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NEUMANN PROBLEMS ASSOCIATED TO
NONHOMOGENEOUS DIFFERENTIAL OPERATORS IN

ORLICZ–SOBOLEV SPACES

by Mihai MIHĂILESCU & Vicenţiu RĂDULESCU (*)

Ce travail est dédié au Professeur Philippe G. Ciarlet à l’occasion
de son 70e anniversaire

Abstract. — We study a nonlinear Neumann boundary value problem associ-
ated to a nonhomogeneous differential operator. Taking into account the competi-
tion between the nonlinearity and the bifurcation parameter, we establish sufficient
conditions for the existence of nontrivial solutions in a related Orlicz–Sobolev space.

Résumé. — On étudie un problème aux limites de Neumann associé à un opé-
rateur différentiel non homogène. En tenant compte de la compétition entre le taux
de croissance de la nonlinéarité et les valeurs du paramètre de bifurcation, on éta-
blit des conditions suffisantes pour l’existence de solutions non triviales dans un
certain espace fonctionnel du type Orlicz–Sobolev.

1. Introduction and preliminary results

This paper is motivated by phenomena which are described by nonho-
mogeneous Neumann problems of the type

(1.1)

−div(a(x, |∇u|)∇u) + a(x, |u|)u = λ g(x, u), for x ∈ Ω
∂u

∂ν
(x) = 0, for x ∈ ∂Ω,

where Ω is a bounded domain in RN (N > 3) with smooth boundary ∂Ω
and ν is the outward unit normal to ∂Ω. In (1.1) there are also involved
the functions a(x, t), g(x, t) : Ω× R → R which will be specified later and
the constant λ > 0.

Keywords: Nonhomogeneous differential operator, nonlinear partial differential equation,
Neumann boundary value problem, Orlicz–Sobolev space.
Math. classification: 35D05, 35J60, 35J70, 58E05, 68T40, 76A02.
(*) The authors have been supported by Grant CNCSIS PNII–79/2007 “Procese
Neliniare Degenerate și Singulare”.
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In the particular case when in (1.1) we have a(x, t) = tp(x)−2, with p(x) a
continuous function on Ω, we deal with problems involving variable growth
conditions. The study of such problems has been stimulated by recent ad-
vances in elasticity (see [34, 35]), fluid dynamics (see [32, 31, 8, 17]), cal-
culus of variations and differential equations with p(x)-growth conditions
(see [1, 20, 21, 22, 24, 23, 25, 34, 35]).

Another recent application which uses operators as those described above
can be found in the framework of image processing. In that context we
refer to the study of Chen, Levine and Rao [4]. In [4] the authors study a
functional with variable exponent, 1 < p(x) < 2, which provides a model
for image restoration. The diffusion resulting from the proposed model is
a combination of Gaussian smoothing and regularization based on Total
Variation. More exactly, the following adaptive model was proposed

(1.2) min
I=u+v, u∈BV∩L2(Ω)

∫
Ω

ϕ(x,∇u) dx + λ · ‖u‖2L2(Ω) ,

where Ω ⊂ R2 is an open domain,

ϕ(x, r) =

{
1

p(x) |r|
p(x), for |r| 6 β

|r| − β·p(x)−βp(x)

p(x) , for |r| > β,

where β > 0 is fixed and 1 < α 6 p(x) 6 2. The function p(x) involved
here depends on the location x in the model. For instance it can be used

p(x) = 1 +
1

1 + k|∇Gσ ∗ I|2
,

where Gσ(x) = 1
σ exp(−|x|2/(4σ2)) is the Gaussian filter and k > 0 and

σ > 0 are fixed parameters (according to the notation in [4]). For problem
(1.2) Chen, Levine and Rao establish the existence and uniqueness of the
solution and the long-time behavior of the associated flow of the proposed
model. The effectiveness of the model in image restoration is illustrated by
some experimental results included in the paper.

We point out that the model proposed by Chen, Levine and Rao in
problem (1.2) is linked with the energy which can be associated with prob-
lem (1.1) by taking ϕ(x,∇u) = a(x, |∇u|)∇u. Furthermore, the operators
which will be involved in problem (1.1) can be more general than those pre-
sented in the above quoted model. That fact is due to the replacement of
|t|p(x)−2t by more general functions ϕ(x, t) = a(x, |t|)t. Such functions will
demand some new setting spaces for the associated energy, the generalized
Orlicz-Sobolev spaces LΦ(Ω), where Φ(x, t) =

∫ t

0
ϕ(x, s) ds. Such spaces

originated with Nakano [28] and were developed by Musielak and Orlicz
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NEUMANN PROBLEMS IN ORLICZ–SOBOLEV SPACES 2089

[27, 26] (f ∈ LΦ(Ω) if and only if
∫

Φ(x, |f(x)|) dx < ∞). Many proper-
ties of Sobolev spaces have been extended to Orlicz-Sobolev spaces, mainly
by Dankert [7], Donaldson and Trudinger [10], and O’Neill [29] (see also
Adams [2] for an excellent account of those works). Orlicz-Sobolev spaces
have been used in the last decades to model various phenomena. Chen,
Levine and Rao [4] proposed a framework for image restoration based on a
variable exponent Laplacian. A second application which uses variable ex-
ponent type Laplace operators is modelling electrorheological fluids [1, 32].
According to Diening [9], we are strongly convinced that these more general
spaces will become increasingly important in modelling modern materials.

In this paper we assume that the function a(x, t) : Ω×R → R in (1.1) is
such that ϕ(x, t) : Ω× R → R,

ϕ(x, t) =
{

a(x, |t|)t, for t 6= 0
0, for t = 0 ,

and satisfies (ϕ) for all x ∈ Ω, ϕ(x, ·) : R → R is an odd, increasing
homeomorphism from R onto R ; and Φ(x, t) : Ω× R → R,

Φ(x, t) =
∫ t

0

ϕ(x, s) ds, ∀ x ∈ Ω, t > 0 ,

belongs to class Φ (see [27], p. 33), i.e. Φ satisfies the following conditions
(Φ1) for all x ∈ Ω, Φ(x, ·) : [0,∞) → R is a nondecreasing continuous func-
tion, with Φ(x, 0) = 0 and Φ(x, t) > 0 whenever t > 0; limt→∞Φ(x, t) = ∞;
(Φ2) for every t > 0, Φ(·, t) : Ω → R is a measurable function.

Remark 1.1. — Since ϕ(x, ·) satisfies condition (ϕ) we deduce that
Φ(x, ·) is convex and increasing from R+ to R+.

For the function Φ introduced above we define the generalized Orlicz
class,

KΦ(Ω) = {u : Ω → R, measurable;
∫

Ω

Φ(x, |u(x)|) dx < ∞}

and the generalized Orlicz space,

LΦ(Ω) = {u : Ω → R, measurable; lim
λ→0+

∫
Ω

Φ(x, λ|u(x)|) dx = 0} .

