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MODULI SPACES OF PU(2)-INSTANTONS
ON MINIMAL CLASS VII SURFACES WITH b2 = 1

by Konrad SCHÖBEL

Abstract. — We describe explicitly the moduli spaces M pst
g (S, E) of polystable

holomorphic structures E with det E ∼= K on a rank two vector bundle E with
c1(E) = c1(K) and c2(E) = 0 for all minimal class VII surfaces S with b2(S) = 1
and with respect to all possible Gauduchon metrics g. These surfaces S are non-
elliptic and non-Kähler complex surfaces and have recently been completely classi-
fied. When S is a half or parabolic Inoue surface, M pst

g (S, E) is always a compact
one-dimensional complex disc. When S is an Enoki surface, one obtains a complex
disc with finitely many transverse self-intersections whose number becomes arbi-
trarily large when g varies in the space of Gauduchon metrics. M pst

g (S, E) can be
identified with a moduli space of PU(2)-instantons. The moduli spaces of simple
bundles of the above type lead to interesting examples of non-Hausdorff singular
one-dimensional complex spaces.

Résumé. — Nous décrirons explicitement les espaces de modules M pst
g (S, E)

de structures holomorphes polystables E avec det E ∼= K sur un fibré vectoriel E de
rang deux avec c1(E) = c1(K) et c2(E) = 0 pour toutes les surfaces S minimales de
la classe VII avec b2(S) = 1 et par rapport à toutes les métriques de Gauduchon g.
Ces surfaces S sont des surfaces complexes non-elliptiques et non-Kählériennes et
ont récemment été complètement classifiées. Si S est une demi-surface d’Inoue ou
une surface d’Inoue parabolique, M pst

g (S, E) est toujours un disque complexe com-
pact de dimension un. Si S est une surface d’Enoki, on obtient un disque complexe
avec un nombre fini d’auto-intersections transverses, arbitrairement grand quand
g varie dans l’espace des métriques de Gauduchon. M pst

g (S, E) peut être identifié
à un espace de modules de PU(2)-instantons. Les espaces de modules de fibrés
simples du type considéré mènent à des exemples intéressants d’espaces complexes
singuliers non-Hausdorff de dimension un.

1. Introduction

In gauge theory, moduli spaces of anti-self-dual connections have led to
striking results in differential four-manifold geometry; they are the main

Keywords: Moduli spaces, holomorphic bundles, complex surfaces, instantons.
Math. classification: 14J60, 14J25, 57R57.
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tool in the construction of the Donaldson polynomial invariants. However,
the explicit computation of these moduli spaces in concrete situations is in
general very difficult. Nevertheless, when the base manifold is a complex
surface, the Kobayashi-Hitchin correspondence establishes a real analytic
isomorphism between the moduli spaces of (irreducible) anti-self-dual con-
nections and polystable (stable) holomorphic structures on a fixed diffe-
rentiable vector bundle and makes thus possible the application of complex
geometric methods for the computation of gauge-theoretical moduli spaces.
S. K. Donaldson gave the first complete proof of this relationship on al-
gebraic surfaces and used it to explicitly compute moduli spaces and the
corresponding invariants for Dolgachev surfaces. This led to the first ex-
ample of pairs of homeomorphic but not diffeomorphic four-manifolds [10].

Subsequently this strategy was carried out for a large variety of algebraic
surfaces [32, 5, 15, 26, 33, 17, 9, 16]. However, it becomes very hard for non-
algebraic surfaces due to the presence of non-filtrable holomorphic bundles
in the moduli space. A complete classification of such bundles is considered
to be an extremely difficult problem on non-elliptic surfaces because of the
lack of a general method of construction and parametrisation. It could only
be solved for a number of non-Kählerian elliptic surfaces [3, 29, 35, 40, 30,
4]. Note that for elliptic fibrations one solves this problem by regarding the
restrictions to the fibres which (generically) are elliptic curves on which the
classification of holomorphic bundles is well understood. This strategy is
called the graph method and was used by P. J. Braam and J. Hurtubise to
obtain the first explicit example of an SU(2)-instanton moduli space on a
non-Kähler surface, namely an elliptic Hopf surface [3]. In this article we
now compute moduli spaces of holomorphic bundles on all minimal class
VII surfaces with b2 = 1, endowed with all possible Gauduchon metrics.
Being the first example of moduli spaces on surfaces that are both non-
Kähler and non-elliptic, this is the reason why one expects essentially new
phenomena for the behaviour of moduli spaces in general.

Our method to overcome the main difficulty of controlling non-filtrable
bundles is the following: We first classify filtrable bundles and then show,
using gauge-theory, that only a particular non-filtrable bundle can exist.
In [36] it was shown that the moduli space does not contain a compact
component consisting of both filtrable and non-filtrable bundles. We then
show that the moduli space does not contain any compact component at
all. This is true on blown-up primary Hopf surfaces by a recent result of
M. Toma [41] and we conclude using a deformation argument, since any
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minimal class VII surface surface containing a global spherical shell (see
below) is the degeneration of a blown-up primary Hopf surface [22].

A first interesting property of our moduli spaces is that the filtrable
bundles are generic. This is surprising, because on Kähler surfaces the
filtrable locus is a countable union of Zariski-closed sets and also in all
formerly known examples on non-Kähler surfaces it was found to be Zariski-
closed.

Class VII surfaces with b2 = 1 are of particular interest in the light of
the classification problem of complex surfaces. In the early 1960ies, K. Ko-
daira classified connected compact complex surfaces (surfaces for short)
into seven classes [24]. Six of them are quite well understood but the seventh
[25] has resisted a complete classification until the present day. A surface S

is said to be of class VII if it has Kodaira dimension kod(S) = −∞ and first
Betti number b1(S) = 1. It can be blown down to a unique minimal model,
i. e. a unique class VII surface not being the blow-up of another one. We de-
note the subclass of minimal class VII surfaces by VII0. Class VII0 surfaces
with second Betti number b2 = 0 are classified: They are either Hopf or
Inoue surfaces [2, 28, 34]. As to class VII0 surfaces with b2 > 0, all known
examples admit a so-called global spherical shell and can thus be explicitly
constructed by successive blow-ups of the unit ball in C2 and a subsequent
holomorphic surgery [22]. On the other hand, every class VII0 surface S

with exactly b2(S) rational curves possesses a global spherical shell [8]. The
global spherical shell conjecture now states that every class VII0 surface
has such a global spherical shell and would reduce the classification of class
VII surfaces to finding sufficiently many curves.

This was recently done by A. Teleman for the subclass VII10 of class
VII0 surfaces with b2 = 1 [36]. Supposing there did not exist any complex
curves on the surface, he constructed a contradiction for the moduli space
of polystable holomorphic structures E with det E ∼= K on a fixed complex
vector bundle E with c1(E) = c1(K) and c2(E) = 0. By the above, this
accomplishes the classification of class VII10 surfaces: Each class VII10 surface
is biholomorphic to either the half Inoue surface [21], the parabolic Inoue
surface [20] or an Enoki surface [13]. We in turn now compute explicitly
this moduli space for each of these surfaces and describe its properties in
detail. This is possible with respect to any Gauduchon metric, due to a
recent result classifying the possible degree maps on non-Kähler surfaces
[6, 37]. We finally remark that the methods used can be extended to show
the existence of a curve in the case b2 = 2 [39].

TOME 58 (2008), FASCICULE 5



1694 Konrad SCHÖBEL

The expected complex dimension of the above moduli space is

(1.1) − χ(End0E) =
(
4c2(E)− c1(E)2

)
− 3

2

(
b+
2 (S)− b1(S) + 1

)
= 1 ,

but there are two deeper reasons for this particular choice of the Chern
classes of E. Firstly, it allows one to write filtrable holomorphic bundles
E as extensions of certain holomorphic line bundles. Secondly, it assures
that the moduli space of anti-self-dual connections on E is compact so that
the moduli space of stable holomorphic structures on E, embedded via the
Kobayashi-Hitchin correspondence, can be compactified by adding only the
irreducible part. This compactification is crucial in the step determining
possible non-filtrable bundles.

The moduli spaces we get are compact one-dimensional complex discs
when the surface is a half or parabolic Inoue surface. In the generic case of
an Enoki surface it is a compact one-dimensional complex disc too, but with
finitely many transverse self-intersections. The number of these singularities
is unbounded when the metric varies in the space of Gauduchon metrics.
This shows that there are infinitely many homeomorphism types of moduli
spaces although there are only finitely many topological splittings of the
underlying vector bundle. Furthermore, having a boundary, these moduli
spaces are not complex spaces. This is in contrast to algebraic surfaces,
where the Uhlenbeck compactification is known to be an algebraic variety
[27], and to all known examples on non-algebraic surfaces. It will be one of
our next steps to study the behaviour of the natural Hermitian metric [29]
near this boundary.

Let us finally point out that our results could only be obtained via a close
interplay between complex geometry and gauge theory. Although nowadays
Seiberg-Witten theory has widely replaced Donaldson theory, recent deve-
lopments show that Donaldson theory on definite 4-manifolds with b1 > 1
is still an interesting open subject [38].

The structure of this article is the following: In the next section we briefly
review the necessary properties of class VII10 surfaces and summarise their
classification. Then we parametrise filtrable holomorphic bundles in the
moduli space (section 3), examine its local structure (section 4) and the
stability condition (section 5). In section 6 we give the boundary struc-
ture of the moduli spaces of polystable bundles. Finally we determine non-
filtrable bundles (section 7) which leads to a complete description of the
entire moduli space in the last section.

