y can be replaced by equivalent expressions given
by (2.10) and (2.11) which only depend on our new variables U , H, and
y. We now derive a new system of equations, formally equivalent to the
Camassa–Holm equation. Equations (2.5), (2.4) and (2.1) give us

(2.15)


yt = U,

Ut = −Q,

Ht =
[
U3 − 2PU

]ξ
0
.

Differentiating (2.15) yields

(2.16)


yξt = Uξ,

Uξt =
1
2
Hξ +

(
1
2
U2 − P

)
yξ,

Hξt = −2QUyξ +
(
3U2 − 2P

)
Uξ.

The system (2.16) is semilinear with respect to the variables yξ, Uξ, and
Hξ.

2.2. Existence and uniqueness of solutions
of the equivalent system

In this section, we focus our attention on the system of equations (2.15)
and prove, by a contraction argument, that it admits a unique solution.
Let Id denote the identity, i.e., Id(ξ) = ξ. We claim that the linear map
Λ: (σ, h) 7→ f = σ + h Id is an homeomorphism from H1

per ×R to V where
H1

per denotes the Banach space

H1
per = {σ ∈ H1

loc(R) | σ(ξ + 1) = σ(ξ) for all ξ ∈ R}

with the norm ‖σ‖H1
per

= ‖σ‖H1 . It is clear that Λ is invertible and, for
any f ∈ V , its inverse (σ, h) = Λ−1f is given by h = f(1) − f(0) and
σ = f − h Id. Let f = Λ(σ, h), we have

‖f‖H1 6 ‖σ‖H1 + |h| ‖Id‖H1 = ‖σ‖H1 +

√
2
3
|h|

and therefore Λ is continuous. Conversely,

|h| = |f(1)− f(0)| 6 2 ‖f‖L∞ 6 2C ‖f‖H1 ,

and

‖σ‖H1 6 ‖f‖H1 + 2 ‖f‖L∞ ‖Id‖H1 6
(
1 + 2

√
2
3
C
)
‖f‖H1

TOME 58 (2008), FASCICULE 3



954 Helge HOLDEN & Xavier RAYNAUD

where the constant C denotes the constant of the Sobolev embedding H1 ⊂
L∞. Hence, Λ−1 is continuous. Since H1

per × R is a Banach space, V is
also a Banach space. We introduce ζ = y − Id and (σ, h) = Λ−1(H), i.e.,
h = H(t, 1)−H(t, 0) and σ = H−h Id. The system (2.15) is then equivalent
to

(2.17)


ζt = U,

Ut = −Q,

σt =
[
U3 − 2PU

]ξ
0
,

ht = 0.

We will prove that the system (2.17) is a well-posed system of ordinary
differential equations in the Banach space E where

E = H1
per ×H1

per ×H1
per × R.

There is a bĳection (ζ, U, σ, h) 7→ (y, U, H) between E and V1 ×H1
per × V

given by y = ζ + Id, H = σ + h Id and U is unchanged, so that in the
remaining we will use both set of variables. However, for the contraction
argument it is important to have a Banach space and we use E and the
variables (ζ, U, σ, h) (note that V1 and a fortiori V1 × H1

per × V are not
Banach spaces). The following lemma gives the Lipschitz bounds we need
on Q and P .

Lemma 2.1. — For any X = (ζ, U, σ, h) in E, we define the maps Q and
P as Q(X) = Q and P(X) = P where Q and P are given by (2.10) and
(2.11), respectively. Then, P and Q are Lipschitz maps on bounded sets
from E to H1

per. Moreover, we have

Qξ = −1
2
(σξ + h)−

(
1
2
U2 − P

)
(1 + ζξ),(2.18)

Pξ = Q(1 + ζξ).(2.19)

Proof. — Let BM = {X = (ζ, U, σ, h) ∈ E | ‖X‖E 6 M}. Let us
first prove that P and Q are Lipschitz maps from BM to L∞per. Let X =
(ζ, U, σ, h) and X̃ = (ζ̃, Ũ , σ̃, h̃) be two elements of BM . We have

‖y‖L∞ = ‖Id+ζ‖L∞ 6 1 + C ‖ζ‖H1 6 (1 + CM).

and ‖ỹ‖L∞ 6 (1 + CM). Since the map x 7→ coshx is locally Lipschitz, it
is Lipschitz on {x ∈ R | |x| 6 2(1 + CM)}. Hence, if we denote by C a

ANNALES DE L’INSTITUT FOURIER



PERIODIC SOLUTIONS OF THE CAMASSA–HOLM EQUATION 955

generic constant that only depends on M , we have

|cosh(y(ξ)− y(η))− cosh(ỹ(ξ)− ỹ(η))| 6 C |y(ξ)− ỹ(ξ)− y(η) + ỹ(η)|

6 C
∥∥∥ζ − ζ̃

∥∥∥
L∞

for all ξ, η in [0, 1]. It follows that, for all ξ ∈ [0, 1],∥∥∥cosh(y(ξ)− y( · ))U2yξ( · )− cosh(ỹ(ξ)− ỹ( · ))Ũ2ỹξ( · )
∥∥∥

L2

6 C
( ∥∥∥ζ − ζ̃

∥∥∥
L∞

+
∥∥∥U − Ũ

∥∥∥
L∞

+
∥∥∥ζξ − ζ̃ξ

∥∥∥
L2

)
and the map X = (ζ, U, σ, h) 7→ 1

2(e−1)

∫ 1

0
cosh(y(ξ) − y(η))(U2yξ)(η) dη

which corresponds to the first term in (2.14) is Lipschitz from BM to L∞per.
We handle the other terms in (2.14) in the same way and we prove that
P is Lipschitz from BM to L∞per. Similarly, one proves that Q : BM → L∞per
is Lipschitz. Direct differentiation gives us the expressions (2.12) for the
derivatives Pξ and Qξ of P and Q. Since, as we have just proved, P and Q
are Lipschitz from BM to L∞per, we have∥∥Q(X)ξ −Q(X̃)ξ

∥∥
L2

=
∥∥∥∥yξP(X)− ỹξP(X̃)− 1

2
(U2yξ − Ũ2ỹξ + σξ − σ̃ξ + h− h̃)

∥∥∥∥
L2

6 C
(∥∥∥P(X)− P(X̃)

∥∥∥
L∞

+
∥∥∥U − Ũ

∥∥∥
L∞

+
∥∥∥ζξ − ζ̃ξ

∥∥∥
L2

+ ‖σξ − σ̃ξ‖L2

+
∣∣∣h− h̃

∣∣∣ )
6 C

∥∥∥X − X̃
∥∥∥

E

where we have used the fact that U and Ũ are bounded in BM so that∥∥∥U2 − Ũ2
∥∥∥

L∞
6 C

∥∥∥U − Ũ
∥∥∥

L∞
. Hence, we have proved that Q : BM →

H1
per is Lipschitz. We prove that P : BM → H1

per in the same way, and this
concludes the proof of the lemma. �

In the next theorem, by using a contraction argument, we prove the
short-time existence of solutions to (2.15).

Theorem 2.2. — Given X̄ = (ζ̄, Ū , σ̄, h) in E, there exists a time T

depending only on
∥∥X̄∥∥

E
such that the system (2.15) admits a unique

solution in C1([0, T ], E) with initial data X̄.

Proof. — Solutions of (2.15) can be rewritten as

(2.20) X(t) = X̄ +
∫ t

0

F (X(τ)) dτ
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where F : E → E is given by F (X) = (U,−Q(X), [U3 − 2P(X)U ]ξ0, 0)
where X = (ζ, U, σ, h). The integrals are defined as Riemann integrals of
continuous functions on the Banach space E. To prove that X 7→ [U3 −
2P(U)U ]ξ0 is Lipschitz from bounded set of E to H1

per, we proceed as in the
proof of Lemma 2.1. Hence, F is Lipschitz on bounded set, and the theorem
follows from the standard theory of ordinary differential equations, see, for
example, [1]. �

We now turn to the proof of existence of global solutions of (2.15).
We are interested in a particular class of initial data that we are go-
ing to make precise later, see Definition 2.5. In particular, we will only
consider initial data that belong to

[
W 1,∞

per
]3 × R where W 1,∞

per = {f ∈
W 1,∞

loc (R) | f(ξ + 1) = f(ξ) for all ξ ∈ R}, which is a Banach space for
the norm ‖f‖W 1,∞

per
= ‖f‖W 1,∞ . Of course,

[
W 1,∞

per
]3 × R is a subset of

E. Given X̄ = (ζ̄, Ū , σ̄, h̄) ∈ [W 1,∞]3 × R, we consider the short-time
solution X = (ζ, U, σ, h) ∈ C([0, T ], E) of (2.15) given by Theorem 2.2.
Using the fact that Q and P are locally Lipschitz (Lemma 2.1) and, since
X ∈ C([0, T ], E), we can prove that P and Q belongs to C([0, T ],H1

per). We
now consider U , P , and Q as given functions in C([0, T ],H1

per). Then, for
any fixed ξ ∈ R, we can solve the system of ordinary differential equations
in R3 given by
(2.21)

d

dt
α(t, ξ) = β(t, ξ),

d

dt
β(t, ξ) =

1
2
(γ(t, ξ) + h̄) +

[
(
1
2
U2 − P )(t, ξ)

]
(1 + α(t, ξ)),

d

dt
γ(t, ξ) = − [2(QU)(t, ξ)] (1 + α(t, ξ)) +

[
(3U2 − 2P )(t, ξ)

]
β(t, ξ),

and which is obtained by substituting ζξ, Uξ and σξ in (2.16) by the un-
knowns α, β and γ, respectively. We also replaced h(t) by h̄ since h(t) = h̄

for all t. We have to specify the initial conditions for (2.21). Let A be the
following set

A = {ξ ∈ R |
∣∣Ūξ(ξ)

∣∣ 6 ∥∥Ūξ

∥∥
L∞

, |σ̄ξ(ξ)| 6 ‖σ̄ξ‖L∞ ,
∣∣ζ̄ξ(ξ)

∣∣ 6 ∥∥ζ̄ξ

∥∥
L∞
}.

Since we assumed X̄ ∈ [W 1,∞]3 × R, we have that A has full measure,
that is, meas(Ac) = 0. For ξ ∈ A we define (α(0, ξ), β(0, ξ), γ(0, ξ)) =
(ζ̄ξ(ξ), Ūξ(ξ), σ̄ξ(ξ)). However, for ξ ∈ Ac we take (α(0, ξ), β(0, ξ), γ(0, ξ))
= (0, 0, 0).

Lemma 2.3. — Given initial condition X̄ = (ζ̄, Ū , σ̄, h̄) ∈ [W 1,∞]3 × R,
we consider the solution X = (ζ, U, σ, h) ∈ C1([0, T ], E) of (2.21) given
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by Theorem 2.2. Then, X ∈ C1([0, T ], [W 1,∞]3×R). The functions α(t, ξ),
β(t, ξ) and γ(t, ξ) which are obtained by solving (2.21) for any fixed given
ξ with the initial condition specified above, coincide for almost every ξ and
for all time t with ζξ, Uξ and σξ, respectively, that is, for all t ∈ [0, T ], we
have

(2.22) (α(t, ξ), β(t, ξ), γ(t, ξ)) = (ζξ(t, ξ), Uξ(t, ξ), σξ(t, ξ))

for almost every ξ ∈ R.

