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STABLE NORMS OF NON-ORIENTABLE SURFACES

by Florent BALACHEFF & Daniel MASSART (*)

Abstract. — We study the stable norm on the first homology of a closed
non-orientable surface equipped with a Riemannian metric. We prove that in every
conformal class there exists a metric whose stable norm is polyhedral. Furthermore
the stable norm is never strictly convex if the first Betti number of the surface is
greater than two.

Résumé. — Nous étudions la norme stable sur le premier groupe d’homologie
d’une surface fermée et non-orientable munie d’une métrique riemannienne. Nous
montrons qu’il existe dans chaque classe conforme une métrique dont la norme
stable est polyèdrale. De plus, la norme stable est strictement convexe dès que le
premier nombre de Betti est au moins trois.

1. Introduction

Given a smooth compact Riemannian manifold (M, g) with first Betti
number b1(M) > 0, the stable norm ‖ ‖ on H1(M, R) is defined in [10] (see
also [9]) as

H1(M, R) −→ R
h 7−→ ‖h‖ := inf {

∑n
i=1 |ri|lg(γi)}

where
• lg denotes the length with respect to g

• the ri are real numbers
• the γi are Lipschitz 1-cycles
• h =

∑n
i=1 ri [γi].

Note that since we want to minimize the length we may assume from the
start that the γi are closed geodesics which minimize the length in their
free homotopy class.

Keywords: Minimizing measures, non-orientable surface, stable norm.
Math. classification: 37J50, 53C20, 53C23.
(*) Partially supported by the Swiss National Science Foundation.
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In general the infimum may not be achieved. It is remarkable that when
the dimension of M is two, it is achieved for every integer homology class
(Proposition 5.6). When the infimum is actually a minimum, we may won-
der whether the minimizing cycles are connected. Note that every compo-
nent γi, i = 1 . . . n of a minimizing cycle

∑n
i=1 riγi is itself minimizing in

its own homology class. A minimizing cycle whose connected components
have distinct homology classes yields a flat region in the unit sphere S1

of the stable norm, containing the convex hull of {[γi]/lg(γi)}n
i=1. So we

may ask how often does such a flat appear, how many components do the
minimizing cycles have and what is the dimension of the corresponding flat
(that is the dimension of the affine subspace it spans). In this paper we give
some answers when M is a closed non-orientable surface. Our first result is
similar to Theorem 7 of [14] which addresses the orientable case. We denote
by [x] the integer part of a real number x.

Theorem 1.1. — Let M be a closed non-orientable surface endowed
with a Riemannian metric. Then every connected minimizing cycle is a
component of a minimizing cycle with at least [(b1(M) + 1)/2] homologi-
cally independent components, and at most 2b1(M) − 1 non pairwise ho-
mologically proportional components.

So the stable norm is never strictly convex for b1(M) > 2. The difference
with Theorem 7 of [14] is that the dimension of the corresponding flat may
be more than [(b1(M) + 1)/2] − 1. Observe that if b1(M) = 2 the stable
norm may be strictly convex. For instance, take a hyperbolic punctured
torus, cut off a sufficiently thin neighborhood of the cusp, and cap off with
a projective plane.

Let π : Mo −→ M be the orientation cover of a non-orientable surface
M . A simple closed curve γ of M is said to be of type I (resp. of type II)
if its inverse image π−1(γ) consists of either one curve or two homologous
curves (resp. two non-homologous curves). Remark that one-sided simple
closed curves on M (curves whose tubular neighborhood is homeomorphic
to a Mőbius strip) are of type I while two-sided simple closed curves on M

(curves whose tubular neighborhood is homeomorphic to an annulus) may
be of type I or II. The following theorem states that the local geometry
of the unit sphere S1 is special near homology classes whose minimizing
cycles consist of curves of type I. Specifically, the intersection of the unit
ball with a neighborhood of such a class is a cone.

Theorem 1.2. — Let M be a closed non-orientable surface endowed
with a Riemannian metric. Let h0 be an integer homology class all of whose
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STABLE NORMS OF NON-ORIENTABLE SURFACES 1339

minimizing cycles consist of geodesics of type I. Then for all h ∈ H1(M, R),
there exists s(h0, h) > 0 such that the subset of the unit sphere S1{

h0 + sh

||h0 + sh||
: s ∈ [0, s(h0, h)]

}
is a straight segment.

For manifolds in dimensions greater than 2 little is known about min-
imizing cycles. For flat tori they exist and are connected in every integer
homology class (or multiple thereof). Other homology classes do not have
minimizing cycles. Furthermore the stable norm of a flat torus is Euclidean.
Apart from [16] which deals with hyperbolic metrics on a punctured torus,
the only other examples ([1], [2]) where the stable norm is actually com-
puted have very few connected minimizing cycles: the unit ball of the stable
norm is a polyhedron. So there is only a finite number of connected min-
imizing cycles, corresponding to the vertices of the polyhedron. In every
homology class there is a minimizing cycle which is a linear combination
of the connected ones. All such examples assume dim M > 3; if dim M = 2
and M is orientable, [14] rules out the unit ball being a polyhedron. The
situation is different when dim M = 2 and M is not orientable:

Theorem 1.3. — Let M be a closed non-orientable surface. Then in
every conformal class there exists a metric whose stable norm has a poly-
hedron as its unit ball.

Now we briefly describe the contents of the paper. Section 2 contains
basic facts about non-orientable surfaces. In Sections 3 and 4 we have
gathered prerequisites about minimizing measures (in the sense of [15])
and stable norms. Some material from [13] and [14] has been included,
either because it was not published, or because we found the exposition to
be wanting. In Section 5 we prove the technical lemmas we need for our
main theorems. Some consequences are derived, among which Lemma 5.5
and Proposition 5.6. In the last section we prove our main theorems.

2. Preliminaries: non-orientable surfaces

Let (M, g) be a closed non-orientable Riemannian surface.

2.1. First homology group

By the classical Surface Classification Theorem, any closed orientable
surface is a connected sum of tori, any closed non-orientable surface is a

TOME 58 (2008), FASCICULE 4



1340 Florent BALACHEFF & Daniel MASSART

connected sum of tori and projective planes. In fact, since the connected
sum of three projective planes is homeomorphic to the connected sum of a
torus and a projective plane, any non-orientable surface is a connected sum
of tori and one or two projective planes. Recall that the connected sum of
two projective planes is the Klein bottle K.

Denote by Σk an orientable surface of genus k (that is, Σk
∼= ]kT2). We

have
H1(Σk]K, R) ∼= H1(Σk, R)⊕H1(K, R) ∼= R2k ⊕ R

whence the first Betti number b1(Σk]K) of Σk]K is 2k + 1. Likewise,

H1(Σk]RP 2, R) ∼= H1(Σk, R) ∼= R2k

and b1(Σk]RP 2) = 2k.
Similarly, we have

H1(Σk]RP 2, Z) ∼= H1(Σk, Z)⊕H1(RP 2, Z) ∼= Z2k ⊕ Z/2Z

and
H1(Σk]K, Z) ∼= H1(Σk, Z)⊕H1(K, Z) ∼= Z2k ⊕ Z⊕ Z/2Z.

For any manifold M , the torsion-free part of H1(M, Z) embeds as a lattice
Λ in H1(M, R). We say

• an element of H1(M, R) is integer if it belongs to Λ
• a subspace of H1(M, R) is integer if it is generated by integer classes
• an element h of H1(M, R) is rational if rh belongs to Λ for some

real number r.

2.2. Orientation cover

Let π : Mo −→ M be the orientation cover of M . Then Mo is an ori-
entable surface endowed with a fixed-point free, orientation-reversing invo-
lution I. Let I∗ be the involution of H1(Mo, R) induced by I, and let E1

(resp. E−1) be the eigenspace of I∗ for the eigenvalue 1 (resp.−1). First
observe that

Proposition 2.1. — E1 and E−1 are Lagrangian for the (symplectic)
intersection form Int on H1(Mo, R).

Proof. — Take x, y ∈ E1 (resp. E−1). We have Int(I∗(x), I∗(y)) = Int(x, y)
but on the other hand, since I reverses the orientation of Mo, Int(I∗(x), I∗(y)) =
−Int(x, y) whence Int(x, y) = 0, which proves that E1 (resp. E−1) is
isotropic. In particular dim E1 6 2−1b1(Mo) and dim E−1 6 2−1b1(Mo).
Now since I∗ is a linear involution, dim E1 + dim E−1 = b1(Mo) whence
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dim E1 = dim E−1 = 2−1b1(Mo) that is, E1 (resp. E−1) is Lagrangian for
the symplectic form Int. �

Furthermore

Proposition 2.2. — ker π∗ = E−1.