ANNALES DE L’INSTITUT FOURIER
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2. Minimal class VII surfaces with b2 = 1

Let S be a class VII surface, that is a compact complex surface with first
Betti number b1(S) = 1 and Kodaira dimension kod(S) = −∞. By defi-
nition, the condition on the Kodaira dimension means that tensor powers
of the canonical holomorphic line bundle K do not admit any non-trivial
holomorphic sections: H0(K⊗n) = 0 for n > 1. For such a surface the Chern
classes are given by [24]

(2.1) c2(S) = −c1(S)2 = b2(S) .

Suppose now that S is of class VII10, i. e. minimal with second Betti
number b2(S) = 1. As mentioned in the introduction, Teleman proved that
in this case there exists at least one complex curve on S [36]. But any class
VII10 surface containing a curve is biholomorphic to one of the following
surfaces [31]:

• A half Inoue surface [21]. It contains only a single complex curve,
namely a singular rational curve C with one node and self intersec-
tion −1. The canonical bundle is given by

(2.2) K ∼= F ⊗O(−C)

where F is the unique non-trivial square-root of the trivial holo-
morphic line bundle O (see below). We have

c1(O(C)) = −c1(K) .

• A surface in the family studied by Enoki [13] containing only a
single complex curve, namely a singular rational curve C with one
node and self intersection 0. We have

c1(O(C)) = 0 .

There is no expression for the canonical bundle K as in the other
two cases. We will refer to class VII10 surfaces of this type as Enoki
surfaces.

TOME 58 (2008), FASCICULE 5



1696 Konrad SCHÖBEL

• A parabolic Inoue surface [20]. It contains precisely two complex
curves, namely a singular rational curve C with one node and self
intersection 0 and an elliptic curve E with self-intersection −1. Both
curves are disjoint. The canonical bundle is given by

(2.3) K ∼= O(−C − E) .

We have

c1(O(C)) = 0 c1(O(E)) = −c1(K) .

The Chern classes above follow from the intersection numbers since H2(S, Z)
is torsion free (see below).

Convention. — The family of class VII10 surfaces constructed and clas-
sified by Enoki [13, 14] is characterised by the existence of a divisor D > 0
with D2 = 0. As such it includes the parabolic Inoue surface. Nonethe-
less, to simplify our exposition we agree that in this article we do not
consider the parabolic Inoue surface as an Enoki surface.

Unless otherwise stated, S will always denote a class VII10 surface, i. e.
one of the three types above.

Remark 2.1. — As a two parameter family Enoki surfaces represent the
generic case of class VII10 surfaces. The half and the parabolic Inoue surface
appear as degenerations of them.

The existence of a rational curve on a class VII10 surface implies the exis-
tence of a so-called global spherical shell [8]. Surfaces admitting a global
spherical shell can be constructed by successive blow-ups of the unit ball in
C2 and a subsequent holomorphic surgery [22, 7]. A consequence of this con-
struction is that all such surfaces are degenerations of blown-up primary
Hopf surfaces. In particular they are all diffeomorphic with fundamental
group π1(S) ∼= Z. Thus H1(S, Z) ∼= Z is free and from the universal coeffi-
cient theorem we conclude H2(S, Z) ∼= Z because b2(S) = 1. Furthermore,
from (2.1) we see that c1(K)2 = −1, showing that c1(K) is a generator of
H2(S, Z).

In the following we will frequently use the correspondence between line
bundle morphisms M1 →M2 and the sections of M∨

1 ⊗M2 they define. In
particular every such morphism is the zero morphism if the corresponding
bundle does not admit non-trivial sections, i. e. if H0(M∨

1 ⊗M2) = 0.

Remark 2.2. — Note that a line bundle admits non-trivial sections if
and only if it is isomorphic to O(D) for a divisor D > 0 on S, i. e. if it is
of the form O(rC) on the half Inoue or an Enoki surface and of the form

ANNALES DE L’INSTITUT FOURIER
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O(rC + sE) on the parabolic Inoue surface for some r, s ∈ N. This shows
in particular that line bundles M on class V II1

0 surfaces with c1(M) =
c1(K⊗n) do not admit non-trivial sections if n > 1, a fact we will use
frequently below without further mention.

The divisor D is the zero divisor of a section in the line bundle and
uniquely determined since class VII10 surfaces do not admit non-constant
meromorphic functions. In particular we have dim H0(M) 6 1 for line
bundles M on class VII10 surfaces and if M is non-trivial then either M or
M∨ does not admit non-trivial sections.

The exponential sequence 0 → Z → O exp−−→ O∗ → 0 gives rise to the long
exact cohomology sequence

. . . −→ H1(S, Z) −→ H1(S,O)
exp1

−−−→ H1(S,O∗) c1−−→ H2(S, Z) −→ . . . .

Here Pic(S) := H1(S,O∗) is the Picard group, the Abelian group of isomor-
phism classes of holomorphic line bundles on S with group multiplication
induced by the tensor product. On the other hand H2(S, Z) classifies iso-
morphism classes of complex line bundles via the first Chern class. The
connecting operator c1 is just the group homomorphism that associates to
a holomorphic line bundle the first Chern class of its underlying topolo-
gical line bundle. Its kernel, the image of exp1, is the subgroup Pic0(S) of
holomorphic structures on the topologically trivial line bundle. The Picard
group Pic(S) has the structure of a complex Lie group and exp1 is an étale
morphism [29].

Since H1(S, Z) is torsion free and b1(S) = 1 we have H1(S, Z) ∼= Z.
Furthermore, on class VII surfaces the natural inclusion C ↪→ O induces
an isomorphism H1(S, C)

∼=−→ H1(S,O) [24] showing that for b1(S) = 1
there is a group isomorphism

Pic0(S) ∼= C∗ .

In particular every holomorphic line bundle in Pic0(S) has exactly two
roots in Pic0(S) which differ by the non-trivial root of O which we will
denote by F :

F ⊗ F = O F 6∼= O .

Remark that in contrast to Kähler surfaces Pic0(S) is non-compact here.

3. Filtrable holomorphic bundles

On surfaces topological complex vector bundles are classified up to iso-
morphisms by their rank and their first two Chern classes. We fix once and

TOME 58 (2008), FASCICULE 5
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for all a complex vector bundle E on S with

(3.1a) rank E = 2 c1(E) = c1(K) c2(E) = 0 ,

where K is the canonical complex line bundle. Since c1(detE) = c1(E) this
implies det E ∼= K. In the following we will study the simple holomorphic
structures E on E with determinant

(3.1b) det E ∼= K .

At first we investigate filtrable bundles of type (3.1), because they admit
a relatively simple description as extensions of certain holomorphic line
bundles. In general a rank two bundle is filtrable if it admits a rank one
subsheaf, but the notion simplifies considerably for surfaces:

Definition 3.1. — A holomorphic rank two vector bundle E on a com-
plex surface S is filtrable if and only if one of the following equivalent
conditions is satisfied:

(1) E has a rank one subsheaf S .
(2) E has a locally free rank one subsheaf L.
(3) There exist holomorphic line bundles L and R on S that fit into a

short exact sequence of the form

(3.2) 0 −→ L −→ E −→ R⊗IZ −→ 0,

where IZ is the ideal sheaf of a dimension zero locally complete
intersection Z ⊂ S.

The proof of the equivalence is standard, see for example [12]. The first
reason for choosing E to satisfy (3.1a) is that in this case we get rid of the
(possibly very complicated) ideal sheaf IZ in (3.2):

Proposition 3.2. — On a class VII10 surface S we have Z = ∅ and
either c1(L) = 0 or c1(R) = 0 in (3.2) under the assumption (3.1a).

Proof. — Since c1(K) is a generator of H2(S, Z) ∼= Z we set c1(L) =
n·c1(K) with n ∈ Z. A computation of the Chern classes of E ∼= (E⊗L∨)⊗L
yields, since c1(K)2 = −1,

c1(K) = c1(E) = c1(E ⊗ L∨) + 2c1(L)

and

0 = c2(E) = c2(E ⊗ L∨) + c1(E ⊗ L∨)c1(L) + c1(L)2 = |Z|+ n(n− 1).

Here |Z| denotes the number of points in Z, counted with multiplicities.
But the last equality can only be satisfied if |Z| = 0, i. e. Z = ∅, and n = 0
or 1. �

ANNALES DE L’INSTITUT FOURIER
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Now note that the determinant of the central term in a line bundle
extension is the tensor product of the two corresponding line bundles.

Corollary 3.3. — Any filtrable holomorphic vector bundle E of type
(3.1) on a class VII10 surface is the central term of an extension of one of
the following two types,

0 −→ L −→ E → L∨ ⊗ K → 0(3.3a)

0 → R∨ ⊗ K → E −→ R −→ 0,(3.3b)

where L,R ∈ Pic0(S).
Moreover, given a line bundle inclusion M ↪→ E into a bundle E of

type (3.1), we have either c1(M) = 0 and the inclusion extends to (3.3a)
with L ∼= M or we have c1(M) = c1(K) and it extends to (3.3b) with
R∨ ⊗K ∼= M.

