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THE INTRINSIC TORSION OF ALMOST
QUATERNION-HERMITIAN MANIFOLDS

by Francisco MARTIN CABRERA & Andrew SWANN

ABSTRACT. We study the intrinsic torsion of almost quaternion-Hermitian
manifolds via the exterior algebra. In particular, we show how it is determined by
particular three-forms formed from simple combinations of the exterior derivatives
of the local K&hler forms. This gives a practical method to compute the intrin-
sic torsion and is applied in a number of examples. In addition we find simple
characterisations of HKT and QKT geometries entirely in the exterior algebra and
compute how the intrinsic torsion changes under a twist construction.

RESUME. — Nous étudions la torsion intrinséque des variétés presque hermi-
tiennes quaternioniennes via l'algebre extérieur. En particulier, nous montrons
comment elle est déterminée par trois-formes particulieres, formées a partir de
simples combinaisons des différentielles extérieures des formes kahlériennes locales.
Ceci donne une méthode pratique pour calculer la torsion intrinseque qui s’applique
dans de nombreux exemples. En plus, nous trouvons des caractérisations simples
des géométries HKT et QKT en utilisant l'algebre extérieur et nous calculons la
modification de la torsion intrinséque pour une construction twistée.

1. Introduction

An almost quaternion-Hermitian manifold M is a Riemannian
4n-manifold which admits an Sp(n) Sp(1)-structure, i.e., a reduction of
its frame bundle to the subgroup Sp(n)Sp(1) of SO(4n). This is equiv-
alent to the presence of a Riemannian metric g = (-,-) and a rank-three
subbundle § of the endomorphism bundle End T'M, locally generated by
three almost complex structures I, J, K satisfying the identities of the
imaginary unit quaternions. Almost quaternion-Hermitian manifold are of
special interest because Sp(n) Sp(1) is included in Berger’s list [2] of possi-
ble holonomy groups of locally irreducible Riemannian manifolds that are

Keywords: Almost Hermitian structure, almost quaternion-Hermitian structure, G-
structure, intrinsic torsion, G-connection, HKT-manifold, QKT-manifold.
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1456 Francisco MARTIN CABRERA & Andrew SWANN

not locally symmetric. Also in the field of theoretical physics, the study of
supersymmetric sigma models and their couplings to supergravity is very
related with the study of complex and quaternionic structures defined on
Riemannian manifolds [10, 16].

Since Sp(n) Sp(1) is a closed and connected subgroup of SO(4n), there
exists a unique metric Sp(n) Sp(1)-connection V2H = VL€ 4 ¢ where
V€ is the Levi-Civita connection and ¢ is a tensor, called the intrinsic
Sp(n) Sp(1)-torsion, in T*M & (sp(n) +sp(1))*. Here (sp(n) 4+ sp(1))* de-
notes the orthogonal complement in so(4n) of the Lie algebra sp(n)+sp(1).

Under the action of Sp(n) Sp(1), the space T*M ® (sp(n) + sp(1))* of
possible intrinsic torsion tensors £ decomposes into irreducible Sp(n) Sp(1)-
modules, giving rise to a natural classification of almost quaternion-Her-
mitian manifolds. In [27] it was shown that, in general dimensions, £ has six
components and 26 = 64 classes of such manifolds potentially arise. An al-
most quaternion-Hermitian manifold is said to be quaternion-Ké&hler, if the
intrinsic torsion ¢ vanishes. In this case, the reduced holonomy group is a
subgroup of Sp(n) Sp(1) and the manifold is Einstein. On the other hand, if
the three almost complex structures are globally defined, then M is said to
be endowed with an almost hyperHermitian structure (an Sp(n)-structure).
When the three Kahler forms wy, wy, wg of the Sp(n)-structure are covari-
ant constant, the manifold is called hyperKéahler. HyperKéahler manifolds
have reduced holonomy group contained in Sp(n) and their Ricci curvature
vanishes.

By identifying the intrinsic Sp(n) Sp(1)-torsion £ with the Levi-Civita co-
variant derivative of a certain four-form €2, defined below in equation (2.1),
one obtains an analogue of the method of Gray & Hervella [13] for finding
conditions for classes of almost quaternion-Hermitian manifolds. Detailed
conditions describing classes in this way were given in [20].

In the present paper, we will take another approach. In fact, we will
show how the intrinsic torsion £ can be determined by means of the exte-
rior derivatives dwy, dwy and dwg of the local Kahler forms corresponding
to the almost complex structures I, J, K. In the process, there will arise ad-
ditional, detailed information about the components of £ which will be very
useful in working on examples of almost quaternion-Hermitian manifolds.
For all of this, we give expressions for the covariant derivatives V*Cw,
in terms of dwy, dwy and dwg, see Proposition 4.3. Such expressions con-
tribute to a better understanding of Hitchin’s result [14] saying that if wy,
wy and wg are closed, then they are covariant constant. Indeed in Propo-
sition 4.3, we show how the Nijenhuis tensor Ny in general is determined
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THE INTRINSIC TORSION OF AQH MANIFOLDS 1457

by the difference Jdw; — Kdwg. Let us briefly explain one application of
this result, cf. §6.

It is known that the geometry of the target space of (4,0) supersym-
metric even-dimensional sigma models without Wess-Zumino term (tor-
sion) is a hyperKéahler manifold. In presence of torsion, the geometry of
the target space is a hyperKahler manifold with torsion, usually called an
HKT-manifold [17].

Grancharov & Poon [11] showed that an almost hyperHermitian manifold
(M, 1,J,K,(--)) is HKT if and only if:

(i) the three almost complex structures I, J and K are integrable, and
(11) Ide = JdWJ = deK.

A direct consequence of our expression for N4 is that condition (ii) is suf-
ficient to characterise HKT geometry, and in particular (ii) implies the in-
tegrability condition (i). Similarly, we also show how Grancharov & Poon’s
holomorphic characterisation for HKT-manifolds may be simplified, see §6.

It is known that an almost quaternion-Hermitian manifold the three
covariant derivatives V*Cw;, VFCw; and V*Cwy are not independent,
but rather any two determine the third [8, 20], see equation (4.5). The
corresponding statement for the exterior derivatives dwy, dwy, dwg is not
true. However, we find that there are still relations expressed by symmetries
of the three-forms

Gr = Jdwy + Kdwg, etc.

see (4.12). These symmetries are equivalent to requiring 54 to be of type
{2,1} = (2,1) + (1,2) with respect to the almost complex structure A.
Algebraically the @, 85 and [k are independent three-forms of these
types and we find that the space of possible triples of covariant deriva-
tives (Vwr, Vwy, Vwi) is isomorphic to the space of possible triples of
three-forms (Gy, 8, Bk )-

The relevance of the three-forms (7, 85, Ok is clearly seen in Propo-
sition 5.3, where we demonstrate how they may be used to compute the
components of the intrinsic Sp(n) Sp(1)-torsion £. This gives a practical
way to compute £ via the exterior algebra and will be used in the study of
concrete examples in §10.

In §7, we focus attention on quaternion-Kéhler manifolds with torsion,
also known as QKT-manifolds. Motivation for studying these structures
can be also found in the field of theory of supersymmetric sigma models,
see [15]. Our results lead to a new characterisation (7.5) of QKT-manifolds
that is simpler than that provided by Ivanov [18, Theorem 2.2]. We also
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1458 Francisco MARTIN CABRERA & Andrew SWANN

obtain new expressions for the torsion three-form and torsion one-form and
study of the integrability properties of the almost complex structures.

In §9, we consider the intrinsic torsion of quaternion-Hermitian manifolds
obtained by the twist interpretation of T-duality given in [28]. Using the
exterior algebra is particularly advantageous here. We see that in many
cases the QKT condition is preserved.

Finally, in §10, we give an number of examples of types of almost
quaternion-Hermitian manifolds. We particularly mention one of the
quaternionic structures considered on the manifold S3 x T which is a non-
QKT-manifold admitting an Sp(n) Sp(1)-connection with skew-symmetric
torsion (0, 3)-tensor. In the various examples, we have also determined the
types of almost Hermitian structure. Because it is an advantage to handle
Lie brackets instead of directly using V*C, we determine such types by
means of the exterior derivative dw; and the Nijenhuis tensor N;. There-
fore, in §8, we include Table 8.1 showing conditions in terms of dw; and
Ny to characterise the Gray-Hervella classes.

Acknowledgements. — This work is supported by a grant from the MEC
(Spain), project no. MTM2007-66375. We thank the organisers of the Work-
shop on “Special Geometries in Mathematical Physics”, Kiihlungsborn,
2006, for the chance to present some of this material.

2. Definitions and notation

Let G be a subgroup of the linear group GL(m,R). A manifold M is said
to be equipped with a G-structure, if there is a principal G-subbundle P
of the principal frame bundle. In such a case, there always exist con-
nections, called G-connections, defined on the subbundle P. Moreover, if
(M™,(-,-)) is an orientable m-dimensional Riemannian manifold and G a
closed and connected subgroup of SO(m), then there exists a unique metric
G-connection V& such that £ = V& — VL€ takes its values in g, where
g+ denotes the orthogonal complement in so(m) of the Lie algebra g of G
[25, 4]. The tensor £ is said to be the intrinsic G-torsion and V¢ is called
the minimal G-connection.

A 4n-dimensional manifold M is said to be almost quaternion-Hermitian,
if M is equipped with an Sp(n) Sp(1)-structure. This is equivalent to the
presence of a Riemannian metric (-,-) and a rank-three subbundle G of the
endomorphism bundle End T'M, such that locally G has an adapted basis
I,J, K satisfying I? = J2 = —1 and K = IJ = —JI, and (AX,AY) =
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THE INTRINSIC TORSION OF AQH MANIFOLDS 1459

(X,Y), for all XY € T,M and A = I,J,K. An almost quaternion-
Hermitian manifold with a global adapted basis is called an almost hyper-
Hermitian manifold. In such a case the structure group reduces to Sp(n).
We note that if I, J, K is an adapted basis then so are J, K, I and K, I, J;
thus formulee derived for an arbitrary adapted I,J, K will also apply to
cyclic permutations of these almost complex structures.

There are three local Kéhler-forms wa(X,Y) = (X, AY), A =1,J K.
From these one may define a global, non-degenerate four-form 2, the fun-
damental form, via the local formula

(2.1) Q= Z wa Nwy.
A=1,J,K

We will write
Ar: APT*M — AP72T*M
for the adjoint of - — - A w; with respect to the metrics
(a,by = %a(eil, coei)beq, . eq,).