Proof. — Let γ be a 1-cycle in Mo such that π∗([γ]) = 0. That is, π(γ)
bounds a 2-chain C in M . Then π−1(π(γ)) bounds the 2-chain π−1(C) in
Mo. But π−1(π(γ)) = γ ∪ I(γ), so [γ] + [I(γ)] = 0. Conversely, if γ is a
1-cycle in Mo such that [γ] + [I(γ)] = 0, then γ and I(γ) together bound
a two-chain C in Mo, so π(γ) = π(I(γ)) bounds the two-chain π(C) in M ,
thus [π(γ)] = 0 in H1(M, R). �

Consequently π∗ identifies H1(M, R) with E1.

3. Preliminaries: minimizing measures and stable norm

The material of this section is taken from [13] and was not published.
Most of the ideas therein were presented to the second author by Albert
Fathi.

We introduce an alternative definition of the stable norm. It relies on
invariant measures of the geodesic flow and is inspired by Mather’s theory
for Lagrangian systems. Then minimizing objects, in the form of measures
(or asymptotic cycles as in [18]), exist in every homology class. The question
of whether a minimizing cycle exists becomes "are minimizing measures
supported on closed geodesics ?".

Let (M, g) be a compact Riemannian manifold of any dimension with
first Betti number b1(M) > 0. Denote by

• T 1M the unit tangent bundle of (M, g)
• p the canonical projection T 1M −→ M

• φt the geodesic flow in T 1M .

3.1. Minimizing measures

Define M as the set of all probability measures on T 1M , endowed with
the weak∗ topology. Then M is compact and metrizable [6, 13.4.2]. More-
over it embeds homeomorphically as a convex subset of the dual to the
vector space C0(T 1M) of continuous functions on T 1M . Let Mg be the
subset of M that consists of φt-invariant measures. Then Mg is closed in
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1342 Florent BALACHEFF & Daniel MASSART

M, hence compact, and convex. Fix an element µ of Mg. By [15], for any
C1 function f on M , we have∫

T 1M

df(x).v dµ(x, v) = 0.

Thus, if ω is a smooth closed one-form on M , the integral∫
T 1M

ωx(v)dµ(x, v)

only depends on the cohomology class of ω. By duality this endows µ with
a homology class: [µ] is the unique element of H1(M, R) such that

〈[µ] , [ω]〉 =
∫

T 1M

ωdµ

for any smooth closed one-form ω on M . The map

[ . ] : Mg −→ H1(M, R)
µ 7−→ [µ]

is continuous and affine, so the image B1 of Mg in H1(M, R) is compact
and convex.

Proposition 3.1. — B1 is the unit ball of the stable norm.

Proof. — We first prove that B1 is the unit ball of some norm N .
Denote by

I : T 1M −→ T 1M

(x, v) 7−→ (x,−v)

the canonical involution of T 1M . We have, for any (x, v) in T 1M ,

φt(x,−v) = φ−t(x, v)

so if µ is in Mg, then I∗µ is again in Mg. Let ω be a smooth closed
one-form on M . We have

〈[I∗µ] , [ω]〉 =
∫

T 1M

ωx(v)dI∗µ(x, v)

=
∫

T 1M

ωx(−v)dµ(x, v)

= −
∫

T 1M

ωx(v)dµ(x, v)

= −〈[µ] , [ω]〉

whence
[I∗µ] = − [µ] ,

so B1 is centrally symmetric.
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Now let us show that B1 contains the origin in its interior. Fix a basis
h1, . . . hn of H1(M, R) such that h1, . . . hn are integer elements of H1(M, R).
Let γ1, . . . γn be closed geodesics parameterized by arc length such that
[γi] = hi, i = 1, . . . n and let µ1, . . . µn be the probability measures defined
by ∫

T 1M

f(x, v)dµi(x, v) :=
1

lg(γi)

∫ lg(γi)

0

f (γi(t), γ̇i(t)) dt, i = 1, . . . n

where f ∈ C0(T 1M). We have, for any smooth closed one-form ω on M

〈[µi] , [ω]〉 =
1

lg(γi)
〈[γi] , [ω]〉, i = 1, . . . n

whence
[µi] =

1
lg(γi)

[γi] , i = 1, . . . n.

Therefore B1 contains the points ±lg(γi)−1 [γi] , i = 1, . . . n, so it contains
their convex hull, which contains the origin in its interior because [γi] , i =
1, . . . n generate H1(M, R).

So B1 is the unit ball for some norm N in H1(M, R), which justifies the
notation B1.

Let us show this norm N is none other than the stable norm. First we
show ‖ ‖ > N . Take h in H1(M, R) and ε > 0. Let

∑
i riγi be a cycle such

that the γi are closed geodesics, [
∑

i riγi] = h, and
∑

i |ri|lg(γi) 6 ‖h‖+ ε.
After changing the orientations of the γi if need be, we may assume that
the ri are non-negative. Then the formula∫

T 1M

f(x, v)dµ(x, v) :=
∑

i ri

∫ lg(γi)

0
f (γi(t), γ̇i(t)) dt∑

i rilg(γi)

defines an element of Mg, with associated homology class

[µ] =
[
∑

i riγi]∑
i rilg(γi)

By definition we have N([µ]) 6 1, whence, since N is a norm

N

([∑
i

riγi

])
6
∑

i

|ri|lg(γi) 6 ‖h‖+ ε.

Since ε is arbitrary, we conclude that ‖ ‖ > N .
Now let us show that ‖ ‖ 6 N . It suffices to show that for any µ ∈Mg,

we have ‖[µ]‖ 6 1. Here we use the dual stable norm (see [10, 4.35]). A
norm ‖ ‖0 is defined on the space of C1 closed one-forms on M by

‖ω‖0 := max
{
ωx(v) : (x, v) ∈ T 1M

}
.

TOME 58 (2008), FASCICULE 4



1344 Florent BALACHEFF & Daniel MASSART

This norm induces a norm on H1(M, R): ∀c ∈ H1(M, R),

‖c‖0 := inf {‖ω‖0 : [ω] = c} .

Lemma 3.2 (Gromov [10]). — The norm ‖ ‖0 on H1(M, R) is dual to
the stable norm, that is, for any h ∈ H1(M, R),

‖h‖ = max
{
〈c, h〉 : c ∈ H1(M, R), ‖c‖0 6 1

}
.

In view of the above lemma, what we need to show is that for any c ∈
H1(M, R) such that ‖c‖0 6 1, we have 〈c, [µ]〉 6 1. As ‖c‖0 6 1, for all
ε > 0 there exists a closed one-form ω such that [ω] = c and |ωx(v)| 6 1+ ε

for all (x, v) ∈ T 1M . By the Ergodic Decomposition Theorem [11, Theorem
6.4, p. 170] we have∫

T 1M

ωdµ =
∫

T 1M

{∫
T 1M

ωdµx,v

}
dµ(x, v)

where, for µ-almost every (x, v),∫
T 1M

ωdµx,v = lim
T→+∞

1
T

∫ T

0

ω(φt(x, v))dt.

Since φt(x, v) is in T 1M for all t, the above expression is bounded from
above by 1 + ε, which proves that 〈[ω] , [µ]〉 6 1 + ε. Thus 〈c, [µ]〉 6 1 for
any c ∈ H1(M, R) such that ‖c‖0 6 1 so ‖ ‖ 6 N .

Finally ‖ ‖ = N and B1 = {h ∈ H1(M, R) : ‖h‖ 6 1}. �

We say an element µ of Mg is minimizing if and only if its homology
class lies on the boundary S1 of B1, that is, if there exists a cohomology
class c such that 〈c, [µ]〉 = 1 and 〈c, h〉 6 1 for all h ∈ B1.

3.2. Link with Mather’s theory

In this paragraph we prove that the minimizing measures just defined
are minimizing in the sense of Mather [15], which allows us to use Mather’s
Graph Theorem.

Consider the set M′

g of all compactly supported, φt-invariant probability
measures on the tangent bundle TM of M and not just T 1M (here φt

denotes the geodesic flow in TM). We can define the homology class of an
element of M′

g just like we do for an element of Mg. Mather’s β-function
is defined in [15] as

β : H1(M, R) −→ R
h 7−→ min

{∫
TM

1
2‖ · ‖

2
gdµ : µ ∈M′

g, [µ] = h
}

where ‖(x, v)‖2
g := gx(v, v) for all (x, v) ∈ TM .