The following lemma shows that the existence of non-trivial extensions
(3.3) and the uniqueness of their central terms is determined by the exis-
tence of sections in certain line bundles. Line bundle extensions 0 →M1 →
E →M2 → 0 or equivalently 0 →M1⊗M∨

2 → E ⊗M∨
2 → O → 0 are de-

termined by the image of the constant 1 section in O under the connecting
operator H0(O) → H1(M1⊗M∨

2 ) in the associated cohomology sequence
and vice versa. In particular extensions which differ by a non-zero constant
in the classifying space Ext1(M2,M1) := H1(M1⊗M∨

2 ) have isomorphic
central terms. To compute the dimension of these spaces we will use the
Hirzebruch-Riemann-Roch theorem which, using (2.1) and combined with
the Serre duality, takes the particular form

(3.4) h0(M)− h1(M) + h0(M∨ ⊗K) = 1
2 c1(M)

(
c1(M)− c1(K)

)
for a holomorphic line bundle M on S, where hp(M) := dim Hp(M) [1].
To simplify the notation we write L2 and L−2 for L ⊗ L and L∨ ⊗ L∨
respectively.

Proposition 3.4. — (1) For every holomorphic line bundle L ∈
Pic0(S) \Q(S), where

Q(S) := {L ∈ Pic0(S) : H0(L2 ⊗K∨) 6= 0} ,

there is a non-trivial extension

(3.5a) 0 −→ L −→ EL −→ L∨ ⊗K −→ 0

with an (up to isomorphisms) uniquely determined central term
EL. If L ∈ Q(S) then the isomorphism classes of central terms in
non-trivial extensions of the form (3.3a) are parametrised by CP1.

TOME 58 (2008), FASCICULE 5
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(2) For every holomorphic line bundle R ∈ R(S), where

R(S) := {R ∈ Pic0(S) : H0(R2) 6= 0} ,

there is a non-trivial extension

(3.5b) 0 −→ R∨ ⊗K −→ AR −→ R −→ 0

with an (up to isomorphisms) uniquely determined central term
AR. If R ∈ Pic0(S) \ R(S) there are no non-trivial extensions of
the form (3.3b).

Proof. — Extensions of type (3.5b) are classified by Ext1(R,R∨ ⊗K) ∼=
H1(R−2 ⊗ K). From formula (3.4) for M = R−2 ⊗ K we obtain
dim Ext1(R,R∨ ⊗ K) = h0(R2) since H0(R−2 ⊗ K) = 0. This proves (2)
because h0(R2) = 0 or 1. Likewise, extensions of type (3.5a) are classified
by Ext1(L∨ ⊗ K,L) ∼= H1(L2 ⊗ K∨) and from formula (3.4) we obtain
dim Ext1(L∨ ⊗ K,L) = 1 + h0(L2 ⊗ K∨) since H0(L−2 ⊗ K2) = 0. This
proves the first part of (1).

In the case L ∈ Q(S) we have dim Ext1(L∨ ⊗ K,L) = 1 + h0(L2 ⊗
K∨) = 2 because 0 6= h0(L2 ⊗ K∨) 6 1. Let ϕ : E1 → E2 be a bundle
isomorphism between the central terms of two different extensions in the
following diagram:

(3.6) 0 // L
α1 //

���
�
� E1

//

ϕ

��

L∨ ⊗K //

���
�
� 0

0 // L // E2

β2 // L∨ ⊗K // 0

The composition β2◦ϕ◦α1 must vanish since it defines a section of L−2⊗K.
Thereby ϕ induces endomorphisms L → L and L∨ ⊗ K → L∨ ⊗ K (the
vertical dashed morphisms) defining sections of O. That ϕ is an isomor-
phism shows that both are non-trivial and thus non-zero multiples of the
identity. But then the two extensions differ by a non-zero constant in
Ext1(L∨ ⊗K,L). �

R(S) is the set of those line bundles R ∈ Pic0(S) that define a (unique)
bundle AR and Q(S) is the set of those line bundles L ∈ Pic0(S) that do
not define a unique bundle EL. In the following we always imply R ∈ R(S)
and L ∈ Pic0(S) \Q(S) when we write AR and EL respectively.

Remark 3.5. — Using remark 2.2 and evaluating the first Chern class,
it is not difficult to see that the above sets have the following form on the
different class VII10 surfaces:

ANNALES DE L’INSTITUT FOURIER
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• For S the half Inoue surface, R(S) =
√
O = {O,F} and Q(S) =√

F .
• For S an Enoki or the parabolic Inoue surface,

R(S) = {M⊗O(rC) : M∈
√
O ∪

√
O(C), r ∈ N} .

• For S an Enoki surface, Q(S) = ∅.
• For S the parabolic Inoue surface, Q(S) = R(S) ∪

√
O(−C).

In particular, since every line bundle in Pic0(S) has exactly two square
roots, the above sets are finite or countable so that the bundles EL with
L ∈ Pic0(S) \Q(S) represent the generic case among the filtrable bundles
of type (3.1).

We now restrict our attention to simple bundles. Simplicity assures that
the resulting moduli space is a complex analytic space.

Definition 3.6. — A holomorphic vector bundle E is called simple if
the only holomorphic endomorphisms of E are multiples of the identity.

Proposition 3.7. — (1) The central terms of trivial extensions of
type (3.3) are never simple.

(2) The bundles EL, L ∈ Pic0(S) \Q(S), are simple.
(3) For L ∈ Q(S) the central terms of non-trivial extensions (3.3a) are

not simple.
(4) A bundle AR is simple if R ∈ R(S) \Q(S). (1)

Moreover, every simple filtrable holomorphic bundle of type (3.1) is iso-
morphic to either a bundle EL for some L ∈ Pic0(S) \Q(S) or to a bundle
AR for some R ∈ R(S).

Proof. — (1) is evident. To prove (2) and (3) regard diagram (3.6) for
E1 = E2 =: E and an endomorphism ϕ : E → E . As in the proof of propo-
sition 3.4, ϕ induces endomorphisms L → L and L∨ ⊗ K → L∨ ⊗ K (the
vertical dashed morphisms) which must be multiples of the identity since
they define sections in O. Let the latter one be ζ idL∨⊗K with ζ ∈ C. Then
we can substitute ϕ by ϕ− ζ idE to obtain the diagram

0 // L //

���
�
� E

β //

ϕ−ζ idE

����

L∨ ⊗K //

0

���
�
� 0

0 // L α // E // L∨ ⊗K // 0

(1) Later on we will see that this is actually an “if and only if”.
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where this time the endomorphism L∨ ⊗K → L∨ ⊗K on the right is zero.
Therefore ϕ−ζ idE factorises through α. But now the endomorphism L → L
on the left must be zero too. Indeed, if not, it would be an isomorphism and
its inverse composed with the morphism E → L would define a splitting
of the first extension. This induces yet another morphism σ : L∨ ⊗ K →
L from the bundle L∨ ⊗ K in the upper extension to the bundle L in
the lower extension (not indicated). This morphism defines an element of
H0(L2 ⊗ K∨) and is zero if and only if ϕ − ζ idE = α ◦ σ ◦ β is. This
demonstrates (2) and (3).

The proof of (4) is analogous. In the corresponding diagram

0 // R∨ ⊗K α //

���
�
� AR //

ϕ

��

R //

ζ idR

���
�
� 0

0 // R∨ ⊗K // AR
β // R // 0

for a bundle endomorphism ϕ : AR → AR the composition β ◦ ϕ ◦ α is
zero by hypothesis since it defines a section of R2 ⊗K∨. As before we can
substitute this diagram by

0 // R∨ ⊗K //

0

���
�
� AR //

ϕ−ζ id

��zz

R //

0

���
�
� 0

0 // R∨ ⊗K // AR // R // 0

Concluding as above we have ϕ = ζ id since H0(R−2 ⊗K) = 0.
The last statement is now a consequence of corollary 3.3 and proposi-

tion 3.4. �

To obtain a bĳective parametrisation of simple filtrable bundles of type
(3.1) we will have to determine possible isomorphisms of the forms

(3.7) EL′ ∼= EL AR′ ∼= AR AR ∼= EL .

Regarding the defining extensions (3.5) and corollary 3.3, these are given
by holomorphic bundle embeddings L′ ↪→ EL, R′ ↪→ AR and L ↪→ AR.

A line bundle extension 0 → M → E → O → 0 is determined by the
image δh(1) of the constant 1 section in O under the connecting operator
δh : H0(O) → H1(M) in the associated cohomology sequence. Given, in
addition, a divisor D > 0 on S there is a second connecting operator
δv : H0(MD(D)) → H1(M) from the cohomology sequence associated to
the short exact sequence

(3.8) 0 −→ M −→ M(D) −→ MD(D) −→ 0 .
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This sequence is the defining sequence for MD(D) where we write M(D)
for M⊗O(D) and MD for the restriction of M to D, i. e. MD := M⊗OD.

In [37] we find the following criterion:

Proposition 3.8. — With the above notation, the natural map O(−D)
→ O can be lifted to a bundle embedding

(3.9) O(−D)

���
�
�

##FF
FF

FF
FF

F

0 // M // E // O // 0

if and only if there exists a section σ ∈ H0(MD(D)) defining a trivialisation
MD(D) ∼= OD such that δh(1)=δv(σ)

Applying this criterion to the extensions (3.5) yields the following

Corollary 3.9. — (1) EL′ ∼= EL if and only if L′ ∼= L.
(2) Suppose R′ 6∼= R and that AR and AR′ are simple. Then AR′ ∼= AR

if and only if there exists a divisor D > 0 with R⊗R′ ∼= K(D) and
R′D ∼= RD.

