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THE BATALIN-VILKOVISKY ALGEBRA ON
HOCHSCHILD COHOMOLOGY INDUCED BY

INFINITY INNER PRODUCTS

by Thomas TRADLER

Abstract. — We define a BV-structure on the Hochschild cohomology of a
unital, associative algebra A with a symmetric, invariant and non-degenerate inner
product. The induced Gerstenhaber algebra is the one described in Gerstenhaber’s
original paper on Hochschild-cohomology. We also prove the corresponding theo-
rem in the homotopy case, namely we define the BV-structure on the Hochschild-
cohomology of a unital A∞-algebra with a symmetric and non-degenerate∞-inner
product.

Résumé. — On définit une structure de BV sur la cohomologie de Hochschild
d’une algèbre associative unitaire munie d’une forme bilinéaire symétrique non dé-
générée. La structure d’algèbre de Gerstenhaber induite est celle introduite dans
l’article originel de Gerstenhaber sur la cohomologie de Hochschild. On étend ce
résultat au cas d’une algèbre A-infinie unitaire munie d’une forme bilinéaire symé-
trique A-infinie non dégénérée.

1. Introduction

M. Gerstenhaber [8] showed that for any associative algebra A, the
Hochschild-cohomology H•(A,A) has a Gerstenhaber-structure. More pre-
cisely, H•(A,A) has a Gerstenhaber-bracket [.,.] which is a Lie-bracket of
degree −1, and a commutative, associative cup-product ^, such that [.,.]
is a graded derivation of the cup-product in each variable. It is an important
case, when the Gerstenhaber-structure comes from a Batalin-Vilkovisky
(BV) algebra. This means that there is a degree−1 operator ∆ on H•(A,A),
such that ∆ squares to zero, and so that the deviation of ∆ from being a
derivation is the bracket.

Keywords: Hochschild cohomology, Batalin Vilkovisky algebra.
Math. classification: 16E40.



2352 Thomas TRADLER

Our goal in this paper is to define such a ∆-operator on H•(A,A), under
the additional condition that A has a unit 1 and a symmetric, invariant
and non-degenerate inner product. We will in fact produce two versions of
this theorem; one for associative algebras, and one for homotopy associative
algebras. To be precise about our first version, we now state the theorem,
that is proved in section 2.

Theorem 1. — Let A be a finite dimensional, ungraded, unital, associa-
tive algebra with symmetric, invariant and non-degenerate inner product
〈.,.〉 : A⊗A → R. For f ∈ Cn(A,A), let ∆f ∈ Cn−1(A,A) be given by the
equation〈
∆f(a1, . . . , an−1), an

〉
=

n∑
i=1

(−1)i(n−1)
〈
f(ai, . . . , an−1, an, a1, . . . , ai−1), 1

〉
.

Then, ∆ is a chain map, such that the induced operation on Hochschild-
cohomology H•(A,A) squares to zero. Furthermore, for α ∈ Hn(A,A),
β ∈ Hm(A,A), the following identity holds,

[α, β] = (−1)(n−1)m+1 ·
(
∆(α ^ β)−∆(α) ^ β − (−1)nα ^ ∆(β)

)
.

Here, [.,.] and ^ denote the Gerstenhaber-bracket and the cup-product
defined in [8].

Is it important to remark, that the ∆-operator in the above theorem is
just Connes’ B-operator on the Hochschild chains C•(A,A), see [4] or [13,
(2.1.9.1)], dualized and transferred to the Hochschild cochains C•(A,A)
via the inner product:

C•(A,A)

��

Gerstenhaber-structure [.,.],^

C•(A,A∗)

isomorphism induced by 〈.,.〉

OO

dual of Connes’ B-operator.

Although this version of the theorem is already useful in certain situa-
tions, it is dissatisfactory in more general cases. In the second version of
our theorem, we therefore remove the assumptions of finite dimensionality,
we include grading, and use infinity versions of the concepts in theorem 1.
More precisely, we start with an A∞-algebra A, and we use the concept
of ∞-inner products, which was developed by the author in [20]. Following
Stasheff’s approach to A∞-algebras and its Hochschild-cochain complex,
see [18] and [19], using the tensor coalgebra and its coderivation complex,
we define A∞-bimodules and the Hochschild-cochain complex with values
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HOCHSCHILD COHOMOLOGY IS A BV ALGEBRA 2353

in an A∞-bimodule, via the tensor bi-comodule, and coderivations associ-
ated to it. For an A∞-algebra A, ∞-inner products are A∞-bimodule maps
between the A∞-bimodules A and its dual A∗, see section 3.1.

It is known, that Hochschild-cohomology of an A∞-algebra still has a
Gerstenhaber-structure, see [9]. In section 3, we generalize theorem 1 to
the infinity case as follows.

Theorem 2. — Let (A,D) be an A∞-algebra with strict unit 1 and
let F be a symmetric, non-degenerate ∞-inner product. Then, ∆ and
the generalized cup-product M induce a BV-algebra on the Hochschild-
cohomology H•(A,A). In fact, for α, β ∈ H•(A,A), we have that

[α, β] = ∆
(
M(α, β)

)
−M(∆α, β)− (−1)‖α‖M(α, ∆β),

where [.,.] denotes, up to sign, the Gerstenhaber-bracket from [9].

We remark, that the difference of signs in theorems 1 and 2 stem from the
difference of signs of the bracket in [8] and the bracket used in theorem 2.

There are several variations and extensions of the above theorems. For
instance, theorem 1 can be lifted to the chain level, which was described by
Costello [5], Kaufmann [11], Menichi [16], and Tradler and Zeinalian [21].
In contrast to these chain level approaches, we here give an explicit proof
of the BV-algebra in the style of Gerstenhaber’s paper [8]. In fact, the idea
for theorem 1 is taken from the strong analogy between [1, lemma 4.6] and
[8, theorem 8.5], which is applied by transferring Chas and Sullivan’s proof
[1, lemma 5.2] of the BV-relation in string topology to the Hochschild-
cochain level. For cyclic A∞-algebras, one may find chain level statements
in Costello [5], whereas Tradler and Zeinalian [22] describes an action for
every A∞-algebra with ∞-inner product.