Thus, this lemma allows us to pick up a special representative for (ζξ, Uξ,

σξ) given by (α, β, γ), which is defined for all ξ ∈ R and which, for any given
ξ, satisfies the ordinary differential equation (2.21) in R3. In the remaining
we will of course identify the two and set (ζξ, Uξ, σξ) equal to (α, β, γ). To
prove this lemma, we will need the following proposition which is adapted
from [33, p. 134, Corollary 2].

Proposition 2.4. — Let R be a bounded linear operator on a Banach
space X into a Banach space Y . Let f be in C([0, T ], X). Then, Rf belongs
to C([0, T ], Y ) and therefore is Riemann integrable, and

∫
[0,T ]

Rf(t) dt =
R
∫
[0,T ]

f(t) dt.

Proof of Lemma 2.3. — We introduce the Banach space of everywhere
bounded periodic function B∞

per whose norm is naturally given by ‖f‖B∞per
=

supξ∈[0,1] |f(ξ)|. Obviously, the periodic continuous functions belong to
B∞

per. We define (α, β, γ) as the solution of (2.21) in
[
B∞

per
]3 with initial

data as given above. Thus, strictly speaking, this is a different definition
than the one given in the lemma but we will see that they are in fact
equivalent. We note that the system (2.21) is affine (it consists of a sum
of a linear transformation and a constant) and therefore it is not hard to
prove, by using a contraction argument in

[
B∞

per
]3, the short-time existence

of solutions. Moreover, due to the affine structure, a direct application of
Gronwall’s lemma shows that the solution exists on [0, T ], the interval on
which (ζ, U, σ, h) is defined. For any given ξ, the map f 7→ f(ξ) from B∞

per
to R is linear and continuous (the space B∞

per was precisely introduced in
order to make this map continuous). Hence, after applying this map to each
term in (2.21) written in integral form and using Proposition 2.4, we re-
cover the original definition of α, β and γ as solutions, for any given ξ ∈ R,
of the system (2.21) of ordinary differential equations in R3. The derivation
map d

dξ is continuous from H1
per into L2

per. We can apply it to each term in
(2.15) written in integral from and, by Proposition 2.4, this map commutes
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with the integral. We end up with, after using (2.18) and (2.19),

(2.23)



ζξ(t) = ζ̄ξ +
∫ t

0

Uξ(τ) dτ,

Uξ(t) = Ūξ +
∫ t

0

(
1
2
(σξ + h̄) + (

1
2
U2 − P )(1 + ζξ)

)
(τ) dτ,

σξ(t) = σ̄ξ +
∫ t

0

(
−2QU(1 + ζξ) + (3U2 − 2P )Uξ

)
(τ) dτ.

The map from B∞
per to L2

per is also continuous, we can apply it to (2.21)
written in integral form, and again use Proposition 2.4. Then, we sub-
tract each equation in (2.23) from the corresponding one in (2.21), take
the norm and add them. After introducing Z(t) = ‖α(t, · )− ζξ(t, · )‖L2 +
‖β(t, · )− Uξ(t, · )‖L2 +‖γ(t, · )− σξ(t, · )‖L2 , we end up with the following
equation

Z(t) 6 Z(0) + C

∫ t

0

Z(τ) dτ

where C is a constant which, again, only depends on the C([0, T ],H1)-
norms, of U , P , and Q. By assumption on the initial conditions, we have
Z(0) = 0 because α(0) = ζ̄ξ, β(0) = Ūξ, γ(0) = σ̄ξ almost everywhere
and therefore, by Gronwall’s lemma, we get Z(t) = 0 for all t ∈ [0, T ].
This is just a reformulation of (2.22), and this concludes the proof of the
lemma. �

It is possible to carry out the contraction argument of Theorem 2.2 in
the Banach space [W 1,∞

per ]3×R but the topology on this space turns out to
be too strong for our purpose and that is why we prefer E whose topology
is weaker. Our goal is to find solutions of (1.3) with initial data ū in H1

per.
Theorem 2.2 gives us the existence of solutions to (2.15) for initial data in
E. Therefore we have to find initial conditions that match the initial data
ū and belong to E. A natural choice would be to use ȳ(ξ) = y(0, ξ) = ξ

and Ū(ξ) = u(ξ). Then y(t, ξ) gives the position of the particle which is at
ξ at time t = 0. But, if we make this choice, then H̄ξ = ū2 + ū2

x and Hξ

does not belong to L2
per in general. We consider instead (ȳ, Ū , H̄) given by

the relations

(2.24)

∫ ȳ(ξ)

0

(ū2 + ū2
x) dx + ȳ(ξ) = (1 + h̄)ξ,

Ū(ξ) = ū◦ȳ(ξ) and H̄(ξ) =
∫ ȳ(ξ)

0

(
ū2 + ū2

x

)
dx,
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where h̄ =
∫ 1

0
(ū2 + ū2

x) dx = ‖ū‖2H1
per

. The definition of ȳ is implicit, it is
well-defined as the function y 7→

∫ y

0
(ū2 + ū2

x) dx + y is continous, strictly
increasing and therefore invertible. Later (see Remark 3.10), we will prove
that (ȳ − Id, Ū , H̄ − h̄ Id, h̄) belongs to G where G is defined as follows.

Definition 2.5. — The set G is composed of all (ζ, U, σ, h) ∈ E such
that

(ζ, U, σ, h) ∈
[
W 1,∞]3 × R,(2.25a)

yξ > 0,Hξ > 0, yξ + Hξ > 0 almost everywhere,(2.25b)

yξHξ = y2
ξU2 + U2

ξ almost everywhere,(2.25c)

where we denote y(ξ) = ζ(ξ) + ξ and H = σ + h Id.

If (ζ, U, σ, h) ∈ G, then h > 0. Indeed, since Hξ > 0, H is an increasing
function and h = H(1) −H(0) > 0. Note that if all functions are smooth
and yξ > 0, we have ux ◦ y = Uξ

yξ
and condition (2.25c) is equivalent to

(2.8). For initial data in G, the solution of (2.15) exists globally.

Lemma 2.6. — Given initial data X̄ = (ζ̄, Ū , σ̄, h̄) in G, let X(t) =
(ζ(t), U(t), σ(t), h(t)) be the short-time solution of (2.15) in C([0, T ], E)
for some T > 0 with initial data (ζ̄, Ū , σ̄, h̄). Then,

(i) X(t) belongs to G for all t ∈ [0, T ],
(ii) for almost every t ∈ [0, T ], yξ(t, ξ) > 0 for almost every ξ ∈ R.

We denote by A the set where the absolute values of ζ̄ξ(ξ), σ̄ξ(ξ), and
Ūξ(ξ) all are smaller than

∥∥X̄∥∥
[W 1,∞]3×R and where the inequalities in

(2.25b) and (2.25c) are satisfied for ȳξ, Ūξ and H̄ξ. By assumption, we have
meas(Ac) = 0 and we set (ζ̄ξ, Ūξ, σ̄ξ) equal to zero on Ac. Thus, as allowed
by Lemma 2.3, we choose a special representative for (ζ(t, ξ), U(t, ξ), σ(t, ξ))
whose derivative satisfies (2.16) as an ordinary differential equation, for
every ξ ∈ R. The proof of this lemma is almost the same as in [28]. We
repeat it here for completeness.

Proof. — i) We already proved in Lemma 2.3 that the space [W 1,∞]3×R
is preserved and X(t) satisfies (2.25a) for all t ∈ [0, T ]. Let us prove that
(2.25c) and the inequalities in (2.25b) hold for any ξ ∈ A and therefore
almost everywhere. We consider a fixed ξ in A and drop it in the notation
when there is no ambiguity. From (2.16), we have, on the one hand,

(yξHξ)t = yξtHξ + Hξtyξ = UξHξ + (3U2Uξ − 2yξQU − 2PUξ)yξ,
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and, on the other hand,

(y2
ξU2 + U2

ξ )t = 2yξtyξU
2 + 2y2

ξUtU + 2UξtUξ

= 3UξU
2yξ − 2PUξyξ + HξUξ − 2y2

ξQU.

Thus, (yξHξ − y2
ξU2 − U2

ξ )t = 0, and since yξHξ(0) = (y2
ξU2 + U2

ξ )(0), we
have yξHξ(t) = (y2

ξU2 + U2
ξ )(t) for all t ∈ [0, T ]. We have proved (2.25c).

Let us introduce t∗ given by

t∗ = sup{t ∈ [0, T ] | yξ(t′) > 0 for all t′ ∈ [0, t]}.

Here we recall that we consider a fixed ξ ∈ A and dropped it in the notation.
Assume that t∗ < T . Since yξ(t) is continuous with respect to time, we have

(2.26) yξ(t∗) = 0.

Hence, from (2.25c) that we just proved, Uξ(t∗) = 0 and, by (2.16),

(2.27) yξt(t∗) = Uξ(t∗) = 0.

From (2.16), since yξ(t∗) = Uξ(t∗) = 0, we get

(2.28) yξtt(t∗) = Uξt(t∗) =
1
2
Hξ(t∗).

If Hξ(t∗) = 0, then (yξ, Uξ,Hξ)(t∗) = (0, 0, 0) and, by the uniqueness of
the solution of (2.16), seen as a system of ordinary differential equations,
we must have (yξ, Uξ,Hξ)(t) = 0 for all t ∈ [0, T ]. This contradicts the fact
that yξ(0) and Hξ(0) cannot vanish at the same time (ȳξ + H̄ξ > 0 for all
ξ ∈ A). If Hξ(t∗) < 0, then yξtt(t∗) < 0 and, because of (2.26) and (2.27),
there exists a neighborhood U of t∗ such that y(t) < 0 for all t ∈ U \ {t∗}.
This contradicts the definition of t∗. Hence, Hξ(t∗) > 0 and, since we now
have yξ(t∗) = yξt(t∗) = 0 and yξtt(t∗) > 0, there exists a neighborhood of
t∗ that we again denote U such that yξ(t) > 0 for all t ∈ U \ {t∗}. This
contradicts the fact that t∗ < T , and we have proved the first inequality in
(2.25b), namely that yξ(t) > 0 for all t ∈ [0, T ]. Let us prove that Hξ(t) > 0
for all t ∈ [0, T ]. This follows from (2.25c) when yξ(t) > 0. Now, if yξ(t) = 0,
then Uξ(t) = 0 from (2.25c) and we have seen that Hξ(t) < 0 would imply
that yξ(t′) < 0 for some t′ in a punctured neighborhood of t, which is
impossible. Hence, Hξ(t) > 0 and we have proved the second inequality in
(2.25b). Assume that the third inequality in (2.25c) does not hold. Then,
by continuity, there exists a time t ∈ [0, T ] such that (yξ + Hξ)(t) = 0.
Since yξ and Hξ are positive, we must have yξ(t) = Hξ(t) = 0 and, by
(2.25c), Uξ(t) = 0. Since zero is a solution of (2.16), this implies that
yξ(0) = Uξ(0) = Hξ(0), which contradicts (yξ + Hξ)(0) > 0.
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ii) We define the set

N = {(t, ξ) ∈ [0, T ]× R | yξ(t, ξ) = 0}.

Fubini’s theorem gives us

(2.29) meas(N ) =
∫

R
meas(Nξ) dξ =

∫
[0,T ]

meas(Nt) dt

where Nξ and Nt are the ξ-section and t-section of N , respectively, that is,

Nξ = {t ∈ [0, T ] | yξ(t, ξ) = 0} and Nt = {ξ ∈ R | yξ(t, ξ) = 0}.