ANNALES DE L’INSTITUT FOURIER



STABLE NORMS OF NON-ORIENTABLE SURFACES 1345

The measures achieving the minimum for some h are called h-minimizing.
Next we show that this definition of minimizing agrees with ours.

Proposition 3.3. — A minimizing measure µ ∈Mg is [µ]-minimizing.
Conversely an h-minimizing measure in M′

g with h ∈ S1 is in Mg; in
particular, it is minimizing. Furthermore, 2β = ‖ ‖2.

Proof. — Let us begin by showing that β is quadratic (i.e. 2-homogeneous).
Take h ∈ H1(M, R), µ an h-minimizing measure, λ a real number. The for-
mula

f 7−→
∫

TM

f(x, λv)dµ(x, v)

defines a probability measure on TM , whose homology class is λh. There-
fore we have β(λh) 6 λ2β(h) and likewise,

β(h) = β(
1
λ

λh) 6
1
λ2

β(λh)

whence β(λh) = λ2β(h).
Now, since 2β and ‖ ‖2 are both quadratic, proving that

B1 =
{

h ∈ H1(M, R) : β(h) 6
1
2

}
suffices to prove that 2β = ‖ ‖2. Note that

B1 ⊂
{

h ∈ H1(M, R) : β(h) 6
1
2

}
for if µ is an element of Mg, we can view it as a measure on TM supported
on T 1M , thus ∫

TM

1
2
‖ · ‖2

gdµ =
∫

TM

1
2
dµ =

1
2

whence β([µ]) 6 1/2.
Conversely, let h ∈ H1(M, R) be such that β(h) = 1/2, and let µ be an

h-minimizing measure. Then by [4] the support of µ is contained in the
energy level one half, that is, T 1M . Thus [µ] ∈ B1, and

B1 =
{

h ∈ H1(M, R) : β(h) 6
1
2

}
whence β =

1
2
‖ ‖2.

Moreover, since β(h) = 1/2, h lies on the boundary of B1, hence µ is
minimizing in our sense. Now we would like to prove that a minimizing
measure in our sense minimizes in the sense of Mather. Let µ ∈ Mg be
such that [µ] ∈ S1. Then as we have just seen β([µ]) = 1/2 so∫

TM

1
2
‖ · ‖2

gdµ >
1
2
.
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1346 Florent BALACHEFF & Daniel MASSART

On the other hand since µ is supported in T 1M , we have∫
TM

1
2
‖ · ‖2

gdµ 6
1
2

whence ∫
TM

1
2
‖ · ‖2

gdµ =
1
2

= β([µ])

that is, µ is minimizing in the sense of Mather. �

The main payoff for our efforts is that we may use Mather’s Graph The-
orem. Let c be a cohomology class such that 〈c, h〉 6 1 for all h ∈ B1 and
〈c, h0〉 = 1 for some h0 ∈ B1 (thus ‖c‖0 = 1). We say a measure µ ∈Mg is
c-minimizing if 〈c, [µ]〉 = 1. Let Mc ⊂ T 1M be the union of the supports
of all c-minimizing measures. Recall that p denote the canonical projection
T 1M −→ M .

Theorem 3.4 (Mather [15]). — The restriction of p to Mc is injective,
and its inverse is Lipschitz.

The reason why this is called the Graph Theorem is that it says the
support of a minimizing measure is a Lipschitz graph over its projection to
M . Recall (see [3] for an introduction to measured geodesic laminations)
that a geodesic lamination is a subset S of a Riemannian manifold, with
the following property : there exists a compact subset S̃ of T 1M , such that

• S̃ is invariant by the geodesic flow
• the canonical projection p, restricted to S̃, is injective
• p(S̃) = S.

A measured geodesic lamination is a geodesic lamination S, with the ad-
ditional data of a transverse measure µ, invariant by the geodesic flow
and whose support is S̃. So the Graph Theorem implies that minimizing
measures can be identified with measured geodesic laminations.

4. Flats of the unit ball

Let (M, g) be a closed Riemannian manifold of any dimension. We call

• supporting subspace to the unit ball of the stable norm, any affine
subspace of H1(M, R) that meets the unit sphere but not the open
unit ball

• flat of the unit ball, the intersection of the unit sphere with a sup-
porting subspace

ANNALES DE L’INSTITUT FOURIER



STABLE NORMS OF NON-ORIENTABLE SURFACES 1347

• dimension of a flat, the dimension of the affine subspace it generates
in H1(M, R)

• interior of a flat, its interior in the affine subspace it generates.
As a trivial example, all points of the unit sphere are zero-dimensional flats.
If c is a cohomology class of dual stable norm one, that is, 〈c, h〉 6 1 for all
h ∈ B1 and 〈c, h0〉 = 1 for some h0 ∈ B1, then

{h ∈ H1(M, R) : 〈c, h〉 = 1}

is a supporting hyperplane to the unit ball of the stable norm, and

{h ∈ B1 : 〈c, h〉 = 1}

is a flat, which may or may not be trivial. Note that by the Hahn-Banach
Theorem, any supporting subspace is contained in a supporting hyperplane.
So for any flat F , there exists c ∈ H1(M, R) such that

〈c, h〉 6 1,∀h ∈ B1 and F ⊂ {h ∈ B1 : 〈c, h〉 = 1} .

By [12], if a minimizing measure µ is ergodic, then [µ] is an extremal point
of B1, hence it cannot be in the interior of any non-trivial flat. In partic-
ular non connected minimizing cycles, when they exist, are the simplest
examples of non-trivial flats. Recall Proposition 4 of [14]:

Lemma 4.1. — Let F1 and F2 be two flats of the unit ball, both con-
taining a point h0 such that h0 is an interior point of F1. Then there exists
a flat F containing F1 ∪ F2.

Proof. — Let c ∈ H1(M, R) be such that

〈c, h〉 6 1,∀h ∈ B1 and F2 ⊂ {h ∈ B1 : 〈c, h〉 = 1} .

Then c restricted to the convex set F1 has a maximum at the interior point
h0. Since c is linear, this implies that c is constant on F1. Hence

{h ∈ B1 : 〈c, h〉 = 1}

is a flat containing F1 ∪ F2. �

Lemma 4.2. — Let F1 and F2 be two flats of the unit ball, both con-
taining a point h0 in their interiors. Then there exists a flat F containing
F1 ∪ F2 such that h0 is an interior point of F .

Proof. — Let
• Vi, i = 1, 2 be the underlying vector space of the affine space gen-

erated by Fi

• V := V1 + V2

• A be the affine subspace h0 + V

TOME 58 (2008), FASCICULE 4



1348 Florent BALACHEFF & Daniel MASSART

• F := A ∩ B1

• c ∈ H1(M, R) be given by the previous lemma such that

〈c, h〉 6 1 ,∀h ∈ B1 and F1, F2 ⊂ {h ∈ B1 : 〈c, h〉 = 1} .

Since F1, F2 ⊂ {h ∈ B1 : 〈c, h〉 = 1} we have A ⊂ {h ∈ B1 : 〈c, h〉 = 1} so
A is a supporting subspace whence F is a flat. Moreover, since F is convex
and contains F1 and F2, it contains the convex hull C of F1 and F2. Now,
since h0 is interior to both F1 and F2, there exist open neighborhoods of
zero U1, U2 in V1, V2 respectively such that h0 + Ui ⊂ Fi, i = 1, 2. So the
convex hull of h0 +U1 and h0 +U2 is open in A, and contained in C, hence
in F . Thus h0 is an interior point of F . �

The preceding lemma means that for any homology class h, there exists
an unique maximal flat containing h in its interior.

Orientable surfaces.

Assume, for the remainder of this section, that M is an orientable surface.
If F is a flat of the unit ball of the stable norm, h1, h2 ∈ F and µ1, µ2

are minimizing measures such that [µi] = hi, i = 1, 2, then by Mather’s
Graph Theorem the supports of µ1 and µ2 do not intersect transversally
so Int(h1, h2) = 0. Thus the vector space generated by F in H1(M, R)
is isotropic with respect to the symplectic intersection form. In particular
its dimension is 6 2−1b1(M) so dim F 6 2−1b1(M) − 1. This was first
observed by M.J. Carneiro [4]. In [14] this upper bound is proved to be
optimal, so non-trivial flats always exists for orientable surfaces of genus
> 2 (see Theorem 6.1 and its corollary).

It is proved in [14, Proposition 6] that a flat containing a rational point
in its interior is a finite polyhedron with at most 3(2−1b1(M) − 1) ver-
tices. Furthermore the vertices are rational homology classes which have
connected minimizing cycles.