It is an interesting question to determine the exact relationship between
the BV-algebra given here, and the one from string topology [1]. Using
the idea of local constructions of infinity structures from Lawrence and
Sullivan in [12], M. Zeinalian and the author constructed in [23] a sym-
metric, non-degenerate ∞-inner product on the cochains A = C•(X) of
a Poincaré duality space X. If X is simply connected, then it is known
that the Hochschild-cohomology H•(A,A) is isomorphic to the homology
of the free loop space H•(LX) of X, see [10]. Thus, we can ask, if the BV-
algebra on H•(A,A) from theorem 2, and the one on H•(LX) from string
topology coincide under this isomorphism. In fact, it has been shown by
Felix-Thomas [6] and Merkulov [17], that in characteristic zero, the BV-
algebras on H•(A,A) and H•(LX) do coincide. In characteristic non-zero,
this does not hold in general, when using the homological Poincaré duality

TOME 58 (2008), FASCICULE 7



2354 Thomas TRADLER

pairing, cf. Menichi [15] and Yang [24]. It is our hope, that the notion of
∞-inner products provides a suitable notion of chain level Poincaré duality
to induce a model of the BV-algebra on the free loop space in the general
setting. This question will be addressed in a future paper.

Acknowledgments. — I would like to thank Dennis Sullivan and Jim
Stasheff for many helpful comments on this subject. Furthermore, I would
like to thank the Max-Planck Institute for Mathematics in Bonn, where a
complete review of the paper was made during my visit.

2. The associative case

In this section, we prove theorem 1. For this, we show that the BV-
relations from theorem 1 are satisfied on the Hochschild-cohomology of a
unital, associative algebra with symmetric, invariant and non-degenerate
inner product.

Let R be a commutative ring with unit. As in [8], we assume that all
rings A and modules M on which they act, are simultaneously R modules,
the operations of A are R module homomorphisms, and all tensor products
are assumed to be taken over R.

Let A be an (ungraded) finite dimensional associative algebra over R

with unit 1 ∈ A, and denote by 〈.,.〉 : A ⊗ A → R a non-degenerate inner
product such that 〈a1, a2〉 = 〈a2, a1〉 and 〈a1 · a2, a3〉 = 〈a1, a2 · a3〉 for
all a1, a2, a3 ∈ A. The assumptions imply that the inner product induces
a bimodule isomorphism between A and its linear dual A∗ = Hom(A,R),
given by F : A → A∗, a 7→ F (a) := 〈a, .〉.

For any bimodule M over A, denote by Cn(A,M) := Hom(A⊗n,M),
and C• :=

⊕
n>0 Cn(A,A) the Hochschild-cochains of A with values in M .

For f ∈ Cn(A,A), the differential δf ∈ Cn+1(A,M) is given by

δf(a1, . . . , an+1) := a1 · f(a2, . . . , an+1)

+
n∑

i=1

(−1)if(a1, . . . , ai · ai+1, . . . , an+1)

+ (−1)n+1f(a1, . . . , an) · an+1.

It is δ2 = 0, and its homology H•(A,M) is called Hochschild-cohomology
of A with values in M . We are mainly interested in the bimodules M = A

and M = A∗. Note that the map F induces a chain map

F] : C•(A,A) −→ C•(A,A∗), f 7−→ F](f) := F ◦ f.

ANNALES DE L’INSTITUT FOURIER
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The cup-product f ^ g ∈ Cn+m(A,A) for f ∈ Cn(A,A) and g ∈ Cm(A,A)
is given by

f ^ g(a1, . . . , an+m) := f(a1, . . . , an) · g(an+1, . . . , an+m).

Definition 3 (∆-operator). — Let n > 1 and f ∈ Cn(A,A). For i

in {1, . . . , n} define ∆if ∈ Cn−1(A,A) by〈
∆if(a1, . . . , an−1), an

〉
=

〈
f(ai, . . . , an−1, an, a1, . . . , ai−1), 1

〉
.

With this, define

∆ :=
n∑

i=1

(−1)i(n−1)∆i : Cn(A,A) −→ Cn−1(A,A).

We also need the maps ∆1 and ∆2, which for f in Cn(A,A) and g

in Cm(A,A) are elements ∆1(f ⊗ g),∆2(f ⊗ g) ∈ Cn+m−1(A,A),

∆1(f ⊗ g) :=
m∑

i=1

(−1)i(n+m−1)∆i(f ^ g),

∆2(f ⊗ g) :=
n+m∑

i=m+1

(−1)i(n+m−1)∆i(f ^ g).

We have ∆1(f ⊗ g) + ∆2(f ⊗ g) = ∆(f ^ g). The notation for ∆1 and ∆2

is taken from [1, chapter 5].

The following lemma follows by a straightforward calculation.

Lemma 4. — In the above notation, we have that
1) ∆ is a chain map,
2) for all f ∈ Cn(A,A), g ∈ Cm(A,A),

∆1(f ⊗ g) = (−1)nm∆2(g ⊗ f).

Recall from [8], that for j ∈ {1, . . . , n} and f ∈ Cn(A,A), g ∈ Cm(A,A),
f ◦j g ∈ Cn+m−1(A,A) is defined by

f ◦j g(a1, . . . , an+m−1) := f(a1, . . . , aj−1, g(aj , . . . , aj+m−1),

aj+m, . . . , an+m−1).

From this, one defines for f ∈ Cn(A,A), g ∈ Cm(A,A) the pre-Lie product
f◦g ∈ Cn+m−1(A,A) and the Gerstenhaber-bracket [f, g] ∈ Cn+m−1(A,A),

f ◦ g :=
n∑

j=1

(−1)(j−1)(m−1)f ◦j g,

[ f, g ] := f ◦ g − (−1)(n−1)(m−1)g ◦ f.

TOME 58 (2008), FASCICULE 7
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Lemma 5. — For closed elements f ∈ Cn(A,A) and g ∈ Cm(A,A),
δf = δg = 0, we define H ∈ Cn+m−2(A,A) by

H :=
∑

i>1, j>1
i+j6n

(−1)(j−1)(m−1)+i(n+m)+1∆i(f ◦j g).

Then H satisfies

δH = f ◦ g − (−1)(n−1)m∆(f) ^ g + (−1)(n−1)m∆2(f ⊗ g).

Before proving lemma 5, we first show how this implies theorem 1.