The space LΦ(Ω) is a Banach space endowed with the Luxemburg norm

|u|Φ = inf
{

µ > 0;
∫

Ω

Φ
(

x,
|u(x)|

µ

)
dx 6 1

}

TOME 58 (2008), FASCICULE 6
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or the equivalent norm (the Orlicz norm)

|u|(Φ) = sup
{∣∣∣∣∫

Ω

uv dx

∣∣∣∣ ; v ∈ LΦ(Ω),
∫

Ω

Φ(x, |v(x)|) dx 6 1
}

,

where Φ denotes the conjugate Young function of Φ, that is,

Φ(x, t) = sup
s>0

{ts− Φ(x, s); s ∈ R}, ∀ x ∈ Ω, t > 0 .

Furthermore, for Φ and Φ conjugate Young functions, the Hölder type
inequality holds true

(1.3)
∣∣∣∣∫

Ω

uv dx

∣∣∣∣ 6 C · |u|Φ · |v|Φ, ∀ u ∈ LΦ(Ω), v ∈ LΦ(Ω) ,

where C is a positive constant (see [27], Theorem 13.13).
In this paper we assume that there exist two positive constants ϕ0 and

ϕ0 such that

(1.4) 1 < ϕ0 6
tϕ(x, t)
Φ(x, t)

6 ϕ0 < ∞, ∀ x ∈ Ω, t > 0 .

The above relation implies that Φ satisfies the ∆2-condition (see Proposi-
tion 2.3), i.e.

(1.5) Φ(x, 2t) 6 K · Φ(x, t), ∀ x ∈ Ω, t > 0 ,

where K is a positive constant. Relation (1.5) and Theorem 8.13 in [27]
imply that LΦ(Ω) = KΦ(Ω).

Furthermore, we assume that Φ satisfies the following condition

(1.6) for each x ∈ Ω, the function [0,∞) 3 t → Φ(x,
√

t) is convex .

Relation (1.6) assures that LΦ(Ω) is an uniformly convex space and thus,
a reflexive space (see Proposition 2.2).

On the other hand, we point out that assuming that Φ and Ψ belong to
class Φ and

(1.7) Ψ(x, t) 6 K1 · Φ(x,K2 · t) + h(x), ∀ x ∈ Ω, t > 0 ,

where h ∈ L1(Ω), h(x) > 0 a.e. x ∈ Ω and K1, K2 are positive constants,
then by Theorem 8.5 in [27] we have that there exists the continuous em-
bedding LΦ(Ω) ⊂ LΨ(Ω).

An important role in manipulating the generalized Lebesgue-Sobolev
spaces is played by the modular of the LΦ(Ω) space, which is the map-
ping ρΦ : LΦ(Ω) → R defined by

ρΦ(u) =
∫

Ω

Φ(x, |u(x)|) dx.

ANNALES DE L’INSTITUT FOURIER
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If (un), u ∈ LΦ(Ω) then the following relations hold true

(1.8) |u|Φ > 1 ⇒ |u|ϕ0
Φ 6 ρΦ(u) 6 |u|ϕ

0

Φ ,

(1.9) |u|Φ < 1 ⇒ |u|ϕ
0

Φ 6 ρΦ(u) 6 |u|ϕ0
Φ ,

(1.10) |un − u|Φ → 0 ⇔ ρΦ(un − u) → 0 ,

(1.11) |un|Φ →∞ ⇔ ρΦ(un) →∞ .

Next, we define the generalized Orlicz-Sobolev space

W 1,Φ(Ω) =
{

u ∈ LΦ(Ω);
∂u

∂xi
∈ LΦ(Ω), i = 1, ..., N

}
.

On W 1,Φ(Ω) we define the equivalent norms

‖u‖1,Φ = | |∇u| |Φ + |u|Φ
‖u‖2,Φ = max{| |∇u| |Φ, |u|Φ}

‖u‖ = inf
{

µ > 0;
∫

Ω

[
Φ

(
x,
|u(x)|

µ

)
+ Φ

(
x,
|∇u(x)|

µ

)]
dx 6 1

}
,

(see Proposition 2.4).
The generalized Orlicz-Sobolev space W 1,Φ(Ω) endowed with one of the

above norms is a reflexive Banach space.
Finally, we point out that assuming that Φ and Ψ belong to class Φ,

satisfying relation (1.7) and infx∈Ω Φ(x, 1) > 0, infx∈Ω Ψ(x, 1) > 0 then
there exists the continuous embedding W 1,Φ(Ω) ⊂ W 1,Ψ(Ω).

We refer to Orlicz [30], Nakano [28], Musielak [27], Musielak and Or-
licz [26], Diening [9] for further properties of generalized Lebesgue-Sobolev
spaces.

Remark 1.2. — a) Assuming Φ(x, t) = Φ(t), i.e. Φ is independent
of variable x, we say that LΦ and W 1,Φ are Orlicz spaces, respec-
tively Orlicz-Sobolev spaces (see [2, 5, 6, 30]).

b) Assuming Φ(x, t) = |t|p(x) with p(x) ∈ C(Ω), p(x) > 1 for all x ∈ Ω
we denote LΦ by Lp(x) and W 1,Φ by W 1,p(x) and we refer to them as
variable exponents Lebesgue spaces, respectively variable exponents
Sobolev spaces (see [11, 12, 13, 16, 15, 18, 22, 24, 27, 26, 28])

c) Our framework enables us to work with spaces which are more
general than those described in a) and b) (see the examples at the
end of this paper).

TOME 58 (2008), FASCICULE 6
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2. Auxiliary results regarding generalized Orlicz-Sobolev
spaces

In this section we point out certain useful results regarding the general-
ized Orlicz-Sobolev spaces.

Proposition 2.1. — Assume condition (1.4) is satisfied. Then the fol-
lowing relations hold true

|u|ϕ0
Φ 6 ρΦ(u) 6 |u|ϕ

0

Φ , ∀ u ∈ LΦ(Ω) with |u|Φ > 1 ,(2.1)

|u|ϕ
0

Φ 6 ρΦ(u) 6 |u|ϕ0
Φ , ∀ u ∈ LΦ(Ω) with |u|Φ < 1 .(2.2)

Proof. — First, we show that ρΦ(u) 6 |u|ϕ
0

Φ for all u ∈ LΦ(Ω) with
|u|Φ > 1. �

Indeed, since ϕ0 > (tϕ(x, t))/Φ(x, t) for all x ∈ Ω and all t > 0 it follows
that letting σ > 1 we have

log(Φ(x, σ · t))− log(Φ(x, t)) =
∫ σ·t

t

ϕ(x, s)
Φ(x, s)

ds 6
∫ σ·t

t

ϕ0

s
ds = log(σϕ0

) .

Thus, we deduce

(2.3) Φ(x, σ · t) 6 σϕ0
· Φ(x, t), ∀ x ∈ Ω, t > 0, σ > 1 .