5. Technical lemmas

5.1. Key lemma, one-sided case

After writing up this lemma we came across reference [17], where a sim-
ilar result is proved in a topological setting. Lemma 5.1 and its orientable
companion Lemma 5.2 are improved versions of lemmas 15, 16, 17 of [14].
The purpose of Lemma 5.1 was to mimic the approach of [14]. Later on,
inspired by [8] we realized it is simpler to use the orientation cover.
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Let γ1 be a closed, one-sided, simple geodesic on a closed non-orientable
surface M endowed with a Riemannian metric.

Lemma 5.1. — There exists a neighborhood V1 of (γ1, γ̇1) in T 1M such
that, for any simple geodesic γ, if (γ, γ̇) enters (resp. leaves) V1 then γ is
forever trapped in p(V1) in the future (resp. past), that is

∃t1 ∈ R, ∀t > (resp. 6)t1, γ(t) ∈ p(V1).

Proof. — Let U1 be a neighborhood of γ1 in M homeomorphic to a
Mőbius strip. Let P := γ1(0) be a point of γ1, and let δ be an smooth open
arc transverse at P to γ1, such that U1 \ δ is simply connected. Let V1 be
the neighborhood of (γ1, γ̇1) in T 1M defined by

(1) p(V1) = U1

(2) ∀(x, v) ∈ V1, p(φt(x, v)) intersects δ transversally at least three
times t1 < t2 < t3 (the points p(φti

(x, v)), i = 1, 2, 3 may coin-
cide if p(φt(x, v)) is a closed geodesic)

(3) we would like a condition along the lines of "the geodesics that enter
V always cross δ in the same direction as γ1". This must be done
with some care because M is not orientable. So we choose a smooth
vector field X in U1, transverse to δ, which has γ1 as a trajectory
and such that every other trajectory is closed and homotopic to the
boundary of U1, that is, bounds a Mőbius strip containing γ1. We
require that

∀(x, v) ∈ V1, g(X(x), v) > 0.

These conditions define an open set of T 1M because δ is an open arc and
we demand that the intersections be transverse.

Now consider a simple geodesic γ such that for some t ∈ R, (γ(t), γ̇(t)) ∈
V1. Let t1 < t2 < t3 be such that γ(t1), γ(t2), γ(t3) are the transverse
intersection points of γ and δ given by the definition of V1.

5.1.1. First case

Assume γ(t3) is farther away from P than γ(t1) with respect to the
distance on δ induced by the metric of M . The domain U ′1 bounded by
γ([t1, t3]) and the subsegment of δ joining γ(t1) with γ(t3) is homeomorphic
to a Mőbius strip. The geodesic γ does not self-intersect, hence it can only
cut the boundary of U ′1 along δ. By Condition 3 of the definition of V1,
γ can only intersect δ from left to right as pictured in Figure 5.1, that is,
outwards of U ′1. Therefore γ is trapped in U ′1 in the past.

TOME 58 (2008), FASCICULE 4



1350 Florent BALACHEFF & Daniel MASSART

γ1

γ

δ

γ(t1)
γ(t3)

γ(t2)

γ(t2)

γ(t1)
γ(t3)

U1

Figure 5.1

5.1.2. Second case

Assume γ(t1) is farther away from P than γ(t3) with respect to the
distance on δ induced by the metric of M . We can prove as in the first case
that γ is trapped in U ′1 in the future.

5.1.3. Third case

Assume γ(t1) = γ(t3). Then, since γ has no self-intersections, it must be
a closed geodesic, hence is trapped in U1 in both past and future. �

5.2. Key lemma, two-sided case

Let γ2 be a closed, two-sided, simple geodesic without conjugate points on
a closed (possibly non-orientable) surface M endowed with a Riemannian
metric. Again, we shall only use the orientable case in the sequel, but the
non-orientable case comes for free. Let U2 be a neighborhood of γ2 in M

homeomorphic to an annulus. Choose a symplectic form ω in U2, yielding
a local orientation of U2.

Lemma 5.2. — There exists a neighborhood V2 of (γ2, γ̇2) in T 1M such
that any simple geodesic γ, if (γ, γ̇) enters (resp. leaves) V2 then either γ

intersects γ2 or γ is forever trapped in p(V2) in the future (resp. past), that
is

∃t2 ∈ R, ∀t > (resp. 6)t2, γ(t) ∈ p(V2).

Moreover, all intersections with γ2, if any, have the same sign with respect
to ω.

Proof. — Let P := γ2(0) be a point of γ2, and let δ be an smooth open
arc transverse at P to γ2, such that U2 \ δ is simply connected. Assume δ

is oriented so that ω(P )(γ̇2, δ̇) > 0. Let V2 be the neighborhood of (γ2, γ̇2)
in T 1M defined by
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(1) p(V2) = U2

(2) ∀(x, v) ∈ V2, p(φt(x, v)) intersects δ transversally at least twice
before intersecting γ2, if it intersects γ2 at all; and if it does, it must
intersect δ transversally at least twice more before either leaving U2

or meeting γ2 again
(3) the geodesics that enter V2 always crosses δ in the same direction

as γ2, that is,

∀x ∈ δ, ∀v ∈ T 1
xM such that (x, v) ∈ V2, ω(x)(v, δ̇(x)) > 0.

These conditions define an open set of T 1M because δ is an open arc, γ2 has
no conjugate points and we demand that the intersections be transverse.

Now consider a simple geodesic γ such that for some t ∈ R, (γ(t), γ̇(t)) ∈
V2. Let t1 < t2 be such that γ(t1), γ(t2) are the first two transverse inter-
section points of γ and δ given by the definition of V2.

5.2.1. First case

Assume γ(t2) is farther away from P than γ(t1) with respect to the
distance on δ induced by the metric of M . The domain U ′2 bounded by
γ([t1, t2]) and the subarc of δ joining γ(t1) with γ(t2) on one side, and
by γ2 on the other side is homeomorphic to an annulus. The geodesic γ

is simple so it cannot self-intersect, hence it can only cut the boundary
of U ′2 along δ or γ2. By Condition 3 of the definition of V2, γ can only
intersect δ from left to right as pictured in Figure 5.2, that is, outwards of
U ′2. Therefore γ either intersects γ2 or is trapped in U ′2 in the past.

γ2

γ

δ

P

γ(t1)
γ(t2) γ(t2)

γ(t1)
U2

Figure 5.2

5.2.2. Second case

Assume γ(t1) is farther away from P than γ(t2) with respect to the
distance on δ induced by the metric of M . Likewise we prove that γ either
intersects γ2 or is trapped in U ′2 in the future.
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5.2.3. Third case

Assume γ(t1) = γ(t2). Then, since γ doesn’t self-intersect, it must be a
closed geodesic, and the conclusion readily follows.

We still have to prove the statement about the sign of the intersections.
Assume γ cuts γ2 once with positive sign, that is, downwards in Figure
5.3. Assume for convenience that the intersection point is γ(0). Let t1 <

t2 < 0 < t3 < t4 be such that γ(t1), γ(t2) are the last two transverse
intersection points of γ and δ before γ meets γ2, and γ(t3), γ(t4) are the
first two transverse intersection points of γ and δ after γ meets γ2. The
domain U ′′2 bounded by γ([t1, t2]) and the subarc of δ joining γ(t1) with
γ(t2) on one side, and by γ([t3, t4]) and the subarc of δ joining γ(t3) with
γ(t4) on the other side, is homeomorphic to an annulus and contains γ2 in
its interior.

γ2

γ

γ(0)
δ

γ(t4)

γ(t3)

γ(t1)
γ(t2)

U2

Figure 5.3

The geodesic γ does not self intersect so it cannot enter U ′′2 through
segments of γ. It only intersects δ from left to right, that is, either between
γ(t3) and γ(t4) and outwards of U ′′2 , or between γ(t1) and γ(t2) and inwards
of U ′′2 . So it can only enter U ′′2 through δ between γ(t1) and γ(t2), that is,
from above in Figure 5.3. Therefore it always cut γ2 with positive sign. �

5.3. Consequences of the key lemmas

To facilitate the exposition, rather than loading up the sentences with
"resp." we have split the next proposition in two, one part for the one-sided
case and the other for the two-sided case.

Proposition 5.3. — Let γ1 be a closed, simple, one-sided geodesic on
a closed non-orientable surface M endowed with a Riemannian metric.
There exists a neighborhood V1 of (γ1, γ̇1) in T 1M such that for any simple
geodesic γ, if (γ, γ̇) enters (resp. leaves) V1, then
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• γ is a closed geodesic homotopic to γ1 or γ1.γ1, this being the prod-
uct in π1(M)

• or γ is positively (resp. negatively) asymptotic to a closed without
conjugate points geodesic homotopic to γ1 or γ1.γ1.