In particular, for a three-form 8 we have A;8 = (- 4 5,w;), and for a one-
form v, we have

4n

Ar(vAwa) =—1 Z(V(ei)wA(Iei, )+ wale, Ie))v +v(le)wa(- e;)).

i=1

In the next section, we will explicitly describe the intrinsic torsion of
almost quaternion-Hermitian manifolds. For such a purpose, we need some
basic tools related with almost quaternion-Hermitian manifolds in a context
of representation theory. We will follow the E-H-formalism used in [23,
27] and we refer to [3] for general information on representation theory.
Thus, F is the fundamental representation of Sp(n) on C?** = H" via
left multiplication by quaternionic matrices, considered in GL(2n,C), and
H is the representation of Sp(1) on C? = H given by ¢.( = (g, for ¢ €
Sp(1) and ¢ € H. An Sp(n) Sp(1)-structure on a manifold M gives rise to
local bundles F and H associated to these representation and identifies
TMerC=2 E®cH.

On E, there is an Sp(n)-invariant complex symplectic form wg and a
Hermitian inner product given by (z,y)c = we(x,¥), where y — § = jy is
a quaternionic structure map on E = C?” considered as left complex vector
space. The mapping z — 2% = wg(-, z) gives us an identification of F with
its dual E*. If {uy, ..., un, 41, .., %y} is a complex orthonormal basis for E,

then wg = uy A uy = uwfa? — ufuy, where we have used the summation
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1460 Francisco MARTIN CABRERA & Andrew SWANN

convention and omitted tensor product signs. These conventions will be
used throughout the paper.

The Sp(1)-module H will be also considered as a left complex vector
space. Regarding H as a 4-dimensional real space with the Euclidean metric
(+,-) such that {1,4,j,k} is an orthonormal basis. The complex symplectic
form is given by wy = 1° Aj° + k> A® +i(1° Ak” +4° A 5°), where B’ is given
by ¢ — (h,q). We also have the identification, h — h¥ = wg(-,h), of H
with its dual H* as complex space. On H, we have a quaternionic structure
map given by ¢ = 21 + 22 — § = jqg = —Z3 + Z1J, where 21,20 € C and
Z1, Zo are their conjugates. If h € H is such that (h,h) = 1, then {h,ﬁ} is
a basis of the complex vector space H and wy = h* A he.

The irreducible representations of Sp(1) are the symmetric powers S¥H =
CF+1. An irreducible representation of Sp(n) is determined by its dominant
weight (A1,..., A\y), where \; are integers with A\ > Ay = --- > A, > 0.
This representation will be denoted by V*1:-A") where r is the largest
integer such that A, > 0. We will only need to use some of these repre-
sentations and use more familiar notation for these: S¥E = V() the kth
symmetric power of E; AGE = V(L1 wwhere there are r ones in expo-
nent and A4 E is the Sp(n)-invariant complement to wg A" 2E in A" F; also
K = V2 which arises in the decomposition F @ A2E =~ A}E + K + E,
where + denotes direct sum.

Most of the time in this paper, if V is a complex G-module equipped
with a real structure, V' will also denote the real G-module which is (+1)-
eigenspace of the structure map. The context should tell us which space we
are referring to. However, when a risk of confusion arise, we will denote the
second mentioned space by [V]. Likewise, the following conventions will be
used in this paper. If ¢ is a (0, s)-tensor, for A = I, J, K, we write

A (X1, Xy, X) = —0(X1, . AKX LX),
Agij...) =A@ Ay - Aw, and
AP(X1,. . X,) = (—1)*0(AX, ..., AX,).

3. The intrinsic torsion via differential forms

The intrinsic Sp(n) Sp(1)-torsion &, n > 1, is in T* M&(sp(n) + sp(1)) " =
EH ® A2ES?H C T*M ® A*T*M. The space EH @ A3ES?H consists of
tensors ¢ such that

(1) (1 + I2g) + J(23) + K(23))¢ = 0;
(ii) Au(lx)=0,for A=1J K, X e€TM,

ANNALES DE L’INSTITUT FOURIER
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where I,J, K is an adapted basis of G. We recall that A2T*M = S?F +
S2H + A2ES?H, where S?E = sp(n) and S?H = sp(1) are the Lie algebras
of Sp(n) and Sp(1), respectively.

A connection V is an Sp(n) Sp(1)-connection if V€ = 0. This is the same
as saying that V is metric, Vg = 0, and quaternionic, meaning that for any
local adapted basis I, J, K of G we have

(3.1) (VxD)Y = vk (X)JY =7, (X)KY, etc,

where 7, vy and yx are locally defined one-forms. Here and throughout
the rest of this paper, ‘etc.” means the equations obtained by cyclically
permuting I, J, K.

PROPOSITION 3.1. — The minimal Sp(n) Sp(1)-connection is given by
VaqH — vLC + é-’

where VIC is the Levi-Civita connection and the intrinsic Sp(n)Sp(1)-
torsion £ is given by

ExY=-1 ) AVEEAY +1 D X
A=I1,J,K AIJK

for all vectors X,Y . Here the one-forms A\;, A\; and Ak are defined by
(3.2) Ar(X) = <VX wr,wg), etc.

Note that if n = 1, then V24 = VL€ and ¢ = 0.

Proof. — It is not hard to check V2iHg = 0, so V29 is metric. Now,
computing (ExI)Y = ExIY — I€xY, it is straightforward to obtain
(3.3) (VDY = A (X)JY = A (X)KY — ExIY 4+ I6XY,  etc.

Hence (VAT NY = (VECI)Y + (xI)Y = Ag(X)JY — A\;(X)KY. There-
fore, Va4 is an Sp(n) Sp(1)-connection.
Furthermore, the tensor ¢ satisfies

an
Y AGAY =&Y and Y (Exer, Ae) =0,

A=I,J,K i=1

for A = I, J, K. Since these conditions imply & € T*M ® (sp(n)+sp(1))+ =
T*M @ AZES?H, then V24 = VL€ 4 ¢ is the minimal Sp(n) Sp(1)-con-
nection. g

The next result describes the decomposition of the space of possible in-
trinsic torsion tensors T* M ®A3 ES2H into irreducible Sp(n) Sp(1)-modules.

TOME 58 (2008), FASCICULE 5



1462 Francisco MARTIN CABRERA & Andrew SWANN

THEOREM 3.2 (Swann [27]). — The intrinsic torsion & of an almost
quaternion-Hermitian manifold M of dimension at least 8, has the property

£ eT*M ® AJES*H = AJES®H + KS°H + ES°H

(3.4) ,
+AJEH + KH + EH.

If the dimension of M is at least 12, all the modules of the sum are non-
zero. For an eight-dimensional manifold M, we have A3E = {0}. Therefore,
for dim M > 12, we have 2% = 64 classes of almost quaternion-Hermitian
manifolds, whereas there are 2* = 16 classes when dim M = 8. The map
¢+ VECQ = —¢£Q is an isomorphism, and in [20] this was exploited to
give explicit conditions characterising these classes in terms of conditions
on VCQ. However, from such conditions, it is not hard to derive descrip-
tions for the corresponding Sp(n) Sp(1)-components of ¢ as we will now
demonstrate.

Firstly, the space of three-forms A3T* M decomposes under the action of
Sp(n) Sp(1) as

A*T*M = AJES®H + ES°H + KH + EH.
Consider the operator
(3.5) L=0r+L0;+LK
on A3T*M, where

La=Aqz) +Aus) + Ags)-

The operator L has eigenvalues +3 and —3 with corresponding eigenspaces
(K + E)H and (A3E + E)S3H. For 1 € A3T*M, we have 1) = g + Vgsyy
with
(3.6) Y = (3¢ + Ly),
(3.7) Yson = §(3¢ — Lap).
The component vy is characterised by Lavy = ¥y, for A=1,J, K. On
the other hand g3 satisfies ZA:I,J,K An2ybssg = —gsp. Writing g =
YED) Ly (FH) ¢ KH 4+ EH and sy = 133 +4(F3) ¢ ABES3H + ES®H,
one computes

EH) _ 1 I
EI = — L " A0 Awa,
A=I,J,K

'(/)(ES) = _2(n1,1) Z A(ejﬁ — ‘911’) ANwa,
A=I,J,K

where 0% (X) = AAgp and 0¥ =237, 0%

ANNALES DE L’INSTITUT FOURIER
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Let us now describe the Sp(n) Sp(1)-components of the intrinsic torsion &,
and include characterisations via three-forms. We will write £33, {x3, g3,
&m, kg and Epg for the components of € corresponding to the modules
in the sum (3.4). We have the following descriptions:

(i) &s3 is a tensor characterised by the conditions:
(@) Yacrsx(&s)ad= =241 A&3)a = —Es3,
(b) (-, (&33).+) is a skew-symmetric three-form.

Or equivalently, £33 is given by (Y, (€33)x Z) = ¥ (XY, Z), where 1)
lies in the module AJES3H C A3T*M

(ii) &€xs is a tensor characterised by the conditions:
(@) Doacs J,K(fKB)AA == ZA:I,J,K A(€k3)a = ks,
b) Gxyz (Y (Eks)xZ) = 0.

Or equivalently, {3 is expressed by

(Y, (Exs)xZ) = Y. Apypi”,

A=I,J,K

where ng), A = I,J, K, are local three-forms in the module K H such
that 3, x ¥ =0.

(iii) €gs is given by

(Y, (r3)xZ) = & (A0 —0%) Awa—(n—1)A(05—0%)@wa ) (X, Y, Z),

n
A=I,J,K

where 6¢ is the one-form defined by

(38) L@n+1)(n—1)05(X) = — (e, X) =— Y (A&, Ae;, X),

A=I,0,K
and 9?, 037 9% are the local one-forms given by
2(2n+ 1)(n — D65(X) = — (A&, Aes, X).
Note that 3¢ = 9§ + 93 + 9%.
(iv) &sp is a tensor characterised by the conditions:
(a) (§3n)aA — A(&n)a — AlspA = &p, for A=1,J K,

6XYZ €3H)XZ>—0

TOME 58 (2008), FASCICULE 5
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Or equivalently, 3 is expressed by

(Y, (&u)xZ) = Z A23) v,

A=I,J,K
where w 4, A=1,J, K are local three-forms such that

(p) 1(4) is in AJES3H,

(q) 1/)1(43) is of type {2, 1} with respect to the almost complex structure A,
ie, Lav® =¢® A=1J K, and

3
(1) Cacrsx i) =0
One may check that one of these three-forms is sufficient to determine the
others. Indeed
W= 134+ L) and P = —13 4+ L)Y

(v) &£xm is a tensor characterised by the conditions:

(&) (Exnr)ad—Allxkn)a — ASknA=Exn, for A=1,J, K;

(b) there exists a skew-symmetric three-form ) such that

Y, (xm)xZ) = (305 = Y Apgy ™) (XY, 2);
A=I,J,K

(€) Yoy (€xm)e.ei = 0.

Note that conditions (v.a) and (v.c) can be replaced by saying that 1) is
in KH, ie., for each A = I,.J, K, the form ) is of type {2,1}4 and
satisfies A 4105 = 0.
(vi) &€gp is given by

(Y, ((pn)x Z) = 3e; @ e; NOS(X,Y, Z)
= > (ei®Ae; NAK + 2A0 @ wa) (XY, 2),
A=I,J,K

where 6° is the global one-form defined by (3.8).
(vii) The part gspy = &33 + Exg + Ems of € in (AZE + K + E)S3H is
characterised by the condition

> Esmad=— Y A(fsom)a = —Esom.
A=I,J,K A=I1,J,K
(viii) The part £y = &3 + Exm + Epm of € in (A3E + K + E)H is char-
acterised by the condition
(Em)aA —A(Eu)a — Allu)A = En,
forA=1J K.