Let now u ∈ LΦ(Ω) with |u|Φ > 1. Using the definition of the Luxemburg
norm and relation (2.3) we deduce∫

Ω

Φ(x, |u(x)|) dx =
∫

Ω

Φ
(

x, |u|Φ ·
|u(x)|
|u|Φ

)
dx

6 |u|ϕ
0

Φ ·
∫

Ω

Φ
(

x,
|u(x)|
|u|Φ

)
dx

6 |u|ϕ
0

Φ .

Now, we show that ρΦ(u) > |u|ϕ0
Φ for all u ∈ LΦ(Ω) with |u|Φ > 1.

Since ϕ0 6 (tϕ(x, t))/Φ(x, t) for all x ∈ Ω and all t > 0, similar tech-
niques as those used in the proof of relation (2.3) imply

(2.4) Φ(x, σ · t) > σϕ0 · Φ(x, t), ∀ x ∈ Ω, t > 0, σ > 1 .

Let u ∈ LΦ(Ω) with |u|Φ > 1. We consider β ∈ (1, |u|Φ). Since β < |u|Φ it
follows that

∫
Ω

Φ
(
x, |u(x)|

β

)
dx > 1 otherwise we will obtain a contradic-

tion with the definition of the Luxemburg norm. The above considerations

ANNALES DE L’INSTITUT FOURIER
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implies∫
Ω

Φ(x, |u(x)|) dx =∫
Ω

Φ
(

x, β · |u(x)|
β

)
dx > βϕ0 ·

∫
Ω

Φ
(

x,
|u(x)|

β

)
dx > βϕ0 ;

Letting β ↗ |u|Φ we deduce that relation (2.1) holds true.
Next, we show that ρΦ(u) 6 |u|ϕ0

Φ for all u ∈ LΦ(Ω) with |u|Φ < 1. It is
easy to show (see the proof of relations (2.3) and (2.4)) that

(2.5) Φ(x, t) 6 τϕ0 · Φ(x, t/τ), ∀ x ∈ Ω, t > 0, τ ∈ (0, 1) .

Let u ∈ LΦ(Ω) with |u|Φ < 1. The definition of the Luxemburg norm and
relation (2.5) imply∫

Ω

Φ(x, |u(x)|) dx =
∫

Ω

Φ
(

x, |u|Φ ·
|u(x)|
|u|Φ

)
dx

6 |u|ϕ0
Φ ·

∫
Ω

Φ
(

x,
|u(x)|
|u|Φ

)
dx

6 |u|ϕ0
Φ .

Finally, we show that ρΦ(u) > |u|ϕ
0

Φ for all u ∈ LΦ(Ω) with |u|Φ < 1.
As in the proof of (2.3) we deduce

(2.6) Φ(x, t) > τϕ0
· Φ(x, t/τ), ∀ x ∈ Ω, t > 0, τ ∈ (0, 1) .

Let u ∈ LΦ(Ω) with |u|Φ < 1 and ξ ∈ (0, |u|Φ). By (2.6) we find

(2.7)
∫

Ω

Φ(x, |u(x)|) dx > ξϕ0
·
∫

Ω

Φ
(

x,
|u(x)|

ξ

)
dx .

Define v(x) = u(x)/ξ, for all x ∈ Ω. We have |v|Φ = |u|Φ/ξ > 1. Using
relation (2.1) we find

(2.8)
∫

Ω

Φ(x, |v(x)|) dx > |v|ϕ0
Φ > 1 .

By (2.7) and (2.8) we obtain∫
Ω

Φ(x, |u(x)|) dx > ξϕ0
, ∀ ξ ∈ (0, |u|Φ) .

Letting ξ ↗ |u|Φ we deduce that relation (2.2) holds true. The proof of
Proposition 2.1 is complete. �

Proposition 2.2. — Assume Φ satisfies conditions (1.5) and (1.6).
Then the space LΦ(Ω) is uniformly convex.

TOME 58 (2008), FASCICULE 6
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Proof. — From the above hypotheses we deduce that we can apply Lem-
ma 2.1 in [19] in order to deduce

1
2
[Φ(x, |t|) + Φ(x, |s|)] > Φ

(
x,
|t + s|

2

)
+ Φ

(
x,
|t− s|

2

)
,

;∀ x ∈ Ω, t, s ∈ R .

The above inequality yields

(2.9)
1
2
[ρΦ(u) + ρΦ(v)] > ρΦ

(
u + v

2

)
+ ρΦ

(
u− v

2

)
, ; ∀ u, v ∈ LΦ(Ω) .

Assume that |u|Φ < 1 and |v|Φ < 1 and |u − v|Φ > ε (with ε ∈ (0, 1/K)).
Then we have

ρΦ(u− v) > |u− v|ϕ0
Φ if |u− v|Φ > 1

ρΦ(u− v) > |u− v|ϕ
0

Φ if |u− v|Φ < 1 ,

and
ρΦ(u) < 1, ρΦ(v) < 1 .

The above information and relation (1.4) yield

ρΦ

(
u− v

2

)
>

1
K
· ρΦ(u− v) >


1
K
· εϕ0 , if |u− v|Φ > 1

1
K
· εϕ0

, if |u− v|Φ < 1 .

By (2.9) and the above inequality we have

(2.10) ρΦ

(
u + v

2

)
<


1− 1

K
· εϕ0 , if |u− v|Φ > 1

1− 1
K
· εϕ0

, if |u− v|Φ < 1 .

On the other hand, we have

(2.11) ρΦ

(
u + v

2

)
>


∣∣∣∣u + v

2

∣∣∣∣ϕ0

Φ

, if
∣∣∣∣u + v

2

∣∣∣∣
Φ

> 1∣∣∣∣u + v

2

∣∣∣∣ϕ0

Φ

, if
∣∣∣∣u + v

2

∣∣∣∣
Φ

< 1 .

Relations (2.10) and (2.11) show that there exists δ > 0 such that∣∣∣∣u + v

2

∣∣∣∣
Φ

< 1− δ .

Thus, we proved that LΦ(Ω) is an uniformly convex space. The proof of
Proposition 2.2 is complete. �

ANNALES DE L’INSTITUT FOURIER
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Remark 3. Condition (1.6) (via relation (2.9)) also implies the fact that
for every x ∈ Ω fixed, the function Φ(x, ·) is convex from R+ to R+.

Proposition 2.3. — Condition (1.4) implies condition (1.5).

Proof. — Since relation (1.4) holds true by Proposition 2.1 it follows that
condition (2.3) works. We deduce that

Φ(x, 2 · t) 6 2ϕ0
· Φ(x, t), ∀ x ∈ Ω, t > 0 .

Thus, relation (1.5) holds true with K = 2ϕ0
. The proof of Proposition 2.3

is complete. �

Proposition 2.4. — On W 1,Φ(Ω) the following norms

‖u‖1,Φ = | |∇u| |Φ + |u|Φ ,

‖u‖2,Φ = max{| |∇u| |Φ, |u|Φ} ,

‖u‖ = inf
{

µ > 0;
∫

Ω

[
Φ

(
x,
|u(x)|

µ

)
+ Φ

(
x,
|∇u(x)|

µ

)]
dx 6 1

}
,

are equivalent.