Let us prove that, for all ξ ∈ A, meas(Nξ) = 0. If we consider the sets Nn
ξ

defined as

Nn
ξ = {t ∈ [0, T ] | yξ(t, ξ) = 0 and yξ(t′, ξ) > 0

for all t′ ∈ [t− 1/n, t + 1/n] \ {t}},

then

(2.30) Nξ =
⋃
n∈N

Nn
ξ .

Indeed, for all t ∈ Nξ, we have yξ(t, ξ) = 0, yξt(t, ξ) = 0 from (2.25c) and
(2.16) and yξtt(t, ξ) = 1

2Hξ(t, ξ) > 0 from (2.16) and (2.25b) (yξ and Hξ

cannot vanish at the same time for ξ ∈ A). This implies that, on a small
punctured neighborhood of t, yξ is strictly positive. Hence, t belongs to
some Nn

ξ for n large enough. This proves (2.30). The set Nn
ξ consists of

isolated points that are countable since, by definition, they are separated by
a distance larger than 1/n from one another. This means that meas(Nn

ξ ) =
0 and, by the subadditivity of the measure, meas(Nξ) = 0. It follows from
(2.29) and since meas(Ac) = 0 that

(2.31) meas(Nt) = 0 for almost every t ∈ [0, T ].

We denote by K the set of times such that meas(Nt) > 0, i.e.,

(2.32) K = {t ∈ R+ | meas(Nt) > 0} .

By (2.31), meas(K) = 0. For all t ∈ Kc, yξ > 0 almost everywhere and,
therefore, y(t, ξ) is strictly increasing and invertible (with respect to ξ). �

We are now ready to prove global existence of solutions to (2.15).

Theorem 2.7. — For any X̄ = (ȳ, Ū , H̄) ∈ G, the system (2.15) admits
a unique global solution X(t) = (y(t), U(t),H(t)) in C1(R+, E) with initial
data X̄ = (ȳ, Ū , H̄). We have X(t) ∈ G for all times. If we equip G with the
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topology inducted by the E-norm, then the map S : G × R+ → G defined
as

St(X̄) = X(t)

is a continuous semigroup.

In the formulation of Theorem 2.7, we write (y, U, H) where we really
should have written (ζ, U, σ, h) with y = ζ + Id and H = σ + h Id. In the
remaining we will continue abusing the notation in the same way because
the relevant variables are really (y, U, H) which correspond to Lagrangian
variables.

Proof. — The solution has a finite time of existence T only if ‖(ζ, U, σ, h)
(t, · )‖E blows up when t tends to T because, otherwise, by Theorem 2.2,
the solution can be prolongated by a small time interval beyond T . Let
(ζ, U,σ, h) be a solution of (2.15) in C([0, T ), E) with initial data (ζ̄, Ū ,σ̄, h̄).
We want to prove that

(2.33) sup
t∈[0,T )

‖(ζ(t, · ), U(t, · ), σ(t, · ), h(t)‖E < ∞.

It is clear from (2.17) that h(t) = h̄ for all time. We now consider a fixed
time t ∈ [0, T ) and to simplify the notation we omit it in the notation.
From (2.15), we infer that H(0) = 0. Since Hξ > 0, H is an increasing
function and ‖H‖L∞ 6 H(1) = H(1)−H(0) = h. Hence, as σ = H − h Id,
‖σ‖L∞ 6 2h and supt∈[0,T ) ‖σ(t, · )‖L∞(R) is bounded by 2h̄. For ξ and η in
[0, 1], we have |y(ξ)− y(η)| 6 1 because y is increasing and y(1)−y(0) = 1.
From (2.25c), we infer U2yξ 6 Hξ and, from (2.13), we obtain

|Q| 6 1
e− 1

∫ 1

0

sinh(y(ξ)− y(η))Hξ(η) dη +
∫ 1

0

e−|y(ξ)−y(η)|Hξ(η) dη.

Hence, |Q| 6 C(H(1) − H(0)) = Ch = Ch̄ for some constant C and
supt∈[0,T )‖Q(t, ·)‖L∞(R) is finite. Similarly, one prove that supt∈[0,T )‖P (t, ·)‖
< ∞. Since Ut = −Q, it follows that supt∈[0,T ) ‖U(t, · )‖ < ∞ and, since
ζt = U , supt∈[0,T ) ‖ζ(t, · )‖L∞(R) is also finite. We have proved that

C1 = sup
t∈[0,T )

{‖U(t, · )‖L∞ + ‖P (t, · )‖L∞ + ‖Q(t, · )‖L∞}

is finite. Let Z(t) = ‖yξ(t, · )‖L2 + ‖Uξ(t, · )‖L2 + ‖Hξ(t, · )‖L2 . Using the
semi-linearity of (2.16), we obtain

Z(t) 6 Z(0) + C

∫ t

0

Z(τ) dτ

where C is a constant depending only on C1. It follows from Gronwall’s
lemma that supt∈[0,T ) Z(t) is finite and, as ζξ = yξ − Id and σ = H − h̄ Id,
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it proves that (2.33) holds. From standard theory for ordinary differential
equations we infer that St is a continuous semi-group. �

3. From Eulerian to Lagrangian coordinates and vice versa

Even if the H1-norm is conserved by the equation and therefore H1
per

could be seen as the natural space for the equation, the conservative so-
lutions are not well-posed in this space. There are cases, see [5, 26, 27]
for the non periodic case, where the energy density (u2 + u2

x) dx becomes
a singular measure. The appropriate space which makes the conservative
solution into a semigroup is the D defined as:

Definition 3.1. — The set D is composed of all pairs (u, µ) such that u

belongs to H1
per and µ is a positive periodic Radon measure whose absolute

continuous part, µac, satisfies

(3.1) µac = (u2 + u2
x) dx.

A Radon measure µ is said to be 1-periodic if µ(1 + B) = µ(B) for all
Borel sets B. The equivalent system (2.15) was derived by using the char-
acteristics. Since y satisfies (2.1), y, for a given ξ, can also be seen as the
position of a particle evolving in the velocity field u, where u is the solution
of the Camassa–Holm equation. We are then working in Lagrangian coordi-
nates. In [16], the Camassa–Holm equation is derived as a geodesic equation
on the group of diffeomorphism equipped with a right-invariant metric. In
the present paper, the geodesic curves correspond to y(t, · ). Note that y

does not remain a diffeomorphism since it can become non invertible, which
agrees with the fact that the solutions of the geodesic equation may break
down, see [13, 15]. The right-invariance of the metric can be interpreted as
an invariance with respect to relabeling as noted in [3]. This is a property
that we also observe in our setting. We denote by G the subgroup of the
group of homeomorphisms on the unit circle defined as follows: f ∈ G if f

is invertible,

f ∈ W 1,∞
loc (R), f(ξ + 1) = f(ξ) + 1 for all ξ ∈ R, and(3.2)

f − Id and f−1 − Id both belong to W 1,∞
per .(3.3)

The set G can be interpreted as the set of relabeling functions. For any
α > 1, we introduce the subsets Gα of G defined by

Gα = {f ∈ G | ‖f − Id‖W 1,∞ +
∥∥f−1 − Id

∥∥
W 1,∞ 6 α}.

The subsets Gα do not possess the group structure of G. The next lemma
provides a useful characterization of Gα.
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Lemma 3.2. — Let α > 0. If f belongs to Gα, then 1/(1 + α) 6 fξ 6
1 + α almost everywhere. Conversely, if f satisfies (3.2) and there exists
c > 1 such that 1/c 6 fξ 6 c almost everywhere, then f ∈ Gα for some α

depending only on c.

Proof. — Given f ∈ Gα, let B be the set of points where f−1 is differen-
tiable. Rademacher’s theorem says that meas(Bc) = 0. For any ξ ∈ f−1(B),
we have

lim
ξ′→ξ

f−1(f(ξ′))− f−1(f(ξ))
f(ξ′)− f(ξ)

= (f−1)ξ(f(ξ))

because f is continuous and f−1 is differentiable at f(ξ). On the other
hand, we have

f−1(f(ξ′))− f−1(f(ξ))
f(ξ′)− f(ξ)

=
ξ′ − ξ

f(ξ′)− f(ξ)
.

Hence, f is differentiable for any ξ ∈ f−1(B) and

(3.4) fξ(ξ) >
1

‖(f−1)ξ‖L∞
>

1
1 + α

.

The estimate (3.4) holds only on f−1(B) but, since meas(Bc) = 0 and
f−1 is Lipschitz and one-to-one, meas(f−1(Bc)) = 0 (see, e.g., [2, Re-
mark 2.72]), and therefore (3.4) holds almost everywhere. We have fξ 6
1 + ‖fξ − 1‖L∞ 6 1 + α.

Let us now consider a function f that satisfies (3.2) and such that 1/c 6
fξ 6 c almost everywhere for some c > 1. Since fξ > 1/c almost everywhere,
f is strictly increasing and, since it is also continuous, it is invertible. As f is
Lipschitz, we can make the following change of variables (see, for example,
[2]) and get that, for all ξ1, ξ2 in R such that ξ1 < ξ2,

f−1(ξ2)− f−1(ξ1) =
∫

[f−1(ξ1),f−1(ξ2)]

fξ

fξ
dξ 6 c(ξ2 − ξ1).

Hence, f−1 is Lipschitz and (f−1)ξ 6 c. We have f−1(ξ′) − ξ′ = ξ − f(ξ)
for ξ′ = f(ξ) and therefore ‖f − Id‖L∞ =

∥∥f−1 − Id
∥∥

L∞
. Finally, we get

‖f − Id‖W 1,∞ +
∥∥f−1 − Id

∥∥
W 1,∞ 6 2 ‖f − Id‖L∞ + 2

+ ‖fξ‖L∞ +
∥∥(f−1)ξ

∥∥
L∞

6 2 ‖f − Id‖L∞ + 2 + 2c.

Since ‖f − Id‖L∞ 6
∫ 1

0
(|fξ|+ 1) dξ 6 c + 1, the lemma is proved. �

We define the subsets Fα and F of G as follows

Fα = {X = (y, U, H) ∈ G | 1
1 + h

(y + H) ∈ Gα},

ANNALES DE L’INSTITUT FOURIER



PERIODIC SOLUTIONS OF THE CAMASSA–HOLM EQUATION 965

and

F = {X = (y, U, H) ∈ G | 1
1 + h

(y + H) ∈ G}.

We recall that h = H(ξ +1)−H(ξ) = H(1)−H(0). For α = 0, G0 = {Id}.
As we will see, the space F0 will play a special role. These sets are relevant
only because they are in some sense preserved by the governing equation
(2.15) as the next lemma shows.

Lemma 3.3. — The space F is preserved by the governing equation
(2.15). More precisely, given α, T > 0 and X̄ ∈ Fα, we have

St(X̄) ∈ Fα′

for all t ∈ [0, T ] where α′ only depends on T , α and
∥∥X̄∥∥

E
.

Proof. — Let X̄ = (ȳ, Ū , H̄) ∈ Fα, we denote X(t) = (y(t), U(t),H(t))
the solution of (2.15) with initial data X̄ and set v(t, ξ) = 1

1+h (y(t, ξ) +
H(t, ξ)), v̄(ξ) = 1

1+h̄
(ȳ(ξ) + H̄(ξ)). By definition, we have v̄ ∈ Gα and,

from Lemma 3.2, 1/c 6 v̄ξ 6 c almost everywhere, for some constant
c > 1 depending only α. We consider a fixed ξ and drop it in the notation.
Applying Gronwall’s inequality backward in time to (2.16), we obtain

(3.5) |yξ(0)|+ |Hξ(0)|+ |Uξ(0)| 6 eCT (|yξ(t)|+ |Hξ(t)|+ |Uξ(t)|)

for some constant C which depends on ‖X(t)‖C([0,T ],E), which itself de-
pends only on

∥∥X̄∥∥
E

and T . From (2.25c), we have

|Uξ(t)| 6
√

yξ(t)Hξ(t) 6
1
2
(yξ(t) + Hξ(t)).