ANNALES DE L’INSTITUT FOURIER
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4. Use of exterior derivatives

Here we will find out how the intrinsic torsion £ can be determined by
means of the exterior derivatives of the Kéahler forms dwy, dw; and dwg .

In [21] it was shown that the covariant derivatives Vwy, Vw; and Vwg
are given by

(4.1) VLCw[ :)\K®wj—)\J®wK+J(2)OéK—K(Q)OzJ, etc.

where A4 are given by equation (3.2) and ar,ay,ax € T*M ®@ A3E C
T*M ® S?T'* M are defined by

oy = —Ag ® g+ %(J(g) — J(g))VLCwK

(4.2)
= *)\[@Q‘F%(K(g) 7K(2))VLC(4)J, etc.

We may rewrite the intrinsic torsion £ from Proposition 3.1 using equa-
tion (4.1) giving

(43) fxy:7%((&[)XIY)+(05J)XJY+(OéK)XKY),

where (a4) is given by (Y, (aa)y Z) = aa(X;Y,Z). Thus the intrinsic
torsion £ only depends on the a4’s; the A4’s have no influence.

Note that the dimension of the space of possible triples (aj,ay,ak)
coincides with the dimension dim T*M @ AZES?H = 12n(2n+1)(n—1) =
3dimT*M ® AZE of the space of possible intrinsic torsion tensors.

As EH ® A2E = AJFH + KH + EH, one may decompose oy into three
Sp(n) Sp(1)-components

ar =o'+ +a? € N3EH + KH + EH.

If dim M = 8, the module A3E is trivial and the corresponding compo-
nent Ozg?)) is not present. The component ong) is determined from a one-form

nr which is defined by
(4.4) ni(X) = ar(e;, e, X).

Furthermore, the components of the a4’s can be used to characterise classes
of almost quaternion-Hermitian manifolds.

PROPOSITION 4.1 (Cabrera & Swann [21]). — Let M be an almost
quaternion-Hermitian manifold with intrinsic torsion &. If I,J K is an
adapted basis of G, then for V =3, K, E,

(i) each component &y g is linearly determined by I(l)agv) +J(1)af,v) +

v
K(l)ozg( ),
(ii) each component £y3 is linearly determined by I(l)agv) — J(l)af]v)
) (V)

and J(l)aJ —K(1)CYK .

TOME 58 (2008), FASCICULE 5
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Observing that A(l)aff) = Aaff) is linearly determined by the one-form
Ana, we have the following result.

COROLLARY 4.2. — Under the same conditions as Proposition 4.1, we
have:
(i) €gp is linearly determined by Iny + Jny + Kngk,
(ii) &gs is linearly determined by Iny — Jny and Jn; — Knk.

We now proceed to express the covariant derivatives ViCw;, Viuw;
and V%(CwK in terms of dwy, dwy and dwyg. We use a relation between
these covariant derivatives found in [8, 20], which may be symmetrically
expressed by

(4.5) (V5wr) (JY,KZ) + (V5w)) (KY,I1Z) + (Viwk) (IY,JZ) =0
and the following identity given by Gray [12]
(4.6) QVLCWI =dwy — 1(23)dw[ — I(g)N[,

where N;(X,Y,Z) = (X, N;(Y, Z)) and the (1,2)-tensor Ny is the Nijen-
huis tensor for I, i.e., Ny(X,Y) = [X,Y]|+I[IX,Y]|+I[X,IY] - [IX,IY].

Under the action of U(2n); the space of three-forms decomposes in to
irreducible modules as

NT*M = AES’O}T*M + Aé?il}T*M + A?’O}T*M ANwr =Wiysyar,

where W,y are isomorphic to the Gray-Hervella modules described in [13]
and the subscript I indicates the almost complex structure considered. Note
that a three-form  lies in Ws14 1 = A}Q’l}T*M C A3T*M if and only if

(Ta2) + sy + L3y =9, e, Ly =1

PROPOSITION 4.3. — For an adapted basis I, J, K the exterior deriva-
tives dwy, etc., determine

(i) the covariant derivative V*Cw; by

(4.7) QVLCwI (1- I(23))dw1 + (I(g + 1, 3))J(1 dwy
— (1= L(23))J1)dwi
(4.8) =(1- I(g3))db«)[ + (I(Q) + 1(3)) 1)dwK

+ (1 - I(Qg))K(l)de,
(ii) the Nijenhuis (0, 3)-tensor N; by
2N = (1(12) + 1(13) + 1(23) - 1)J(23)(JdWJ - deK)

4.9
(9 = (1 = I12))(K(23) — Ji23))(Jdwy — Kdw),
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(iii) the one-form IAr of equation (3.2) by
(4.10) 2nIh; = IAgdwy + JAgdwy + JAjdwy
(4.11) =IAgdwy + Ardwr — Agdwi,
and moreover
(iv) Jdwy + Kdwg € W3t 7, le.,
(4.12) (Ia2y + Iasy + Ii23y) (Jdwy + Kdwg ) = Jdwy + Kdwr .
The corresponding expressions with respect to J and K are obtained by

cyclic permutations of I, J, K.

Proof. — Equation (4.7) is derived from its right-hand side, taking into
account that dwa(X,Y,Z) = Sy, (Viwa) (Y.Z), A = I,J,K, and
making repeated use of equation (4.5). The proof for equation (4.8) is
similar. Now, (ii), (iii) and (iv) are immediate consequences of (4.7), (4.8)
and Gray’s identity (4.6). O

The expressions for the intrinsic Sp(n) Sp(1)-torsion £ given in next result
are consequences of the last proposition and equation (3.3).

PROPOSITION 4.4. — The intrinsic Sp(n) Sp(1)-torsion ¢ is determined
by the exterior derivatives dwy, etc., by

&xY = L2 S (Axdwy — INrdwr + TAgdwie)(X)IY
IJK

+: S (( @) + Ig) + (Jaz)y + Jas) + K2z — 1)1(1))dw1)(X,Y,€i)€i
ITK

Proof. — One computes first

ExY = ﬁ 6 {<X _ndw.th) + <IX _ndwj,uq) — <IX deK,wK)}IY
IJK

— 1 & {dwi(X,Y, Ie;) + dwr (X, 1Y, €;) — dw; (J X, Y, €;)
17K

+dwy(JX, 1Y, Ie;) + dwg (JX,Y, Ie;)e; + dwg (J X, IY, ei)}ei;

and then takes advantage of the second cyclic sum to rearrange terms. [J

5. A minimal description

Motivated by Proposition 4.3(iv), let us introduce the three-forms
Or = Jdw; + Kdwg, etc.
These determine the exterior derivatives dwr, dwy, dwg as follows

2dwy = I(B; — By — PBk), etc..
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and S € Waig4 = Aj{f’l}T*M, so the dimension of the space of possible
exterior derivatives dwy, dwy, dwg is at most 3dim(Ws4) = 12n%(2n — 1)
[13]. On the other hand, equation (4.1) implies that the dimension of the
space of covariant derivatives Vwy, Vwj, Vwi is determined by the possible
triples of \’s and «’s. This dimension is 12n+12n(2n+1)(n—1) = 12n2(n—
1), which coincides with the above one computed for the 3’s. Therefore,
algebraically, the three-forms §7, 87, Bk are independent.

We will now show how, components of, the 3’s determine the intrinsic
torsion. Consider the action of the group Sp(n) U(1);, which is the inter-
section of U(2n); with Sp(n) Sp(1), on the module W34 1 = A§2’1}T*M C
A3T*M. Tt was shown in [21] that W3 ® C = (A3E+ K + E)(L; + L) and
W, ® C = E(L; + L), where we write L; for the standard representation
of U(1); on C. Since AJE, K, E are representations of quaternionic type
and Lj is of complex type, the tensor products AJEL, etc., in the above
decompositions are all of quaternionic type. The underlying real modules
[V]r obtained by regarding the modules V' as real vector spaces give real
representations of Sp(n) U(1) and

Wi = [ASELf|g + [KLi]g + [EL]g3, War = [EL1]ra

Using these decompositions, the tensor (31 splits into four components

(5.1) Br =87 + 8"+ 857 + Bur,

with one-form parts

(5.2) é?) :—%JV3I/\O)J—%KV§/\UJK+27L s Ivi Awr,
(5.3) Bar = —51vi Awr,

where 1 and v} are one-forms, which we will now specify. We have
(5.4) vy =IABy.

A computation gives the following formula determining v4 from 3r:
(5.5) JAN;Br = KAk B = 725 (vi + (2n+ 1) (n — 1)v4).

Here the first equality in (5.5) is equivalent to

(5.6) IAgdwy + TA jdwg = —Ajdwy + Agdwi

which is an immediate consequence of equations (4.10) and (4.11) of Propo-
sition 4.3 and the fact that 54 € Wsy4 4. We may now find the other
components of Gy via (3.6) and (3.7):

(5.7) 8 = §(2—L,— LK) GO B = FA+ Ly +Lk) 1,

where 513”() =B = :E,}E) — Bar-
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Remark 5.1. — The expressions for the one-form parts are a little sim-
pler in dimension four, i.e., n = 1. Recall that the Lee form of w; is
Id*w; = —Ajdw;, where d* is the co-derivative. For n = 1, we have
Wg = {O}, SO ﬁ[ S W4], IA[ﬁ] = JAJﬁ] = KAKBI = I/i, and

KAde[ = —JAde[ = —A]du)[ = Id*a)], etc.

Remark 5.2. — In order to apply Proposition 4.1 to classify almost
quaternion-Hermitian manifolds, the tensors osz) and a(AK) can be com-
puted from the triples 553), 33), g) and ,6’§K) SK), %K) respectively. In

fact, we would begin with equations (4.2) which define a4 and then use
Proposition 4.3.

To analyse the ES3H and EH components of the intrinsic torsion &, we
wish to apply Corollary 4.2 which requires knowledge of the one-forms 7;.
Let us see how these are determined by the §;’s. Equation (4.1) gives

Or = —JA\ ANwg + JAg ANwr + JAlt(K(g)Oq) — JAlt(I(Q)OéK)

— K jAwr+ KA ANwy + KAlt(I(Q)OAJ) — KAlt(J(Q)Oz[),
where Alt(¢)(X,Y,Z) = S yy, ¢(X,Y, Z), for ¢ € T*M @ A*T*M. This
combined with (4.11) leads to

dnlng = 2(n — 1)JA; 61 + IA1((n = 1)Br + B + Br)
—nJA;B; — nKAk Bk,
AnIhy =2JN ;61 + TN (Br — By — Bk),  ete.