Proposition 5.4. — Let γ2 be a closed, simple, two-sided geodesic on
a closed (possibly non-orientable) surface M endowed with a Riemannian
metric. There exists a neighborhood V2 of (γ2, γ̇2) in T 1M such that for
any simple geodesic γ, if γ enters (resp. leaves) V2, then

• either γ is a closed geodesic homotopic to γ2

• or γ is asymptotic to a closed geodesic homotopic to γ2

• or γ intersects γ2, and all intersections have the same sign with
respect to some orientation of p(V2).

Proof. — Let us prove Proposition 5.4. Let V1 be a neighborhood of
(γ1, γ̇1) in T 1M given by Lemma 5.2, and small enough so it does not
contain any contractible closed geodesic. By contractible we mean null-
homotopic. Let γ be a simple geodesic such that (γ, γ̇) enters V1. Let t1 be
such that (γ, γ̇) ([t1,+∞[) ⊂ V1. Extend γ̇ ([t1,+∞[) to a smooth vector
field in the annulus p(V1). Since the annulus may be embedded in the
two-sphere, the Poincaré-Bendixon Theorem applies. So γ is either a fixed
point, a cycle of fixed points and heteroclinic orbits, or a closed orbit, or
asymptotic to one of the preceding. Four out of six cases are impossible here
because γ is a geodesic so its velocity is constant, hence cannot go to zero.
Moreover, a closed orbit of a vector field must be a simple closed curve,
and a non-contractible simple closed curve in an annulus is homotopic to
the boundary of the annulus. This proves Proposition 5.4. The proof of
Proposition 5.3 is identical, mutatis mutandis. �

5.4. Geodesics asymptotic to closed geodesics

Lemma 5.5. — Let M be a closed (possibly non-orientable) surface with
a Riemannian metric. If a geodesic γ is asymptotic to a simple closed
geodesic, then (γ, γ̇) is not in the support of any minimizing measure.

Proof. — Let
• γ0 be a simple closed geodesic
• γ be a geodesic asymptotic to γ0

• V0 be a neighborhood of (γ0, γ̇0) in T 1M given by Lemma 5.1 or 5.2
depending on whether γ0 is one-sided or two-sided, and such that
(γ(0), γ̇(0)) /∈ V0
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• V be a neighborhood of (γ(0), γ̇(0)) such that V is disjoint from V0

but for some t, φt(V ) ⊂ V0

• µ be a minimizing measure.
Assume (γ, γ̇) is contained in the support of µ. Then since supp(µ) is closed
and invariant under the geodesic flow, it contains the α-and ω-limit sets
of (γ, γ̇), in particular it contains (γ0, γ̇0). Moreover, µ(V ) > 0. By the
Ergodic Decomposition Theorem [11, Theorem 6.4, p. 170], we have

µ(V ) =
∫

T 1M

µx,v(V )dµ(x, v)

where, for µ-almost every x, v,

µx,v(V ) = lim
T→+∞

1
T

∫ T

0

χV (φt(x, v))dt

where χV denote the characteristic function of V . Thus for some (x, v) we
have µx,v(V ) > 0. So for some t in R, φt(x, v) ∈ V . By our hypothesis on V ,
this implies that for some other t we have φt(x, v) ∈ V0. But since (γ0, γ̇0)
is contained in the support of µ, by Mather’s Graph Theorem p(φt(x, v))
cannot intersect γ0. Thus by Proposition 5.3 or 5.4 the geodesic p(φt(x, v))
is asymptotic to a geodesic homotopic to γ0 whose lift to T 1M is contained
in V0. Therefore φt(x, v) never comes back to V , whence

lim
T→+∞

1
T

∫ T

0

χV (φt(x, v))dt = 0

which contradicts the fact that µx,v(V ) > 0. �

5.5. Minimizing measures with rational homology classes

The proposition below was stated as Lemma 2.1.6 in [13] and Proposition
5 of [14]. The proofs given there were mere sketches, the reader will find a
complete proof below. After writing the proof below, we realized another
complete proof was already published as Proposition 2.1 of [5].

Proposition 5.6. — Let M be a closed (possibly non-orientable) sur-
face with a Riemannian metric. If h is a rational homology class and µ is
an h-minimizing measure, then the support of µ consists of periodic orbits.

First we need

Lemma 5.7. — Let M be a closed non-orientable surface with a Rieman-
ninan metric g and π : (Mo, g̃) → (M, g) denote the Riemannian orientation
cover.
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If µ ∈Mg is a c-minimizing measure where c is a cohomology class with
‖c‖0 = 1, then there exists ν ∈ Mg̃ such that π∗(ν) = µ, ν is I∗-invariant
and π∗(c)-minimizing.

Proof of the lemma. — Let us assume for the time being that µ is
ergodic. That is, there exists (x, v) ∈ T 1M such that for any continuous
function F on T 1M ,∫

T 1M

Fdµ = lim
T→+∞

1
T

∫ T

0

F (φt(x, v))dt

We lift the orbit φt(x, v) to an orbit φ̃t(x, v) of the geodesic flow of (Mo, g̃).
Let νT be the probability measure on T 1Mo defined by∫

T 1Mo

FdνT =
1
T

∫ T

0

F (φ̃t(x, v))dt

for any continuous function F on T 1Mo. Since the set of probability mea-
sures on T 1Mo is compact for the weak∗ topology, there exists a sequence
Tn → +∞ such that νTn converges to some measure ν. Then ν is invariant
by the geodesic flow on Mo, that is, ν ∈ Mg̃. Moreover π∗(ν) = µ since,
for any continuous function F on T 1M∫

T 1M

Fdπ∗(ν) =
∫

T 1Mo

F ◦ π dν = lim
n→+∞

1
Tn

∫ Tn

0

F (π(φ̃t(x, v)))dt

= lim
n→+∞

1
Tn

∫ Tn

0

F (φt(x, v))dt =
∫

T 1M

Fdµ.

Furthermore, since µ is a c-minimizing measure, for all ε > 0 there exists
a closed one-form ω such that [ω] = c, |ωx(v)| 6 1 + ε for all x ∈ M ,
v ∈ T 1

xM , and
∫

ωdµ = 1. Set ω̃ := π∗(ω), then c̃ = [ω̃] = π∗(c) and
|ω̃x(v)| 6 1 + ε for all x ∈ Mo, v ∈ T 1

xMo, and
∫

ω̃dν = 1. So ν is π∗(c)-
minimizing. Notice that ω̃ is I∗-invariant, so I∗ν is also π∗(c)-minimizing.
Then so is 2−1(ν + I∗ν), which is I∗-invariant. This proves the ergodic case
of the lemma as π∗(I∗ν) = µ.

Now consider the restriction of π∗ to the compact convex set

{µ ∈Mg̃ : I∗(µ) = µ}

with image in Mg. This restriction is affine and surjective onto the extremal
points of Mg, hence surjective onto Mg. �

Proof of the proposition. — First let us address the case when M is
orientable.

Let h be a rational homology class and µ be an h-minimizing measure.
Then Int(h, H1(M, Z)) is a discrete subgroup of R. Assume the projection
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p(suppµ) of the support of µ to M contains a non-closed geodesic γ. Since
M is compact γ has a limit point, say xγ in M . Let tn be an increasing
sequence of real numbers such that γ(tn) −→ xγ when n −→ ∞. Denote
by γn the closed curve obtained by closing up γ([tn, tn+1]) with a geodesic
segment δn of length d(γ(tn), γ(tn+1)). Such a segment is unique for n large
enough because d(γ(tn), γ(tn+1)) tends to zero. We claim that Int(h, [γn])
is not zero for n large enough, and tends to zero, which contradicts the
discreteness of Int(h, H1(M, Z)).

By Mather’s Graph Theorem [15], for any x in p(suppµ), there exists a
unique geodesic, denoted γx, which is the projection of an orbit in suppµ

and such that γx(0) = x. In order to make the notation less cumbersome
we denote by γγ the orbit γx with x = xγ . Call

Rn := {γx(t) : x ∈ p(suppµ) ∩ δn, t ∈ [0, 1]} .

This is a closed subset of M .
First let us show that

(5.1) p∗µ(Rn) −→ 0

Denote by χn the characteristic function of Rn. The sequence of functions
χn converges pointwise to the characteristic function of γγ([0, 1]), so

p∗µ(Rn) −→ p∗µ (γγ([0, 1])) .