Hence, since yξ and Hξ are positive, (3.5) gives us

1 + h

c
6 ȳξ + H̄ξ 6

3
2
eCT (yξ(t) + Hξ(t)),

and vξ(t) = 1
1+h (yξ(t)+Hξ(t)) > 2

3ce−CT . Similarly, by applying Gronwall’s
lemma forward in time, we obtain vξ = 1

1+h (yξ(t) + Hξ(t)) 6 3
2ceCT . We

have 1
1+h (y+H)(t, ξ+1) = 1

1+h (y+H)(t, ξ)+1. Hence, applying Lemma 3.2,
we obtain that 1

1+h (y(t, · ) + H(t, · )) ∈ Gα′ and therefore X(t) ∈ Fα′ for
some α′ depending only on α, T and

∥∥X̄∥∥
E

. �

For the sake of simplicity, for any X = (y, U, H) ∈ F and any function
f ∈ G, we denote (y ◦f, U ◦f,H ◦f) by X ◦f . We denote by G̃ the product
group G × R. The group operation on G̃ is given by (f1, γ1) · (f2, γ2) =
(f2 ◦ f1, γ1 + γ2) where (f1, γ1) and (f2, γ2) are two elements of G̃. We
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define the map Φ: G̃×F → F as follows
ȳ = y ◦ f,

H̄ = H ◦ f + γ,

Ū = U ◦ f,

where (ȳ, Ū , H̄) = Φ{(f, γ), (y, U, H)}. We denote (ȳ, Ū , H̄) = (f, γ) •
(y, U, H).

Proposition 3.4. — The map Φ defines a group action of G̃ on F .

Proof. — It is clear that Φ satisfies the fundamental property of a group
action, that is, (f2, γ2) • ((f1, γ1) •X) = (f1 ◦ f2, γ1 + γ2) •X for all X ∈ F
and all (f1, γ1) and (f2, γ2) in G̃. It remains to prove that (f, γ)•X indeed
belongs to F . It is not hard to check that (Id, γ) •X belongs to F . Thus,
by the group action property, we only have to show that (f, 0) •X = X ◦ f

belongs to F . We denote X̄ = (ȳ, Ū , H̄) = X ◦ f . As compositions of two
Lipschitz maps, ȳ, Ū and H̄ are Lipschitz. It is not hard to check that
ȳ(ξ + 1) = ȳ(ξ) + 1, Ū(ξ + 1) = Ū(ξ) and H̄(ξ + 1) = H̄(ξ) + H(1)−H(0),
for all ξ ∈ R. Let us prove that

(3.6) ȳξ = yξ◦f fξ, Ūξ = Uξ◦f fξ and H̄ξ = Hξ◦f fξ

almost everywhere. Let B1 be the set where y is differentiable and B2 the
set where ȳ and f are differentiable. Using Radamacher’s theorem, we get
that meas(Bc

1) = meas(Bc
2) = 0. For ξ ∈ B3 = B2 ∩ f−1(B1), we consider

a sequence ξi converging to ξ (ξi 6= ξ). We have

(3.7)
y(f(ξi))− y(f(ξ))

f(ξi)− f(ξ)
f(ξi)− f(ξ)

ξi − ξ
=

ȳ(ξi)− ȳ(ξ)
ξi − ξ

.

Since f is continuous, f(ξi) converges to f(ξ) and, as y is differentiable at
f(ξ), the left-hand side of (3.7) tends to yξ◦f(ξ) fξ(ξ). The right-hand side
of (3.7) tends to ȳξ(ξ), and we get that

(3.8) yξ(f(ξ))fξ(ξ) = ȳξ(ξ)

for all ξ ∈ B3. Since f−1 is Lipschitz, one-to-one and meas(Bc
1) = 0, we

have meas(f−1(B1)c) = 0 and therefore (3.8) holds everywhere. One proves
the two other identities in (3.6) similarly. From Lemma 3.2, we have that
fξ > 0 almost everywhere. Then, using (3.6) we easily check that (2.25b)
and (2.25c) are fulfilled. Thus, we have proved that (ȳ, Ū , H̄) fulfills (2.25).
We have h̄ = H̄(1) − H̄(0) = H(1) − H(0) = h. Hence, 1

1+h̄
(ȳ + H̄) =

1
1+h (y + H) ◦ f which implies, since 1

1+h (y + H) and f belongs to G and
G is a group, that 1

1+h̄
(ȳ + H̄) ∈ G. Therefore X̄ ∈ F and the proposition

is proved. �

ANNALES DE L’INSTITUT FOURIER



PERIODIC SOLUTIONS OF THE CAMASSA–HOLM EQUATION 967

Since G̃ is acting on F , we can consider the quotient space F/G̃ of F
with respect to the group action. We denote by Π(X) = [X] the projection
of F into the quotient space F/G̃. Let us introduce the subset H of F0

defined as follows

H =
{

(y, U, H) ∈ F0 |
∫ 1

0

y(ξ) dξ = 0
}

.

It turns out that H contains one and only one representative in F of each
element of F/G̃, that is, there exists a bĳection between H and F/G̃. In
order to prove this we introduce two maps Γ1 : F → F0 and Γ2 : F0 → H
defined as follows

Γ1(X) = X ◦ f−1

with f = 1
1+h (y + H) ∈ F and X = (y, U, H), and

ȳ = y(ξ − a)

H̄ = H(ξ − a) + (1 + h)a

Ū = U(ξ − a)

with a =
∫ 1

0
y(ξ) dξ and (ȳ, Ū , H̄) = Γ2(y, U, H). In fact, Γ1(X) = (f−1, 0)•

X and Γ2(X) = (τa, (1 + h)a) •X where τa denotes the translation by a.
After noting that the group action let invariant the quantity h = H(1) −
H(0), it is not hard to check that Γ1(X) indeed belongs to F0, that is,

1
1+h̄

(ȳ + H̄) = Id. Let us prove that (ȳ, Ū , H̄) = Γ2(y, U, H) belongs to H
for any (y, U, H) ∈ F0. On the one hand, we have

1
1 + h̄

(ȳ + H̄)(ξ) =
1

1 + h
[(y + H) ◦ (ξ − a) + (1 + h)a] = ξ

because h̄ = h and 1
1+h (y + H) = Id as (y, U, H) ∈ F0. On the other hand,∫ 1

0

ȳ(ξ) dξ =
∫ 1−a

−a

y(ξ) dξ =
∫ 1

0

y(ξ) dξ +
∫ 0

−a

y(ξ) dξ +
∫ 1−a

1

y(ξ) dξ

and, since y(ξ + 1) = y(ξ) + 1, we obtain∫ 1

0

ȳ(ξ)dξ =
∫ 1

0

y(ξ)dξ +
∫ 0

−a

y(ξ)dξ +
∫ −a

0

y(ξ)dξ −a=
∫ 1

0

y(ξ)dx−a = 0.

Thus Γ2(X) ∈ H. We denote the composition map Γ2 ◦Γ1 from F to H by
Γ. We have

Γ(X) = (τa, (1 + h)a) • ((f−1, 0) •X) = (f−1 ◦ τa, (1 + h)a) •X

where f and a has been defined above. Thus, Γ(X) belongs to the same
equivalence class as X, and we can define the map Γ̃ : F/G̃ → H on the
quotient space as Γ̃([X]) = Γ(X) for any representantive X of [X]. It is
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easily checked that Γ1 and Γ2 let invariant H so that Γ|H = Id|H. Hence,
Γ̃ ◦Π|H = Id|H and it follows that Γ̃ is a bĳection from F/G̃ to H.

Any topology defined on H is naturally transported into F/G̃ by the
bĳection Γ̃. We equip H with the metric induced by the E-norm, i.e.,
dH(X, X ′) = ‖X −X ′‖E for all X, X ′ ∈ H. Since H is closed in E, this
metric is complete. We define the metric on F/G̃ as

dF/G̃([X], [X ′]) =
∥∥∥Γ̃([X])− Γ̃([X ′])

∥∥∥
E

,

for any [X], [X ′] ∈ F/G̃. Then, F/G̃ is isometrically isomorphic with H
and the metric dF/G̃ is complete.

Lemma 3.5. — Given α > 0. The restriction of Γ to Fα is a continuous
map from Fα to H.

Proof. — We prove first that Γ1 is continuous from Fα to F0 and then,
that Γ2 is continuous from F0 to H. We equip Fα with the topology induced
by the E-norm. Let Xn = (yn, Un,Hn) ∈ Fα be a sequence that converges
to X = (y, U, H) in Fα. We denote X̄n = (ȳn, Ūn, H̄n) = Γ1(Xn) and
X̄ = (ȳ, Ū , H̄) = Γ1(X). By definition of F0, we have H̄n = −ζ̄n + h̄nξ

(recall that ζn = yn − Id). Let us prove first that H̄n tends to H̄ in L∞per.
We denote fn = 1

1+hn
(yn +Hn), f = 1

1+h (y +H), and we have fn, f ∈ Gα.
Thus H̄n − H̄ = (Hn −H) ◦ fn

−1 + H̄ ◦ f ◦ fn
−1 − H̄ and we have

(3.9)
∥∥H̄n − H̄

∥∥
L∞

6 ‖Hn −H‖L∞ +
∥∥H̄ ◦ f − H̄ ◦ fn

∥∥
L∞

.

From the definition of F0, we know that H̄ is Lipschitz with Lipschitz
constant smaller than 1 + h̄n. Hence,

(3.10)
∥∥H̄ ◦ f − H̄ ◦ fn

∥∥
L∞

6 (1 + h̄n) ‖fn − f‖L∞ .

Since Hn and fn converges to H and f , respectively, in L∞per and h̄n = hn

converges to h, from (3.9) and (3.10), we get that H̄n converges to H̄ in
L∞per. Let us prove now that H̄n,ξ tend to H̄ξ in L2

per. We have H̄n,ξ− H̄ξ =
Hn,ξ

fn,ξ
◦ fn

−1 − Hξ

fξ
◦ f−1 which can be decomposed into

(3.11) H̄n,ξ − H̄ξ =
(

Hn,ξ −Hξ

fn,ξ

)
◦ fn

−1 +
Hξ

fn,ξ
◦ fn

−1 − Hξ

fξ
◦ f−1.

Since fn ∈ Gα, there exists a constant c > 0 independent of n such that
1/c > fn,ξ > c almost everywhere, see Lemma 3.2. We have
(3.12)∥∥∥∥(Hn,ξ −Hξ

fn,ξ

)
◦ fn

−1

∥∥∥∥2

L2

=
∫ 1

0

(Hn,ξ −Hξ)2
1

fn,ξ
dξ 6 c ‖Hn,ξ −Hξ‖2L2 ,

ANNALES DE L’INSTITUT FOURIER



PERIODIC SOLUTIONS OF THE CAMASSA–HOLM EQUATION 969

where we have made the change of variables ξ′ = fn
−1(ξ). Hence, the left-

hand side of (3.12) converges to zero. If we can prove that Hξ

fn,ξ
◦ fn

−1 →
Hξ

fξ
◦ f−1 in L2

per, then, using (3.11), we get that H̄n,ξ → H̄ξ in L2
per, which

is the desired result. We recall that, since the space V and H1
per × R are

homeomorphic, Hn → H in V is equivalent to (σn, hn) → (σ, h) in H1
per×R.