Proof. — First, we point out that ‖ ‖1,Φ and ‖ ‖2,Φ are equivalent, since

(2.12) 2 · ‖u‖2,Φ > ‖u‖1,Φ > ‖u‖2,Φ, ∀ u ∈ W 1,Φ(Ω) .

Next, we remark that∫
Ω

Φ
(

x,
|u(x)|
|u|Φ

)
dx 6 1 and

∫
Ω

Φ
(

x,
|∇u(x)|
| |∇u| |Φ

)
dx 6 1 ,

and ∫
Ω

[
Φ

(
x,
|u(x)|
‖u‖

)
+ Φ

(
x,
|∇u(x)|
‖u‖

)]
dx 6 1 .

Using the above relations we obtain∫
Ω

Φ
(

x,
|u(x)|
‖u‖

)
dx 6 1 and

∫
Ω

Φ
(

x,
|∇u(x)|
‖u‖

)
dx 6 1.

Taking into account the way in which | |Φ is defined we find

(2.13) 2‖u‖ > (|u|Φ + | |∇u| |Φ) = ‖u‖1,Φ, ∀ u ∈ W 1,Φ(Ω) .

On the other hand, by relation (2.4) we deduce that

Φ(x, 2 · t) > 2 · Φ(x, t), ∀ x ∈ Ω, t > 0 .

Thus, we deduce that

2 · Φ
(

x,
|u(x)|

2 · ‖u‖2,Φ

)
6 Φ

(
x,
|u(x)|
‖u‖2,Φ

)
, ∀ u ∈ W 1,Φ(Ω), x ∈ Ω

TOME 58 (2008), FASCICULE 6
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and

2 · Φ
(

x,
|∇u(x)|

2 · ‖u‖2,Φ

)
6 Φ

(
x,
|∇u(x)|
‖u‖2,Φ

)
, ∀ u ∈ W 1,Φ(Ω), x ∈ Ω .

It follows that

(2.14)
∫

Ω

[
Φ

(
x,

|u(x)|
2‖u‖2,Φ

)
+ Φ

(
x,
|∇u(x)|
2‖u‖2,Φ

)]
dx 6

1
2

{∫
Ω

[
Φ

(
x,
|u(x)|
‖u‖2,Φ

)
+ Φ

(
x,
|∇u(x)|
‖u‖2,Φ

)]
dx

}
.

But, since

‖u‖2,Φ > |u|Φ and ‖u‖2,Φ > | |∇u| |Φ, ∀ u ∈ W 1,Φ(Ω) ,

we obtain
(2.15)
|u(x)|
|u|Φ

>
|u(x)|
‖u‖2,Φ

and
|∇u(x)|
| |∇u| |Φ

>
|∇u(x)|
‖u‖2,Φ

, ∀ u ∈ W 1,Φ(Ω), x ∈ Ω .

Taking into account that Φ is increasing by (2.14) and (2.15) we deduce
that∫

Ω

[
Φ

(
x,

|u(x)|
2‖u‖2,Φ

)
+ Φ

(
x,
|∇u(x)|
2‖u‖2,Φ

)]
dx 6

1
2

{∫
Ω

[
Φ

(
x,
|u(x)|
|u|Φ

)
+ Φ

(
x,
|∇u(x)|
| |∇u |Φ

)]
dx

}
6 1 ,

for all u ∈ W 1,Φ(Ω).
We conclude that

(2.16) 2 · ‖u‖1,Φ > 2 · ‖u‖2,Φ > ‖u‖, ∀ u ∈ W 1,Φ(Ω) .

By relations (2.12), (2.13) and (2.16) we deduce that Proposition 2.4 holds
true. �

Proposition 2.5. — The following relations hold true

(2.17)
∫

Ω

[Φ(x, |u(x)|) + Φ(x, |∇u(x)|)] dx > ‖u‖ϕ0 ,

∀ u ∈ W 1,Φ(Ω) with ‖u‖ > 1;

(2.18)
∫

Ω

[Φ(x, |u(x)|) + Φ(x, |∇u(x)|)] dx > ‖u‖ϕ0
,

∀ u ∈ W 1,Φ(Ω) with ‖u‖ < 1.
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Proof. — First, assume that ‖u‖ > 1. Let β ∈ (1, ‖u‖). By relation (2.4)
we have∫

Ω

[Φ(x, |u(x)|) + Φ(x, |∇u(x)|)] dx > βϕ0 ·∫
Ω

[
Φ

(
x,
|u(x)|

β

)
+ Φ

(
x,
|∇u(x)|

β

)]
.

Since β < ‖u‖ we find∫
Ω

[
Φ

(
x,
|u(x)|

β

)
+ Φ

(
x,
|∇u(x)|

β

)]
> 1 .

Thus, we find ∫
Ω

[Φ(x, |u(x)|) + Φ(x, |∇u(x)|)] dx > βϕ0 .

Letting β ↗ ‖u‖ we deduce that (2.17) holds true.
Next, assume ‖u‖ < 1. Let ξ ∈ (0, ‖u‖). By relation (2.6) we obtain

(2.19)
∫

Ω

[Φ(x, |u(x)|) + Φ(x, |∇u(x)|)] dx > ξϕ0
·∫

Ω

[
Φ

(
x,
|u(x)|

ξ

)
+ Φ

(
x,
|∇u(x)|

ξ

)]
dx.

Defining v(x) = u(x)/ξ, for all x ∈ Ω, we have ‖v‖ = ‖u‖/ξ > 1. Using
relation (2.17) we find

(2.20)
∫

Ω

[Φ(x, |v(x)|) + Φ(x, |∇v(x)|)] dx > ‖v‖ϕ0 > 1.

Relations (2.19) and (2.20) show that∫
Ω

[Φ(|u(x)|) + Φ(|∇u(x)|)] dx > ξp0
.

Letting ξ ↗ ‖u‖ in the above inequality we obtain that relation (2.18)
holds true. The proof of Proposition 2.5 is complete. �

3. Main results

In this paper we study problem (1.1) in the particular case when Φ
satisfies

(3.1) M · |t|p(x) 6 Φ(x, t), ∀ x ∈ Ω, t > 0 ,

where p(x) ∈ C(Ω) with p(x) > 1 for all x ∈ Ω and M > 0 is a constant.
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Remark 3.1. — In the following, for each continuous function s : Ω →
(1,∞) we will use the following notations:

s− = inf
x∈Ω

s(x), s+ = inf
x∈Ω

s(x) .

We point out that s− and s+ correspond to the constants φ0 and φ0 de-
fined previously, for the particular function Φ(x, t) = |t|s(x) when φ(x, t) =
|t|s(x)−2t. By relation (3.1) we deduce that W 1,Φ(Ω) is continuously embed-
ded in W 1,p(x)(Ω) (see relation (1.7) with Ψ(x, t) = |t|p(x)). On the other
hand, it is known (see [18, 16, 22]) that W 1,p(x)(Ω) is compactly embedded
in Lr(x)(Ω) for any r(x) ∈ C(Ω) with 1 < r− 6 r+ < Np−

N−p− . Thus, we de-
duce that W 1,Φ(Ω) is compactly embedded in Lr(x)(Ω) for any r(x) ∈ C(Ω)
with 1 < r(x) < Np−

N−p− for all x ∈ Ω.