Now the latter cannot be positive unless the geodesic γγ is closed, for
otherwise, since µ is invariant by the geodesic flow, the total mass of γγ

would be infinite, contradicting the fact that µ is a probability measure.
Assume γγ is closed. It is two-sided because we are assuming M to be
orientable for the time being. Since suppµ is closed, xγ is in suppµ. Since
suppµ is invariant by the geodesic flow γγ is contained in suppµ. Therefore
by Mather’s Graph Theorem γγ and γ do not intersect. Thus by Proposition
5.4, γ is asymptotic to a closed geodesic, hence cannot be in the support of a
minimizing measure by Lemma 5.5. This proves Equation (5.1). Moreover,
since γ is in the support of µ,

(5.2) p∗µ(Rn) > 0.

Next we evaluate Int(h, [γn]) and find it equals p∗µ(Rn), which together
with the previous paragraph proves the proposition.

First note that by the Ergodic Decomposition Theorem [11, Theorem
6.4, p. 170],

(5.3) p∗µ(Rn) =
∫

M

{∫
χndµx

}
dp∗µ(x)
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where, for p∗µ-almost every x in M∫
χndµx = lim

T→+∞

1
T

∫ T

0

χn(γx(t))dt

= lim
T→+∞

1
T

] {t ∈ [0, T ] : γx(t) ∈ δn}

by the definition of Rn, denoting ] the cardinal of a set.
For x in p(suppµ)∩ δn, let γx,T be a closed curve obtained by closing up

γx([0, T ]) with a geodesic segment δx,T of length 6 diamM . By Birkhoff’s
Ergodic Theorem, for p∗µ-almost every x, for any closed one-form ω on M ,∫

ωdµx = lim
T→+∞

1
T

∫ T

0

ωγx(t)(γ̇x(t))dt = lim
T→+∞

1
T
〈[ω] , [γx,T ]〉.

Thus, for p∗µ-almost every x,

[µx] = lim
T→+∞

1
T

[γx,T ] .

Since the dimension of H1(M, R) is finite, the bilinear form Int(., .) is con-
tinuous so for p∗µ-almost every x,

Int([µx] , [γn]) = lim
T→+∞

1
T

Int([γx,T ] , [γn]).

Observe that since both γ and γx are in the support of µ, by the Graph
Theorem they cannot intersect transversally. So the transverse intersections
of γx,T and γn, if any, occur along δn or δx,T . Note that for fixed n the
number nx,T of intersections (counted with sign) of δx,T with γn is bounded
independantly of T because the length of δx,T is bounded independantly
of T .

Furthermore, by the Graph Theorem, all intersections of γx([0, T ]) with
δn have the same sign if δn is small enough. This is where we need the
orientability assumption.

By smoothing the corners one can make γx,T and γn of class C1 without
modifying their transverse intersections. The curve obtained in this way
are transverse unless γ = γx. In the latter case one moves γx slightly away
from γ without modifying the transverse intersections of γx,T and γn. Since
all intersections of γx([0, T ]) with δn have the same sign, we get

(5.4) Int([γx,T ] , [γn]) = ] {t ∈ [0, T ] : γx(t) ∈ δn}+ nx,T

whence, since nx,T is bounded independantly of T ,

Int([µx] , [γn]) = lim
T→+∞

1
T

] {t ∈ [0, T ] : γx(t) ∈ δn}
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so, using Equation (5.3),

Int(h, [γn]) = p∗µ(Rn)

which finishes the proof of the orientable case of the proposition.

Assume now that M is not orientable. Let µ be a minimizing measure
such that [µ] = rh with h ∈ Λ and r ∈ R. Let ν be an I∗-invariant
minimizing measure given by Lemma 5.7. Let c1, . . . cb be an integer basis
of H1(M, R) and let ω1, . . . ωb be closed one-forms such that [ωi] = ci, i =
1 . . . b. Then

∫
ωidµ ∈ rZ for i = 1 . . . b.

Let ω̃1, . . . ω̃b be the lifts of ω1, . . . ωb to Mo. They are integer one-forms
and [ω̃1] , . . . [ω̃b] is a basis of E1 =

{
c ∈ H1(Mo, R) : I∗c = c

}
. Moreover,∫

ω̃idν =
∫

ωidµ ∈ rZ, i = 1, . . . , b.

Let us take an integer basis cb+1, . . . c2b of

E−1 =
{
c ∈ H1(Mo, R) : I∗c = −c

}
and closed one-forms ω̃1, . . . ω̃b such that [ω̃i] = ci for i = b+1, . . . 2b. Since
ν is I∗-invariant we have∫

ω̃idν = 0, i = b + 1, . . . , 2b.

Let x1, . . . x2b be the coordinates of [ν] in the basis of H1(Mo, R) dual
to the integer basis [ω̃1] , . . . [ω̃2b] of H1(Mo, Z). We have just seen that
x1, . . . x2b are all in rZ, so [ν] is rational. Thus, using the orientable case
of the proposition, we conclude that ν, hence µ, is supported on periodic
orbits. �

6. Proofs of the main theorems

6.1. Local results - Orientable case

Let h be a rational homology class of a closed (possibly non-orientable)
Riemannian surface M . Then by Proposition 5.6 any h-minimizing measure
is supported on periodic orbits. Call Ph the union of the projections on M

of the supports of all h-minimizing measures. By Mather’s Graph Theorem
Ph is a union of pairwise disjoint closed geodesics. Denote by VPh the
vector subspace of H1(M, R) generated by all homology classes of geodesics
contained in Ph. Note that the convex hull of all homology classes of curves
in Ph is contained in a flat of the unit ball containing h in its interior.
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The following theorem proved in [14] describes the local geometry of the
unit ball of the stable norm near a rational homology class in the orientable
case.

Theorem 6.1. — [14] Let M be a closed orientable surface endowed
with a Riemannian metric g. Let h0 be a rational point of S1. For all
h ∈ VP⊥h0

, there exists s(h0, h) > 0 such that the subset of the unit sphere
S1 {

h0 + sh

||h0 + sh||
: s ∈ [0, s(h0, h)]

}
is a straight segment.

Proof. — For any n ∈ N∗ let us denote

hn :=
h0 + 1

nh

||h0 + 1
nh||

.

Let
• µn be an hn-minimizing measure
• µ0 be a limit point, in the weak-∗ topology, of the sequence µn.

Then µ0 is an h0-minimizing measure. By Proposition 5.6, µ0 is supported
on periodic orbits γi, i ∈ I where I is some set, not necessarily finite. Note
that for all i ∈ I the class [γi] belongs to VPh0 . For each i ∈ I let Vi be
the neighborhood of (γi, γ̇i) given by Proposition 5.4. Let V be the union
over i ∈ I of the Vi. First let us prove that V ∩ supp(µn) is φt-invariant
and consists of periodic orbits homotopic to some or all of the γi. Indeed
by Proposition 5.4 a minimizing geodesic that enters V is either

• asymptotic to one of the γi, which is ruled out by Lemma 5.5
• or homotopic to one of the γi

• or cuts one of the γi with constant sign, which is ruled out by
hypothesis.

Suppose µn(V ) 6= 0. For any measurable subset A of T 1M , set

αn(A) :=
µn(A ∩ V )

µn(V )

βn(A) :=
µn(A \ V )

µn(T 1M \ V )
λn := µn(V ).

Then αn and βn are two probability measures on T 1M . They are invariant
by the geodesic flow because V ∩ supp(µn), as well as its complement in
supp(µn), is φt-invariant. In case µn(V ) = 0, set αn := µn and λn := 1.
Since the support of αn consists of periodic orbits homotopic to some or
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all of the γi, the homology class of αn is contained in the convex hull of
the [γi] /lg(γi). Note that since the support of µ0 consists of all of the γi,
the homology class of µ0 is contained in the relative interior of the convex
hull of the [γi] /lg(γi).

We have
µn = λnαn + (1− λn)βn

and λn tends to 1 as n tends to infinity, so the homology class of αn

converges to h0. Therefore, when n is large enough, the homology class of αn

is contained in the relative interior of the convex hull of the [γi] /lg(γi). Thus
any supporting cohomology class c to S1 at [αn], i.e. such that 〈c, [αn]〉 = 1
and 〈c, h〉 6 1 for all h ∈ B1, is also a supporting cohomology class to S1

at h0. In other words, any flat of S1 that contains [αn] also contains h0.

Let c be a supporting cohomology class to S1 at hN . We have
〈c, hN 〉 = 1 and |〈c, h〉| 6 1,∀h ∈ S1. Therefore

λN 〈c, [αN ]〉+ (1− λN )〈c, [βN ]〉 = 1.