We have
Hξ

fn,ξ
◦ fn

−1 =
(H̄ξ ◦ f)fξ

fn,ξ
◦ fn

−1 = (H̄ξ ◦ gn)gn,ξ

where gn = f ◦fn
−1. Let us prove that limn→∞ ‖gn,ξ − 1‖L2 = 0. We have,

after using a change of variables,

(3.13) ‖gn,ξ − 1‖2L2 =
∫ 1

0

(
fξ

fn,ξ
◦ fn

−1 − 1
)2

dξ = c ‖fξ − fn,ξ‖2L2 .

Hence, since fn,ξ → fξ in L2
per, limn→∞ ‖gn,ξ − 1‖L2 = 0. We have

(3.14)∥∥H̄ξ ◦ gngn,ξ − H̄ξ

∥∥
L2 6

∥∥H̄ξ ◦ gn

∥∥
L∞

‖gn,ξ − 1‖L2 +
∥∥H̄ξ ◦ gn − H̄ξ

∥∥
L2 .

We have
∥∥H̄ξ ◦ gn

∥∥
L∞

6 1 + hn since, as we already noted, H̄ is Lipschitz
with Lipschitz constant smaller than 1+h̄n = 1+hn. Hence, the first term in
the sum in (3.14) converges to zero. As far as the second term is concerned,
one can always approximate H̄ξ in L2

per by a periodic continuous function v.
After observing that 1/c2 6 gn,ξ 6 c2 almost everywhere, we can prove, as
we have done several times now, that ‖Hξ ◦ gn − v ◦ gn‖2L2 6 c2 ‖Hξ − v‖2L2

and v ◦ gn can be chosen arbitrarily close to Hξ ◦ gn in L2 independently
of n, that is, for all ε > 0, there exists v such that

(3.15) ‖Hξ ◦ gn − v ◦ gn‖L2 6
ε

3
and ‖Hξ − v‖L2 6

ε

3
for all n. By Lebesgue’s dominated convergence theorem, we have v◦gn → v

in L2
per. Hence, for n large enough, we have ‖v ◦ gn − v‖L2 6 ε

3 which,
together with (3.15), implies

∥∥H̄ξ ◦ gn − H̄ξ

∥∥
L2 6 ε, and H̄ξ ◦ gn → H̄ξ in

L2
per. It remains to prove that Γ2 is continuous from F0 to H. We consider

a sequence Xn = (yn, Un,Hn) in F0 which converges to X = (y, U, H)
and denote an =

∫ 1

0
yn(ξ) dξ and a =

∫ 1

0
y(ξ) dξ. We set X̄n = Γ2(Xn)

and X̄ = Γ2(X). Since yn → y in L∞, an → a. We have ȳn = yn ◦ τan
,

H̄ = Hn ◦ τan
+ (1 + hn)an, Ūn = U ◦ τan

where hn = Hn(1) − Hn(0).
Since, τan

→ τa in H1 and τan,ξ = 1 so that the τan,ξ are clearly uniformly
bounded away from zero and infinity, we can repeat the proof of continuity
of Γ1 and prove that yn◦τan → y◦τa, Hn◦τan → H◦τa and Un◦τan → U◦τa

in H1. Then, as an → a, it follows that X̄n → X̄ and the continuity of Γ̃2

is proved. �
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Remark 3.6. — The map Γ1 is not continuous from F to F0 and there-
fore neither is the map Γ from F to H. The spaces Fα were precisely
introduced in order to make the map Γ continuous.

3.1. Continuous semigroup of solutions in F/G̃

We denote by S : F × R+ → F the continuous semigroup which to any
initial data X̄ ∈ F associates the solution X(t) of the system of differen-
tial equation (2.15) at time t. As we indicated earlier, the Camassa–Holm
equation is invariant with respect to relabeling, more precisely, using our
terminology, we have the following result.

Theorem 3.7. — For any t > 0, the map St : F → F is G̃-equivariant,
that is,

(3.16) St ((f, γ) •X) = (f, γ) • St(X)

for any X ∈ F and (f, γ) ∈ G̃. Hence, the map S̃t from F/G̃ to F/G̃ given
by

S̃t([X]) = [StX]

is well-defined. It generates a continuous semigroup.

Proof. — For any X0 = (y0, U0,H0) ∈ F and (f, γ) ∈ G̃, we denote
X̄0 = (ȳ0, Ū0, H̄0) = (f, γ) • X0, X(t) = St(X0) and X̄(t) = St(X̄0). We
claim that (f, γ)•X(t) satisfies (2.15) and therefore, since (f, γ)•X(t) and
X̄(t) satisfy the same system of differential equation with the same initial
data, they are equal. We denote X̂(t) = (ŷ(t), Û(t), Ĥ(t)) = (f, γ) •X(t).
We have
(3.17)

Ût =
1
4

∫
R

sgn(ξ−η) exp
(
−sgn(ξ−η)(ŷ(ξ)−y(η))

)[
U(η)2yξ(η) + Hξ(η)

]
dη.

We have ŷξ(ξ) = yξ(f(ξ))fξ(ξ) and Ĥξ(ξ) = Hξ(f(ξ))fξ(ξ) for almost every
ξ ∈ R. Hence, after the change of variable η = f(η′), we get from (3.17)
that

Ût =
1
4

∫
R

sgn(ξ−η) exp
(
−sgn(ξ−η)(ŷ(ξ)−ŷ(η))

)[
Û(η)2ŷξ(η) + Ĥξ(η)

]
dη.

We treat similarly the other terms in (2.15), and it follows that (ŷ, Û , Ĥ)
is a solution of (2.15). Since (ŷ, Û , Ĥ) and (ȳ, Ū , H̄) satisfy the same sys-
tem of ordinary differential equations with the same initial data, they are
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equal, i.e., X̄(t) = (f, γ) •X(t) and (3.16) is proved. We have the following
diagram:

(3.18) H Π // F/G̃

Fα

Γ

OO

H

St

OO

Π // F/G̃

S̃t

OO

on a bounded domain of H whose diameter together with t determines the
constant α, see Lemma 3.3. By the definition of the metric on F/G̃, the
map Π is an isometry from H to F/G̃. Hence, from the diagram (3.18),
we see that S̃t : F/G̃ → F/G̃ is continuous if and only if Γ ◦ St : H → H
is continuous. Let us prove that Γ ◦ St : H → H is sequentially contin-
uous. We consider a sequence Xn ∈ H that converges to X ∈ H in
H, that is, limn→∞ ‖Xn −X‖E = 0. From Theorem 2.7, we get that
limn→∞ ‖St(Xn)− St(X)‖E = 0. Since Xn → X in E, there exists a con-
stant C > 0 such that ‖Xn‖ 6 C for all n. Lemma 3.3 gives us that
St(Xn) ∈ Fα for some α which depends on C and t. Hence, St(Xn) →
St(X) in Fα. Then, by Lemma 3.5, we obtain that Γ ◦St(Xn) → Γ ◦St(X)
in H. �

3.2. Maps between the two coordinate systems

Our next task is to derive the correspondence between Eulerian coor-
dinates (functions in D) and Lagrangian coordinates (functions in F/G̃).
Earlier we considered initial data in D with a special structure: The en-
ergy density µ was given by (u2 + u2

x) dx and therefore µ did not have
any singular part. The set D however allows the energy density to have a
singular part and a positive amount of energy can concentrate on a set of
Lebesgue measure zero. We constructed corresponding initial data in F0

by the means of (2.24). This construction can be generalized to the set D.
To any positive periodic Radon measure µ, we associate the function Fµ

defined as

Fµ(x) =


µ([0, x)) if x > 0,

0 if x = 0,

−µ([x, 0)) if x < 0.
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The function Fµ is lower-semicontinuous, increasing and

(3.19) Fµ(b)− Fµ(a) = µ([a, b))

for all a < b in R, see for example [22]. We denote by L : D → F/G̃ the
map transforming Eulerian coordinates into Lagrangian coordinates whose
definition is contained in the following theorem.

Theorem 3.8. — For any (u, µ) in D, let

h = µ([0, 1)),(3.20a)

y(ξ) = sup {y | Fµ(y) + y < (1 + h)ξ} ,(3.20b)

H(ξ) = (1 + h)ξ − y(ξ),(3.20c)

U(ξ) = u◦y(ξ) .(3.20d)

Then (y, U, H) ∈ F0. We define L(u, µ) ∈ F/G̃ to be the equivalence class
of (y, U, H).

Proof. — From (3.19), since µ is periodic, we obtain that

(3.21) Fµ(z + 1) = Fµ(z) + h.

Hence, for all z ∈ R, we have Fµ(z + 1) + z + 1 < (1 + h)(ξ + 1) if and
only if Fµ(z) + z < (1 + h)ξ, and it follows that y(ξ + 1) = y(ξ) + 1 and
H(ξ+1) = H(ξ)+h for all ξ ∈ R. The function Fµ is increasing. Hence, the
function z 7→ Fµ(z)+z and therefore y are also increasing. Let us prove that
y is Lipschitz with Lipschitz constant at most 1+h. We consider ξ, ξ′ in R
such that ξ < ξ′ and y(ξ) < y(ξ′) (the case y(ξ) = y(ξ′) is straightforward).
It follows from the definition that there exists an increasing sequence, x′i,
and a decreasing one, xi such that limi→∞ xi = y(ξ), limi→∞ x′i = y(ξ′)
with Fµ(x′i) + x′i < (1 + h)ξ′ and Fµ(xi) + xi > (1 + h)ξ. Subtracting the
second inequality from the first, we obtain

(3.22) Fµ(x′i)− Fµ(xi) + x′i − xi < (1 + h)(ξ′ − ξ).

For i large enough, since by assumption y(ξ) < y(ξ′), we have xi < x′i
and therefore Fµ(x′i) − Fµ(xi) = µ([xi, x

′
i)) > 0. Hence, x′i − xi < (1 +

h)(ξ′ − ξ). Letting i tend to infinity, we get y(ξ′)− y(ξ) 6 (1 + h)(ξ′ − ξ).
Hence, y is Lipschitz with Lipschitz constant bounded by 1 + h and, by
Rademacher’s theorem, it is differentiable almost everywhere. Following
[22], we decompose µ into its absolute continuous, singular continuous and
singular part, denoted µac, µsc and µs, respectively. Here, since (u, µ) ∈ D,
we have µac = (u2 +u2

x) dx. The support of µs consists of a countable set of
points. The points of discontinuity of Fµ exactly coincide with the support

ANNALES DE L’INSTITUT FOURIER



PERIODIC SOLUTIONS OF THE CAMASSA–HOLM EQUATION 973

of µs (see [22]). Let A denote the complement of y−1(supp(µs)). We claim
that for any ξ ∈ A, we have

(3.23) Fµ(y(ξ)) + y(ξ) = (1 + h)ξ.

From the definition of y(ξ) follows the existence of an increasing sequence
xi which converges to y(ξ) and such that Fµ(xi) + xi < (1 + h)ξ. Since
Fµ is increasing and lower semi-continuous, limi→∞ Fµ(xi) = Fµ(y(ξ)) and
therefore

(3.24) Fµ(y(ξ)) + y(ξ) 6 (1 + h)ξ.