Proof of theorem 1. — We need to show that the Gerstenhaber-bracket
[.,.] is the deviation of ∆ from being a derivation of ^,

[f, g] = f ◦ g − (−1)(n−1)(m−1)g ◦ f

∼= (−1)(n−1)m∆(f) ^ g − (−1)(n−1)m∆2(f ⊗ g)

− (−1)m−1∆(g) ^ f + (−1)m−1∆2(g ⊗ f)

∼= −(−1)(n−1)m∆2(f ⊗ g)− (−1)(n−1)m∆1(f ⊗ g)

+ (−1)(n−1)m∆(f) ^ g − (−1)(n−1)(m−1)f ^ ∆(g)

= −(−1)(n−1)m ·
(
∆(f ^ g)−∆(f) ^ g − (−1)nf ^ ∆(g)

)
,

where we have used lemma 4, 2) and the fact that the cup-product is
graded commutative on Hochschild-cohomology. Furthermore it is well-
known, that on homology the square of ∆ vanishes. This can be seen,
just as for Connes’ B-operator, by considering the normalized Hochschild-
cochain complex, which is a quasi-isomorphic subcomplex of C•(A,A),
where (∆)2 = 0. �

Proof of lemma 5. — Let a1, . . . , an+m ∈ A be fixed. For i 6 j, we will
use the notation from [8], and denote by ai,j = (ai, . . . , aj) ∈ A⊗j−i+1.
For i > 1, j > 1 and i + j 6 n, we calculate δ(∆i(f ◦j g)) as follows:〈

δ(∆i(f ◦j g))(a1,n+m−1), an+m

〉
=

〈
a1 ·∆i(f ◦j g)(a2,n+m−1), an+m

〉
+
n+m−2∑

λ=1

(−1)λ
〈
∆i(f ◦j g)(a1,λ−1, (aλ · aλ+1), aλ+2,n+m−1), an+m

〉
+ (−1)n+m−1

〈
∆i(f ◦j g)(a1,n+m−2) · an+m−1, an+m

〉

ANNALES DE L’INSTITUT FOURIER
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=
〈
f(ai+1,i+j−1, g(ai+j,i+j+m−1), ai+j+m,n+m−1, (an+m · a1), a2,i), 1

〉
+

i−1∑
λ=1

(−1)λ
〈
f(ai+1,i+j−1, g(ai+j,i+j+m−1),

ai+j+m,n+m, a1,λ−1, (aλ · aλ+1), aλ+2,i), 1
〉

+
i+j−2∑
λ=i

(−1)λ
〈
f(ai,λ−1, (aλ · aλ+1), aλ+2,i+j−1, g(ai+j,i+j+m−1),

ai+j+m,n+m, a1,i−1), 1
〉

+
i+j+m−2∑
λ=i+j−1

(−1)λ
〈
f(ai,i+j−2, g(ai+j−1,λ−1, (aλ · aλ+1), aλ+2,i+j+m−1),

ai+j+m,n+m, a1,i−1), 1
〉

+
n+m−1∑

λ=i+j+m−1

(−1)λ
〈
f(ai,i+j−2, g(ai+j−1,i+j+m−2),

ai+j+m−1,λ−1, (aλ · aλ+1), aλ+2,n+m, a1,i−1), 1
〉
,

Using the fact that δ(g) = 0, we see that we can write this as

(2.1)
〈(

δ(∆i(f ◦j g))
)
(a1,n+m−1), an+m

〉
= hi,j + h′i,j + h′′i,j ,

where we define

hi,j := (−1)i+1
〈
ai · f(ai+1,i+j−1, g(ai+j,i+j+m−1),

ai+j+m,n+m, a1,i−1), 1
〉

+
i+j−2∑
λ=i

(−1)λ
〈
f(ai,λ−1, (aλ · aλ+1), aλ+2,i+j−1, g(ai+j,i+j+m−1),

ai+j+m,n+m, a1,i−1), 1
〉

+ (−1)i+j−1
〈
f(ai,i+j−2, (ai+j−1 · g(ai+j,i+j+m−1)),

ai+j+m,n+m, a1,i−1), 1
〉
,

h′i,j := (−1)i+j+m−2
〈
f(ai,i+j−2, (g(ai+j−1,i+j+m−2) · ai+j+m−1),

ai+j+m,n+m, a1,i−1), 1
〉

+
n+m−1∑

λ=i+j+m−1

(−1)λ
〈
f(ai,i+j−2, g(ai+j−1,i+j+m−2),

ai+j+m−1,λ−1, (aλ · aλ+1), aλ+2,n+m, a1,i−1), 1
〉
,

h′′i,j :=
〈
f(ai+1,i+j−1, g(ai+j,i+j+m−1), ai+j+m,n+m−1, (an+m · a1), a2,i), 1

〉
+

i−1∑
λ=1

(−1)λ
〈
f(ai+1,i+j−1, g(ai+j,i+j+m−1), ai+j+m,n+m,

a1,λ−1, (aλ · aλ+1), aλ+2,i), 1
〉

+ (−1)i
〈
f(ai+1,i+j−1, g(ai+j,i+j+m−1), ai+j+m,n+m, a1,i−1) · ai, 1

〉
.

TOME 58 (2008), FASCICULE 7
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On the other hand, if i > 2, j > 1 and i + j 6 n− 1, we may use the fact
that δ(f) = 0, to obtain

(−1)i+1hi,j + (−1)i+mh′i,j+1 + (−1)i+nh′′i−1,j+1(2.2)

=
〈(

∆i((δf) ◦j g)
)
(a1,n+m−1), an+m

〉
= 0.

If we set furthermore for i, j ∈ {1, . . . , n},

hi,0 := (−1)i+1
〈
g(ai,i+m−1) · f(ai+m,n+m, a1,j−1), 1

〉
,

h′i,n−i+1 := (−1)n+m+1
〈
f(ai,n−1, (g(an,n+m−1) · an+m), a1,i−1), 1

〉
,

h′′0,j :=
〈
f(a1,j−1, g(aj,j+m−1), aj+m,n+m−1) · an+m, 1

〉
,

then all three quantities hi,j , h′i,j+1, h′′i−1,j+1 are defined for all i, j with
i > 1, j > 0 and i + j 6 n. Furthermore equation (2.2) holds for each of
these i, j, so that we obtain

0 =
∑

i>1, j>0
i+j6n

(−1)(j−1)(m−1)+i(n+m−1)

×
(
(−1)i+1hi,j + (−1)i+mh′i,j+1 + (−1)i+nh′′i−1,j+1

)
.