Since 〈c, [αN ]〉 6 1, 〈c, [βN ]〉 6 1, λN ∈ [0, 1], this implies

〈c, [αN ]〉 = 〈c, hN 〉 = 1

that is, [αN ] and hN are in the same flat of S1, whence h0 and hN are in
the same flat of S1. �

Recall from [14] the orientable analogue of the first part of Theorem 1.1:

Corollary 6.2. — Let M be a closed orientable surface endowed with
a Riemannian metric g. Then every rational homology class contained in
S1 lies in a flat of S1 of dimension at least b1(M)/2− 1.

Proof. — Let h0 be a rational point of S1(M, g). Set

p := dimVPh0

and assume p < b1(M)/2. Choose curves γi in Ph0 for i = 1, . . . , p, such
that {[γi] | i = 1, . . . , p} generate VPh. Since p < b1(M)/2, there exists
h ∈ H1(M, R) such that

h /∈ VPh0 and Int(h, [γi]) = 0 ,∀i = 1, . . . , p.

By Theorem 6.1 there exists s > 0 such that

F1 :=
{

h0 + sh

||h0 + sh||
: s ∈ [0, s(h0, h)]

}
is a straight segment contained in S1(M, g). On the other hand, the convex
hull of [γi] for i = 1, . . . p + q is contained in a flat F0 of S1(M, g) of
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dimension p that contains h0 in its interior. From Lemma 4.1 we deduce
that there exists a flat containing F0 and F1. The dimension of said flat is
greater than p = dim F0 because h /∈ VPh0 . �

6.2. Local results - Non-orientable case

In this section, we suppose that M is a closed non-orientable surface
endowed with a Riemannian metric g and prove Theorems 1.1 and 1.2. The
proofs combine basic facts about the orientation cover of a non-orientable
surface and Theorem 6.1.

Proposition 6.3. — Let M be a closed non-orientable surface endowed
with a Riemannian metric g and π : (Mo, g̃) → (M, g) its orientation cover.
Then

π∗B1(Mo, g̃) = B1(M, g).

and furthermore the vector space E1 endowed with the restriction of the
stable norm of (Mo, g̃) is isometric to H1(M, R) endowed with the stable
norm of (M, g).

Proof. — Let µo be an element of Mg̃. Then π∗µo is an element of Mg.
So π∗B1(Mo, g̃) ⊂ B1(M, g). Conversely, let µ be a minimizing measure of
M . Let ν ∈Mg̃ be given by Lemma 5.7. We have π∗(ν) = µ so π∗([ν]) = [µ].
Thus π∗ restricted to E1 ∩ S1(Mo, g̃) is surjective onto S1(M, g). Since π∗
is linear, it must then be surjective from E1 ∩ B1(Mo, g̃) onto B1(M, g).
Moreover, since the dimensions of E1 and H1(M, R) are equal, π∗ restricted
to E1 must be injective. So π∗ restricted to E1 is a linear isomorphism
sending E1 ∩ B1(Mo, g̃) to B1(M, g). �

The purpose of the next proposition is to evaluate the maximal dimension
of a flat containing a rational class h (not necessarily as an interior point),
depending on the topological properties of h-minimizing curves. Recall that
a simple closed curve γ of M is said of type I (resp. of type II) if its
inverse image π−1(γ) consists of either one curve or two homologous curves
(resp. two non-homologous curves). Let h be a rational point of S1(M, g).
Partition Ph in two subsets P1

h and P2
h, the first set consisting only of

curves of type I and the latter only of curves of type II. Let VP2
h be the

vector subspace of H1(M, R) generated by all homology classes of geodesics
contained in P2

h. Let VP1
h be such that VP1

h is generated by homology
classes of curves of type I and

VP2
h ⊕ VP1

h = VPh.
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Proposition 6.4. — Let M be a closed non-orientable surface endowed
with a Riemannian metric g and let h0 be a rational point of S1(M, g). Set

p := dimVP1
h0

and q := dimVP2
h0

and assume p+2q < b1(M). Then there exists a flat of B1(M, g) containing
h0, of dimension > p + q.

Proof. — Choose curves

• γi in P1
h0

for i = 1, . . . , p, such that {[γi] | i = 1, . . . , p} generate
VP1

h

• γi in P2
h0

for i = p+1, . . . , p+q, such that {[γi] | i = p+1, . . . , p+q}
generate VP2

h.

For i = 1, . . . p + q denote by µi the φt-invariant probability measure sup-
ported on γi. Let c ∈ H1(M, R) be such that h0 is c-minimizing. Then
each µi, and each convex combination thereof, is also c-minimizing. Let
λi ∈ ]0, 1[, i = 1, . . . p + q be such that

∑
i λi = 1 and

∑
i λi [µi] = h0.

If i ∈ {1, . . . p}, choose a closed geodesic γ̃i in Mo such that

• π(γ̃i) = γi

• [γ̃i] lies in the eigenspace E1 for the involution I.

If i ∈ {p + 1, . . . p + q}, choose two closed geodesics γ̃i and γ̃i+q in Mo

such that

• π(γ̃i) = γi

• I(γ̃i) = γ̃i+q

• [γ̃i] 6= [γ̃i+q].

Define

• µ̃i the φ̃t-invariant probability measure supported on γ̃i for i =
1, . . . , p + 2q

• λ̃i := λi if i = 1, . . . , p

• λ̃i := λi/2 if i = p + 1, . . . , p + q

• λ̃i+q := λi/2 if i = p + q + 1, . . . , p + 2q

• µ̃ :=
∑p+2q

i=1 λ̃iµ̃i

• h̃0 = [µ̃].

We have

• I∗(µ̃) = µ̃ whence I∗(h̃0) = h̃0

• π∗(µ̃) = µ whence π∗(h̃0) = h0

• µ̃ is π∗(c)-minimizing
• the vector space generated by [γ̃i] for i = 1, . . . p + 2q equals VP h̃0

.
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The last equality holds because of Proposition 6.3. Call V the vector sub-
space of H1(Mo, R) generated by the integer classes [γ̃i] for i = 1, . . . , p+2q.
Note that I(V ) = V , so V = V1 ⊕ V−1 where Vi = Ei ∩ V , i = ±1. Also,
V = VP h̃0

. We have

V1 = Vect ({[γ̃i] : i = 1, . . . p} ∪ {[γ̃i] + [γ̃i+q] : i = p + 1, . . . p + q})
V−1 = Vect ({[γ̃i]− [γ̃i+q] : i = p + 1, . . . p + q})

We would like to use Theorem 6.1 with h̃0 playing the part of h0 and
some h in E1 ∩ V ⊥ but not in V . Observe that

dim V ⊥−1 = b1(Mo)− q so

dim V ⊥−1 ∩ E1 > b1(Mo)− q + b1(M)− b1(M0)

= b1(M)− q > p + q = dim V1

since we assume b1(M) > p + 2q. So there exists h ∈ V ⊥−1 ∩ E1 such that
h /∈ V1. Since V1 ⊂ E1, we have E1 = E⊥1 ⊂ V ⊥1 thus h ∈ V ⊥1 and

h ∈ V ⊥1 ∩ V ⊥−1 = (V1 ⊕ V−1)
⊥ = V ⊥.

So h ∈ E1 ∩ V ⊥. Furthermore h /∈ V since h ∈ E1 and h /∈ V1 = E1 ∩ V .

By Theorem 6.1 there exists s > 0 such that

F1 :=

{
h̃0 + sh

||h̃0 + sh||
: s ∈ [0, s(h0, h)]

}
is a straight segment contained in S1(Mo, g̃)∩E1

∼= S1(M, g). On the other
hand, the convex hull of [γi] for i = 1, . . . p + q is contained in a flat F0 of
S1(M, g) that contains h0 in its interior. From Lemma 4.1 we deduce that
there exists a flat containing F0 and F1. The dimension of such a flat is
greater than p + q = dim F0 because h /∈ V . �

Taking a rational h in the proof of Proposition 6.4, we deduce the first
part of Theorem 1.1.

Corollary 6.5. — Let M be a closed non-orientable surface endowed
with a Riemannian metric. Then every connected minimizing cycle is a
component of a minimizing cycle whose homology class lies in a flat of S1

of dimension at least [(b1(M) + 1)/2]− 1.

Let Γ be a minimizing cycle whose connected components are not pair-
wise proportional in homology.