Let us assume that Fµ(y(ξ)) + y(ξ) < (1 + h)ξ. Since y(ξ) is a point of
continuity of Fµ, we can then find an x such that x > y(ξ) and Fµ(x)+x <

(1+h)ξ. This contradicts the definition of y(ξ) and proves our claim (3.23).
In order to check that (2.25c) is satisfied, we have to compute yξ and Uξ.
We define the set B1 as

B1 =
{

x ∈ R | lim
ρ↓0

1
2ρ

µ((x− ρ, x + ρ)) = (u2 + u2
x)(x)

}
.

Since (u2 + u2
x) dx is the absolutely continuous part of µ, we have, from

Besicovitch’s derivation theorem (see [2]), that meas(Bc
1) = 0. Given ξ ∈

y−1(B1), we denote x = y(ξ). We claim that for all i ∈ N, there exists
0 < ρ < 1

i such that x − ρ and x + ρ both belong to supp(µs)c. Assume
namely the opposite. Then for any z ∈ (x− 1

i , x+ 1
i )\supp(µs), we have that

z′ = 2x−z belongs to supp(µs). Thus we can construct an injection between
the uncountable set (x− 1

i , x+ 1
i )\supp(µs) and the countable set supp(µs).

This is impossible, and our claim is proved. Hence, since y is surjective, we
can find two sequences ξi and ξ′i in A such that 1

2 (y(ξi) + y(ξ′i)) = y(ξ)
and y(ξ′i)− y(ξi) < 1

i . We have, by (3.19) and (3.23), since y(ξi) and y(ξ′i)
belong to A,

(3.25) µ([y(ξi), y(ξ′i))) + y(ξ′i)− y(ξi) = (1 + h)(ξ′i − ξi).

Since y(ξi) /∈supp(µs), µ({y(ξi)})=0 and µ([y(ξi), y(ξ′i)))=µ((y(ξi), y(ξ′i))).
Dividing (3.25) by ξ′i − ξi and letting i tend to ∞, we obtain

(3.26) yξ(ξ)(u2 + u2
x)(y(ξ)) + yξ(ξ) = 1 + h

where y is differentiable in y−1(B1), that is, almost everywhere in y−1(B1).
We now derive a short lemma which will be useful several times in this
proof.

Lemma 3.9. — Given an increasing Lipschitz function f : R → R, for
any set B of measure zero, we have fξ = 0 almost everywhere in f−1(B).

TOME 58 (2008), FASCICULE 3



974 Helge HOLDEN & Xavier RAYNAUD

Proof of Lemma 3.9. — The lemma follows directly from the area for-
mula:

(3.27)
∫

f−1(B)

fξ(ξ) dξ =
∫

R
H0
(
f−1(B) ∩ f−1({x})

)
dx

where H0 is the multiplicity function, see [2] for the formula and the pre-
cise definition of H0. The function H0

(
f−1(B) ∩ f−1({x})

)
is Lebesgue

measurable (see [2]) and it vanishes on Bc. Hence,
∫

f−1(B)
fξ dξ = 0 and

therefore, since fξ > 0, fξ = 0 almost everywhere in f−1(B). �

We apply Lemma 3.9 to Bc
1 and get, since meas(Bc

1) = 0, that yξ = 0
almost everywhere on y−1(Bc

1). On y−1(B1), we proved that yξ satisfies
(3.26). It follows that 0 6 yξ 6 1 + h almost everywhere, which implies,
since Hξ = 1 + h− yξ, that Hξ > 0. In the same way as we proved that y

was Lipschitz with Lipschitz constant at most 1+h, we can prove that the
function ξ 7→

∫ y(ξ)

−∞ u2
x dx is also Lipschitz. Indeed, from (3.22), for i large

enough, we have∫ x′i

xi

u2
x dx 6 µac([xi, x

′
i)) 6 µ([xi, x

′
i)) = Fµ(x′i)−Fµ(xi) < (1 + h)(ξ′ − ξ).

Since limi→∞ x′i = y(ξ′) and limi→∞ xi = y(ξ), letting i tend to infinity,
we obtain

∫ y(ξ′)

y(ξ)
u2

x dx < (1 + h)(ξ′ − ξ) and the function ξ 7→
∫ y(ξ)

0
u2

x dx

is Lipchitz with Lipschitz coefficient at most 1 + h. For all (ξ, ξ′) ∈ R2, we
have, after using the Cauchy–Schwarz inequality,

|U(ξ′)− U(ξ)| =
∫ y(ξ′)

y(ξ)

ux dx

6
√

y(ξ′)− y(ξ)

√∫ y(ξ′)

y(ξ)

u2
x dx(3.28)

6 (1 + h) |ξ′ − ξ|

because y and ξ 7→
∫ y(ξ)

0
u2

x dx are Lipschitz with Lipschitz constant at
most 1 + h. Hence, U is also Lipschitz and therefore differentiable almost
everywhere. We denote by B2 the set of Lebesgue points of ux in B1, i.e.,

B2 =
{

x ∈ B1 | lim
ρ→0

1
ρ

∫ x+ρ

x−ρ

ux(t) dt = ux(x)
}

.

We have meas(Bc
2) = 0. We choose a sequence ξi and ξ′i such that 1

2 (y(ξi)+
y(ξ′i)) = x and y(ξ′i)− y(ξi) 6 1

i . Thus

U(ξ′i)− U(ξi)
ξ′i − ξi

=

∫ y(ξ′i)

y(ξi)
ux(t) dt

y(ξ′i)− y(ξi)
y(ξ′i)− y(ξi)

ξ′i − ξi
.
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Hence, letting i tend to infinity, we get that for every ξ in y−1(B2) where
U and y are differentiable, that is, almost everywhere on y−1(B2),

(3.29) Uξ(ξ) = yξ(ξ)ux(y(ξ)).

From (3.28) and using the fact that ξ 7→
∫ y(ξ)

0
u2

x dx is Lipschitz with
Lipschitz constant at most 1 + h, we get∣∣∣∣U(ξ′)− U(ξ)

ξ′ − ξ

∣∣∣∣ 6 √
1 + h

√
y(ξ′)− y(ξ)

ξ′ − ξ
.

Hence,

(3.30) |Uξ(ξ)| 6
√

yξ(ξ).

Since meas(Bc
2) = 0, we have by Lemma 3.9, that yξ = 0 almost everywhere

on y−1(Bc
2). Hence, Uξ = 0 almost everywhere on y−1(Bc

2). Thus, we have
computed Uξ almost everywhere. It remains to verify (2.25c). We have, after
using (3.26) and (3.29), that yξHξ = yξ(1 + h− yξ) = y2

ξ (u2 + u2
x) ◦ y and,

finally, yξHξ = y2
ξU2 +U2

ξ almost everywhere on y−1(B2). On y−1(Bc
2), we

have yξ = Uξ = 0 almost everywhere. Therefore (2.25c) is satisfied almost
everywhere. By definition, we have 1

1+h (y + H) = Id, which concludes the
proof of the theorem. �

Remark 3.10. — If µ is absolutely continuous, then µ = (u2 + u2
x)dx

and, from (3.23), we get∫ y(ξ)

0

(u2 + u2
x) dx + y(ξ) = (1 + h)ξ

for all ξ ∈ R.

At the very beginning, H(t, ξ) was introduced as the energy contained
in a strip between y(0, ξ) and y(t, ξ), see (2.3). This interpretation still
holds. We obtain µ, the energy density in Eulerian coordinates, by pushing
forward by y the energy density in Lagrangian coordinates, Hξ dξ. We recall
that the push-forward of a measure ν by a measurable function f is the
measure f#ν defined as

f#ν(B) = ν(f−1(B))

for all Borel sets B. We are led to the map M which transforms Lagrangian
coordinates into Eulerian coordinates and whose definition is contained in
the following theorem.
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Theorem 3.11. — Given any element [X] in F/G̃. Then, (u, µ) defined
as follows

u(x) = U(ξ) for any ξ such that x = y(ξ),(3.31a)

µ = y#(Hξ dξ)(3.31b)

belongs to D and is independent of the representative X = (y, U, H) ∈ F
we choose for [X]. We denote by M : F/G̃ → D the map which to any [X]
in F/G̃ associates (u, µ) as given by (3.31).

Proof. — First we have to prove that the definition of u makes sense.
Since y is surjective, there exists ξ, which may not be unique, such that
x = y(ξ). It remains to prove that, given ξ1 and ξ2 such that x = y(ξ1) =
y(ξ2), we have

(3.32) U(ξ1) = U(ξ2).

Since y(ξ) is an increasing function in ξ, we must have y(ξ) = x for all ξ ∈
[ξ1, ξ2] and therefore yξ(ξ) = 0 in [ξ1, ξ2]. From (2.25c), we get that Uξ(ξ) =
0 for all ξ ∈ [ξ1, ξ2] and (3.32) follows. It is not hard to check that u(x+1) =
u(x).

Since y is proper and Hξ dξ is a Radon measure, we have, see [2, Re-
mark 1.71], that µ is also a Radon measure. The fact that y(ξ+1) = y(ξ)+1
implies that y−1(B + 1) = 1 + y−1(B) and, since Hξ is periodic, it follows
that µ is also periodic. For any X̄ = (ȳ, Ū , H̄) ∈ F which is equivalent to X,
we denote (ū, µ̄) the pair given by (3.31) when we replace X by X̄. There
exists (f, γ) ∈ G̃ such that X = (f, γ) • X̄. For any x, there exists ξ′ such
that x = ȳ(ξ′) and ū(x) = Ū(ξ′). Let ξ = f−1(ξ′). As x = ȳ(ξ′) = y(ξ),
by (3.31a), we get u(x) = U(ξ) and, since U(ξ) = Ū(ξ′), we finally obtain
ū(x) = u(x). For any continuous function with compact support φ, we have∫

R
φdµ̄ =

∫
R

φ ◦ ȳ(ξ′)H̄ξ(ξ′) dξ′,

see [2]. Hence, after making the change of variables ξ′ = f(ξ), we obtain∫
R

φdµ̄ =
∫

R
φ ◦ ȳ ◦ f(ξ) H̄ξ ◦ f(ξ) fξ(ξ) dξ

and, since Hξ = H̄ξ ◦ ffξ almost everywhere,∫
R

φ dµ̄ =
∫

R
φ ◦ y(ξ)Hξ(ξ) dξ =

∫
R

φ dµ.

Since φ was arbitrary in Cc(R), we get µ̄ = µ. This proves that X and X̄

give raise to the same pair (u, µ), which therefore does not depend on the
representative of [X] we choose.
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Let us prove that u ∈ H1. We have u ∈ L∞, u periodic and it remains
to prove that ux ∈ L2

loc(R). Given a bounded open set U of R, for any
smooth function φ with compact support in U , we have, using the change
of variables x = y(ξ),∫

U
u(x)φx(x) dx =

∫
y−1(U)

U(ξ)φx(y(ξ))yξ(ξ) dξ(3.33)

= −
∫

y−1(U)

Uξ(ξ)(φ ◦ y)(ξ) dξ

after integrating by parts. Let B1 = {ξ ∈ y−1(U) | yξ(ξ) > 0}. Because
of (2.25c), and since yξ > 0 almost everywhere, we have Uξ = 0 almost
everywhere on Bc

1. Hence, we can restrict the integration domain in (3.33)
to B1. We divide and multiply by √yξ the integrand in (3.33) and obtain,
after using the Cauchy–Schwarz inequality,∣∣∣∣∫

U
uφx dx

∣∣∣∣ = ∣∣∣∣∫
B1

Uξ√
yξ

(φ ◦ y)
√

yξ dξ

∣∣∣∣ 6
√∫

B1

U2
ξ

yξ
dξ

√∫
B1

(φ ◦ y)2yξ dξ.