Using equation (2.1) and rearranging the terms in this sum gives

0 =
∑

i>1,j>1
i+j6n

(−1)(j−1)(m−1)+i(n+m)+1
(
hi,j + h′i,j + h′′i,j

)
−

n∑
i=1

(−1)m−1+i(n+m)hi,0

−
n∑

i=1

(−1)n(m+1)+i(n+1)h′i,n−i+1

−
n∑

j=1

(−1)(j−1)(m−1)h′′0,j

=
〈
δ(H)(a1,n+m−1), an+m

〉
− (−1)m(n+1)

〈
(∆2(f ⊗ g))(a1,n+m−1), an+m

〉
− (−1)m(n+1)+1

〈
(∆(f) ^ g)(a1,n+m−1), an+m

〉
−

〈
(f ◦ g)(a1,n+m−1), an+m

〉
.

This implies the claim of the lemma. �

We demonstrate theorem 1 in the easiest non-trivial example.

Example 6. — Let A = R2 with generators u and v, where the algebra
structure is so that u is the unit in A, and v2 = 0. The inner product is
defined by letting 〈v, u〉 = 〈u, v〉 = 1, and zero in the other cases. Recall,
that the normalized Hochschild cochain complex consists, in degree n, of

ANNALES DE L’INSTITUT FOURIER
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maps of the form Ā⊗n → A, where Ā = A/R is isomorphic to R with
generator v. For n > 0, denote by

fn : Ā⊗n −→ A, fn(v, . . . , v) = u,

gn : Ā⊗n −→ A, gn(v, . . . , v) = v.

One checks that δf2n = 0, δf2n+1 = 2g2n+2, and δgn = 0 for all n. Assum-
ing that our ring R contains an element 1

2 , we can now calculate Hochschild
cohomology as,

H•(A,A) =
Ker(δ)
Im(δ)

∼=
⊕
n>0

Rf2n ⊕Rg0 ⊕
⊕
n>0

Rg2n+1.

The algebra structure is given by

fn ^ fm = fn+m, fn ^ gm = gm ^ fn = gn+m, gn ^ gm = 0,

so that, as an algebra, we may write

H•(A,A) ∼= R[f2, g0, g1]/(g2
0 , g0f2, g0g1, g

2
1).

From the definition, one also calculates the ∆-operator on the chain level
as ∆(fn) = ∆(g2n) = 0, and ∆(g2n+1) = (2n + 1)f2n.

In the case that A is a graded associative algebra, we may obtain theo-
rem 1 in the same way as above, except for an appropriate change in signs.
For this case, example 6, with the modification of letting v be in even de-
gree 2d, gives the calculation for the BV-algebra of Hochschild cohomology
of the homology of the 2d-sphere S2d, cf. [3], [7], [17]. The next section
includes graded associative algebras as a special case.

3. The homotopy associative case

We now consider the more general situation from theorem 2. We recall the
notion of∞-inner products from [20] in subsection 3.1, define the operations
on the Hochschild-cochain complex in subsection 3.2, and prove theorem 2
in subsection 3.3.

3.1. Infinity-inner products

This section briefly recalls the definitions of A∞-algebra,∞-inner-products
and the Hochschild-cochain complex as defined in [20].

TOME 58 (2008), FASCICULE 7
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Informally, an A∞-algebra is an algebra over a certain operad, the Stasheff
operad, cf. [14, chap. 1.8]. This operad is a particular cofibrant replacement
of the operad of associative algebras, and its cellular structure allows A∞-
algebras to be stated in terms of coderivations, as we will do now.

Definition 7 (A∞-algebra). — Let A =
⊕

j∈Z Aj be a graded module
over a given ground ring R. Define its suspension sA to be the graded
module

sA =
⊕
j∈Z

(sA)j with (sA)j := Aj−1.

The suspension map s : A −→ sA, a 7→ sa := a is an isomorphism of
degree +1. We define

BA := TsA =
⊕
i>0

sA⊗i

to be the tensor coalgebra of sA, with the comultiplication

∆ : BA −→ BA⊗BA, ∆(a1, . . . , an) :=
n∑

i=0

(a1, . . . , ai)⊗ (ai+1, . . . , an).

A coderivation on BA is a map D : BA → BA such that

BA BA⊗BA

BA BA⊗BA

-∆

?
D

?
D⊗Id + Id⊗D

-∆

The space of coderivation on BA is denoted by Coder(BA).
An A∞ algebra structure on A is a coderivation D ∈ Coder(BA) of

degree −1 with D2 = 0.

Every A∞-algebra (A,D) is uniquely given by its components

D =
∑
i>0

Di,

where Di : sA⊗i → sA are lifted to coderivations, which, by abuse of
notation, are still denoted by Di, cf. [20, section 2]. We follow the usual
convention and assume that the lowest level D0 vanishes. Graphically, we
represent D by a filled circle, which takes many inputs and gives one output,
here from left to right:

ANNALES DE L’INSTITUT FOURIER



HOCHSCHILD COHOMOLOGY IS A BV ALGEBRA 2361

Definition 8 (A∞-bimodule). — Now, let (A,D) be an A∞-algebra,
and let M =

⊕
j∈Z Mj be a graded module. Define

BMA := R ⊕
⊕

k>0,`>0

sA⊗k ⊗ sM ⊗ sA⊗`

to be the tensor bi-comodule with the bi-comodule map

∆M : BMA −→ (BA⊗BMA)⊕ (BMA⊗BA),

∆M (a1, . . . , ak,m, ak+1, . . . , ak+`)

:=
k∑

i=0

(a1, . . . , ai)⊗ (ai+1, . . . ,m, . . . , an)

+
k+∑̀
i=k

(a1, . . . ,m, . . . , ai)⊗ (ai+1, . . . , ak+`).

Now, define a coderivation on BMA over D to be a map DM : BMA →
BMA such that

BMA (BA⊗BMA)⊕ (BMA⊗BA)

BMA (BA⊗BMA)⊕ (BMA⊗BA)

-∆M

?

DM

?

(D⊗Id + Id⊗DM )⊕(DM⊗Id + Id⊗D)

-∆M

The space of all coderivations on BMA over D is denoted by CoderD(BMA).
An A∞-bimodule structure on M over A is defined to be a coderivation
DM ∈ CoderD(BMA) of degree −1 with (DM )2 = 0.