Note that the right-hand sides of these equations are linear combinations
of V§4 and v{, A=1,J,K, so

Inlz%((2(%71)V§+V§)’+V§{)+(Vi71/41]7Vf))a

]/\I:%(21@{71/5)’]*V§)+m((2n+1)%{*’/é{*%{{)v

etc.

The next proposition shows clearly the roles played by the three-forms
0Br, By and B in determining the components of the intrinsic torsion £.
This provides a practical way to compute £ using the tools of the exterior
algebra.

PROPOSITION 5.3. — For an almost quaternion-Hermitian 4n-manifold,
n > 1, we have:

(i) The three-form ®) | which determines £33, is given by
3 3 3
(5.8) v = LB + 87 + 42).
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(ii) The local three-forms 1,[)§3), 33), wg) each of which determine &3,
are given by

(5.9) v =180+ Lrea) Y Y.

B=I,J,K

(iii) The three-form 1)®), which determines &g, is given by

(5.10) W0 = (8 + 87 + ).
(iv) The local three-forms q/;}K)’ (K)’ 77b(K) which determine £xcs, are
given by
61y Oy T
B=I,J,K

(v) The one-form 6%, which determines £gpr, is given by
A=I,J,K

(vi) The local three-forms 9?, 95, 9% whose differences 93—95 determine
&ps, are given by

(5.13) 6 = 2 +1)(( —240) - gty Y (uf—QB)\B)).
B=I,J,K

Proof. — For the covariant derivative of the local Kéahler forms w;, we

have
(5 14) VX wI(Y,Z):)\K(X)wJ(Y,Z)—/\J(X)wK(Y,Z)
’ - (V. &x1Z) = (IY.{x Z)

from which one derives

ldwr = —IAg ANwy+1Dj Nwi — 6 (<Kf[xIZ> + <IK€])(Z>)
XY Z

and
(5.15)
OBr=KAr ANwy — JA\f Nwk —I)\}r/\wl

— S (VL &xTZ)+ (JY,&yxZ) + (Y.éxx KZ) + (KY, éxx Z)),
XY Z

where )\;r =JA;j+ K)\g.
For parts (i) and (ii), equation (5.15) gives

(3) (XY, 2)= & (Y, (&3 +&m)ixJZ) + (JY, (€33 + &sm)ax Z)
XYz

+ (Y, (&3 + §3m) kx KZ) + (KY, (€33 + §3m )k x Z) -
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We now get
BY = 6p® + 20,40 — 8y

which leads to equations (5.8) and (5.9) as required.
For parts (iii) and (iv), we use (5.15) to get

By = —16pU0 — 20,

which gives equations (5.10) and (5.11).
Finally, for parts (v) and (vi), use (5.15) to find

nB) = —I(nA} +6(n—1)6¢ —2(3n +1)6%) A wy
— J(nIr +6(n —1)65 +2(n+ 1)65) Awy
— K (nIA;+6(n—1)8% +2(n + 1)0}) Awg, etc.

Using equations (5.2), (5.3) and (5.5), this gives

(5.16) it = 2404 + 2(3(n — 1)6° + (n+ 1)605),
(5.17) Vit = (2n — AT 424 4 8Dt (e g8
for A=1,J,K. As 36¢ = 65 + 65 + 65, equations (5.12) and (5.13) follow.
a
We may now quickly record what happens under conformal changes of
metric.
PROPOSITION 5.4. — On a almost quaternion-Hermitian 4n-manifold,

if we consider a conformal change of metric {-,-)° = €7 (.,-), with o €
C>*(M), then

W =€ wa, dwy =e* (2do Awa +dwa),

Ad*wy = Ad*'wa —2(2n — 1)do, ANy = AXa — Ldo,
B9 = e (Br+2Jdo Awy +2Kdo Awk), etc.,

1/§40 = 1/3A — 4do, l/fo = l/f —4do, 0% =065 — %do, 01540 = 9154 — %da.

o

In particular, the only component of the intrinsic torsion that changes
is gy
Proof. — The identities follow from the definitions of each tensor in-

volved. For the intrinsic torsion, use these identities, Proposition 5.3 and
the descriptions of the components of £ given at the end of §3. O
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6. HyperKihler manifolds with torsion

In this section we will see some consequences of Proposition 4.3 in HKT-
geometry. This geometry arises on the target space of a N = 2 super-
symmetric (4,0) o-models with Wess-Zumino term.

DEFINITION 6.1 (Howe & Papadopoulos [17]). — An almost hyperHer-
mitian manifold (M,I,J, K,g = {-,-)) is an HKT-manifold (hyperKahler
with torsion), if the following conditions are satisfied:

(i) the almost complex structures I, J, K are integrable;
(ii) M admits a linear connection VIXT = VLC 4 1T such that
(a) VHKT[ = YHET j — YHKT | — 0, and
(b) VHETg =0;
(iii) the (0,3)-tensor field, also denoted by T, defined by T(X,Y,Z) =
(X, T(Y,Z)) is a skew-symmetric three-form.

A result of Grancharov & Poon [11] says that an almost hyperHermitian
manifold M is HKT if and ouly if (I,J, K, (-,-}) is hyperHermitian (i.e.,
N;y=N; =Nk =0) and Idw; = Jdw; = Kdwg. We now give the follow-
ing improvement of this result, showing that the integrability assumption
is redundant.

PROPOSITION 6.2. — Let (M,1,J,K,g) be an almost hyperHermitian
manifold. Then the following conditions are equivalent:
(i) M is an HKT-manifold;
(il) Tdwy = Jdwy = Kdwg;
(iil) Br = By = Bk
Proof. — If M is a HKT-manifold, we have a connection VHKT —
\VARSEE %T satisfying the conditions given in Definition 6.1. The integrabil-
ity condition gives Ny = 0= Nj = Nk and VLCuwy, € W34 4. Now, using
equation (4.6), we obtain 7' = Idw; = Jdw; = Kdwg = %ﬁ[ € Wsyy4.

Conversely, suppose Idw; = Jdwy = Kdwgk. Proposition 4.3(ii)
gives N; = Ny = Ng = 0. The connection VKT = VLC 4+ %T, where
(X, T(Y,Z)) = Idw;(X,Y, Z) now satisfies the HKT conditions. O

Grantcharov & Poon [11] give a second characterisation of HKT man-
ifolds in terms of the complex geometry of I. Let us define as usual the
operators 94 and 04 acting on a p-form 1) by

Oath = 5 (d+ (1P iAddA) Y, Ia =5 (d— (~1)PiAdA) .

Assuming integrability of I, J and K, Grantcharov & Poon show that M
is HKT if and only if the (2,0)-form wy + iwk is Or-closed. Once again we
may weaken the integrability requirements.
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PROPOSITION 6.3. — Let (M,I,J,K,g) be an almost hyperHermitian
manifold. Then the following conditions are equivalent:
(i) M is an HKT-manifold;
(ii)) Jdwy = Kdwg and Nj = 0;
(iii) Or(wy +iwgx) =0 and Ny = 0;
(iV) 5](0(]] - in) =0 and NJ =0.

Proof. — 1t is easy to see that the three conditions Jdw; = Kdwg,
Or(wy +iwg) = 0 and Or(wy — iwg) = 0, are equivalent. Moreover, by
Proposition 4.3(ii), the condition Jdw; = Kdwg implies N = 0. Now,
the integrability of I and J implies that K is integrable (see [22] or the
newer proof [21]). Hence, any of the last three conditions gives that the
manifold is hyperHermitian and 9;(wy + iwg) = 0 and we obtain HKT
from Grantcharov & Poon.

Alternatively, we may prove the result just using tools contained in
the present paper. Suppose N; = 0 and Jdw; = Kdwg. Then Jdw;
and hence Kdwgk lie in W34 ;. However, Proposition 4.3(iv) gives that
Kdwg + Idwr € Ws44,5, so we have Idw; € Ws44 5 too. Now let us use
Proposition 4.3(ii) for the integrability of J. We have 0 = K (23)(—J(12) —
J(13) + J(gg) - 1)(deK - Idw[). But J(12) + J(23) + J(lg) =1on W3+47J
and Jdw; = Kdwg, so

J(Qg)(deJ - Idwl) = de!] - Idwl.
Skew-symmetrising both sides of the identity, we find that Jdw; — Idw; =
3(Jdwy — Idwy). So, Idwy = Jdwy = Kdwg. g

Next we describe the very special situation for four-dimensional HKT-
manifolds.

PROPOSITION 6.4. — If M is an almost hyperHermitian 4-manifold,

then the following conditions are equivalent:
(i) M is an HKT-manifold;
(ii) the three Lee one-forms are equal, i.e., Id*w; = Jd*w; = Kd*wk;
(iii) the almost complex structures I and J are integrable;
(iv) the almost Hermitian structures corresponding to I and J are lo-

cally conformally Kahler, so M is locally conformally hyperKéhler.

Proof. — For dimension 4, the Gray-Hervella modules W, and W3 are
zero, we have 10 Awy = JOANwy; = KO AN wg, for all one-forms 6, and any
three-form may be written in this way. If M* is an HKT-manifold, we see
that the almost Hermitian structures are of type W4 and that

T =Adws = —At Nway,
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where t = AAT = —Apdwy = Ad*w,. On the other hand, if the three
Lee forms are equal to a one-form ¢, then

ldwy = —ItNw;=—-JtANwy = Jdwy.

Hence Idw; = Jdwy = Kdwg and M is HKT.

For conditions (iii) or (iv), the three almost complex structures are in-
tegrable, so the almost Hermitian structures have a common Lee form,
by [21]. O

In §4 it was shown that for any almost quaternion-Hermitian manifold,
the exterior derivatives of the three local Kahler forms of an adapted basis
I, J, K satisfy the identities (5.6). When the manifold is HKT, additional
identities are also satisfied.

LEMMA 6.5. — For a 4n-dimensional HKT-manifold, the exterior
derivatives dwy, dwy and dwg satisfy

(6.1) t= —A]dw[ = KAJd(U[ = —JAde[, etc.7

where t = Id*w; = Jd*w; = Kd*wg. Furthermore, IA\; = JA; = KA\g =
ﬁt, 6¢ = Hf = 95 = Hﬁ( and the one-forms corresponding to the E-parts
of B4 are such that

(6.2) vi=v] = vt =21,
(6.3) vi =) = vl =320° = st

where the second line holds for n > 1.
Proof. — Since 2T = 3; = 8; = Bk, we have

IA;Bg = JA ;B84 = KAKBa,

from which we obtain (6.1) and (6.2), via (5.4). Now, using equation (5.5),
we have (2n 4+ 1)(n — 1)v4' = 4(n — 1)Ad*w, and hence (6.3). O

7. Quaternion-Kiahler manifolds with torsion

A genuinely quaternionic analogue of HKT geometry also arises in the
physics literature via the theory of super-symmetric sigma models. In this
section we give a definition in terms of intrinsic torsion, relate this defini-
tion to the existence of connections with skew-symmetric torsion, provide
different characterisations of the geometry and describe the relationship
with HKT geometry. Important mathematical work in this direction was
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previously done by Ivanov [18]. Here we concentrate on the intrinsic geom-
etry, fit the geometry into our general formalism and improve and clarify
a number of his results.