(3) Suppose AR is simple. Then AR ∼= EL if and only if there exists a
divisor D > 0 with L ∼= R(−D) and R2

D
∼= KD(D).

Proof. — We can show the first statement without using proposition 3.8.
Take two non-isomorphic bundles L and L′. Then either L∨ ⊗ L′ or L ⊗
L′∨ has only trivial sections, cf. remark 2.2. We can assume the latter by
possibly interchanging L and L′. Let now ϕ : EL → EL′ be an isomorphism
between the corresponding bundles EL and EL′ and regard the following
diagram:

0 // L
α1 // EL //

ϕ

��~~

L∨ ⊗K //

0

���
�
� 0

0 // L′
α2 // EL′

β2 // L′∨ ⊗K // 0

The composition β2 ◦ϕ◦α1 vanishes since it defines a section of L∨⊗L′∨⊗
K. Thus ϕ induces a morphism L∨ ⊗ K → L′∨ ⊗ K (the vertical dashed
morphism). This defines a section of L ⊗ L′∨ which is zero by the above
choice of L and L′. Consequently ϕ factorises through α2, showing that it
can not be an isomorphism. This proves the first statement.

To prove the second statement we can assume that R∨ ⊗ R′ does only
admit trivial sections by possibly interchanging R and R′, cf. remark 2.2.
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Now observe that an isomorphism AR′ ∼= AR gives, after tensorising the
defining extensions for AR and AR′ by R∨, a bundle embedding α,

(3.10) M R∨ ⊗R′∨ ⊗K

α

�� &&LLLLLLLLLLL

0 // R−2 ⊗K // R∨ ⊗AR // O // 0 ,

and thus a bundle morphism R∨ ⊗ R′∨ ⊗ K → O. If it was trivial, α

would induce a morphism R∨ ⊗R′∨ ⊗K → R−2 ⊗K defining a section of
R∨ ⊗R′ which is zero by assumption. This would contradict the fact that
α is a bundle embedding. So the morphism R∨ ⊗ R′∨ ⊗ K → O is non-
trivial, showing the existence of a divisor D > 0 with R⊗R′ ∼= K(D). We
have D 6= 0 because otherwise this would give a splitting of the extension
defining AR, but AR is simple by hypothesis. Proposition 3.8 applied to
M = R−2 ⊗K now yields R2

D
∼= KD(D) or equivalently R′D ∼= RD.

Conversely, supposeR⊗R′ ∼= K(D) andR′D ∼= RD. Again we can assume
that R∨ ⊗R′ does only admit trivial sections by possibly interchanging R
and R′. Consider the short exact sequence (3.8) for M = R−2 ⊗ K and
regard the associated long exact sequence

. . . −→ H0(R∨ ⊗R′) −→ H0(OD) δv−−→ H1(R−2 ⊗K) −→ . . . .

We have h0(R∨ ⊗ R′) = 0 by assumption, so the connecting operator δv

is injective. As we saw in the proof of proposition 3.4, h1(R−2 ⊗ K) =
dim Ext1(R,R∨ ⊗ K) = 1. Together with h0(OD) > 1 this shows that
δv is an isomorphism and h0(OD) = 1. Thus the preimage σ of δh(1) ∈
H1(R−2 ⊗ K) under δv is a non-zero constant section of MD(D) ∼= OD

and therefore defines a trivialisation. Applying proposition 3.8 to M =
R−2 ⊗ K now gives a line bundle inclusion α in (3.10). By corollary 3.3
the resulting bundle embedding R′∨ ⊗ K → AR extends to an extension
0 → R′∨ ⊗ K → AR → R′ → 0. It is non-trivial because AR is simple.
Then by the definition of AR′ we have AR′ ∼= AR.

The proof of the last statement is analogous because the corresponding
diagram is

M R∨ ⊗ L

α

�� $$H
H

H
H

H

0 // R−2 ⊗K // R∨ ⊗AR // O // 0
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and the cohomology sequence of (3.8) for M = R−2 ⊗K reads

. . . −→ H0(R∨ ⊗ L∨ ⊗K) −→ H0(OD) δv−−→ H1(R−2 ⊗K) −→ . . . .

But in this case R∨ ⊗ L∨ ⊗K does not admit non-trivial sections. �

We will now examine the above criteria on each type of class VII10 sur-
faces. For the half Inoue surface we first need the following fact.

Lemma 3.10. — A singular rational curve C with one node on a complex
surface satisfies KC(C) ∼= OC .

Proof. — Note that KC(C) is the dualising bundle of C which is inde-
pendent of the particular embedding of C [1] and we can embed C as a
cubic in CP2. But there K = O(−3) and O(C) = O(3) so that K(C) is
already trivial. �

Theorem 3.11. — For S the half Inoue surface, there is an isomorphism

(3.11) AO ∼= AF
and the filtrable simple holomorphic bundles of type (3.1) are bĳectively
parametrised by the disjoint union

(
Pic0(S)\

√
F

)
∪{0}, mapping L 7→ EL

and 0 7→ AO ∼= AF .

Proof. — The bundles EL are simple by proposition 3.7 as well as is AO
because O 6∈ Q(S) =

√
F . The isomorphism AF ∼= AO follows directly

from corollary 3.9(2) and (2.2) together with the lemma. Notice that by
remark 3.5 there are no further bundles of the form AR. By corollary 3.9
the bundles EL are pairwise non-isomorphic and there can be no isomor-
phism AO ∼= EL. Indeed, taking the first Chern class of L ∼= R(−D) shows
c1(O(D)) = 0, contradicting D 6= 0. This shows injectivity. Surjectivity
follows from proposition 3.7. �

Theorem 3.12. — For S the parabolic Inoue surface there are isomor-
phisms

(3.12) AR ∼= R(−E)⊕R∨(−C) R ∈ R(S) ,

so the bundles AR are not simple. The filtrable simple bundles of type (3.1)
are bĳectively parametrised by Pic0(S) \Q(S), mapping L 7→ EL.

Proof. — To show (3.12), take a bundle R ∈ R(S) with R2 ∼= O(rC) for
some r ∈ N. Using K ∼= O(−E − C) we get

(K ⊗R∨)∨ ⊗
(
R(−E)⊕R∨(−C)

)
= O

(
(r + 1)C

)
⊕ O(E) .

Since C ∩ E = ∅, this bundle admits a non-vanishing section giving rise
to a bundle embedding K ⊗R∨ ↪→ R(−E) ⊕R∨(−C). But, as one easily
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checks, R(−E)⊕R∨(−C) is of type (3.1). So by corollary 3.3 this inclusion
extends to

0 −→ K⊗R∨ −→ R(−E)⊕R∨(−C) −→ R −→ 0 .

Assume this extension splits, i. e. R(−E) ⊕ R∨(−C) ∼= (K ⊗ R∨) ⊕ R.
Tensorising with R∨ gives O(−E)⊕O(−(r +1)C) ∼= (K⊗R−2)⊕O which
is impossible because the left hand side admits no non-trivial sections while
the right hand side does. Therefore the above extension is non-trivial and
determines the isomorphism (3.12) by the very definition of AR. The rest
follows from 3.7 and 3.9(1). �

To apply corollary 3.9 in the remaining case of an Enoki surface, we need
the following generalisation of lemma 3.10 for Enoki surfaces.

Lemma 3.13. — On an Enoki surface one has KrC(C) ∼= OrC for r ∈
N \ {0}.

Proof. — We prove by induction on r. For r = 1 this is just lemma 3.10,
so let us suppose KrC(C) ∼= OrC for some r > 1. The restriction ρ of the
holomorphic line bundle K(C) from (r+1)C to rC gives the following exact
sequence [1]:

0 −→ KC

(
−(r − 1)C

)
−→ K(r+1)C(C)

ρ−→ KrC(C) −→ 0 .

It suffices to show that the induced map ρ∗ in the corresponding long exact
cohomology sequence

. . . −→ H0
(
K(r+1)C(C)

) ρ∗−→ H0
(
KrC(C)

)
−→ H1

(
KC(−(r−1)C)

)
−→ . . .

is surjective, because then a trivialising section of KrC(C) lifts to a sec-
tion trivialising K(r+1)C(C). But the surjectivity of ρ∗ is equivalent to
H1

(
KC(−(r− 1)C)

)
= 0 or, after applying the Serre duality for embedded

curves [1], to H0(OC(rC)) = 0. The proof is therefore finished if we show
that OC(rC) has only trivial sections.

Recall that flat line bundles are given by representations of the funda-
mental group π1 on C and have vanishing first Chern class. This gives the
following commutative diagram:

Hom(π1(S), C∗) //

��

Pic0(S)

��
Hom(π1(C), C∗) // Pic0(C) .

In our case both π1(S) and π1(C) are isomorphic to Z. Moreover, on an
Enoki surface the morphism π1(C) → π1(S) induced from the inclusion
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C ↪→ S is in fact an isomorphism [31]. Thus the vertical map on the left-
hand side is an isomorphism. The lower horizontal map is an isomorphism
too, since it can be interpreted as follows: The normalisation Ĉ → C of C

maps two different points x1 and x2 to the singularity of C. Every line bun-
dle in Pic0(C) pulls back to a topologically trivial bundle on the projective
line Ĉ and is thus determined by a complex number ζ ∈ C∗ identifying the
fibres over x1 and x2. The above diagram is thus composed of isomorphisms
between groups isomorphic to C∗.