On the other hand, we assume that the function g from problem (1.1)
satisfies the hypotheses

(3.2) |g(x, t)| 6 C0 · |t|q(x)−1, ∀ x ∈ Ω, t ∈ R

and

(3.3) C1 · |t|q(x) 6 G(x, t) :=
∫ t

0

g(x, s) ds 6 C2 · |t|q(x), ∀ x ∈ Ω, t ∈ R ,

where C0, C1 and C2 are positive constants and q(x) ∈ C(Ω) satisfies
1 < q(x) < Np−

N−p− for all x ∈ Ω.

Examples. — We point out certain examples of functions g and G

which satisfy hypotheses (3.2) and (3.3).
(1) g(x, t) = q(x) · |t|q(x)−2t and G(x, t) = |t|q(x), where q(x) ∈ C(Ω)

satisfies 2 6 q(x) < Np−

N−p− for all x ∈ Ω;
(2) g(x, t) = q(x) · |t|q(x)−2t + (q(x) − 2) · [log(1 + t2)] · |t|q(x)−4t +

t
1+t2 |t|

q(x)−2 and G(x, t) = |t|q(x) + log(1 + t2) · |t|q(x)−2, where

q(x) ∈ C(Ω) satisfies 4 6 q(x) < Np−

N−p− for all x ∈ Ω;
(3) g(x, t) = q(x)·|t|q(x)−2t+(q(x)−1)·sin(sin(t))·|t|q(x)−3t+cos(sin(t))·

cos(t) · |t|q(x)−1 and G(x, t) = |t|q(x) + sin(sin(t)) · |t|q(x)−1, where
q(x) ∈ C(Ω) satisfies 3 6 q(x) < Np−

N−p− for all x ∈ Ω.

We say that u ∈ W 1,Φ(Ω) is a weak solution of problem (1.1) if∫
Ω

a(x, |∇u|)∇u∇v dx +
∫

Ω

a(x, |u|)uv dx− λ

∫
Ω

g(x, u)v dx = 0,

for all v ∈ W 1,Φ(Ω).
The main results of this paper are given by the following theorems.
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Theorem 3.2. — Assume ϕ and Φ verify conditions (ϕ), (Φ1), (Φ2),
(1.4), (1.6) and (3.1) and the functions g and G satisfy conditions (3.2)
and (3.3). Furthermore, we assume that q− < ϕ0. Then there exists λ? > 0
such that for any λ ∈ (0, λ?) problem (1.1) has a nontrivial weak solution.

Theorem 3.3. — Assume ϕ and Φ verify conditions (ϕ), (Φ1), (Φ2),
(1.4), (1.6) and (3.1) and the functions g and G satisfy conditions (3.2)
and (3.3). Furthermore, we assume that q+ < ϕ0. Then there exists λ? > 0
and λ? > 0 such that for any λ ∈ (0, λ?) ∪ (λ?,∞) problem (1.1) has a
nontrivial weak solution.

4. Proof of the main results

Let E denote the generalized Orlicz-Sobolev space W 1,Φ(Ω).
For each λ > 0 we define the energy functional Jλ : E → R by

Jλ(u) =
∫

Ω

[Φ(x, |∇u|) + Φ(x, |u|)] dx− λ

∫
Ω

G(x, u) dx, ∀ u ∈ E .

We first establish some basic properties of Jλ.

Proposition 4.1. — For each λ > 0 the functional Jλ is well-defined
on E and Jλ ∈ C1(E, R) with the derivative given by

〈J
′

λ(u), v〉 =
∫

Ω

a(x, |∇u|)∇u ·∇v dx+
∫

Ω

a(x, |u|)uv dx−λ

∫
Ω

g(x, u)v dx ,

for all u, v ∈ E.

To prove Proposition 4.1 we define the functional Λ : E → R by

Λ(u) =
∫

Ω

[Φ(x, |∇u|) + Φ(x, |u|)] dx, ∀ u ∈ E .

Lemma 4.2. — The functional Λ is well defined on E and Λ ∈ C1(E, R)
with

〈Λ
′
(u), v〉 =

∫
Ω

a(x, |∇u|)∇u · ∇v dx +
∫

Ω

a(x, |u|)uv dx ,

for all u, v ∈ E.

Proof. — Clearly, Λ is well defined on E.
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Existence of the Gâteaux derivative. — Let u, v ∈ E. Fix x ∈ Ω and
0 < |r| < 1. Then, by the mean value theorem, there exists ν, θ ∈ [0, 1] such
that

|Φ(x, |∇u(x) + r∇v(x)|)− Φ(x, |∇u(x)|)|/|r|
= |ϕ(x, |(1− ν)|∇u(x) + r∇v(x)|+ ν|∇u(x)|)|·
||∇u(x) + r∇v(x)| − |∇u(x)||

(4.1)

and
|Φ(x, |u(x) + rv(x)|)− Φ(x, |u(x)|)|/|r|

= |ϕ(x, |(1− θ)|u(x) + rv(x)|+ θ|u(x)|)|·
||u(x) + rv(x)| − |u(x)|| .

(4.2)

Next, we claim that ϕ(x, |u(x)|) ∈ LΦ(Ω) provided that u ∈ LΦ(Ω), where
Φ is the conjugate Young function of Φ.

Indeed, we know that

Φ(x, t) = sup
s>0

{ts− Φ(x, s); s ∈ R}, ∀ x ∈ Ω, t > 0

or

Φ(x, t) =
∫ t

0

ϕ(x, s) ds, ∀ x ∈ Ω, t > 0 ,

where ϕ(x, t) = sup
ϕ(x,s)6t

s, for all x ∈ Ω and t > 0.

On the other hand, by relation (ϕ) we know that for all x ∈ Ω, ϕ(x, ·) :
R → R is an odd, increasing homeomorphism from R onto R and thus,
an increasing homeomorphism from R+ onto R+. It follows that for each
x ∈ Ω we can denote by ϕ−1(x, t) the inverse function of ϕ(x, t) rela-
tive to variable t. Thus, we deduce that ϕ(x, s) 6 t if and only if s 6
ϕ−1(x, t). Taking into account the above pieces of information we deduce
that ϕ(x, t) = ϕ−1(x, t). Consequently we find

Φ(x, t) =
∫ t

0

ϕ−1(x, s) ds, ∀ x ∈ Ω, t > 0 .