By (2.25c), we have U2
ξ

yξ
6 Hξ. Hence, after another change of variables, we

get

(3.34)
∣∣∣∣∫
U

uφx dx

∣∣∣∣ 6
√∫

y−1(U)

Hξ dξ ‖φ‖L2(U) .

Since limξ→±∞ y(ξ) = ±∞, y−1(U) is bounded and (3.34) implies that
ux ∈ L2(U). As U was an arbitrary bounded open set, it follows that
ux ∈ L2

loc.
Let us prove that the absolutely continuous part of µ is equal to (u2 +

u2
x) dx. We introduce the sets Z and B defined as follows

Z =
{

ξ ∈ R | y is differentiable at ξ and yξ(ξ) = 0

or y or U are not differentiable at ξ
}

and

B = {x ∈ y(Z)c | u is differentiable at x} .

Since u belongs to H1, it is differentiable almost everywhere. We have, since
y is Lipschitz and by the definition of Z, that meas(y(Z)) =

∫
Z

yξ(ξ) dξ =
0. Hence, meas(Bc) = 0. For any ξ ∈ y−1(B), we denote x = y(ξ). By
necessity, we have ξ ∈ Zc. Let ξi be a sequence converging to ξ such that
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ξi 6= ξ for all i. We write xi = y(ξi). Since yξ(ξ) > 0, for i large enough,
xi 6= x. The following quantity is well-defined

U(ξi)− U(ξ)
ξi − ξ

=
u(xi)− u(x)

xi − x

xi − x

ξi − ξ
.

Since u is differentiable at x and ξ belongs to Zc, we obtain, after letting
i tend to infinity, that

(3.35) Uξ(ξ) = ux(y(ξ))yξ(ξ).

For all subsets B′ of B, we have

µ(B′) =
∫

y−1(B′)

Hξ dξ =
∫

y−1(B′)

(
U2 +

U2
ξ

y2
ξ

)
yξ dξ.

We can divide by yξ in the integrand above because yξ does not vanish on
y−1(B). After a change of variables and using (3.35), we obtain

(3.36) µ(B′) =
∫

B′
(u2 + u2

x) dx.

Since (3.36) holds for any set B′ ⊂ B and meas(Bc) = 0, we have µac =
(u2 + u2

x) dx. �

The next theorem shows that the transformation from Eulerian to La-
grangian coordinates is a bĳection.

Theorem 3.12. — The maps M and L are invertible. We have

L ◦M = IdF/G̃ and M ◦ L = IdD .

Proof. — Given [X] in F/G̃, we choose X = (y, U, H) = Γ̃([X]) as a
representative of [X] and consider (u, µ) given by (3.31) for this particular
X. Note that, from the definition of Γ̃, we have X ∈ H. Let X̄ = (ȳ, Ū , H̄)
be the representative of L(u, µ) in F0 given by the formulas (3.20). We claim
that (ȳ, Ū , H̄) and (y, U, H) are equivalent and therefore L ◦M = IdF/G̃.
Let

(3.37) g(x) = sup{ξ ∈ R | y(ξ) < x}.

It is not hard to prove, using the fact that y is increasing and continuous,
that

(3.38) y(g(x)) = x

and y−1([a, b)) = [g(a), g(b)) for any a < b in R. Hence, by (3.31b), we have

(3.39) µ([a, b)) =
∫

y−1([a,b))

Hξ dξ =
∫ g(b)

g(a)

Hξ dξ = H(g(b))−H(g(a)).
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Since X ∈ F0, y + H = (1 + h) Id and from (3.38) we obtain H(g(b)) =
(1 + h)g(b) − b and a similar expression for H(g(a)). From (3.39) and the
definition of Fµ, it follows then that

(3.40) Fµ(x) + x = (1 + h)(g(x)− g(0)).

Inserting this result into the definition of ȳ, we obtain that

(3.41) ȳ(ξ) = sup{x ∈ R | g(x) < ξ + g(0)}.

For any given ξ ∈ R, let us consider an increasing sequence xi tending to
ȳ(ξ) such that g(xi) < ξ + g(0); such sequence exists by (3.41). Since y is
increasing and using (3.38), it follows that xi 6 y(ξ + g(0)). Letting i tend
to ∞, we obtain ȳ(ξ) 6 y(ξ + g(0)). Assume that ȳ(ξ) < y(ξ + g(0)). Then,
there exists x such that ȳ(ξ) < x < y(ξ + g(0)) and equation (3.41) then
implies that g(x) > ξ +g(0). Hence, x > y(ξ +g(0)), as y is increasing, and
contradicts the fact that x < y(ξ + g(0)). Thus we have

(3.42) ȳ(ξ) = y(ξ + g(0)).

Since X̄ ∈ F0, H̄(ξ) = (1+h)ξ− ȳ(ξ). Hence, H̄(ξ) = (1+h)ξ−y(ξ +g(0))
and, since y(ξ + g(0)) + H(ξ + g(0)) = (1 + h)(ξ + g(0)),

(3.43) H̄(ξ) = H(ξ + g(0))− (1 + h)g(0).

It is not hard to prove that

(3.44) Ū(ξ) = U(ξ + g(0)).

From (3.42), (3.43) and (3.44), it follows, as claimed, that X and X̄ are
equivalent, as X̄ = (τ−g(0),−(1+h)g(0)) •X. In fact, we have X = Γ2(X̄).
Thus we have proved that L ◦M = IdF/G̃.

Given (u, µ) in D, we denote by (y, U, H) the representative of L(u, µ)
in F0 given by (3.20). Then, let (ū, µ̄) = M ◦ L(u, µ). We claim that
(ū, µ̄) = (u, µ). Let g be the function defined as before by (3.37). The
same computation that leads to (3.40) now gives

(3.45) Fµ̄(x) + x = (1 + h)(g(x)− g(0)).

Given ξ ∈ R, we consider an increasing sequence xi which converges to
y(ξ) and such that Fµ(xi) + xi < (1 + h)ξ. The existence of such sequence
is guaranteed by (3.20b). Passing to the limit and since Fµ is lower semi-
continuous, we obtain Fµ(y(ξ)) + y(ξ) 6 (1 + h)ξ. We take ξ = g(x) and
get

(3.46) Fµ(x) + x 6 (1 + h)g(x).

From the definition of g, there exists an increasing sequence ξi which con-
verges to g(x) such that y(ξi) < x. The definition (3.20b) of y tells us that
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Fµ(x) + x > (1 + h)ξi. Letting i tend to infinity, we obtain Fµ(x) + x >
(1 + h)g(x) which, together with (3.46), yields

(3.47) Fµ(x) + x = (1 + h)g(x).

Comparing (3.47) and (3.45) we get that Fµ = Fµ̄ + (1 + h)g(0). Hence
µ̄ = µ. It is clear from the definitions that ū = u. Hence, (ū, µ̄) = (u, µ)
and M ◦ L = IdD. �

4. Continuous semigroup of solutions on D

The fact that we have been able to establish a bĳection between the two
coordinate systems, F/G̃ and D, enables us now to transport the topology
defined in F/G̃ into D. On D we define the distance dD which makes the
bĳection L between D and F/G̃ into an isometry:

dD((u, µ), (ū, µ̄)) = dF/G̃(L(u, µ), L(ū, µ̄)).

Since F/G̃ equipped with dF/G̃ is a complete metric space, we have the
following theorem.

Theorem 4.1. — D equipped with the metric dD is a complete metric
space.

For each t ∈ R, we define the map Tt from D to D by

Tt = MS̃tL.

We have the following commutative diagram:

(4.1) D F/G̃
Moo

D

Tt

OO

L // F/G̃

S̃t

OO

Our main theorem reads as follows.

Theorem 4.2. — T : D×R+ → D (where D is defined by Definition 3.1)
defines a continuous semigroup of solutions of the Camassa–Holm equation,
that is, given (ū, µ̄) ∈ D, if we denote t 7→ (u(t), µ(t)) = Tt(ū, µ̄) the
corresponding trajectory, then u is a weak solution of the Camassa–Holm
equation (1.3). Moreover µ is a weak solution of the following transport
equation for the energy density

(4.2) µt + (uµ)x = (u3 − 2Pu)x.
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Furthermore, we have that

(4.3) µ(t)([0, 1)) = µ(0)([0, 1)) for all t,

and
(4.4)

µ(t)([0, 1)) = µac(t)([0, 1)) = ‖u(t)‖2H1
per

= µ(0)([0, 1)) for almost all t.

Remark 4.3. — We denote the unique solution described in the theorem
as a conservative weak solution of the Camassa–Holm equation.

Proof. — The proof is similar to the non periodic case. We want to prove
that, for all φ ∈ C∞(R+ × R) with compact support,

(4.5)
∫

R+×R
[−u(t, x)φt(t, x) + u(t, x)ux(t, x)φ(t, x)] dxdt

=
∫

R+×R
−Px(t, x)φ(t, x) dxdt

where P is given by (2.11) or equivalently (2.6). Let (y(t), U(t),H(t)) be
a representative of L(u(t), µ(t)) which is solution of (2.15). Since y is Lip-
schitz in ξ and invertible for t ∈ Kc (see (2.32) for the definition of K,
in particular, we have meas(K) = 0), we can use the change of variables
x = y(t, ξ) and, using (3.29), we get

∫
R+×R

[−u(t, x)φt(t, x) + u(t, x)ux(t, x)φ(t, x)] dxdt

(4.6)

=
∫

R+×R
[−U(t, ξ)yξ(t, ξ)φt(t, y(t, ξ)) + U(t, ξ)Uξ(t, ξ)φ(t, y(t, ξ))] dξdt.

Using the fact that yt = U and yξt = Uξ, one easily checks that

(4.7) (Uyξφ ◦ y)t − (U2φ)ξ = Uyξφt ◦ y − UUξφ ◦ y + Utyξφ ◦ y.

After integrating (4.7) over R+×R, the left-hand side of (4.7) vanishes and
we obtain

(4.8)
∫

R+×R
[−Uyξ φt◦y + UUξ φ◦y ] dξdt

=
1
4

∫
R+×R2

[
sgn(ξ−η)e−{sgn(ξ−η)(y(ξ)−y(η)}×

(
U2yξ+Hξ

)
(η)yξ(ξ)φ◦y(ξ)

]
dηdξdt
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by (2.15). Again, to simplify the notation, we deliberately omitted the t

variable. On the other hand, by using the change of variables x = y(t, ξ)
and z = y(t, η) when t ∈ Kc, we have

−
∫

R+×R
Px(t, x)φ(t, x) dxdt =

1
2

∫
R+×R2

[
sgn(y(ξ)− y(η))e−|y(ξ)−y(η)|

×
(
u2(t, y(η)) +

1
2
u2

x(t, y(η))
)
φ(t, y(ξ))yξ(η)yξ(ξ)

]
dηdξdt.

Since, from Lemma 2.6, yξ is strictly positive for t ∈ Kc and almost every ξ,
we can replace ux(t, y(t, η)) by Uξ(t, η)/yξ(t, η), see (3.29), in the equation
above and, using the fact that y is an increasing function and the identity
(2.25c), we obtain

(4.9) −
∫

R+×R
Px(t, x)φ(t, x) dxdt

=
1
4

∫
R+×R2

[
sgn(ξ − η) exp

(
− sgn(ξ − η)(y(ξ)− y(η)

)
×
(
U2yξ + Hξ

)
(η)yξ(ξ)φ(t, y(ξ))

]
dηdξdt.