DEFINITION 7.1. — An almost quaternion-Hermitian manifold of di-
mension 4n > 8 is QKT (quaternion-Kéhler with torsion) if its intrinsic
torsion lies in (K + E)H.

As in other cases, we may write this condition on the intrinsic torsion in
terms of three-forms.

LEMMA 7.2. — The intrinsic torsion £ lies in (K + E)H precisely when
it is given by a three-form 1) € (K + EYH C A3T*M via

(1) (VexZ = (30+ 3 (Apyp+ 246Y @wa) )(X,Y,2),
A=I,J,K

where ¥ = IApp = JA ;b = KAgp. Moreover, for a given intrinsic torsion
¢ € (K + E)H we have that 1 € A3T*M is unique and given by

Bn—1)p=n-1d"Q+3 > A" Awy,
A=I,J,K

where Q is the fundamental four-form (2.1) and d* is the co-derivative.
When applying this result it is often useful to recall the formula [20]

d*Q =2 Z (d*wA ANwa — Ade).
A=I,J,K
Let us now demonstrate how the QKT condition relates to connections
with skew-symmetric torsion and so the original definition of Howe, Opfer-
mann & Papadopoulos [15]. Recall that (K + E)H C A*T*M is the (+3)-
eigenspace of the operator L given in (3.5).

THEOREM 7.3. — An almost quaternion-Hermitian manifold M is QKT
if and only if there exists a metric connection VKT = VL€ %T that is
quaternionic and whose (0, 3)-torsion T(X,Y, Z) = (X,T(Y, Z)) is a three-
form satisfying in LT = —3T. When M is QKT, VKT is the unique
Sp(n) Sp(1)-connection on M with skew-symmetric torsion.

Concretely, we claim that the intrinsic torsion £ of the QKT structure is
given by (7.1) with ¢ = —%T and that so

* d*Q
T=—3d'Q— gy D, A0 Awa
A=I,J,K
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Note that in §10 we will provide examples of almost quaternion-Her-
mitian manifolds that are not QKT but none-the-less admit Sp(n) Sp(1)-
connections with skew-symmetric torsion.

Proof. — If £ € (K + E)H, then ¢ is given by equation (7.1) for some
in (K + E)H. Putting T = —8¢ we find that VKT = VC 4+ 1T is metric
and, via (3.3), quaternionic.

Conversely, if M has such a connection VKT then

(7.2) VECwr = vk @ wy — vy @ wi — (1) + 13))T,

where y4, A = I,J, K, are the one-forms given by (3.1) for V = VKT,
Using equation (5.14), we find

ViexZ) =5 (37- Y AeyT)(X.Y.2)

A=I,J,K
(7.3)
1
t3 > (A —74) @wa(X,Y, 2).
A=I1,J,K

As £ € T*M ® A3ES?H, we have (Ae;, Exe;) = 0 and find
(7.4) A — 74 = — 5 At,
with ¢t = IA;T = JA;T = KAgT. Using (7.3) and (7.4), we obtain equa-
tion (7.1) with ¢y = —4T € (K + E)H. O

Remark 7.4. — The situation for 4-dimensional almost quaternion-

Hermitian manifolds is very special. Here the Levi-Civita connection is
always quaternionic, i.e.,

VI =Mk @ J— Ay Q K, etc.

Also in this dimension, we have A3T*M =2 T*M and any three-form T may
be written as T = —At Aw4 for some one-form t valid for A =1, J and K.
In this way, given any t € Q!(M), we may construct V=V 4 %T and
find

@I:’YK®J_’YJ®K, etc.,

where v4 = g + %At. Hence V is a connection with skew-symmetric
torsion preserving the almost quaternion-Hermitian structure. However, in
this case, V is not unique.

Forgetting the metric of an almost quaternion-Hermitian structure we
are left with an almost quaternionic structure. This is an integrable quater-
nionic structure if there is a torsion-free quaternionic connection V4, i.e.,
V = V4 satisfies (3.1); this is a weaker condition than integrability of I, .J
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and K. In the presence of a compatible metric, integrability of the quater-
nionic structure is equivalent to the vanishing of £gspr, the (AJE + K +
H)S3H-part of the intrinsic torsion, cf. [24]. In dimension four, this con-
dition is just self-duality of the conformal structure. In dimension 8, the
module AJE is zero, so & € (K + E)(S®H + H) and integrability implies
that £ € (K + E)H. We thus have:

PROPOSITION 7.5. — Any compatible metric on an eight-dimensional
quaternionic manifold is QKT.

This applies for example to any metric compatible with Joyce’s invariant
hypercomplex structure on SU(3) [19].
The one-form ¢ in the proof of Theorem 7.3 has independent importance.

DEFINITION 7.6. — For a QKT manifold with torsion three-form T the
torsion one-form t is defined by

t=1AT,
for any compatible almost complex structure I.
There are many alternative expressions for ¢:

LEMMA 7.7. — For a 4n-dimensional QQ K T-manifold, n > 1, the torsion
one-form t satisfies

30Dy — (¢oe)” = —3Ana = 1+ (xdQ A Q) = — E ANAd*Q,

where 14 is given by (4.4) and X° = (X, -).
Remark 7.8. — The one-form
*(RAQAQ) =2 Y AAud Q
A=I,J,K
was considered in [20] in relation with the FH-component of ¢ in general.
One finds that *(xdQ A Q) = 16n (feiei)b. There it was noted that
dn(Jny; 4+ Kng) = 2IA1d"Q = — % (xdQ A wr Awy) .

Proof. — Using (4.3), one finds (feiei)b =—3 >a=1.gx Ana. When £ is
in (K + E)H, we have In; = Jn; = Kng. Therefore, (561.,61)b = —31In;.
On the other hand, using ¥ = —£ 7T in equation (7.1), we obtain (&, ) =

3(n—1)

— = 1.
4n

The remaining equalities follow from Remark 7.8 O
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Further relations between the torsion three-form 7" and the four-form €2
follow from equation (7.2). In particular, we have

vieQ = — Z (A(2)+A(3))T/\wA, dQd = -2 Z AT Nway.
A=I1,JK A=LJ.K

Let us now give a characterisation of QKT manifolds.

THEOREM 7.9. — An almost quaternion-Hermitian manifold M is QKT
if and only if for each local adapted basis I, J, K there are local one-forms
Y1, VJ, YK Such that

ﬁj—ﬁjzldwj—deJ

7.5
(7.5) =I(Kvyg)ANwr — J(Kyk) ANwy + Ky ANwk,  etc.,

where v = Ivr — Jvr;
In this case, the skew-symmetric torsion three-form T is given by

(7.6) QT:2([dwl+J(K’7K)/\WJ+K(J’}/J)/\WK)

(7.7) :BI—l—J(I'yI)/\wJ—l—K(I’y[)/\wK—i—I'y;r/\w], etc.

where ’y}' = Jv;+ Kvyk and

(78) 2(n— 1)]’}/[ e (AJ+IAK)de = (AK—IAJ)dwK, etc..
Remark 7.10. — Equation (7.7) also implies that, for dimensions strictly

greater than four, the QKT-connection VKT is unique. This fact was al-

ready proved by Ivanov, who also characterised QKT-manifolds by the dif-

ferences (Idwr)yy, , , — (Jdwy)y [18, Theorem 2.2]. Our Theorem 7.9

44,1 344,J

can be considered as an improved version, based on the three-forms (4,
which are automatically in W54 4.

Remark 7.11. — Let us write Wg?)(m) and Wy(ny) for the right-hand
sides of equations (5.2) and (5.3), respectively. Equation (7.7) can then be
written

9T = B4 — WS (2A7A) — Wya (2474 + (20— 1)77) .
Consequently, we see that QKT-manifolds have
o =0, 5" =8 =5y,
vih =244 + %ﬂt and v = 2Av4 + (2n — 1)y} + 2t

using equation (7.4) and Lemma 7.7. This should be compared with the
results of Lemma 6.5.
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Proof. — Suppose M is QKT. From VKT = yLC 4 %T and equa-
tion (7.2), we have

(7.9) dwor=—-IT+vk Nwy— 75 Nwk.

Multiplying by I gives (7.6) and equation (7.5) follows.

Conversely, if equation (7.5) is satisfied for some one-forms 74, then we
may consider the three-form T given by (7.6) and use (7.5) to obtain the
alternative expression (7.7), see that it is unchanged by a cyclic permutation
of I, J, K, and hence globally defined. By Proposition 4.3(iv), we find that
T € Wsiq,a, for A=1,J,K. Hence T € (K + E)H and M is a QKT-
manifold for the connection VKT = vLC ¢ %T.

Finally, using equation (7.9), we get
KAdeI:t+J'yJ+(2n71)K'yK and 7A]dw]:t+J’YJ+K’}/K.

Using the identity (5.6), now provides the claimed expressions for Iy;. O

The contraction identity (5.6) used above is valid for all almost
quaternion-Hermitian manifolds. When the structure is QKT, there are
additional identities of this type.

PropPOSITION 7.12. — For a local adapted basis I,J, K of a QKT-
manifold, the following identities are satisfied:

(7.10 Id*wr; =t+ Jy;+ Kykg = JA; + KAk + 2In;, etc.,

—~
~
—

11 J’nyK’}/K:J)\JfK)\Kif(Jd*waKd*wK), etc.,

)

)
(7.12) JAgdw; + KArdw; = —2(n — 1)(Ajdwy — Agdwi), etc.,

) JArdwg + KAjdwy = (2n — 1)(Ajdwy — Agdwg),  ete.
Proof. — As M is a QKT-manifold, we have from equation (7.2)
d*'wy = =(Ve,wr)(e;,") = =1t = I(Jv; + Kyk)

giving the first equality of equation (7.10). On the other hand, it was shown
in [21] that Id*w; = JA; + KAk + Jng + Kngk. But, for manifolds of type
KH + EH, we have In; = Jny = Kng by Corollary 4.2, and we obtain
the second equality of equation (7.10).
Equation (7.11) is an immediate consequence of equation (7.10).
Finally, equation (7.12) and equation (7.13) can be deduced from equa-
tions (7.8), (5.6) and (7.11), using Id*w; = —Ardwy. O
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Remark 7.13. — It is not hard to prove that an almost quaternion-
Hermitian 4n-manifold, n > 1, is of type AJES®H + KS3H + AJEH +
KH + EH if and only if equation (7.12) is satisfied for any local adapted
basis I, J, K. In other words, (7.12) characterises the vanishing of the
ES3H-component of the intrinsic torsion.

Let us now turn to the question of integrability of compatible almost
complex structures I, J and K. Taking the following identity

Ni(X,Y) = =(VX'DIY — (VKDY + (V¥ DIX + (Viy D)X,

into account, we obtain that the corresponding (0, 3)-tensor Ny= (-, Ny(-,-))
is given by

(71.14) Ny=Jvy; ANwyj— Ky, ANwig —Jy; Qwy+ Ky, Quwg, etc.