Next, since

Φ(x, ϕ−1(x, s)) =
∫ ϕ−1(x,s)

0

ϕ(x, θ) dθ, ∀ x ∈ Ω, s > 0 ,

taking ϕ(x, θ) = r we find

Φ(x, ϕ−1(x, s)) =
∫ s

0

r · (ϕ−1(x, r))
′

r dr = s · ϕ−1(x, s)− Φ(x, s),

∀ x ∈ Ω, s > 0 .
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The above relation implies

Φ(x, s) 6 s · ϕ−1(x, s), ∀ x ∈ Ω, s > 0 .

Taking into the above inequality s = ϕ(x, t) we find

Φ(x, ϕ(x, t)) 6 t · ϕ(x, t), ∀ x ∈ Ω, t > 0 .

The last inequality and relation (1.4) yield

Φ(x, ϕ(x, t)) 6 ϕ0 · Φ(x, t), ∀ x ∈ Ω, t > 0 .

Thus, we deduce that for any u ∈ LΦ(Ω) we have ϕ(x, |u(x)|) ∈ LΦ(Ω) and
the claim is verified. By applying relations (4.1), (4.2), the above claim and
(1.3) we infer that

|Φ(x, |∇u(x) + r∇v(x)|) + Φ(x, |u(x) + rv(x)|)− Φ(x, |∇u(x)|)−
Φ(x, |u(x)|)||/|r| 6 |ϕ(x, |(1− ν)|∇u(x) + r∇v(x)|+

ν|∇u(x)|)| · ||∇u(x) + r∇v(x)| − |∇u(x)||+

|ϕ(x, |(1− θ)|u(x) + rv(x)|+ θ|∇u(x)|)| · ||u(x) + rv(x)| − |u(x)|| ∈ L1(Ω),

for all u, v ∈ E, x ∈ Ω and |r| ∈ (0, 1). It follows from the Lebesgue theorem
that

〈Λ
′
(u), v〉 =

∫
Ω

a(x, |∇u|)∇u · ∇v dx +
∫

Ω

a(x, |u|)uv dx .

Continuity of the Gâteaux derivative. — Assume un → u in E. The
above claim and the Lebesgue theorem imply

a(x, |∇un|)∇un → a(x, |∇u|)∇u, in (LΦ(Ω))N

and
a(x, |un|)un → a(x, |u|)u, in LΦ(Ω) .

Those facts and (1.3) imply

|〈Λ
′
(un)− Λ

′
(u), v〉| 6 |a(x, |∇un|)

∇un − a(x, |∇u|)∇u|Φ · | |∇v| |Φ + |a(x, |un|)un − a(x, |u|)u|Φ · |v|Φ ,

for all v ∈ E, and so

‖Λ
′
(un)− Λ

′
(u)‖ 6 |a(x, |∇un|)

∇un − a(x, |∇u|)∇u|Φ + |a(x, |un|)un − a(x, |u|)u|Φ → 0, as n →∞ .

The proof of Lemma 4.2 is complete. �

Combining Lemma 4.2 and Remark 4 we infer that Proposition 4.1 holds
true.
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Lemma 4.3. — The functional Λ is weakly lower semi-continuous.

Proof. — By Corollary III.8 in [3], it is enough to show that Λ is lower
semi-continuous. For this purpose, we fix u ∈ E and ε > 0. Since Λ is
convex (because Φ is convex) we deduce that for any v ∈ E the following
inequality holds true

Λ(v) > Λ(u) + 〈Λ
′
(u), v − u〉 ,

or

Λ(v) > Λ(u)−
∫

Ω

[a(x, |∇u|)|∇u| · |∇v −∇u|+ a(x, |u|)|u| · |v − u|] dx

= Λ(u)−
∫

Ω

[ϕ(x, |∇u|)|∇v −∇u|+ ϕ(x, |u|)|v − u|] dx .

But, by the claim proved in Proposition 4.1 we know that for any u ∈ LΦ(Ω)
we have ϕ(x, |u|), ϕ(x, |∇u|) ∈ LΦ(Ω). Thus, by relation (1.3) we find

Λ(v) > Λ(u)− C · [|ϕ(x, |∇u|)|Φ · | |∇v −∇u| |Φ + |ϕ(x, |u|)|Φ · |v − u|Φ]

> Λ(u)− C
′
· ‖u− v‖

> Λ(u)− ε ,

for all v ∈ E with ‖v − u‖ < δ = ε/C
′
, where C and C

′
are positive

constants. The proof of Lemma 4.3 is complete. �

Proposition 4.4. — The functional Jλ is weakly lower semi-continuous.

Proof. — Using Lemma 4.3 we have that Λ is weakly lower semi-conti-
nuous. We show that Jλ is weakly lower semi-continuous. Let {un} ⊂ E be
a sequence which converges weakly to u in E. By Lemma 4.3 we deduce

Λ(u) 6 lim inf
n→∞

Λ(un) .

On the other hand, Remark 4 and conditions (3.2) and (3.3) imply

lim
n→∞

∫
Ω

G(x, un) dx =
∫

Ω

G(x, u) dx .

Thus, we find
Jλ(u) 6 lim inf

n→∞
Jλ(un) .

Therefore, Jλ is weakly lower semi-continuous and Proposition 4.4 is veri-
fied. �

Proposition 4.5. — Assume that the sequence {un} converges weakly
to u in E and

lim sup
n→∞

〈Λ
′
(un), un − u〉 6 0.
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Then {un} converges strongly to u in E.

Proof. — Since {un} converges weakly to u in E it follows that {‖un‖} is
a bounded sequence of real numbers. That fact and Proposition 2.4 imply
that {|un|Φ} and {| |∇un| |Φ} are bounded sequences of real numbers. That
information and relations (1.8) and (1.9) yield that the sequence {Λ(un)}
is bounded. Then, up to a subsequence, we deduce that Λ(un) → c.

By Lemma 4.3 we obtain

Λ(u) 6 lim inf
n→∞

Λ(un) = c .

On the other hand, since Λ is convex, we have

Λ(u) > Λ(un) + 〈Λ
′
(un), u− un〉 .

Using the above hypothesis we conclude that Λ(u) = c. Taking into account
that {(un +u)/2} converges weakly to u in E and using Lemma 4.3 we find

(4.3) c = Λ(u) 6 Λ
(

un + u

2

)
.

We assume by contradiction that {un} does not converge to u in E or
{(un − u)/2} does not converge to 0 in E. It follows that there exist ε > 0
and a subsequence {unm

} of {un} such that

(4.4)
∥∥∥∥unm − u

2

∥∥∥∥ > ε, ∀m .

Furthermore, relations (2.17), (2.18) and (4.4) imply that there exists ε1 > 0
such that

(4.5) Λ
(

unm − u

2

)
> ε1, ∀m .

On the other hand, relations (2.9) and (4.5) yield

1
2
Λ(u) +

1
2
Λ(unm)− Λ

(
unm + u

2

)
> Λ

(
unm

− u

2

)
> ε1, ∀m .