Thus, comparing (4.8) and (4.9), we get∫
R+×R

[−Uyξ φt(t, y) + UUξ φ] dξdt = −
∫

R+×R
Px(t, x)φ(t, x) dxdt

and (4.5) follows from (4.6). Similarly, one proves that µ(t) is solution
of (4.2). We have y−1([0, 1)) = [g(0), g(1)) where g is given by (3.37).
From (3.37) and the fact that y(ξ + 1) = y(ξ) + 1 for all ξ, we infer that
g(x + 1) = g(x) + 1. Hence, it follows from (3.31a), since Hξ is periodic,
that

µ(t)([0, 1)) =
∫

[g(0),g(0)+1)

Hξ dξ =
∫

[0,1)

Hξ dξ = H(t, 1)−H(t, 0)

which is constant in time, from the governing equation (2.15). Hence, (4.3)
is proved. We know from Lemma 2.6 (ii) that, for t ∈ Kc, yξ(t, ξ) > 0 for
almost every ξ ∈ R. Given t ∈ Kc (the time variable is suppressed in the
notation when there is no ambiguity), we have, for any Borel set B,

(4.10) µ(t)(B) =
∫

y−1(B)

Hξ dξ =
∫

y−1(B)

(
U2 +

U2
ξ

y2
ξ

)
yξ dξ

from (2.25c) and because yξ(t, ξ) > 0 almost everywhere for t ∈ Kc. Since y

is one-to-one when t ∈ Kc and ux ◦ yyξ = Uξ almost everywhere, we obtain

ANNALES DE L’INSTITUT FOURIER



PERIODIC SOLUTIONS OF THE CAMASSA–HOLM EQUATION 983

from (4.10) that

µ(t)(B) =
∫

B

(u2 + u2
x)(t, x) dx.

Hence, as meas(K) = 0, (4.4) is proved. �

5. The topology on D

The metric dD gives to D the structure of a complete metric space
while it makes continuous the semigroup Tt of conservative solutions for
the Camassa–Holm equation as defined in Theorem 4.2. In that respect,
it is a suitable metric for the Camassa–Holm equation. However, as the
definition of dD is not straightforward, this metric is not so easy to ma-
nipulate and in this section we compare it with more standard topologies.
More precisely, we establish that convergence in H1

per implies convergence
in (D, dD), which itself implies convergence in L∞per.

Proposition 5.1. — The map

u 7→ (u, (u2 + u2
x)dx)

is continuous from H1
per into D. In other words, given a sequence un ∈ H1

per
converging to u in H1

per, then (un, (u2
n + u2

nx)dx) converges to (u, (u2 +
u2

x)dx) in D.

Proof. — Let Xn = (yn, Un,Hn) and X = (y, U, H) be the representa-
tives in F0 given by (3.20) of L(un, (u2

n + u2
nx)dx) and L(u, (u2 + u2

x)dx),
respectively. By definition of the topology of D and F/G̃, we have to prove
that Γ(Xn) → Γ(X) in H. Since Γ is continuous from F0 into H, see Lemma
3.5, it is enough to prove that Xn → X in E. We write gn = u2

n +u2
n,x and

g = u2 + u2
x; gn and g are periodic. Following Remark 3.10, we have

(5.1)
∫ y(ξ)

0

g(x) dx+y(ξ) = (1+h)ξ ,

∫ yn(ξ)

0

gn(x) dx+yn(ξ) = (1+hn)ξ

and, after taking the difference between the two equations, we obtain

(5.2)
∫ y(ξ)

0

(g − gn)(x) dx +
∫ y(ξ)

yn(ξ)

gn(x) dx + y(ξ)− yn(ξ) = (hn − h)ξ.

Since gn is positive,
∣∣∣y − yn +

∫ y

yn
gn(x) dξ)

∣∣∣ = |y − yn|+
∣∣∣∫ y

yn
gn(x) dξ)

∣∣∣ and
(5.2) implies

|y(ξ)− yn(ξ)| 6
∫ y(ξ)

0

|g − gn| dx + |hn − h| |ξ| 6 ‖g − gn‖L1 + |hn − h|
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because y(0) = 0 and therefore [0, y(ξ)] ⊂ [0, 1] for ξ ∈ [0, 1]. Since un → u

in H1, gn → g in L1 and it follows that ζn → ζ and Hn → H in L∞. We
recall that ζ(ξ) = y(ξ)− ξ and H = hξ − ζ (as X, Xn ∈ F0). We have

(5.3) Un − U = un ◦ yn − u ◦ yn + u ◦ yn − u ◦ y.

Since un → u in L∞, un◦yn → u◦yn in L∞. Moreover, since u is uniformly
continuous [0, 1] and yn → y in L∞, u ◦ yn − u ◦ y in L∞. Hence, it follows
from (5.3) that Un → U in L∞. The measures (u2+u2

x)dx and (u2
n+u2

n,x)dx

have, by definition, no singular part and in that case (3.26) holds almost
everywhere, that is,

(5.4) yξ =
1

g ◦ y + 1
and yn,ξ =

1
gn ◦ yn + 1

almost everywhere. Hence,

ζn,ξ − ζξ = (g ◦ y − gn ◦ yn)yn,ξyξ

= (g ◦ y − g ◦ yn)yn,ξyξ + (g ◦ yn − gn ◦ yn)yn,ξyξ.(5.5)

Since 0 6 yξ 6 1 + h, we have

∫
[0,1]

|g ◦ yn − gn ◦ yn| yn,ξyξ dξ 6 (1 + h)
∫

[0,1]

|g ◦ yn − gn ◦ yn| yn,ξ dξ

(5.6)

= (1 + h) ‖g − gn‖L1 .

Let C = supn(1 + hn). For any ε > 0, there exists a continuous function
v with compact support such that ‖g − v‖L1 6 ε/3C. We can decompose
the first term in the right-hand side of (5.5) into

(5.7) (g ◦ y − g ◦ yn)yn,ξyξ = (g ◦ y − v ◦ y)yn,ξyξ

+ (v ◦ y − v ◦ yn)yn,ξyξ + (v ◦ yn − g ◦ yn)yn,ξyξ.

Then, we have∫
[0,1]

|g ◦ y − v ◦ y| yn,ξyξ dξ 6 (1 + hn)
∫
|g ◦ y − v ◦ y| yξ dξ

6 C ‖g − v‖L1 6 ε/3

and, similarly, we obtain
∫
[0,1]

|g ◦ yn − v ◦ yn| yn,ξyξ dξ 6 ε/3. Since yn →
y in L∞ and v is continuous, by applying the Lebesgue dominated conver-
gence theorem, we obtain v ◦ yn → v ◦ y in L1 and we can choose n big
enough so that∫

[0,1]

|v ◦ y − v ◦ yn| yn,ξyξ dξ 6 C2 ‖v ◦ y − v ◦ yn‖L1 6 ε/3.

ANNALES DE L’INSTITUT FOURIER



PERIODIC SOLUTIONS OF THE CAMASSA–HOLM EQUATION 985

Hence, from (5.7), we get that
∫
[0,1]

|g ◦ y − g ◦ yn| yn,ξyξ dξ 6 ε so that

lim
n→∞

∫
[0,1]

|g ◦ y − g ◦ yn| yn,ξyξ dξ = 0,

and, from (5.5) and (5.6), it follows that ζn,ξ → ζξ in L1. Since Xn ∈ F0,
ζn,ξ is bounded in L∞ and we finally get that ζn,ξ → ζξ in L2 and, by
(3.20c), Hn,ξ → Hξ in L2. It remains to prove that Un,ξ → Uξ in L2. Since
yn,ξ, Hn,ξ and U tend to yξ, Hξ and U in L2, respectively and ‖Un‖L∞ ,
‖yn,ξ‖L∞ are uniformly bounded, it follows from (2.25c) that

(5.8) lim
n→∞

‖Un,ξ‖L2 = ‖Uξ‖L2 .

Once we have proved that Un,ξ converges weakly to Uξ, then (5.8) will
imply that Un,ξ → Uξ strongly in L2, see, for example, [33, section V.1].
For any continuous function φ with compact support, we have

(5.9)
∫

R
Un,ξφ dξ =

∫
R

un,x ◦ ynyn,ξφ dξ =
∫

R
un,x φ ◦ yn

−1 dξ.

By assumption, we have un,x → ux in L2. Since yn → y in L∞, the support
of φ◦yn

−1 is contained in some compact that can be chosen to be indepen-
dent of n. Thus, after using Lebesgue’s dominated convergence theorem,
we obtain that φ ◦ yn

−1 → φ ◦ y−1 in L2 and therefore

(5.10) lim
n→∞

∫
R

Un,ξφdξ =
∫

R
ux φ ◦ y−1 dξ =

∫
R

Uξφdξ.

From (5.8), we have that Un,ξ is bounded and therefore, by a density ar-
gument, (5.10) holds for any function φ in L2 and Un,ξ ⇀ Uξ weakly in
L2. �

Proposition 5.2. — Let (un, µn) be a sequence in D that converges to
(u, µ) in D. Then

un → u in L∞per and µn
∗
⇀ µ.

Proof. — We denote by Xn = (yn, Un,Hn) and X = (y, U, H) the rep-
resentative in H of L(un, µn) and L(u, µ). Let C = supn(1 + hn). For any
x ∈ R, there exists ξn and ξ, which may not be unique, such that x = yn(ξn)
and x = y(ξ). We set xn = yn(ξ). We have

(5.11) un(x)− u(x) = un(x)− un(xn) + Un(ξ)− U(ξ),
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and

|un(x)− un(xn)| =

∣∣∣∣∣
∫ ξn

ξ

Un,ξ(η) dη

∣∣∣∣∣
6
√
|ξn − ξ|

(∫ ξn

ξ

U2
n,ξ dη

)1/2

(Cauchy–Schwarz)

6
√
|ξn − ξ|

(∫ ξn

ξ

yn,ξHn,ξ dη

)1/2

(from (2.25c))

6 C
√
|ξn − ξ|

√
|yn(ξn)− yn(ξ)| (since Hn,ξ 6 C)

= C
√
|ξn − ξ|

√
|y(ξ)− yn(ξ)|

6 C
√
|ξn − ξ| ‖y − yn‖1/2

L∞ .(5.12)

We have

(5.13) |yn(ξn)− yn(ξ)| = |y(ξ)− yn(ξ)| 6 ‖yn − y‖L∞ .

Without loss of generality, we can assume that ‖yn − y‖L∞ < 1 so that
(5.13) implies |ξn − ξ| < 1 as yn is increasing and yn(ξ̄ + 1) = yn(ξ̄) + 1 for
all ξ̄. Hence, (5.12) implies

(5.14) |un(x)− un(xn)| 6 C ‖y − yn‖1/2
L∞ .

Since yn → y and Un → U in L∞, it follows from (5.11) and (5.14) that
un → u in L∞. By weak-star convergence, we mean that

(5.15) lim
n→∞

∫
R

φdµn =
∫

R
φdµ

for all continuous functions with compact support. It follows from (3.31b)
that

(5.16)
∫

R
φdµn =

∫
R

φ ◦ ynHn,ξ dξ and
∫

R
φdµ =

∫
R

φ ◦ yHξ dξ

see [2, Definition 1.70]. Since yn → y in L∞, the support of φ ◦ yn is
contained in some compact which can be chosen independently of n and,
from Lebesgue’s dominated convergence theorem, we have that φ◦yn → φ◦y
in L2. Hence, since Hn,ξ → Hξ in L2,

lim
n→∞

∫
R

φ ◦ ynHn,ξ dξ =
∫

R
φ ◦ yHξ dξ,

and (5.15) follows from (5.16). �
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