Now note that the bundle O(rC) ∈ Pic0(S) is non-trivial, cf. remark 2.2.
Its restriction OC(rC) therefore corresponds to a ζ 6= 1. Under the nor-
malising map a section s ∈ H0

(
OC(rC)

)
pulls back to a constant section

ŝ with ŝ(x1) = ζŝ(x2). This shows ŝ = 0 and thus s = 0. �

Theorem 3.14. — On an Enoki surface S we have isomorphisms

(3.13) AR ∼= ER∨(−C) R ∈ R(S)

and the filtrable simple bundles of type (3.1) are bĳectively parametrised
by Pic0(S), mapping L 7→ EL.

Proof. — First recall that divisors on an Enoki surface are multiples of
the curve C. Therefore R2 ∼= O(rC) for some r ∈ N if R ∈ R(S) and
the above lemma shows the existence of a divisor D = (r + 1)C with
KD(D) ∼= OD(rC) ∼= R2

D. Corollary 3.9(3) thus gives an isomorphism
AR ∼= EL with L ∼= R

(
−(r + 1)C

)
= R∨(−C). Remarking that Q(S) = ∅

for Enoki surfaces, the rest follows from 3.7 and 3.9(1). �

Resuming, we saw that with exception of the bundle AO ∼= AF on the
half Inoue surface every filtrable simple holomorphic bundle of type (3.1)
on a class VII10 surface S is of the form EL with L ∈ Pic0(S)\Q(S). Taking
into account remark 3.5, a bundle of the form AR is simple if and only if
R ∈ R(S) \Q(S).

4. The local structure of the moduli space

Definition 4.1. — We denote by

M s(S) := {E simple hol. str. on E : det E ∼= K}/Γ
(
S, GL(E)

)
the moduli space of simple holomorphic bundles of type (3.1) on S.

This is a (possibly non-Hausdorff) complex space. The local structure of
this moduli space is given by the following proposition whose proof is a
straightforward generalisation of the case R(S) =

√
O in [36].

TOME 58 (2008), FASCICULE 5



1708 Konrad SCHÖBEL

Proposition 4.2. — (1) If L ∈ Pic0(S)\
(
R(S)∪Q(S)

)
then M s(S)

is a smooth complex curve CL in a neighbourhood of EL, given by
L′ 7→ EL′ .

(2) If R ∈ R(S) \Q(S) then M s(S) is the intersection of two complex
curves CR and C ′R in a neighbourhood of ER, where CR is given
by L′ 7→ EL′ .

(3) If R ∈ R(S) \Q(S) then M s(S) is a smooth complex curve C ′′R in
a neighbourhood of AR.

(4) The points ER and AR are not separable. More precisely, we find
neighbourhoods U ′, U ′′ of ER and AR respectively with

(
C ′R \

{ER}
)
∩ U ′ =

(
C ′′R \ {AR}

)
∩ U ′′.

(5) M s(S) is a smooth complex curve in a neighbourhood of every
non-filtrable bundle.

Moreover, M s(S) is regular in all smooth points.

We have depicted this situation in figure 4.1 (dividing the real dimension
by two). The vertical arrows symbolise identification of the corresponding
curves with exception of the two points joined by the dotted line. We can
regard the curves C ′R and C ′′R as one single curve with a double point
consisting of ER and AR. This “curve” is smooth at the point AR but is
transversely crossed by the curve CR at the point ER.

ER

AR

CR
C′
R

C′′
R

Figure 4.1. Local structure of the moduli space at ER and AR

In the case of the parabolic Inoue surface and an Enoki surface the above
theorem determines completely the structure of the moduli space in a neigh-
bourhood of every filtrable bundle. Recall that for the parabolic Inoue
surface R(S)\Q(S) = ∅ so that the situation is particularly simple: Theo-
rem 3.12 actually establishes an isomorphism between Pic0(S) \Q(S) and
the filtrable part of the moduli space of simple bundles, given by L 7→ EL.
For an Enoki surface the isomorphisms AR ∼= ER∨(−C) immediately tell us
that C ′′R = CR∨(−C). In the remaining case of the half Inoue surface the
situation is slightly more complicated. We can not yet identify the curves
C ′R and C ′′R and will do this in section 7.

ANNALES DE L’INSTITUT FOURIER



PU(2)-INSTANTONS ON CLASS VII0 SURFACES WITH b2 = 1 1709

5. Stability

The moduli space important for gauge theory is the moduli space of
stable holomorphic bundles and is a Hausdorff complex space. Stability is
defined with respect to a Gauduchon metric g on S which is a Hermitian
metric whose associated (1, 1)-form ωg verifies ∂∂̄ωg = 0. Such a metric
always exists [18] and allows one to define the degree map by

deg : Pic(S) −→ R

L 7−→ degL :=
∫
S

c1(L, Ah) ∧ ωg ,

where c1(L, Ah) is the first Chern form associated to the Chern connection
Ah of a Hermitian metric h in L (i. e. locally c1(L, Ah) = ∂∂̄ log h). This
map is a Lie group morphism and independent of the particular choice of
h. Note that on non-Kähler surfaces the degree map is never a topological
invariant and therefore non-constant on Pic0(S) [29].

Example 5.1. — (1) degO = degF = 0 because the square roots of
O are torsion elements in Pic0(S).

(2) degO(D) = volD > 0 for any divisor D > 0 on S. This is a
consequence of the Poincaré-Lelong formula [19].

(3) On the half and the parabolic Inoue surface degK < 0 for any
Gauduchon metric. This follows from the previous examples to-
gether with (2.2) and (2.3) respectively. For Enoki surfaces degK
attains every value in R when g varies in the space of Gauduchon
metrics. This was shown in [37], based on results of [6].

(4) degR > 0 ifR ∈ R(S), becauseR2 ∼= O(D) for some divisor D > 0.
(5) Likewise, degL > 1

2 degK if L ∈ Q(S).

Now the (slope-)stability is defined using the g-slope of a coherent sheaf S

µg(S ) :=
deg detS

rank S
.

Definition 5.2. — A holomorphic rank two vector bundle E over a
complex surface S is called g-stable if for every rank one subsheaf S ⊂ E
we have µg(S ) < µg(E).

This definition simplifies in our case to:

Proposition 5.3. — A holomorphic vector bundle E of type (3.1) on
a class VII10 surface S is g-stable if and only if for every holomorphic line-
subbundle L ⊂ E we have degL < 1

2 degK.
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The proof is standard, see for example [23]. Non-filtrable bundles are
stable by definition and stable bundles are simple [23], so it remains to
examine stability for simple filtrable bundles (cf. section 3).

Proposition 5.4. — (1) On the half Inoue surface the bundleAO ∼=
AF has exactly two holomorphic line subbundles, namely K and
F ⊗K.

(2) On an Enoki surface the bundles AR ∼= ER∨(−C) have exactly two
holomorphic line subbundles, namely R∨ ⊗K and R∨(−C).

(3) On an arbitrary class VII10 surface a bundle EL has no holomorphic
line subbundle other than L if it does not belong to case (2).

Proof. — By definition the bundles EL and AR have as holomorphic line
subbundles L and R∨ ⊗K respectively. By corollary 3.3 every other inclu-
sion of a holomorphic line bundle into EL or AR extends to an extension of
type (3.3). This extension is non-trivial if the bundle EL respectively AR is
simple and thus determines an isomorphism (3.7) of the corresponding cen-
tral terms. The proposition follows now from the classification (3.11)–(3.13)
of all possible such isomorphisms. �

Corollary 5.5. — (1) On the half Inoue surface the bundle AO ∼=
AF is g-stable for any Gauduchon metric g.

(2) On an Enoki surface the bundle AR ∼= ER∨(−C) is g-stable if and
only if{

degR∨(−C) < 1
2 deg K in case degK < 0

1
2 deg K < degR in case degK > 0

.

In either case one inequality implies the other.
(3) On an arbitrary class VII10 surface a bundle EL not belonging to

case (2) is g-stable if and only if degL < 1
2 degK.

Proof. — Combine the previous two propositions with the examples 5.1.
�

Remark 5.6. — We see that always at least one of the two non-separable
bundles ER and AR is unstable as it should be, for the moduli space of
stable bundles is Hausdorff.

The degree homomorphism is non-constant on Pic0(S) ∼= C∗, so the
degree corresponds to a non-zero multiple of the logarithm of the modulus
in C. Regarding 5.5(3) we fix an isomorphism Pic0(S) ∼= C∗ that identifies

Pic0
<%(S) := {L ∈ Pic0(S) : degL < %} % := 1

2 degK
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to an open disc in C with radius ρ, punctured at the center 0, corresponding
to degL → −∞. In view of 5.5(2) we also define the set

(5.1) U(S) := {R∨(−C) ∈ Pic0(S) : R ∈ R(S), degR 6 1
2 deg K} .

From 5.1(4) we see that U(S) = ∅ if degK < 0 — in particular if S is the
half or the parabolic Inoue surface. If S is an Enoki surface then U(S) is
the finite set consisting of those line bundles L ∈ Pic0(S) with degL < %

that define an unstable bundle EL. Note that under the map R 7→ R∨(−C)
the set U(S) is in bĳection to the set R6%(S) := R(S) ∩Pic0

6%(S) defining
singular stable points ER in the moduli space.