Letting m →∞ in the above inequality we obtain

c− ε1 > lim sup
m→∞

Λ
(

unm + u

2

)
,

and that is a contradiction with (4.3). We conclude that {un} converges
strongly to u in E and Proposition 4.5 is proved. �

Lemma 4.6. — Assume the hypotheses of Theorem 3.2 are fulfilled.
Then there exists λ? > 0 such that for any λ ∈ (0, λ?) there exist ρ,
α > 0 such that Jλ(u) > α > 0 for any u ∈ E with ‖u‖ = ρ.
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Proof. — By Remark 4 and conditions (3.2) and (3.3) it follows that E

is continuously embedded in Lq(x)(Ω). So, there exists a positive constant
c1 such that

(4.6) |u|q(x) 6 c1 · ‖u‖, ∀ u ∈ E .

where by | · |q(x) we denoted the norm on Lq(x)(Ω).
We fix ρ ∈ (0, 1) such that ρ < 1/c1. Then relation (4.6) implies

|u|q(x) < 1, ∀ u ∈ E, with ‖u‖ = ρ .

Furthermore, relation (1.9) applied to Φ(x, t) = |t|q(x) yields

(4.7)
∫

Ω

|u|q(x) dx 6 |u|q
−

q(x), ∀ u ∈ E, with ‖u‖ = ρ .

Relations (4.6) and (4.7) imply

(4.8)
∫

Ω

|u|q(x) dx 6 cq−

1 ‖u‖q− , ∀ u ∈ E, with ‖u‖ = ρ .

Taking into account relations (2.18), (4.8) and (3.3) we deduce that for any
u ∈ E with ‖u‖ = ρ the following inequalities hold true

Jλ(u) > ‖u‖ϕ0
− λ · C2 · cq−

1 · ‖u‖q− = ρq−(ρϕ0−q− − λ · C2 · cq−

1 ) .

By the above inequality we remark that if we define

(4.9) λ? =
ρϕ0−q−

2 · C2 · cq−

1

,

then for any λ ∈ (0, λ?) and any u ∈ E with ‖u‖ = ρ there exists α =
ρϕ0

2 > 0 such that
Jλ(u) > α > 0 .

The proof of Lemma 4.6 is complete. �

Lemma 4.7. — Assume the hypotheses of Theorem 3.2 are fulfilled.
Then there exists θ ∈ E such that θ > 0, θ 6= 0 and Jλ(tθ) < 0, for
t > 0 small enough.

Proof. — By the hypotheses of Theorem 3.2 we have q− < ϕ0. Let ε0 > 0
be such that q− + ε0 < ϕ0. On the other hand, since q ∈ C(Ω) it follows
that there exists an open set Ω0 ⊂⊂ Ω such that |q(x) − q−| < ε0 for all
x ∈ Ω0. Thus, we conclude that q(x) 6 q− + ε0 < ϕ0 for all x ∈ Ω0.

Let θ ∈ C∞
0 (Ω) ⊂ E be such that supp(θ) ⊃ Ω0, θ(x) = 1 for all x ∈ Ω0

and 0 6 θ 6 1 in Ω.
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Taking into account all the above pieces of information and relations
(2.5) and (3.3) we have

Jλ(t · θ)

=
∫

Ω

[Φ(x, t|∇θ(x)|) + Φ(x, t|θ(x)|)] dx− λ

∫
Ω

G(x, t · θ(x)) dx

6 tϕ0 ·
∫

Ω

[Φ(x, |∇θ(x)|) + Φ(x, |θ(x)|)] dx− λ · C1 ·
∫

Ω

tq(x)|θ|q(x) dx

6 tϕ0 · Λ(θ)− λ · C1 ·
∫

Ω0

tq(x)|θ|q(x) dx

6 tϕ0 · Λ(θ)− λ · C1 · tq
−+ε0 ·

∫
Ω0

|θ|q(x) dx ,

for any t ∈ (0, 1), where by |Ω0| we denoted the Lebesgue measure of Ω0.
Therefore

Jλ(t · θ) < 0

for t < δ1/(ϕ0−q−−ε0) with

0 < δ < min

{
1,

λ · C1 ·
∫
Ω0
|θ|q(x) dx

Λ(θ)

}
.

Finally, we point out that Λ(θ) > 0. Indeed, it is clear that

0 <

∫
Ω0

|θ|q(x) dx 6
∫

Ω

|θ|q(x) dx

∫
Ω

|θ|q
−

dx 6 cq−

1 ‖u‖q− .

Thus, we infer that ‖θ‖ > 0. That fact and relations (2.17) and (2.18) imply
that Λ(θ) > 0. The proof of Lemma 4.7 is complete. �

Proof of Theorem 3.2. — Let λ? > 0 be defined as in (4.9) and λ ∈
(0, λ?). By Lemma 4.6 it follows that on the boundary of the ball centered
in the origin and of radius ρ in E, denoted by Bρ(0), we have

inf
∂Bρ(0)

Jλ > 0.

On the other hand, by Lemma 4.7, there exists θ ∈ E such that Jλ(t ·θ) < 0
for all t > 0 small enough. Moreover, relations (2.18), (4.8) and (3.3) imply
that for any u ∈ Bρ(0) we have

Jλ(u) > ‖u‖ϕ0
− λ · C2 · cq−

1 ‖u‖q− .

It follows that
−∞ < c := inf

Bρ(0)

Jλ < 0 .
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We let now 0 < ε < inf∂Bρ(0) Jλ − infBρ(0) Jλ. Applying Ekeland’s varia-
tional principle [14] to the functional Jλ : Bρ(0) → R, we find uε ∈ Bρ(0)
such that

Jλ(uε) < inf
Bρ(0)

Jλ + ε

Jλ(uε) < Jλ(u) + ε · ‖u− uε‖, u 6= uε.

Since
Jλ(uε) 6 inf

Bρ(0)

Jλ + ε 6 inf
Bρ(0)

Jλ + ε < inf
∂Bρ(0)

Jλ ,

we deduce that uε ∈ Bρ(0). Now, we define Iλ : Bρ(0) → R by Iλ(u) =
Jλ(u) + ε · ‖u− uε‖. It is clear that uε is a minimum point of Iλ and thus

Iλ(uε + t · v)− Iλ(uε)
t

> 0

for small t > 0 and any v ∈ B1(0). The above relation yields

Jλ(uε + t · v)− Jλ(uε)
t

+ ε · ‖v‖ > 0.

Letting t → 0 it follows that 〈J ′

λ(uε), v〉 + ε · ‖v‖ > 0 and we infer that
‖J ′

λ(uε)‖ 6 ε.
We deduce that there exists a sequence {wn} ⊂ Bρ(0) such that

(4.10) Jλ(wn) → c and J
′

λ(wn) → 0.

It is clear that {wn} is bounded in E. Thus, there exists w ∈ E such that, up
to a subsequence, {wn} converges weakly to w in E. Since, by Remark 4, E

is compactly embedded in Lq(x)(Ω) it follows that {wn} converges strongly
to w in Lq(x)(Ω). The above information combined with relation (3.2) and
Hölder’s inequality implies∣∣∣∣∫

Ω

g(x,wn) · (wn − w) dx

∣∣∣∣
6 C0 ·

∫
Ω

|wn|q(x)−1|wn − w| dx

6 C0 · | |wn|q(x)−1 | q(x)
q(x)−1

· |wn − w|q(x) → 0, as n →∞ .