Finally, a coderivation from BA to BMA is a map f : BA → BMA such
that

BA BA⊗BA

BMA (BA⊗BMA)⊕ (BMA⊗BA)

-∆

?

f

?

Id⊗f+f⊗Id

-∆M

The space of all coderivations from BA to BMA is denoted by C•(A,M),
and is called the Hochschild-cochain complex of A with values in M . The
space C•(A,M) has a differential

δM (f) := DM ◦ f − (−1)|f |f ◦D

satisfying (δM )2 = 0. The homology H•(A,M) is called the Hochschild-
cohomology of A with values in M .
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Similar to before, we can uniquely decompose an element f ∈ C•(A,M)
in its components f =

∑
i>0 fi, where fi : sA⊗i → sM is lifted to a

coderivation fi : BA → BMA, see [20, section 3]. Here is the graphical
representation for f , where the inputs on the left are from sA and the
output on the right lies in sM :

Definition 9 (∞-inner-product). — Let (A,D) be an A∞ algebra and
let (M,DM ) and (N,DN ) be two A∞ bimodules over A. An A∞-bimodule
map between M and N is a map F : BMA → BNA such that

BMA (BA⊗BMA)⊕ (BMA⊗BA)

BNA (BA⊗BNA)⊕ (BNA⊗BA)

-∆M

?

F

?

(Id⊗F )⊕(F⊗Id)

-∆N

and DN ◦ F = F ◦ DM . Every A∞-bimodule map F : BMA → BNA

induces a chain map on the Hochschild-cochain complexes F] : C•(A,M) →
C•(A,N) by f 7→ F ◦ f .

Let (A,D) be an A∞ algebra. Then both A and its linear dual A∗ =
Hom(A,R) have induced A∞-bimodule structures DA ∈ CoderD(BAA)
and DA∗ ∈ CoderD(BA∗

A), see [20, lemma 3.9]. An ∞-inner-product is by
definition an A∞-bimodule map F : BAA → BA∗

A between A and A∗ of
degree 0. The ∞-inner-product is called non-degenerate if there exists an
A∞-bimodule map G : BA∗

A → BAA, such that

F] : C•(A,A) −→ C•(A,A∗) and G] : C•(A,A∗) −→ C•(A,A)

are quasi-inverse to each other, so that their induced maps on Hochschild-
cohomology are inverses.

Again, one can show, that the ∞-inner product F is given by components
F :

∑
i,j>0 Fi,j , where the Fi,j : sA⊗i ⊗ sA ⊗ sA⊗j → sA∗ are lifted

according to the property in definition 9, see [20, section 4]. If we apply
arguments to this map, Fi,j(a1, . . . , ai, ai+1, ai+2, . . . , ai+j+1)(ai+j+2) ∈ R,
then we can represent the ∞-inner product graphically as in [20, section 5]
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by an open circle:

Here we included the arguments a1, . . . , ai+j+2 to show their chosen posi-
tion; the first i arguments are placed on top, the special element ai+1 on
the left, the next j arguments on the bottom and the output argument on
the right.

The ∞-inner product is called symmetric, if it is invariant under a 180◦

rotation, i.e. for all i, j,

Fi,j(a1, . . . , ai, ai+1, ai+2, . . . , ai+j+1)(ai+j+2)

= (−1)εFj,i(ai+2, . . . , ai+j+1, ai+j+2, a1, . . . , ai)(ai+1),

where ε =
( ∑i+1

k=1(|ak|+ 1)
)( ∑i+j+2

k=i+2(|ak|+ 1)
)
.

In our generalization of theorem 1, we use a symmetric, non-degenerate
∞-inner product in the above sense. We call such a structure F an ∞-
Poincaré-duality structure.

In general, one may not avoid higher homotopies for the inner product,
even if the underlying space is a differential graded associative algebra. In
fact, in [23, Appendix B], the following ∞-Poincaré-duality structure was
determined for the simplicial cochains on the circle.

Example 10. — We represent the circle S1 using the 0-simplicies a, b,
and the 1-simplicies σ, τ as follows,

Let sA = sC•S1 be the shifted cochain model of the circle with generators,
denoted by the same symbols, a, b, σ and τ . The differential d on sA is
defined by,

d(a) = σ − τ, d(b) = τ − σ, d(σ) = d(τ) = 0,

and the multiplication is non-zero only on the following generators,

a · a = a, b · b = b, b · σ = −σ · a = σ, a · τ = −τ · b = τ.
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Note, that with these definitions, (A, d, .) becomes a (non-commutative)
differential graded associative algebra, and one may check that there is
no non-degenerate, invariant inner product associated to A. But, assuming
that the underlying ring R contains 1

2 , it was shown in [23, Appendix B and
Proposition 3.1.3], that the following maps define an ∞-Poincaré-duality
structure, representing Poincaré duality on the chain level of S1,

Fk,0(σ, · · · , σ, σ)(a) = + 1
2 , F0,k(a, σ, . . . , σ)(σ) = + 1

2 ,

Fk,0(τ, · · · , τ, a)(τ) = − 1
2 , F0,k(τ, τ, . . . , τ)(a) = − 1

2 ,

Fk,0(σ, · · · , σ, b)(σ) = − 1
2 , F0,k(σ, σ, . . . , σ)(b) = − 1

2 ,

Fk,0(τ, · · · , τ, τ)(b) = + 1
2 , F0,k(b, τ, . . . , τ)(τ) = + 1

2 ,

for k > 0, and Fi,j = 0, for i, j > 0.

3.2. Definition of the operations

We now describe the operations that are needed to obtain the BV-algebra
on the Hochschild-cohomology of an A∞-algebra. To this end, we first recall
the Gerstenhaber-bracket and the cup-product from [9], and the ∆-operator
from the previous section. These operations will only be up to sign the
needed operations, and we denote them by [.,.]′, M ′ and ∆′. With the help
of the ∞-inner product, we can rewrite these operations as maps of the
form C•(A,A)⊗p → C•(A,A∗). Using a graphical representation of a large
class of operations C•(A,A)⊗p → C•(A,A∗), which we call symbols, we
may find symbols which represent the above operations up to sign. The
operations of these symbols, toegther with their naturally given signs will
be denoted by [.,.], M and ∆, and will be used in subsection 3.3 to prove
theorem 2.