Note that equation (7.4) gives v, = A}, where A} = JA\; — K.

Fixing the almost complex structure I and under the action of the
subgroup Sp(n) U(1) of U(2n);, it was noted in [21] that, for n > 1,
W; @ C = (AJE + E)(L3 + L3) and Wy ® C = (K + E)(L® + L3). As
in § 5, we get

Wi = [ASEL3)g + [EL?g1, Wy = [KL3|g + [EL%]go.

It is well known that, in general, the tensor N belongs to W1 9. In our case,
equation (7.14) gives us that N; € [EL3|g; + [EL®]g2, i.e., the components
of Ny in [AJEL?]g and [K L3]g vanish.

Using equations (7.14) and (7.11), we thus have:

COROLLARY 7.14. — Let M be a QKT-manifold of dimension 4n >
4. Then, for any local adapted basis I,J, K, the following conditions are
equivalent:

(i) the almost complex structure I is integrable;

) the Lee forms Jd*w; and Kd*wg are equal;
) the one-forms JA\; and K\ are equal;
(iv) the one-forms Jv; and K~k are equal;

) the equation Axdw; = —A jdwg is satisfied;

) the equation JAgdw; = —KA jdwy is satisfied;
(vil) the equation JAjdwyx = —KAjdwy is satisfied.

COROLLARY 7.15. — Let M be a 4n-dimensional, (n > 1), almost
quaternion-Hermitian with a global adapted basis I,J K, ie., M is
equipped with an almost hyperHermitian structure. Then the following
conditions are equivalent

(i) M is an HKT-manifold;

ANNALES DE L’INSTITUT FOURIER



THE INTRINSIC TORSION OF AQH MANIFOLDS 1481

(i) M is a QKT-manifold such that I\; = JA\; = KAk = 5-t;

)

(iil) M is a QKT-manifold such that Id*w; = Jd*w; = Kd*wk and
IAgdwy = Id*wy, etc.

Proof. — This is an immediate consequence of Theorem 7.9, Proposi-
tion 7.12 and Corollary 7.14. |
Finally, let us look at the two special types of QKT-manifolds with in-

trinsic torsion in one summand of (K + E)H.

LEMMA 7.16. — An almost quaternion-Hermitian manifold M of di-
mension 4n > 4 is of type ASES3H + K S3H + AJEH + K H if and only if,
for any local adapted basis I, J, K, we have

(7.15)  —IAgdwy;=(n—-1)Id*wr —nJd*w; — (n — 1)Kd*wg, etc.

Proof. — We have 6¢ = 65 = 65 = 65 = 0. Equations (5.16) and (5.17)
then give
v =24AMa, v = (2n— )AL +24)a.

From these equalities together with equations (5.3), (5.5) and (4.11), we
deduce equation (7.15). O

THEOREM 7.17. — Let M be an almost quaternion-Hermitian 4n-
manifold, n > 1.

(i) M is of type KH if and only if M is a QK T-manifold and, for any
local adapted basis I, J, K, equation (7.15) holds.

(ii) M is of type EH if and only if there exists a global one-form t
defined on M such that, for any local adapted basis I, J, K, we
have

_ 1 1
dwy = 7727)/_‘_115/\&01 - K (K/\K =+ 727“2”_’_1)15) ANwy

+ J (J)\J + mt) A WK, etc.

In this case, M is called a locally conformal quaternionic Kahler
manifold and the one-form t is given by

2(n — 1)t = 2nld*w; — KA jdwr + JAkdwy, etc.
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Proof. — The first part follows directly from Lemma 7.16.
For M of type EH, then T' = 2n+1 >a=1.y.x At Awa. Equation (7.16)
then follows from equations (7.9) and (7.10) and Lemma 7.7. O

8. Almost Hermitian structures

In this section, we will consider almost Hermitian manifolds M of dimen-
sion 2n and the classification of Gray & Hervella [13]. These manifolds are
equipped with an almost complex structure I compatible with a Riemann-
ian metric (-, -). Therefore, their orthogonal frame bundles can be reduced
to the unitary group U(n).

By identifying the intrinsic U(n)-torsion & with V'Cw; via &H —
—¢My; = VECy;, Gray & Hervella [13] gave conditions characterising
classes of almost Hermitian manifolds by means of the covariant deriva-
tive VECw;. The space of intrinsic U(n)-torsions is then isomorphic to the
space W = T* M ® A{20} of covariant derivatives of the Kihler form wj.
Under the action of U(n), n > 2, W decomposes into four irreducible mod-
ules,

W =Wy + Wy + Wy + Wy = ABO 4 730, 4 AFPH 4 ATL0)
Therefore, for n > 2, there are 2* = 16 classes of almost Hermitian mani-
folds. For n = 2, W; = W3 = {0} and there are only 4 classes.

On the other hand, because dw; € A3T*M = W;i,3,4, only partial in-
formation about &*H can be recovered from the exterior derivative dw;.
The remaining component can be found in the Nijenhuis (0, 3)-tensor Ny €
Wiio C T*M ® A?T*M, which is often more convenient to work with
than VYC. Table 8.1 lists conditions characterising the classes of almost
Hermitian manifolds in terms of tensors dw; and Njy. The symbol N de-
notes the three-form obtained by skew-symmetrisation of Ny, i.e.,
Ni(X,Y,Z) = S xy, Ni(X,Y, Z). The conditions are found by studying
the U(n)-maps

et — O (&% Bon(Y, Z) = dwi(X,Y, Z),
XYZ
&M —(FlwnIX,Y) = (E7wn) (X, Y)

— (w2, X) = (Eywn)(Z, X)
and recalling the following well-known identity [12]

Ni(X,Y, Z) = (VECwr) (IX,Y) + (Vigwr) (X, Y)
(VY wr)(IZ, X) + (VIYWI)(ZaX)-
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e Nr=0and dwy =0
Wl =NK de = —%IN]
Wy =AK  dwy =0

W5 Ny=0and d*w; =0

Wy =LCK N;y=0and dWI:_ﬁId*WI/\WI
Wito dwr = —+INg

W13 N; =3N7 and d*w; =0

Wiy dwr = f%INI — ﬁ[d*w; Awr
Wa3 Nr=0and d*w; =0

Wai4q dwy = —ﬁld*wf/\wf

Wiy Nr=0

Wiioas d*wy =0

Wita14 dwy = —iINI - ﬁld*w[ Awr

Wits1a Np = 3N;
Wois4a Nr=0

w no relation

Table 8.1. The Gray-Hervella classes of almost Hermitian structures
characterised by the Nijenhuis tensor and the exterior derivative of the
Kahler form.

9. Twisting

In this section we consider the effects of “twisting” an almost hyperHer-
mitian in the sense of [28] where this construction was shown to be an
interpretation of T-duality.

Let (M,I,J,K,g = {-,-)) be an almost hyperHermitian manifold. Sup-
pose that X is a tri-holomorphic isometry, so

LXg:O, LXI:O:L)(J:L)(K.
Let Fy be a closed 2-form with Lx Fy = 0 and choose a nowhere vanishing
function a € C™(M) so that X? = X 4 Fy = —da. If P — M is a principal
R-bundle with connection # whose curvature is Fy, then X may be lifted to
a transverse vector field X on P that preserves 0: the vertical component
is given by aY where Y generates the principal action. Locally the twist W
of M by (X, Fy,a) is the quotient W = P/(X) with the geometry induced
from the horizontal space H = ker §. Each X-invariant (0, p)-tensor £ on M
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is H-related to a unique (0,p)-tensor " on W defined by the condition
that the pull-backs to P agree on J. Exterior differentiation on W then
corresponds to the twisted derivative d"V = d—FyA %X Jon invariant forms
on M.

If we twist an almost hyperHermitian structure the three-form (; =
Jdwj + Kdwg transforms to

BY = fr—1X" A (J + K)Fp.
Thus to compute the change of the intrinsic torsion we should decompose
BY asin (5.1). We start by decomposing Fp € A>°T*M = S?H+A2ES?H +
S?E:
Fop = (prwr + pyws + prwr) + (Iykr + Jayks + Kqyki) + ag,

with each k4 € A3E C S?T*M and oy € S?E. We have

ag=31+1+J+K)Fy, pa = LtA4Fy,

Aqyka = —iA(l +1+J+K)AFy — pawa.
We find that

LI+ K)Fy = —pqwr — Ik +ag € Ay

PROPOSITION 9.1. — Suppose W is obtained from an almost hyperHer-
mitian manifold M by a twist of the R-action generated by a symmetry X
and using a curvature form Fy. Then W carries an almost hyperHermitian
structure and the intrinsic almost quaternionic torsion is determined by
the one-forms

uiw =vj + 2{ps(2n— DIX" — X Jap— IX Jkp},
w
l/?{ :I/?{—FW(HIXJK/[—(TL—l)XJO&g).

and three-form components

w
= 8% + 2 (2X" A Lnykr + IX" A Kyrr — KX° A Jaysr)
+ ﬁ(?(X i Ii[) Nwr — (KX i I{[) Nwy+ (JX i Ii[) /\wK),
w
B = B~ 2XP A ay
+ %(Xb N I(l)KJI —JX" A K(l)ﬁj + KX A J(l)lﬁ)
_ m((X Sk Awr+ (KX Jkp) Awy + (JX S k1) Awk)

— m((IXJOéQ)/\WI‘F(JXJOLQ) Nwy+ (KXJO[@) /\wK).
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Proof. — One first computes the following contraction formulse
IAN(X° Naw) = X sag, IAf(yAwr) = (2n— DIy, IAj(yAwy)=Jy,
IN[(X° ANTkp) = —IX ska, TA(X°AJka) =JX Jka.

These lead directly to the claimed expressions for v} " and vl " and then

give
Bar" = Bur + gy (11 (2n = DX’ + IX Sag — X 4kr) Awr,
W (B
5 =05 - s e (X 2k — (0= DIX Jag) Awy

—nKX sk —(n—1)JX Jap) Nwy
—nJX sk —(n—1)KX Jap) ANwk.

_ #(
a(2n+1)(n—1)
_ %(
a(2n+1)(n—1)
The remaining components of 5;" are then found using (5.7) with
Li(yANag) =vAag, Li(vAwy) =21y ANwg — 7 Awy,
L](’)/ /\wl) =vAwy, L](’)/ A J(l)lﬁ:A) =2Iv A K(l)HA —YA J(l)liA. 0

COROLLARY 9.2. — Twisting by Fy € S2E + S2H leaves £33, &3 and
&3 unchanged. Furthermore,
(i) if 3X% = —2(n +2) >4 paAX’, then £pp is not affected;
(ii) if Fp € S®E, then g3 is unaltered.