Corollary 5.7. — The filtrable part of the moduli space of g-stable
holomorphic bundles is bĳectively parametrised by

• Pic0
<%(S) if S is the parabolic Inoue surface ( U(S) = ∅),

• Pic0
<%(S) ∪ {0} if S is the half Inoue surface ( U(S) = ∅) and

• Pic0
<%(S) \ U(S) if S is an Enoki surface,

mapping Pic0
<%(S) 3 L 7→ EL and 0 7→ AO.

Proof. — This follows from the above corollary together with the theo-
rems 3.11, 3.12, 3.14 and the observation from example 5.1(5) that Q(S)∩
Pic0

<%(S) = ∅. �

6. The boundary of the moduli space of polystable bundles

We want to compute the moduli spaces of polystable holomorphic bun-
dles of type (3.1) for any class VII10 surface S. Throughout this section we
fix S and omit it in our notations.

Definition 6.1. — A holomorphic rank two vector bundle E is g-poly-
stable if it is g-stable (definition 5.2) or if

(6.1) E = L ⊕M with degM = degL .

In the latter case we call E a split g-polystable bundle. We denote by

M (p)st := {E (poly)stable hol. str. on E : det E ∼= K}/Γ
(
S, GL(E)

)
the moduli space of (poly)stable holomorphic bundles of type (3.1).

In the previous sections we showed that there is an injection of Pic0
<% \U

into the filtrable part of the moduli space M st of stable bundles given by
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L 7→ EL (corollary 5.7) and which is holomorphic on Pic0
<% \

(
U ∪ R6%

)
(proposition 4.2). Now define the closed punctured disc

Pic0
6% := {L ∈ Pic0 : degL 6 %} ⊂ Pic0 ∼= C∗ % = 1

2 degK .

Its boundary is the circle Pic0
=%(S) of line bundles L ∈ Pic0(S) with degL =

1
2 degK and can be mapped to the split polystable bundles by L 7→ L ⊕
(L∨ ⊗K).

In the following we use results about the gauge theoretical counterpart of
our complex geometric moduli space. Equip the bundle E with a Hermitian
metric h and fix a (deth)-unitary connection a in the determinant line
bundle det E = K. Denote by

M ASD

:= {A h-unitary connection on E : (F 0
A)+ = 0,det A = a}/Γ

(
S, SU(E)

)
the moduli space of oriented projectively anti-self-dual connections. A con-
nection A is called reducible if there is an A-parallel splitting of E into two
line bundles, i. e. E = L ⊕M and A = AL ⊕ AM where AL and AM are
connections on the line bundles L and M respectively. We write

(
M ASD

)∗
for the irreducible part of M ASD which is naturally a real analytic space.

The relation between this gauge theoretical moduli space of anti-self-
dual connections and the complex geometric moduli space of holomorphic
bundles is given by the Kobayashi-Hitchin correspondence [29], a natural
real analytic isomorphism

(6.2) KH:
(
M ASD

)∗ ∼=−→ M st

given by mapping the gauge equivalence class [A] of an anti-self-dual con-
nection A to the holomorphic structure in E determined by the correspond-
ing ∂̄-operator ∂̄A.

Now the second reason for our particular choice of the Chern classes
(3.1a) of E becomes apparent. The moduli space M ASD has a natural
compactification — the Uhlenbeck compactification [11], constructed by
attaching further strata involving moduli spaces M ASD(Ek) of oriented
ASD connections on rank two bundles Ek with

c1(Ek) = c1(E) and c2(Ek) = c2(E)− k , k = 1, 2, . . . .

But in our case (3.1a) assures that 4c2(Ek) − c1(Ek)2 < 0, a condition
under which the expected dimension (1.1) of M ASD(Ek) is negative and
the attached strata in the Uhlenbeck compactification of M ASD are all
empty. This means that M ASD is already compact and the irreducible part(
M ASD

)∗ of M ASD can be compactified by adding only the reducible part.
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The latter can be shown to be the circle iH1(S, R)/2πiH1(S, Z). In fact,
applying the Kobayashi-Hitchin-correspondence for line bundles separately
to the line bundles in the splitting (6.1) of a split polystable bundle maps
the circle of split polystable bundles to this circle of reducible connections.

Putting together the above, we get the following commutative diagram

Pic0
<% \ U //

� _

��

M st
∼=

KH
//

� _

��

(
M ASD

)∗
� _

��
Pic0

6% \ U // M pst
∼= // M ASD

where the vertical arrows are natural inclusions. Remark that a priori there
is no natural topology on the moduli space of polystable bundles and the
bĳection M pst → M ASD is only set theoretical. It is turned tautologically
into a homeomorphism by equipping M pst with the induced topology.

Proposition 6.2. — The above inclusion Pic0
6% \ U ↪→ M pst maps

Pic0
6% \

(
U ∪R6%

)
homeomorphically to an open subspace of M pst. In par-

ticular, if there is no bundle R ∈ R with degR = %, M pst possesses the
structure of a real two-dimensional manifold with boundary in the neigh-
bourhood of the image of the circle Pic0

=%.

Proof. — Using the following lemma, we can apply the proof of [36,
proposition 4.4]. Remark that Pic0

=% ∩ U = ∅. �

Lemma 6.3. — Let E be a stable holomorphic bundle of type (3.1) and
ε > 0 be sufficiently small. Then a line bundle M ∈ Pic0 with H0(M∨ ⊗
E) 6= 0 and %− ε 6 degM 6 % is unique.

Proof. — The existence of such a line bundleM implies that E is filtrable
and as in the proof of the equivalence in definition 3.1 we can construct
a non-trivial sheaf morphism M → L to a line subbundle L of E . So
M ∼= L(−D) for some divisor D > 0 on S. Since E is stable we have
degL < % and volD = degL − degM < ε. If we choose ε less than
the volume of any curve on the surface then D = 0 and M ∼= L. But
proposition 5.4 shows that a line subbundle L ∈ Pic0 of E is unique. �

The proof of proposition 6.2 fails at points R ∈ R with degR = %, cf. [36,
lemma 4.3]. This can only occur on Enoki surfaces for Gauduchon metrics
with degK > 0 and we will account for this situation in the last section
when we discuss the structure of the entire moduli space.
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7. Non-filtrable holomorphic bundles

The next proposition [36, proposition 4.5] says that the structure of the
moduli space around the origin is the natural one given by the closure
Pic0

6% ∪ {0} of Pic0
6% in C.

Proposition 7.1. — The inclusion Pic0
6% \ U ↪→ M pst extends to an

inclusion (
Pic0

6% ∪{0}
)
\ U ↪→ M pst ,

holomorphic at the centre 0. Moreover, 0 is mapped to a bundle E verifying

(7.1) E ⊗ F ∼= E ,

where F is the (unique) non-trivial square-root of O.

The invariance property (7.1) follows from the following lemma in the
limit L → 0, or degL → −∞, since deg(L ⊗ F) = degL.

Lemma 7.2. — EL ⊗F ∼= EL⊗F and AR ⊗F ∼= AR⊗F .

Proof. — First notice that EL⊗F and AR⊗F are of type (3.1). Tensorise
the defining extensions for EL and AR by F and compare with the defining
extensions for EL⊗F and AR⊗F respectively. �

This also makes explicit the Z2 symmetry of the moduli spaces of bundles
of type (3.1) under tensorising with the square roots of O. We see that (7.1)
holds for AO ∼= AF .

Corollary 7.3. — On the half Inoue surface, E is the filtrable bundle
AO. On an Enoki or the parabolic Inoue surface E is a non-filtrable bundle.

Proof. — Suppose EL ⊗ F ∼= EL for S an arbitrary class VII10 surface.
Then EL⊗F ∼= EL by lemma 7.2 and thus L ⊗ F ∼= L by corollary 3.9,
contradicting the non-triviality of F . Therefore either E is non-filtrable or
S is the half Inoue surface and E ∼= AO. E cannot be non-filtrable on the half
Inoue surface because this would imply that AO lies on another component
of the moduli space. But this is excluded by corollary 7.8 below. �

Remark 7.4. — One can show that (7.1) implies that the pull-back of
E to a double cover of S splits into a sum of two line bundles.

For a complete description it only remains to show that our moduli spaces
do not contain further connected components. Non-filtrable bundles are sta-
ble by definition and we saw that all unstable filtrable bundles lie on the
component we already described. Thus another component would be con-
tained in the moduli space of polystable bundles and therefore be compact.
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But M. Toma showed that this is impossible on blown-up primary Hopf sur-
faces [41] and we know that every class VII0 surface containing a global
spherical shell — in particular every class VII10 surface — is a degeneration
of blown-up primary Hopf surfaces [22]. In the following we will prove that
a compact component in the moduli space would be preserved under small
deformations. We do this using a third guise of our moduli space, justifying
at the same time, finally, why we speak of “PU(2)-instantons”.