Definition 11 (Gerstenhaber-bracket, cup-product). — Fix an A∞-
algebra (A,D), which in components is given by D =

∑
i>1 Di, where

Di : sA⊗i → sA. Let f, g ∈ C•(A,A) be represented in components by
f =

∑
n>0 fn, and g =

∑
m>0 gm as in definition 8, where fn : sA⊗n → sA

and gm : sA⊗m → sA. For these components, we define the components of
the Gerstenhaber-bracket

[fn, gm]′ : sA⊗n+m−1 −→ sA

and the components of the generalized cup-product

M(fn, gm) :
⊕
k>0

sA⊗n+m+k −→ sA
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by

[fn, gm]′ = fn ◦ gm − (−1)‖fn‖·‖gm‖gm ◦ fn,

where

fn ◦ gm(a1, . . . , an+m−1)

=
n∑

i=1

(−1)‖gm‖·
∑i−1

`=1
(|a`|+1)fn

(
a1, . . . , gm(ai, . . . , ai+m−1), . . . , an+m−1

)
,

M ′(fn, gm)(a1, . . . , an+m+k)

=
∑
16i

i+n6j6n+k

(−1)‖fn‖·
∑i−1

`=1
(|a`|+1)+‖gm‖·(‖fn‖+

∑j−1

`=1
(|a`|+1))

·Dk−2

(
a1, . . . , fn(ai, . . . , ai+n−1),

, . . . , gm(aj , . . . , aj+m−1), . . . , an+m+k

)
where ‖fn‖ and ‖gm‖ are the total degrees of the maps fn : sA⊗n → sA

and gm : sA⊗m → sA. Both the bracket [.,.]′ and the product M ′ are
extended linearly to operations C•(A,A)⊗ C•(A,A) → C•(A,A).

The following is observed by E. Getzler and J. Jones in [9].

Theorem 12. — Let (A,D) be an A∞-algebra. Then [.,.]′ and M ′ in-
duce a Gerstenhaber-structure on Hochschild-cohomology H•(A,A).

Next, we consider the unit and the ∆′-operator.

Definition 13 (Unit, ∆′-operator). — An element

1 ∈ A0
∼= (sA)+1 ⊂ BA

is called a strict unit of A, or simply a unit of A, if Dn applied to any el-
ement of the form (a1, . . . , ai−1, 1, ai+1, . . . , an) ∈ (sA)⊗n vanishes, except
for the case n = 2,

Dn(a1, . . . , ai−1, 1, ai+1, . . . , an) = 0 for n 6= 2,

−D2(1, a) = (−1)|a|+1D2(a, 1) = a.

The sign is chosen so that the unshifted multiplication m2 = s−1◦D2◦(s⊗s)
satisfies m2(1, a) = m2(a, 1) = a, see [20, prop. 2.4].

We also have the ∆′-operator from section 2, which we write as an
operation ∆′ : C•(A,A∗) → C•(A,A∗), which is the dual of Connes’
B-operator. For f ∈ C•(A,A∗) with components f =

∑
n>0 fn, where
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fn : sA⊗n → sA∗, we define the component ∆′fn : sAn−1 → sA∗ by

∆′fn(a1, . . . , an−1)(an)

=
n∑

i=1

(−1)
∑i−1

`=1
(|a`|+1)·

∑n

`=i
(|a`|+1)fn(ai, . . . , an−1, an, a1, . . . , ai−1)(1).

It is straightforward to check that in the A∞ setting with strict unit 1,
∆′ still forms a chain map. Furthermore, the operation on Hochschild-
cohomology induced by the square of ∆′ vanishes, which can be seen by con-
sidering the normalized Hochschild-cochain subcomplex, where (∆′)2 = 0
holds identically.

Now, fix a symmetric, non-degenrate ∞-inner product F . The non-degen-
eracy of F implies that F] : C•(A,A) → C•(A,A∗) induces an isomor-
phism of Hochschild-cohomologies H•(A,A) → H•(A,A∗). We use F] :
C•(A,A) → C•(A,A∗) and its quasi-inverse G] : C•(A,A∗) → C•(A,A)
from definition 9, to write all necessary operations as maps C•(A,A)⊗p →
C•(A,A∗). For example, we have the induced operations

[.,.]′ : C•(A,A)⊗2 [.,.]′−−→ C•(A,A)
F]−→ C•(A,A∗),

M ′ : C•(A,A)⊗2 M ′

−→ C•(A,A)
F]−→ C•(A,A∗),

∆′ : C•(A,A)
F]−→ C•(A,A∗) ∆′

−→ C•(A,A∗),

∆′ ◦M ′ : C•(A,A)⊗2 M ′

−→ C•(A,A)
F]−→ C•(A,A∗) ∆′

−→ C•(A,A∗),

M ′ ◦ (Id⊗∆′) : C•(A,A)⊗2 Id⊗(G]◦∆′◦F])−−−−−−−−−−→ C•(A,A)⊗2

M ′
−−→ C•(A,A)

F]−→ C•(A,A∗).

We will now introduce a convenient graphical representation of a large
class of operations C•(A,A)⊗p → C•(A,A∗).

Definition 14 (Symbols). — A symbol is a finite, planar tree, where
each vertex is labeled by one of the following labels:

. an open circle ,

. a filled circle ,

. the unit 1,

. a numbered circle 1 , 2 , 3 , . . .
We require the following restrictions for a symbol:

. There is exactly one vertex which is labeled by an open circle. This
vertex has two distinguished edges attached, which in the plane will
be drawn as horizontally incoming from the left and right. There
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are any amount of additional edges attached to this vertex, placed
above or below the horizontal line.

. Each vertex labeled by a filled circle has at least three edges at-
tached.

. Each vertex labeled by the unit has exactly one edge attached.

. There is exactly one distinguished external edge in the symbol. This
edge will be denoted by a fat edge .

Every symbol σ with numbered circles from 1 to p uniquely determines
an operation ρσ : C•(A,A)⊗p → C•(A,A∗) in the following way. Let
f1, . . . , fp ∈ C•(A,A). We describe the element ρσ(f1, . . . , fp) ∈ C•(A,A∗)
by determining its value on arguments ρσ(f1, . . . , fp)(a1, . . . , an)(an+1) ∈ R.