Proposition 6.6. — There are at most 2b1(M)−1 disjoint non pairwise
homologically proportional simple closed curves on M .
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Proof. — The argument is classical. Let α1, . . . , αp+q be a maximal fam-
ily of disjoint pairwise non homologically proportional simple closed curves
of M . Suppose that p is the number of one-sided curves of this family
and q the number of two-sided curves. By cutting M along these simple
closed curves we obtain an union of b1(M) − 1 pair of pants. So we must
have 3(b1(M) − 1) = p + 2q. This implies 2(p + q) = 3.b1(M) + p − 3. As
p 6 b1(M) + 1, the assertion follows. �

So Γ has at most 2b1(M)− 1 components. The second part of theorem 1.1
is proved.

By specializing Proposition 6.4 to the case when q = 0, we now deduce
Theorem 1.2 which describes the local geometry of the unit ball of the stable
norm near a rational homology class for which the connected components
of minimizing cycles are curves of type I.

Corollary 6.7. — Let M be a closed non-orientable surface endowed
with a Riemannian metric. Let h0 be an integer homology class all of whose
minimizing cycles consist of curves of type I. Then for all h ∈ H1(M, R),
there exists s(h0, h) > 0 such that the subset of the unit sphere S1{

h0 + sh

||h0 + sh||
: s ∈ [0, s(h0, h)]

}
is a straight segment.

6.3. Global result - Proof of Theorem 1.3

We first prove the following theorem.

Theorem 6.8. — Let M be a closed (possibly non-orientable) surface
endowed with a Riemannian metric g and c1, . . . , cl a family of disjoint
smooth, simple, closed curves whose homology classes are not pairwise pro-
portional (that is [ci] /∈ R[cj ] for i 6= j).

For all sequence {ri}l
i=1 of positive real numbers, there exists a smooth

metric g∗ conformal to g such that the intersection of S1(g∗) with the
subspace spanned by the curves [c1], . . . , [cl] coincides with the polyhedron

Convs

(
[c1]
r1

, . . . ,
[cl]
rl

)
where Convs denote the convex hull of the symmetrization of a set.
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Proof. — Let P denote the polyhedron generated as the convex hull

Convs

(
[c1]
r1

, . . . ,
[cl]
rl

)
.

We can suppose that each curve [ci] corresponds to an exposed point of the
polyhedron (if not we can discard this curve and the polyhedron P remains
unchanged).

Lemma 6.9. — There exists a smooth metric ḡ conformal to g and an
open neighborhood Vi of each ci such that ci is the unique closed ḡ-geodesic
of Vi and lḡ(ci) = ri.

Proof of Lemma 6.9. For ε small enough, the ε-tubular neighborhoods
Uε(ci) are pairwise disjoints and the g-orthogonal projections pi : Uε(ci) →
ci are well defined. For each x ∈ Uε(ci), there exists two g-unitary vectors
±v(x) ∈ TxM orthogonal to the fiber p−1

i (pi(x)). The function αi : Ui →
]0,∞[ given by the formula

αi(x) = g(Dpi(x)v(x), Dpi(x)v(x))

is smooth and such that αi ◦ ci = 1. We define a new metric g′ conformal
to g by αig on Uε(ci) and by extending the local conformal factors {αi}k

i=1

into a smooth positive function α on M. We claim that the projections
pi : Uε(ci) → ci do not increase the lengths with respect to g′. Indeed, take
x ∈ Ui and w ∈ TxUi. Write w = λv(x) + µv′, with v′ ∈ Txp−1

i (pi(x)).
Note that v and v′ are g-orthogonal; since g′ is conformal to g, v and
v′ are g′-orthogonal. Orthogonal projections do not increase distances,
so

λ2g′(v(x), v(x)) = g′(λv(x), λv(x)) 6 g′(w,w).

Now

g′(Dpi(x)w,Dpi(x)w) = g′(Dpi(x)λv,Dpi(x)λv)

because pi is the orthogonal projection to ci, whence

g′(Dpi(x)w,Dpi(x)w) = λ2αi(x)

= λ2αi(x)g(v, v)

= λ2g′(v, v) 6 g′(w,w)

which proves the claim.

TOME 58 (2008), FASCICULE 4



1366 Florent BALACHEFF & Daniel MASSART

Choose a function f ∈ C∞(M) null on ∪k
i=1ci, positive elsewhere and such

that ∆(f) < −Scalg′ where Scalg′ denote the scalar curvature of g′. Let
g′′ := exp(f)g′. We can easily verify that each projection pi : Uε(ci) → ci

now strictly contracts the lengths. So ci is a g′′-geodesic and the nega-
tivity of Scalg′′ = exp(f)∆(f) + Scalg′ ensures that the orbit ci of the
geodesic flow associated to g′′ is hyperbolic, hence isolated in a neighbor-
hood Vi.

We extend the functions λi = ri/lg(ci) defined on each neighborhood Vi

into a smooth function λ defined on the whole surface and set ḡ := λ2g′′.
The lemma is proved. �

For any sequence ε̄ such that εi = 0,±1 we denote by γ(ε̄) the multicurve
∪l

i=1εi · ci of ∪l
i=1Vi minimizing the length in the class

∑l
i=1 εi[ci].

Lemma 6.10. — There exists a smooth metric g∗ conformal to ḡ such
that for any sequence ε̄ := {εi}l

i=1 with εi = 0,±1,

||
l∑

i=1

εi[ci]||g
∗

s = lg∗(γ(ε̄)).

Proof of Lemma 6.10. Set

δ(ε̄) := lḡ(γ(ε̄))− ||
l∑

i=1

εi[ci]||ḡs .

The set Γ(ε̄) of unions of closed geodesics different from γ(ε̄) homologous
to
∑l

i=1 εi[ci] such that their length is bounded from above by lḡ(γ(ε̄)) is
compact. It is clear that no multicurve γ in Γ(ε̄) can be totally contained
in ∪l

i=1Vi. So, if δ(ε̄) > 0, the infimum t(ε̄) of time t such that there exists
a multicurve γ ∈ Γ(ε̄) spending a time t outside ∪l

i=1Vi is achieved and not
zero.

Since there is but a finite number of sequences ε̄ we may choose β so big
that for all ε̄ with δ(ε̄) > 0

β > log
[
1 +

δ(ε̄)
t(ε̄)

]
.

Now we choose a function f ′ ∈ C∞(M) null on ∪l
i=1ci, positive elsewhere

and such that f ′ > β outside ∪l
i=1Vi. For any multicurve γ spending some

time t outside ∪l
i=1Vi, we have

lexp(f ′)ḡ(γ) > (exp(β)− 1)t + lḡ(γ).
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Now let g∗ = exp(f ′)ḡ. All the lengths except those of the ci’s increase
for g∗ so for all ε̄ such that δ(ε̄) > 0 and for all multicurve γ in the class∑l

i=1 εi[ci],
lg∗(γ) > lg∗(γ(ε̄)).

Recall that lg∗(ci) = ri as the length of each ci does not increase. Thus
each exposed point of P belongs to the unit sphere S1(g∗) of the stable
norm. Furthermore by lemma 6.10 each face of P contains an interior point
that belongs to S1(g∗). This proves the theorem by convexity of the unit
sphere of the stable norm. �

M

Figure 6.1

Corollary 6.11. — Let M be a closed orientable surface endowed with
a Riemannian metric g. For each isotropic subspace L of H1(M, R) (with
respect to Int), there exists a metric g∗ conformal to g such that the re-
striction of S1(g∗) to L is a polyhedra with rational vertices.

Proof. — There exists a system of disjoint, smooth, simple and non-
pairwise homotopic closed curves c1, . . . , cl that span L. We apply Theorem
6.8 to obtain the claim. �

Remark. — It is a classical result that such a system has cardinality at
most (3/2)b1(M) − 3 (same argument as in the proof of Proposition 6.6),
thus this bounds the number of vertices of the polyhedra obtained that way
by 3b1(M)− 6.

We now deduce, as a corollary of Theorem 6.8, Theorem 1.3 as stated in
the introduction:

Corollary 6.12. — Let M be a closed non-orientable surface endowed
with a Riemannian metric g. There exists a metric g∗ conformal to g such
that S1(g∗) is a polyhedra with rational vertices.
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Proof. — There exists a system c1, . . . , cl of smooth, simple, closed curves
such that ci∩cj = ∅, [ci] /∈ R[cj ] for i 6= j and H1(M, R) = Vect([c1], . . . , [cl])
(see figure 6.1 for an example of such a system with l = 2b1(M) − 1). We
apply Theorem 6.8 to obtain the claim. �

Remark. — Such a system has cardinality at most 2b1(M)−1 (Proposi-
tion 6.6), thus this bounds the number of vertices of the polyhedra obtained
that way by 4b1(M)− 2.
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