Proof. — The assumption on Fjy is equivalent to the vanishing of xj, ks
and k. We thus have ﬂ}g)w = ﬂgg) and that /6§K)W — }K) is independent
of I, from which the invariance of the components in (A3 E+K)S*E+ASEH
follows.

The change in Iy is (Z;;) (2n+1)(urIX° —pyJ X" —pux KX°)— X Sap).
If 3X Jag+ (2n +1)>, #aAX® = 0, then there is no contribution to
>4 Ana and hence no change in {gy. On the other hand, if Fy € S?E

then each 4 = 0, and there is no contribution to ES3H. |

Remark 9.3. — Case (ii) shows in particular that the QKT condition is
preserved by twisting with Fy € S2E.

10. Examples

In this section we use the techniques developed in the previous sections to
compute the intrinsic torsion in a number of particular examples. In the first
instance we consider examples which a almost hyperHermitian with each
Hermitian structure of the same Gray-Hervella type. From [21] we know
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that certain combinations can not occur. Table 10.1 gives an overview of
which types may be obtained. The 4n-torus 74" = H"/Z*" is hyperKih-
ler and so has intrinsic torsion 0. The Hopf-like manifold $4"~1 x S! =
H™\ {0}/(¢ — 2q), is locally, but not globally conformal, to the flat hyper-
Kahler metric, so each almost Hermitian structure is of class W, and the
almost quaternionic type is FH. The other examples are described below.

I,JJK {0} Wy Wy Wiio
{0} T4n impossible impossible impossible
Ws Hg S3xT? T3x M (k)3 T3x(T\H)3?
Wy S~ 1x S impossible impossible unknown

Wiy S3xTAm+l 83519 T3x(T\H)3, T3xM(k)®> T3x(T\H)3

Table 10.1. Examples with common almost Hermitian structures

10.1. The manifold S° x T°

The sphere S? is isomorphic to the Lie group Sp(1). In the Lie algebra
sp(1) there is a basis , y, z such that [z, y] = 2z, [z, 2] = 2y and [y, 2] = 2z.
From z, y, z one can determine the left invariant one-forms a, b, ¢ which
constitute a basis for one-forms and their exterior derivatives are given by
da=—-2bAc,db=—2cANaand dc=—2aANb.

In the product manifold M = S% x T°, we write a;, b1, ¢1 for the one-
forms corresponding to the factor S® and a;, b;, ¢;, i = 2,3, 4, for a basis of
invariant one forms on 79 = (S1)°. On M we consider an almost hyperHer-
mitian structure I, J, K with compatible metric (-, ) = Z?Zl(a? +b7+c?)
and whose Kéhler forms are given by
(101) Wi = a2a1 + agas + baby + babs + cocy + cac3, etc.(234)7
where az2a1 = az A a1 and “etc.(234)” denotes the corresponding equa-
tions obtained by simultaneously cyclically permuting (I, J, K) and (2, 3, 4).
Their respective exterior derivatives and the three-forms F4 are given by

dwy =2 6 asbicy, [Br=-2 6 (a1b303 + CL1b4C4) R etc.(234).

abe abe

Since Agdws = 0, A,B = I,.J,K, we have A4 = 0 and 8 = 0, for
A =1,J, K. Then, using equation (5.7), we obtain

5§K) = _% (a1brc1 4 arbacy + arbscs + arbscy),  ete.
abc
§3) = —% 6 (—a1b161 — a1boco + 2a1b3es + 2&1b4C4) s etc.(234).
abce
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Using Proposition 5.3 we get z/}f) =0, z/JgK) =0,0=0= 93, for A =
I,J,K, 93 #£0 and ) £ 0. Therefore, we have

¢ € ASES®H + KH.

Note also that £33 # 0 and Ex g # 0.

Furthermore, if we consider the connection V = VL€ + %T, where T is
given by

v.IxZ)y =% Y (847 - YY) (XY, 2),
A=I,J,K

we will obtain that this connection is metric and VI = VJ = VK = 0.
Thus, we have got an example of a quaternion-Hermitian manifold, which
is not QKT, admitting an Sp(n) Sp(1)-connection with skew-symmetric
(0, 3)-torsion.

We compute the Nijenhuis (0, 3)-tensors for I, J and K via Proposi-
tion 4.3:

N] = 2a1b101 -2 6 a1b2027 etc.(234).
abe

Since Ny, Nj, Nk are skew-symmetric, then the almost Hermitian struc-
tures are of a type that lies in Wi 4314. However, Ad*wy = —Agdws =0
implies that such structures are of type Wiy3. The facts 4ddws # 3AN4
and N4 # 0 respectively imply that the structures are not of the types Wy
and W3.

Finally, if we make a conformal change of metric (-,-)° = €29 (-,-) as in
Proposition 5.4, we obtain a new quaternionic structure with

¢° € AJES®H + KH + EH.

The new almost Hermitian structures are of type Wy y314.

10.2. The manifold 3 x T4m+1

In the product manifold M = S3x T4+ m > 1, we write n = m+1, aq,
as, a4 to denote the one-forms corresponding to the factor S3 and a1, a;, 1 =
5,...,4n, for a basis of invariant one-forms on T%™*!'. On M we consider
an almost hyperHermitian structure I, J, K with compatible metric (-, -) =
Z?Zl a; ® a; and whose Kéhler forms are given by the expressions

n—1

(10.2) wr = Z (A4i+204i+1 + Qairaa4i43), ete.(234).
=0
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Their respective exterior derivatives and the three-forms 34 are given by
dwr = —2a1a3a4, etc.(234), [r = —4dasazaq, ete.

Hence, by Proposition 6.3, M is an HKT-manifold. Although this example
is already known, we wish to give a few more details. We have

Id*wy = —2a1, IA\j=-ta;, vi= *ﬁ“h
yi = —4a;, 0°= ¢9§ = fm ay, etc.,
SO
e (K+E)H

with £xg # 0 and Egg # 0. Also, the three almost Hermitian structures
are of type Wsyq \ (W3 U Wy).

Making a local conformal change of metric (-,-)* = €27 (-,-), with o satis-
fying do = 46¢ = —m a1, we will obtain a new almost hyperHermitian
structure {I,J, K; (-,-)°} with

& e KH.

However, by Proposition 5.4, we will have

* 0 __ 4 o_ 2 1 _ 4
Id*w; = @D @ I\] = T M, V3 = —gngy a1,
° _ 8n ° _ p&° _
Uy ——mal, 95 —GI —O7 etc.,

so the identities given in Lemma 6.5 are not satisfied and structure is not
HKT. It has A\Yy = ito # 0, but the three almost Hermitian structures
are still of type W3+4 \ (W3 U W4)

Finally, for a local conformal change of metric by o satisfying do =
—%%al, we obtain an almost hyperHermitian structure with three almost
Hermitian structures of type W3. However, such a structure is not HKT.
The almost quaternion-Hermitian structure has

e (K+E)H

but not in any submodule. In fact, we will have

* 0 __ o _ _ 2(n—-1) 1 _  4(2n—3)
Id*wy; =0, INf=—-5—F a1, V3 =——>—7 a1,
10 _ _ 8(n=1) € _ % 1
vy =—>5,—ta, 0 =0; = snz=1) 01> etc.
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10.3. The quaternionic Heisenberg group

Now we consider the quaternionic Heisenberg group Hg described by
Cordero et al. [6]:

q1 g3
I g2|:q,q,93€H p,

0 1

which is a connected nilpotent Lie group. A basis for the left-invariant
one-forms on Hg is given by a;, b;, ¢;, i = 1,...,4, where

1
Ho={ [0
0

dq1 = a1 +iaz + jaz + kag, dgz = by + by + jbs + kby,
dgs — q1dqz = c1 +icg + jes + key.
With T'g be the subgroup of matrices of Hg with ¢; € Z{1,4,j,k}, we
see that these forms descend to the compact manifold Mg = T'g\ Hg.
Consider the almost hyperHermitian structure on Mg with metric (-, ) =
Z?Zl(a? + b2 + ¢2), and Kéhler forms given by (10.1).
ProposITION 10.1 (Cordero et al. [6]). — The three almost Hermitian
structures I, J, K defined on Mg are of type Ws.
Structures of type W3 are sometimes called balanced Hermitian.
The three-forms 4 are given by
%51 = arbicr + arbaco + arbses + arbacy
— agbico + asbocy — asbszcy + asbycs, etc.(234).
Using equation (5.5), we obtain that v5! = v =0, so {pg = €gz = 0 by
Proposition 5.3.
On the other hand, using equation (5.7), we obtain 6§K> = SK) =
ﬁ(K) # 0 and ﬂ?) + ﬂ(j’) + ﬂ}?) = 0, with each ﬁf) # 0. Therefore, Propo-
sition 5.3 gives €33 = k3 =0, €3y # 0 and Ex gy # 0. In summary,

§€AJEH + KH.

10.4. The manifold 7% x (I'\H)3

Let H be the real Heisenberg group of dimension 3:
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A basis of left-invariant one-forms is given by {dz, dy,dz — xzdy}. Let T be
the discrete subgroup of matrices of H whose entries z, y, z are integers.
The quotient space I'\ H is called the Heisenberg compact nilmanifold. The
one-forms {dz, dy, dz —xzdy} descend to one-forms p, q,r on I'\H with dr =
—pANgq.

10.4.1. A first structure

Let M be the manifold 7% x (I'\H)?. On M we consider a basis of
invariant one-forms a1, by, ¢; for T2 and one-forms as, as, a4, ba, b3, b,
ca, c3 and ¢4 corresponding to the factors T'\H such that das = —asay,
dbg = —b4b2 and dC4 = —C2C3.

On M we consider an almost hyperHermitian structure I, J, K with
compatible metric (-,-) = S0 (a? + b? + ¢2) and whose Kihler forms are
given by the expressions (10.1).

Their respective exterior derivatives and three-forms 34 are given by

dwr = —ajaszag, L5 = —babsby — cacscq, ete.(abe; 234).
Using equations (5.3), (5.5) and (4.11), we obtain
vi=—2(b1+c1), vi=-bi—ci, I\j=3%(a1—b—c1), etc.(abe).

Therefore, by Proposition 5.3, we get
56 9§ = —3a; +by+c1, —1686°=a; +b +c1, etc.(abe).
Thus, the £g3 and gy parts of the intrinsic torsion are not zero.

On the other hand, by equations (5.2) and (5.3), we have

7ﬂ§E>: Z A(by +c1)wa, ete.(abe).
A=I,J,K

Hence, by equation (5.7) on ﬂf+K) =04 — 1(4E), we have

5}3) = O’ §K) = —b2b3b4 — C2C3C4 — % Z A(bl + Cl)WA, etC.(abC).
A=I,J,K

Proposition 5.3 then gives {33 = {3y = 0, {x3 # 0 and kg # 0 and we

conclude
¢e KS°H + ES®H + KH + EH.

Let us now analyse the almost Hermitian structures. We compute the
Nijenhuis tensors using Proposition 4.3:

Ny = by @ bybs — bs & babs — by ® byby — by & bybs
—c3®c1e3 4¢3 ® cacy + ¢4 ® c104 + C4 @ cac3,  ete.(abe; 234).