This value is obtained by cyclically attaching the arguments a1, . . . , an+1

to vertices which are labeled by an open circle, a filled circle, or a numbered
circle, such that the last argument an+1 lands on the distinguished external
fat edge. Note, that each vertex labeled by a filled circle or a numbered
circle has a unique path to the vertex labeled by the open circle. Thus
there is one preferred edge at every filled and numbered circle, which lies
on the path to the open circle. We call this edge the outgoing edge of
this vertex, and all other edges attached to the vertex are considered as
incoming to this vertex. We use this notion of incoming and outgoing edges
at filled and numbered circles, to successively evaluate the arguments and
the unit 1 toward the open circle. More precisely, to every filled vertex, we
evaluate the arguments and the incoming edges using the A∞-structure D,
where D :

⊕
i>1 sA⊗i → sA, and record the answer of this evaluation

at the outgoing edge. Similarly, to every vertex with the circle numbered
by r, we evaluate using the Hochschild-cochain fr :

⊕
i>0 sA⊗i → sA.

We finally end at the vertex labeled by the open circle, where we evaluate
all remaining arguments and incoming edges using the ∞-inner product
F :

⊕
j,i sA⊗i ⊗ sA ⊗ sA⊗j → sA∗. Here, the horizontal edge from the

left is identified with the special (i + 1)th argument, and the horizontal
edge from the right is identified with the argument plugged into sA∗. We
thus obtain an overall number in R for each possible way of attaching the
arguments a1, . . . , an+1.

With this, we define ρσ(f1, . . . , fp)(a1, . . . , an)(an+1) to be the sum of
all numbers in R, obtained by the above procedure from attaching the ar-
guments a1, . . . , an+1 in all possible ways, where each number is multiplied
by the following sign factor. We use the sign (+1) for the unique term which
is obtained by applying all arguments a1, . . . , an+1 to the position specified
by the distinguished external fat edge. All other terms will be compared to
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this unique term, by looking at its linear expression using the f1, . . . , fr,
D, and F , with arguments a1, . . . , an+1 and units 1 applied, such as

Fi,j

(
. . . , D(. . . , fk(. . . )), . . . , fm(. . . , fn(. . . ), . . . ), . . .

)
∈ R.

We then apply the usual Koszul sign rule of a factor of (−1)|x|·|y| for each
variable x that has moved across the variable y when comparing it to the
expansion of the above term with sign (+1).

The following examples show some symbols and their associated opera-
tions.

Example 15. — All examples except for the last one will be studied
without signs.

1) Denote by σ the following symbol:

The induced operation ρσ : C•(A,A)⊗4 → C•(A,A∗) is given for f1, f2, f3, f4

in C•(A,A) and a1, . . . , an+1 in A by

ρσ(f1, f2, f3, f4)(a1, . . . , an)(an+1)

=
∑

±F
(
. . . , 1, . . . , D(. . . , f3(. . . ), . . . , f4(. . . ), . . . ), . . . )

(D(. . . , f2(. . . ), . . . , f1(. . . ), . . . , an+1, . . . )
)
,

where the unit 1 is placed at the special spot of F , and the sum is over
all possible ways of placing a1, . . . , an+1 at the dots, such that their cyclic
order is preserved and an+1 is at the indicated position.

2) Our next example will be the ∆-operator. We define ∆ to be the sum
of operation associated to the following symbols:
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Note that its induced operation C•(A,A) → C•(A,A∗) is given for f

in C•(A,A) and a1, . . . , an+1 by∑
±F (. . . , an+1, . . . , f(. . . ), . . . )(1)

+
∑

±F (. . . , f(. . . , an+1, . . . ), . . . )(1)

+
∑

±F (. . . , f(. . . ), . . . , an+1, . . . )(1),

where f is at the special spot of F . We see that (up to sign) this sum is ∆′

applied to F](f) ∈ C•(A,A∗). In order to obtain the correct signs for ∆,
we let µ = ‖f‖ denote the degree of f , and α =

∑n+1
`=1 (|a`| + 1) the total

degree of the shifted arguments a`. Also, note that ∆ is an operator of
degree −1, since we apply the unit 1 ∈ (sA)+1.

3) Consider the symbol

Its action on f1, f2 ∈ C•(A,A) and a1, . . . , an+1 ∈ A is∑
±F (. . . , f1(. . . , f2(. . . ), . . . ), . . . )(an+1),

where a1, . . . , an are placed at the dots in all possible ways. Note, that
(up to sign) we obtain F](f1 ◦ f2), where we used the operation “◦” from
definition 11. With this, we define [.,.] : C•(A,A)⊗2 → C•(A,A∗) to be the
operation associated to

where µ = ‖f1‖ and ν = ‖f2‖ are the degrees of the Hochschild cochains
plugged into the bracket.

4) Define M : C•(A,A)⊗2 → C•(A,A∗) to be the operation associated to

5) Let σ be the following symbol:
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Then its action on f ∈ C•(A,A) and a1, . . . , an+1 ∈ A is given by

ρσ(f)(a1, . . . , an)(an+1)

=
∑

±F (. . . , D(. . . , f(. . . ), . . . , 1, . . . ), . . . )(an+1)

=
∑

±F (. . . , f(. . . ), . . . )(an+1),

where used the fact that 1 is a strict unit and D(. . . , f(. . . ), . . . , 1, . . . ) is
therefore only non-zero, for D(f(. . . ), 1), which is equal to ±f(. . . ). We
thus see that the operation ρσ is (up to sign) the same as the operation ρσ̃,
where the symbol σ̃ is defined by the following graph:

In fact, there are other symbols which also induce the same operations.
Here is a third symbol with the same induced operation:

6) As a final example, consider the following symbol:

Its action on f1, f2 ∈ C•(A,A) and a1, . . . , a21 ∈ A is∑
±F (. . . , a21, . . . , f

1(. . . ), . . . )(f2(. . . )).