(4.11)

On the other hand, by (4.10) we have

(4.12) lim
n→∞

〈J
′

λ(wn), wn − w〉 = 0 .

Relations (4.11) and (4.12) imply

lim
n→∞

〈Λ
′
(wn), wn − w〉 = 0 .

ANNALES DE L’INSTITUT FOURIER



NEUMANN PROBLEMS IN ORLICZ–SOBOLEV SPACES 2107

Thus, by Proposition 4.5 we find that {wn} converges strongly to w in E.
So, by (4.10),

Jλ(w) = c < 0 and J
′

λ(w) = 0 .

We conclude that w is a nontrivial weak solution for problem (1.1) for any
λ ∈ (0, λ?). The proof of Theorem 3.2 is complete. �

Lemma 4.8. — Assume the hypotheses of Theorem 3.3 are fulfilled.
Then for any λ > 0 the functional Jλ is coercive.

Proof. — For each u ∈ E with ‖u‖ > 1 and λ > 0 relations (2.17), (3.2)
and Remark 4 imply

Jλ(u) > ‖u‖ϕ0 − λ · C2 ·
∫

Ω

|u|q(x) dx

> ‖u‖ϕ0 − λ · C2 ·
[∫

Ω

|u|q
−

dx +
∫

Ω

|u|q
+

dx

]
> ‖u‖ϕ0 − λ · C3 · [‖u‖q− + ‖u‖q+

] ,

where C3 is a positive constant. Since q+ < ϕ0 the above inequality im-
plies that Jλ(u) → ∞ as ‖u‖ → ∞, that is, Jλ is coercive. The proof of
Lemma 4.8 is complete. �

Proof of Theorem 3.3. — Since q+ < ϕ0 it follows that q− < ϕ0 and
thus, by Theorem 3.2 there exists λ? > 0 such that for any λ ∈ (0, λ?)
problem (1.1) has a nontrivial weak solution.

Next, by Lemma 4.8 and Proposition 4.4 we infer that Jλ is coercive and
weakly lower semi-continuous in E, for all λ > 0. Then Theorem 1.2 in [33]
implies that there exists uλ ∈ E a global minimizer of Iλ and thus a weak
solution of problem (1.1).

We show that uλ is not trivial for λ large enough. Indeed, letting t0 > 1
be a fixed real and u0(x) = t0, for all x ∈ Ω we have u0 ∈ E and

Jλ(u0) = Λ(u0)− λ

∫
Ω

G(x, u0) dx

6
∫

Ω

Φ(x, t0) dx− λ · C1 ·
∫

Ω

|t0|q(x) dx

6 L− λ · C1 · tq
+

0 · |Ω1| ,

where L is a positive constant. Thus, there exists λ? > 0 such that Jλ(u0)
< 0 for any λ ∈ [λ?,∞). It follows that Jλ(uλ) < 0 for any λ > λ? and
thus uλ is a nontrivial weak solution of problem (1.1) for λ large enough.
The proof of Theorem 3.3 is complete. �
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5. Examples

In this section we point out certain examples of functions ϕ(x, t) and
Φ(x, t) for which the results of this paper can be applied.

I) We can take

ϕ(x, t) = p(x)|t|p(x)−2t and Φ(x, t) = |t|p(x) ,

with p(x) ∈ C(Ω) satisfying 2 6 p(x) < N , for all x ∈ Ω. It is easy to verify
that ϕ and Φ satisfy conditions (ϕ), (Φ1), (Φ2), (1.4), (1.6) and (3.1) since
in this case we can take ϕ0 = p− and ϕ0 = p+.

II) We can take

ϕ(x, t) = p(x)
|t|p(x)−2t

log(1 + |t|)
and

Φ(x, t) =
|t|p(x)

log(1 + |t|)
+

∫ |t|

0

sp(x)

(1 + s)(log(1 + s))2
ds ,

with p(x) ∈ C(Ω) satisfying 3 6 p(x) < N , for all x ∈ Ω.
It is easy to see that relations (ϕ), (Φ1) and (Φ2) are verified.
For each x ∈ Ω fixed by Example 3 on p. 243 in [6] we have

p(x)− 1 6
t · ϕ(x, t)
Φ(x, t)

6 p(x), ∀ t > 0 .

Thus, relation (1.4) holds true with ϕ0 = p− − 1 and ϕ0 = p+.
Next, Φ satisfies condition (3.1) since

Φ(x, t) > tp(x)−1, ∀ x ∈ Ω, t > 0 .

Finally, we point out that trivial computations imply that d2(Φ(x,
√

t))
dt2 > 0

for all x ∈ Ω and t > 0. Thus, relation (1.6) is satisfied.
III) We can take

ϕ(x, t) = p(x) · log(1 + α + |t|) · |t|p(x)−1t ,

and

Φ(x, t) = log(1 + α + |t|) · |t|p(x) −
∫ |t|

0

sp(x)

1 + α + s
dx ,

where α > 0 is a constant and p(x) ∈ C(Ω) satisfying 2 6 p(x) < N , for
all x ∈ Ω.

It is easy to see that relations (ϕ), (Φ1) and (Φ2) are verified.
Next, it is easy to remark that for each x ∈ Ω fixed we have

p(x) 6
t · ϕ(x, t)
Φ(x, t)

, ∀ t > 0 .
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The above information shows that taking ϕ0 = p− we have

1 < p− 6
t · ϕ(x, t)
Φ(x, t)

, ∀ x ∈ Ω, t > 0 .

On the other hand, some simple computations imply

lim
t→∞

t · ϕ(x, t)
Φ(x, t)

= p(x), ∀ x ∈ Ω

and

lim
t→0

t · ϕ(x, t)
Φ(x, t)

= p(x), ∀ x ∈ Ω .

Thus, defining H(x, t) = t·ϕ(x,t)
Φ(x,t) we remark that H(x, t) is continuous on

Ω × [0,∞) and 1 < p− 6 limt→0 H(x, t) 6 p+ < ∞ and 1 < p− 6
limt→∞H(x, t) 6 p+ < ∞. It follows that

ϕ0 = sup
t>0, x∈Ω

t · ϕ(x, t)
Φ(x, t)

< ∞ .

We conclude that relation (1.4) is satisfied.
On the other hand, since

ϕ(x, t) > p− · log(1 + α) · tp(x)−1, ∀ x ∈ Ω, t > 0 ,

it follows that

Φ(x, t) >
p−

p+
· (1 + α) · tp(x), ∀ x ∈ Ω, t > 0 .

The above relation assures that relation (3.1) is verified.
Finally, we point out that trivial computations imply that d2(Φ(x,

√
t))

dt2 > 0
for all x ∈ Ω and t > 0 and thus, relation (1.6) is satisfied.
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