We see that the alternation of the Nijenhuis tensors N4 are zero. Therefore,
the almost Hermitian structures are of type Wai314.
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Moreover, N4 # 0 so the structure is not of type W3, 4. Since Id*w; =
—ayq, ete.(abe), the structures are not of type Wa 3. It can be also checked
that bdwy # —Ad*wawa, so the structures also not of type Wa4.

Finally, making a conformal change of metric (-,-)* = €27 (-,-) with ¢ is
a local function satisfying do = 46¢ = fé(al + b1 + ¢1), we obtain locally
a new almost quaternion-Hermitian structure {I, J, K; (-,-)°} with

€€ KS®H + ES®H + KH.

The three new almost Hermitian structures are still in Wa54.
10.4.2. A second structure

This time, on M = T3 x (I'\H)?, consider a1, b1, ¢; a basis of invariant
one-forms on T2, as before, and let as, as, a4, ba, bs, ba, ¢2, 3, ca denote
linearly independent one-forms on the factors T\ H now with das = —byca,
db3 — —C(C30a3 and dC4 = —a4b4.

Take the almost hyperHermitian structure I, J, K with compatible the
metric (-,-) = S0 (a? + b? + ¢2) and with Kihler forms are respectively
given by (10.1).

Their respective exterior derivatives and three-forms 34 are given by

dwr = —aybaca + agbycs — agbscs,  ete.(abe; 234),
Br = —a1bieq — arbsey — agbocy — agbszca — asbses — asbycy, ete.(abe; 234).
Note that Agdws = 0 and AgB4 = 0, for A,B = 1,J,K, so AAy =0
and /Bi‘E) = 0. This implies that (g3 = &gy = 0. Furthermore, using
equation (5.7) one computes the components 51(43) and ﬁl(élK) and obtains
that >°._; jx ﬁ,(qK) #0and 384 # > p_; ;x BJ(BK). By Proposition 5.3,
we find that x5 # 0 and {xm # 0. Also we compute 35 4_; ; ﬂf’) # 0 and

655 # 35 por 05 + La (Speru B5))s 50 €3 # 0 and & # 0.
In summary, we get

£€AJES®H + KS*H + KH + EH.

Now we turn to analysis of the almost Hermitian structures. Since
Ad*wy = —Aygdwy = 0, the almost Hermitian structures are of type
Wit213. Moreover, using the expressions for N4 in Proposition 4.3, we
have

N] = —a1 X b162 —a1 ® bgcl + as ® bQCQ — a2 ® b101
+ b3 ® c3a3 — bz ® cpaqg — by ® c3a4 — by ® cqa3

— 3 ® agbs — c3 ® asbs — ¢4 @ azbs + ¢4 @ agby, etc.(abe; 234).
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We find that N4 is not skew-symmetric, the alternation N4 of Ny is non-
zero and that 4dws # —AN 4. Therefore, the almost Hermitian structures
are not of type W;y;, for 4,5 =1,2,3.

Making a global conformal change we obtain almost Hermitian structures
of the general type W12 314 whilst preserving the almost quaternion Her-
mitian type.

10.5. The manifold 7% x M (k)3

Let us consider the manifolds M (k) described in [1] as S7/D and studied
geometrically in [5, 7, 9]. For a fixed k € R\ {0}, let G(k) be the three-
dimensional connected and solvable (non-nilpotent) Lie group consisting of

matrices:
ek 0 0 =z
0 e* 0 y
= . R
G(k) 0 0 1 x,Yy,2 €
0 0 0 1

A basis of right invariant one-forms on G(k) is {dx — kx dz,dy + ky dz,dz}.

The Lie group G(k) possesses a discrete subgroup I'(k) such that the
manifold M (k) = G(k)/T'(k) is compact. One example of I'(k) is generated
by choosing r > 0 so that e*” 4+ e~*" € Z and then taking the subgroup
of G(k) generated by (x,y € Z,z =0) and (x =0 = y,z = r). The given
basis of one-forms on G(k) descends to one-forms a,b, c on M (k) satisfying
da = —kac and db = kbc.

10.5.1. A first structure

Let M be the manifold M = T2 x M (k)3. Consider a basis of invariant
one-forms ai, b1, ¢1 on T2 and one-forms as, as, a4, ba, bs, ba, ca2, c3, C4
corresponding on the factors M (k) with

das = —kagas, dag = kagas, etc.(abc;234).

Now we consider on M an almost hyperHermitian structure I, J, K with
compatible metric (-,-) = Zle(a% + b7 + ¢?) and Kihler forms given
by (10.1).

The respective exterior derivatives and three-forms G4 are given by

duJ[ = kblbgbg, - k016204, 6[ = —kb1b2b4 — ]{3010263, etc.(abc; 234)
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Note that ), B4 = 0. Therefore, >, Bf) =0and ) 4 E4K) = 0. This
implies that £33 = 0 and {x3 = 0. To compute the E-parts of 54 and &, we
first find
Id*wy = kb — key, IAgdw; = —kas + key,
IA jdwg = —kas + kbs, etc.(abe; 234).

Using equation (4.11), we now obtain IA; = g(—bg +c4), ete.(abc;234). On
the other hand, using vt = AA 434 and equation (5.5), we get

vi=k(-bs+ci), vi= %(763 +¢q), ete.(abe;234).

Finally, from the obtained expressions for A\, v4' and v, using Proposi-
tion 5.3, we find

0° =0, 9? =3 (—b3+cq), etc.(abe;234).
Hence gy = 0 and g3 # 0. Furthermore, since

;E) = % Z A(bs —ca) ANwa, etc.(abe; 234),
A=I,J,K
we have L4 (85 — ) = B — B\, for A, B = I, J, K. Therefore, 8 =
Ba— 5E4E) # 0 and /Bﬁg) = 53) = ﬁg’) = 0. These last claims imply x3 # 0
and &3 = 0. In conclusion,

¢ e KS®H + ES®H.

Now we analyse the almost Hermitian structures. Using the expression
for N4 in Proposition 4.3, one can obtain Nijenhuis (0, 3)-tensor for I, J
and K. These tensors N4 are not zero and but their alternations N4 are
zero. Therefore, the almost Hermitian structures are of type Wai314.

Moreover, N4 # 0, this implies that the structures are not of type W3, 4.
Additionally, we have seen above that the Lee one-forms Ad*w, are non-
zero, so the structures are not of type Ways. Finally, one can easily check
that dws # f%Ad*wAwA, so the almost Hermitian structures are not of
type Wa 4.

10.5.2. A second structure

We again consider M = T® x M (k)3. We take a1, b1, ¢1 to be a basis of
invariant one-forms on 7% and now as, as, a4, ba, b3, ba, ¢2, c3, ¢4 is basis
of one-forms on M (k)? with

dby = —kbsag, dco = kegag,  ete.(abe; 234).
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On M we consider an almost hyperHermitian structure I, J, K with com-
patible metric (-, -) = 3¢ (a2 +b? 4 ¢2) and Kiihler forms given by (10.1).

The respective exterior derivatives and the three-forms (34 are given by
+ dwy = azasbs — azascy — bibaas + bybscy + c1c2as — czeabs,
%/31 = —a1agby + a1asc1 — azazbz + azasca — bibser — babsag
— babgay — babsca + c1c3by + caczaz + cacsbe + cacyay,

etc.(abc;234). Since Agdwa = 0, for A, B = I,J, K, we have A\4 = v4' =
vl =05 =65 =0, 50 £gg = 0 and g = 0. Now, using (5.7), one can
compute the components ﬂf) and 6§K). One checks that ) ,_ 1K ﬂf) =
0, BS’) # 0, the ﬁff), A =1,J,K, are distinct and >~ ,_; ,]Kﬁ,(f) # 0.
Therefore, 33 =0, Epg £ 0, Ek3 #0 and Exg # 0. In sumrﬁéry,

€€ KS®H + AjJEH + KH.

For the almost Hermitian structures, one computes N4 via Proposi-
tion 4.3 and find that they are non-zero but their alternations N4 vanish,
so the structures lie in Wa4344. Since Apdwa = 0, for A, B =1,J, K, we
have that the respective Wy-parts are zero. Thus, the almost Hermitian
structures are of type Wa,3. Because N4 # 0 and dws # 0, the structures
are not of the simple types Ws or Wj.

10.6. Twisting tori

Up to this point we have obtained all the claimed examples of Ta-
ble 10.1 and determined the corresponding types of the almost quaternion-
Hermitian structures. Let us now use the twist construction of §9 to give
some other examples of types of &.

Let us first demonstrate that the condition in Corollary 9.2(i) can be
satisfied. Let M = T*", n > 2, with the standard flat hyperKéahler struc-
ture. Take Fy = wy + ap and X an arbitrary isometry. Then pu; = 1,
py=0=pr and X = —IX" + X J ay. The condition of Corollary 9.2(i)

is now equivalent to X 1oy = —%IXW This is satisfied if we take
ap = —(32"’;”12) (X* ANIX* — JX* A KX”). Locally, we may now twist to

obtain a structure with
¢V ¢ KH + ES®H.

Since X” A ag # 0, a is supported on HX and n > 2, we have £x "’ # 0.
On the other hand the values of the ;4 ensure that £g3"V # 0.
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As second example, consider T4", n > 3 with invariant basis a1,. .., a4
and two-forms (10.2). Take Fyp = asay + aqas — agas — agay. We have
Fy € A}’l orthogonal to wy and of type {2,0} for J and K, so Fy = I(1)K1.
Twisting via any X such that X 4 Fy = 0 and each AX 4 Fy = 0 yields an
almost quaternion-Hermitian structure with

&V e (ASE+ K)(S®H + H)

but not in any proper submodule. Making a conformal change we may also
obtain structures with intrinsic torsion in (A E+K)S*H+(ASE+K+E)H.

10.7. Twisting Salamon’s example

Recall that Salamon [26] gave an example of a non-quaternionic Kéah-
ler 8-manifold that has df2 = 0. The manifold is a compact nilmanifold
I'\G, where G has a basis of left-invariant one-forms ay,...,a4,b1,...,bs
satisfying

day = —V/3ayas — 3asby, dby = ajay + V3agby,
dby = —ajas — V3agby — V/3aiby + 3b1by,

with the other basis elements closed. The Lie algebra g is a direct sum
R3 + b, with § two-step nilpotent. Salamon’s structure is then given by
(10.1) (with ¢; = 0). In terms of intrinsic torsion this has

¢ e KSH.

The two-form Fy = ajas + asay is a closed element of S?E and defines
an integral cohomology class on M for an appropriate choice of I'. We may
thus twist using, for example, the central vector field X dual to b3 to obtain
an almost quaternion Hermitian 8-manifold W with

W e K(S°H + H).
Conformally scaling these two examples we may obtain structures with

€ eKS’H+EH and ¢V’ e KS®H + (K + E)H.
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