Let P be the principal PU(2)-bundle obtained as the quotient of the prin-
cipal U(2) frame bundle of E by the centre of U(2). Remark that the adjoint
action Ad of SU(2) on itself descends to an action of PU(2) ∼= SU(2)/{±1}
on SU(2) so that we can define the gauge group G := Γ(P ×Ad SU(2)). This
group acts naturally on the affine space A of connections on P . We call a
connection irreducible if its stabiliser in G is minimal, i. e. the center {±1}
of G , and denote by A ∗ the space of irreducible connections. The moduli
space of irreducible anti-self dual connections on P is now defined as the
quotient

M ASD(P )∗ := {A ∈ A ∗ : F+
A = 0}/G

where F+
A denotes the self-dual part of the curvature FA of A. There is a

canonical isomorphism

M ASD(P )∗ ∼= M ASD(E)∗

with the moduli space of irreducible anti-self-dual connections on E from
the previous section, independent of the fixed connection a on det E. This
independence will allow us to construct a parametrised moduli space for a
deformation of our surface.

To do this we write this moduli space in a different way as follows.
The space A ∗ is a principal G /{±1}-bundle over the corresponding or-
bit space B∗ := A ∗/G . The map F+ : A → Ω2

+(adP ) associating to a
connection A the self-dual part F+

A of its curvature is G -equivariant and
therefore defines a section F+ : B∗ → E in the associated vector bundle
E := A ∗×ad Ω2

+(adP ) over B∗. The moduli space M ASD(P )∗ is then sim-
ply the vanishing locus of this section. Using suitable Sobolev completions,
F+ is a Fredholm map between Banach manifolds. A set C ⊂ M ASD(P )∗

is said to be regular if F+ is regular at every point of C . The follow-
ing proposition allows one to check regularity using the complex geometric
framework. It results from comparing the local models of the moduli spaces(
M ASD

)∗ and M st[29].

Proposition 7.5. — A point in
(
M ASD

)∗ is regular if and only if its
image in M st under the Kobayashi-Hitchin-correspondence (6.2) is regular.
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Corollary 7.6. — For a class VII10 surface S every compact compo-
nent C ⊂ M ASD(S)∗ is regular.

Proof. — By proposition 4.2, M st(S) is regular at every smooth point
and we saw that all singular points lie on a non-compact component. �

We show that in general a regular compact component of the moduli
space of irreducible anti-self-dual connections is preserved under small de-
formations of the metric. For this we consider a parametrised version of the
above construction of the moduli space M ASD(P )∗. Let I be the interval
[−1,+1] and (gt)t∈I a smooth one-parameter family of Riemannian metrics
gt on the base manifold. Again, A ∗ := A ∗×I is a principal G /{±1}-bundle
over B∗ := B∗ × I. The map F+ : A → Ω2(adP ), defined by mapping
(A, t) to the self-dual part F+t

A of the curvature FA with respect to the met-
ric gt, is G -equivariant and defines a section B∗ → A ∗×ad Ω2(adP ). This
section actually takes values in the subbundle E whose fibre over ([A], t)
is the space Ω2

+t
(adP ) of (adP )-valued two-forms that are self-dual with

respect to the metric gt. This gives a section F+ : B∗ → E whose vanishing
locus is the parametrised moduli space(

M ASD
)∗ :=

{(
[A], t

)
∈ B∗ × I : F+t

A = 0
}

.

The restriction π :
(
M ASD

)∗ → I of the projection B∗ × I → I gives a
fibration(

M ASD
)∗ =

⋃
t∈I

π−1(t) with π−1(t) = M ASD(gt)∗ × {t} .

Proposition 7.7. — For t sufficiently small M ASD(gt)∗ contains a reg-
ular compact component if M ASD(g0)∗ does.

Proof. — Let C ⊂ M ASD(g0)∗ be such a regular compact component.
The restriction of F+ to M ASD(g0)∗ = π−1(0) is just the above map F+

and thus regular on C . Therefore F+ itself is regular on C . Regularity is
an open condition so F+ is regular on an open neighbourhood N of C in(
M ASD

)∗. It follows that N is a finite-dimensional smooth open manifold.
Then, as C is compact, we can choose a compact neighbourhood K of C in
N with K∩π−1(0) = C ⊂ K̊. We have K̊∩π−1(0) = K∩π−1(0). It suffices
to show that K̊ ∩π−1(t) = K ∩π−1(t) for t sufficiently small. Suppose not.
Then there exists a sequence of points

(
[An], tn

)
∈ (K \ K̊)∩ π−1(tn) with

tn → 0. But K being compact, some subsequence of it converges to a point
([A], 0) ∈ (K \ K̊) ∩ π−1(0) = ∅ which is a contradiction. �
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Corollary 7.8. — For a class VII10 surface S all moduli spaces

M st(S) ∼= M ASD(S)∗, M pst(S) ∼= M ASD(S) and M s(S)

are connected.

Proof. — We saw that another connected component in one of these
moduli spaces, other than the one we already described, would belong to
M ASD(S)∗ and therefore be compact. By corollary 7.6 it would also be
regular. Let now (Jt)t∈I be a family of complex structures on the real
manifold underlying S, parametrising a degeneration (St)t∈I of blown-up
primary Hopf surfaces St, t 6= 0, into S0 := S. We can take (gt)t∈I to be
a corresponding smooth family of Gauduchon metrics gt on St. Indeed, a
Gauduchon metric g′t := eϕt gt can be obtained from an arbitrary metric
gt by finding a solution ϕt to ∂∂̄(eϕt ωt) = 0. Such a solution is smooth
by elliptic regularity and unique up to a constant. But since existence is
established, the smooth dependence on t results from the implicit function
theorem applied to the map

Ω0
0(S) × I → Ω4(S)

( ϕ , t ) 7→ ∂∂̄(eϕ ωt)

in suitable Sobolev completions, where Ω0
0(S) denotes the set of functions

ϕ ∈ Ω0(S) verifying
∫

S
ϕω0 ∧ ω0 = 0. Now the preceding proposition says

that for small t the moduli space M ASD(St)∗ would contain a compact
component too, contradicting [41]. �

8. The moduli spaces

We can finally assemble all our results to a complete description of the
moduli spaces. By a compact complex space with smooth boundary we
mean a compact real analytic space with a smooth boundary structure and
a possibly singular complex structure on its interior. We write “(6)” for
“< (6)”.

Theorem 8.1. — Let S be a minimal class VII surface with b2(S) = 1.
(1) If deg K < 0 — i. e. if S is the half or the parabolic Inoue surface or

an Enoki surface with deg K < 0 — then the entire moduli space
M (p)st(S) of (poly)stable holomorphic bundles of type (3.1) is bĳec-
tively parametrised by the open (closed) complex one-dimensional
disc Pic0

(6)%(S) ∪ {0}.
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(2) If deg K > 0 — i. e. S is an Enoki surface with deg K > 0 — then
M (p)st(S) is bĳectively parametrised by

(
Pic0

(6)%(S)∪{0}
)
\ U(S)

where U(S) is the finite set (5.1).

The parametrisation is given by mapping

Pic0
=%(S) 3 L 7→ L⊕(L∨⊗K) , Pic0

<%(S) 3 L 7→ EL and 0 7→ E ,

where:

(3) On the half Inoue surface, E is the filtrable bundleAO and M (p)st(S)
contains no non-filtrable bundles.

(4) On an Enoki or parabolic Inoue surface E is the only non-filtrable
bundle in M (p)st(S).

In case (1) this is a homeomorphism, holomorphic on the stable part. In
case (2) this is a local homeomorphism except at points R ∈ R(S), holo-
morphic on the stable part minus R(S). M st(S) is a one-dimensional com-
plex space whose singularities are simple normal crossings at the points ER
characterised by

lim
L→R∨(−C)

EL = ER = lim
L→R

EL for R∨(−C) ∈ U(S) .

Their number |U(S)| is finite but unbounded if the metric varies in the
space of Gauduchon metrics.

Therefore, except for the case Pic0
=%(S) ∩ R(S) 6= ∅ on an Enoki sur-

face, M pst(S) is a one-dimensional compact complex space with smooth
boundary a circle and interior M st(S), smooth in case (1) and in general
singular in case (2).

For an Enoki surface S the moduli space M pst(S) can be viewed as a
closed complex disc with finitely many self intersections as in figure 8.1
(where we divided the real dimension by two). Notice that the degree cor-
responds to (the logarithm of) the “distance” from the center of the disc.
In the limit case where a line bundle R ∈ R(S) happens to lie on the
boundary circle of this disc, the self intersection is merely a “touch” of a
point on the boundary circle with an interior point, but both points do not
belong to the moduli space since they correspond to the unstable bundles
ER and ER∨(−C).

Since non-filtrable bundles are stable by definition, the above also com-
pletes our description of the moduli space M s(S) of simple holomorphic
bundles of type (3.1). If S is the parabolic Inoue surface then M s(S) is
simply isomorphic to (Pic0(S) ∪ {0}) \ Q(S), i. e. to the complex line C
minus a discrete set of points.

ANNALES DE L’INSTITUT FOURIER



PU(2)-INSTANTONS ON CLASS VII0 SURFACES WITH b2 = 1 1719

E

EO
EF

ER
ER⊗F

Figure 8.1. The moduli space of polystable bundles for an Enoki surface

If S is the half Inoue surface then, due to the isomorphism AF ∼= AO,
the smooth branches in the two local pictures in figure 4.1 for R = O and
R = F coincide. With notations as in proposition 4.2, we can regard the
curves C ′′O = C ′′F , C ′O and C ′F as one single “curve” with a triple point
consisting of the three non-separable points AO, EO and EF . This curve
is smooth at AO but transversely crossed by CO at EO and by CF at
EF . The resulting moduli space M s(S) is depicted in figure 8.2 (where
the stable part is marked in bold and we omitted indicating the punctures
corresponding to bundles in Q(S)).

EO

AO

EF

Figure 8.2. The moduli space for the half Inoue surface

If S is an Enoki surface then M s(S) contains no such triple points but
countably infinitely many pairs of inseparable points ER and ER∨(−C) cor-
responding to line bundles R ∈ R(S), the first of them being singular and
the second smooth as in figure 4.1. This is shown in figure 8.3.
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EEO(−C) EF(−C)ER∨(−C)

EO EFER

Figure 8.3. The moduli space for an Enoki surface

BIBLIOGRAPHY

[1] W. P. Barth, K. Hulek, C. A. M. Peters & A. V. de Ven, Compact Complex
Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of
Modern Surveys in Mathematics, vol. 4, Springer-Verlag, Berlin, 2004.

[2] F. A. Bogomolov, “Surfaces of class VII0 and affine geometry”, Izvestiya Akademii
Nauk SSSR. Seriya Matematicheskaya 46 (1982), no. 4, p. 710-761, 896, English
translation: Math. USSR Izv. 21 (1983), no. 1, 31–73.

[3] P. J. Braam & J. Hurtubise, “Instantons on Hopf surfaces and monopoles on solid
tori”, Journal für reine und angewandte Mathematik 400 (1989), p. 146-172.

[4] V. Brînzănescu & R. Moraru, “Stable bundles on non-Kähler elliptic surfaces”,
Communications in Mathematical Physics 254 (2005), no. 3, p. 565-580.

[5] N. P. Buchdahl, “Stable 2-bundles on Hirzebruch surfaces”, Mathematische
Zeitschrift 194 (1987), no. 1, p. 143-152.

[6] ——— , “A Nakai-Moishezon criterion for non-Kähler surfaces”, Université de
Grenoble. Annales de l’Institut Fourier 50 (2000), no. 5, p. 1533-1538.

[7] G. Dloussky, “Structure des surfaces de Kato”, Mémoires de la Société Mathéma-
tique de France. Nouvelle Série 112 (1984), no. 14, p. 1-120.

[8] G. Dloussky, K. Oeljeklaus & M. Toma, “Class VII0 surfaces with b2 curves”,
The Tôhoku Mathematical Journal. Second Series 55 (2003), no. 2, p. 283-309.

[9] R. Y. Donagi, “Principal bundles on elliptic fibrations”, The Asian Journal of
Mathematics 1 (1997), no. 2, p. 214-223.

[10] S. K. Donaldson, “Irrationality and the h-cobordism conjecture”, Journal of Dif-
ferential Geometry 26 (1987), no. 1, p. 141-168.

[11] S. K. Donaldson & P. B. Kronheimer, The geometry of four-manifolds, Oxford
Mathematical Monographs, The Clarendon Press Oxford University Press, New
York, 1990, Oxford Science Publications.

[12] G. Elencwajg & O. Forster, “Vector bundles on manifolds without divisors and
a theorem on deformations”, Université de Grenoble. Annales de l’Institut Fourier
32 (1982), no. 4, p. 25-51 (1983).

[13] I. Enoki, “On surfaces of class VII0 with curves”, Japan Academy. Proceedings.
Series A. Mathematical Sciences 56 (1980), no. 6, p. 275-279.

[14] ——— , “Surfaces of class VII0 with curves”, The Tôhoku Mathematical Journal.
Second Series 33 (1981), no. 4, p. 453-492.

[15] R. Friedman, “Rank two vector bundles over regular elliptic surfaces”, Inventiones
Mathematicae 96 (1989), p. 283-332.

[16] R. Friedman, J. Morgan & E. Witten, “Vector bundles over elliptic fibrations”,
Journal of Algebraic Geometry 8 (1999), no. 2, p. 279-401.

ANNALES DE L’INSTITUT FOURIER



PU(2)-INSTANTONS ON CLASS VII0 SURFACES WITH b2 = 1 1721

[17] R. Friedman & J. W. Morgan, Smooth four-manifolds and complex surfaces,
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 27, Springer-
Verlag, Berlin, 1994.

[18] P. Gauduchon, “La 1-forme de torsion d’une variété hermitienne compacte”, Math-
ematische Annalen 267 (1984), no. 4, p. 495-518.

[19] P. Griffiths & J. Harris, Principles of Algebraic Geometry, Wiley Classics Li-
brary, John Wiley & Sons Inc., New York, 1994.

[20] M. Inoue, “On surfaces of class VII0”, Inventiones Mathematicae 24 (1974), p. 269-
310.

[21] ——— , “New surfaces with no meromorphic functions. II”, in Complex analysis
and algebraic geometry, Iwanami Shoten, Tokyo, 1977, p. 91-106.

[22] M. Kato, “Compact complex manifolds containing “global” spherical shells. I”, in
Proceedings of the International Symposium on Algebraic Geometry (Kyoto Uni-
versity, Kyoto, 1977) (Tokyo), Kinokuniya Book Store, 1978, p. 45-84.

[23] S. Kobayashi, Differential geometry of complex vector bundles, Publications of the
Mathematical Society of Japan, vol. 15, Princeton University Press, Princeton, NJ,
1987.

[24] K. Kodaira, “On the structure of compact complex analytic surfaces. I”, American
Journal of Mathematics 86 (1964), p. 751-798.

[25] ——— , “On the structure of compact complex analytic surfaces. II”, American
Journal of Mathematics 88 (1966), p. 682-721.

[26] D. Kotschick, “On manifolds homeomorphic to CP2#8CP
2”, Inventiones Math-

ematicae 95 (1989), no. 3, p. 591-600.
[27] J. Li, “Algebraic geometric interpretation of Donaldson’s polynomial invariants”,

Journal of Differential Geometry 37 (1993), no. 2, p. 417-466.
[28] J. Li, S. T. Yau & F. Zheng, “On projectively flat Hermitian manifolds”, Com-

munications in Analysis and Geometry 2 (1994), no. 1, p. 103-109.
[29] M. Lübke & A. Teleman, The Kobayashi-Hitchin correspondence, World Scientific

Publishing Co. Inc., River Edge, NJ, 1995.
[30] R. Moraru, “Integrable systems associated to a Hopf surface”, Canadian Journal

of Mathematics 55 (2003), no. 3, p. 609-635.
[31] I. Nakamura, “On surfaces of class VII0 with curves”, Inventiones Mathematicae

78 (1984), no. 3, p. 393-443.
[32] C. Okonek & A. V. de Ven, “Stable bundles and differentiable structures on

certain elliptic surfaces”, Inventiones Mathematicae 86 (1986), no. 2, p. 357-370.
[33] ——— , “Γ-type-invariants associated to PU(2)-bundles and the differentiable struc-

ture of Barlow’s surface”, Inventiones Mathematicae 95 (1989), no. 3, p. 601-614.
[34] A. Teleman, “Projectively flat surfaces and Bogomolov’s theorem on class VII0

surfaces”, International Journal of Mathematics 5 (1994), no. 2, p. 253-264.
[35] ——— , “Moduli spaces of stable bundles on non-Kählerian elliptic fibre bundles

over curves”, Expositiones Mathematicae. International Journal 16 (1998), no. 3,
p. 193-248.

[36] ——— , “Donaldson theory on non-Kählerian surfaces and class VII surfaces with
b2 = 1”, Inventiones Mathematicae 162 (2005), no. 3, p. 493-521.

[37] ——— , “The pseudo-effective cone of a non-Kählerian surface and applications”,
Mathematische Annalen 335 (2006), no. 4, p. 965-989.

[38] ——— , “Harmonic sections in sphere bundles, normal neighborhoods of reduction
loci, and instanton moduli spaces on definite 4-manifolds”, Geometry and Topology
11 (2007), p. 1681-1730.

[39] ——— , “Instantons and curves on class VII surfaces”, arXiv:0704.2634, 2007.

TOME 58 (2008), FASCICULE 5



1722 Konrad SCHÖBEL

[40] M. Toma, “Compact moduli spaces of stable sheaves over non-algebraic surfaces”,
Documenta Mathematica 6 (2001), p. 11-29 (Electronic).

[41] ——— , “Vector bundles on blown-up Hopf surfaces”, http://www.iecn.u-nancy.
fr/~toma/eclahopf.pdf, 2006.

Manuscrit reçu le 8 juin 2007,
accepté le 4 octobre 2007.

Konrad SCHÖBEL
Université de Provence
Centre de Mathématiques et Informatique
Laboratoire d’Analyse, Topologie et Probabilités
39 rue F. Joliot Curie
13453 Marseille cedex 13 (France)
schoebel@cmi.univ-mrs.fr

ANNALES DE L’INSTITUT FOURIER

http://www.iecn.u-nancy.fr/~toma/eclahopf.pdf
http://www.iecn.u-nancy.fr/~toma/eclahopf.pdf
mailto:schoebel@cmi.univ-mrs.fr

	 1.Introduction
	 2.Minimal class VII surfaces with b2=1
	 3.Filtrable holomorphic bundles
	 4.The local structure of the moduli space
	 5.Stability
	 6.The boundary of the moduli space of polystable bundles
	 7.Non-filtrable holomorphic bundles
	 8.The moduli spaces
	Bibliography