If we assume that the Hochschild cochains fk, for k = 1, 2, are in compo-
nents fk =

∑
i>0 fk

i , where fk
i : sA⊗i → sA, and F =

∑
i,j>0 Fi,j , with

Fi,j : sA⊗i ⊗ sA⊗ sA⊗j → sA∗, then some of the terms of the above sum
with their proper signs are given by

(+1) · F21,0(a1, . . . , a21, f
1
0 )(f2

0 )

+ (−1)(|a1|+1)·(‖f1‖+‖f2‖+
∑21

l=2
(|a`|+1)) · F20,0(a2, . . . , a21, f

1
0 )(f2

1 (a1))

+ · · ·

+ (−1)εF6,7(a18, . . . , a21, a1, a2, f
1
5 (a3, . . . , a7), a8, . . . , a14)(f2

3 (a15, a16, a17))

+ · · · ,
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where

ε =
( 17∑

`=15

(
|a`|+ 1

))
·
(
‖f1‖+ ‖f2‖+

21∑
`=18

(
|a`|+ 1

))
+

( 14∑
`=3

(
|a`|+ 1

))
·
(
‖f1‖+

21∑
`=18

(
|a`|+ 1

))
+

( 2∑
`=1

(
|a`|+ 1

))
·
( 21∑

`=18

(
|a`|+ 1

))
.

We now define a differential δ on symbols.

Definition 16 (Differential δ). — Recall from definition 8, that there
are differentials δA and δA∗

on C•(A,A) and C•(A,A∗), respectively. From
this, we obtain an induced differential δ on the space of operations

C•(A,A)⊗p −→ C•(A,A∗),

given for an operation ρ, by setting δρ(f1, . . . , fp) to be
p∑

i=1

(−1)‖ρ‖+
∑i−1

`=1
‖f`‖ρ(f1, . . . , δAf i, . . . , fp) + δA∗(

ρ(f1, . . . , fp)
)
.

Since every symbol σ induces an operation ρσ : C•(A,A)⊗p → C•(A,A∗),
we can define the differential δσ to be the sum of symbols that repre-
sent δρσ. To describe this differential, we need to consider symbols σ′ to-
gether with a chosen vertex v labeled by a filled circle, and a chosen edge e

attached to v. We denote by σ′/(v, e) the symbol obtained by contracting
the edge e and replacing v by the other endpoint of e. Then, an analysis
similar to [20, section 5] shows, that the differential δσ consists of a sum∑

(−1)εσ′σ′ over all σ′, such that σ = σ′/(v, e) for some v and e. The sign
εσ′ is obtained by comparing the linear order of the operation associated
to σ with the one from σ′. Examples for the differential can be found in
the proofs of lemma 17 and lemma 18 below.

We end this subsection with an alternative description for ∆ on coho-
mology.

Lemma 17. — ∆ is cohomologous to the operation obtained by the
following symbol

where µ is the degree of the Hochschild cochain plugged into the symbol.
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Proof. — The proof consists in calculating the differential of a sum of
symbols H, which will turn out to be the difference of the sum of symbols
for ∆ from example 15, 2) and the sum of symbols stated in the lemma.
More precisely, let

where α =
∑n+1

i=1 (|ai| + 1) is the total degree of all elements a1, . . . , an+1,
which are plugged into the Hochschild cochain. One calculates, that

where, in the first two terms, we used the fact described in example 15(15),
that the strict unit can only multiply with one term, where it yields the
identity. Similarly, we get the other terms as

By definition 16 of the differential, we have that δ(ρH) = ρδ(H). Thus the
operation ρδ(H) associated to the sum of symbols in δ(H) is a boundary
in the operation complex of maps C•(A,A) → C•(A,A∗), and must there-
fore vanishes on Hochschild-cohomology. We see that the following opera-
tions are cohomologous, i.e. they induce the same operation on Hochschild-
cohomology

ANNALES DE L’INSTITUT FOURIER



HOCHSCHILD COHOMOLOGY IS A BV ALGEBRA 2373

The operations associated to the symbols on the right vanish since our ∞-
inner product was assumed to be symmetric, and thus is invariant under a
180◦ rotation. The first parenthesis on the left is the sum of symbols stated
in the lemma, the second parenthesis is the sum of symbols representing ∆
from example 15, 2). This completes the proof of the lemma. �

3.3. Proof of the BV-relations

This subsection is devoted to the proof of theorem 2. Here, it is crucial,
that we can identify H•(A,A) with H•(A,A∗) via the map F] and its
quasi-inverse G] induced by the ∞-inner product.

First, notice that [.,.] and M induce a Gerstenhaber-structure on H•(A,A),
since all the homotopies needed in the proof in [8], and more generally
in [9], still can be applied here. Also, the ∆-operator squares to zero on
Hochschild-cohomology, which again can be seen by considering the nor-
malized Hochschild-cochain complex. It is left to show that on Hochschild-
cohomology, the deviation of ∆ from being a derivation is given by [.,.].
The following symbols X, Y and Z will be important ingredients.

Lemma 18. — For f, g ∈ C•(A,A) with degrees ‖f‖ and ‖g‖ respec-
tively, the following Hochschild-cochains in C•(A,A∗) are cohomologous

1) X(f, g) ∼= Y (f, g) + Z(f, g),
2) Y (f, g) ∼= −M(∆f, g),
3) Z(f, g)− (−1)‖f‖·‖g‖Z(g, f) ∼= ∆(M(f, g)).

Before proving lemma 18, we show how it implies the required BV-
relation from theorem 2.
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Proof of the BV-relation. — From example 15, 3) we see that [f, g] is
given as X(f, g)− (−1)‖f‖·‖g‖X(g, f). Thus, with lemma 18, we get

[f, g] = X(f, g)− (−1)‖f‖·‖g‖X(g, f)

∼= Y (f, g)− (−1)‖f‖·‖g‖Y (g, f) + Z(f, g)− (−1)‖f‖·‖g‖Z(g, f)

∼= −M(∆f, g) + (−1)‖f‖·‖g‖M(∆g, f) + ∆
(
M(f, g)

)
∼= ∆

(
M(f, g)

)
−M(∆f, g)− (−1)‖f‖M(f,∆g),

where we used the graded commutativity of M in the last step. �

It remains to prove lemma 18.

Proof of lemma 18. — We use the following abbreviation for the relevant
degrees:

. α =
∑

`(|a`|+1) denotes the total shifted degree of the elements a` to
be applied as arguments,

. µ = ‖f‖ and ν = ‖g‖, where f and g will be placed into the first,
respectively second spot of the corresponding operation of a symbol.

1) Let

We will show that the differential of H is exactly δ(H) = −X + Y + Z.
Before doing so, we want to remark on the motivation for H. As it was
mentioned in the introduction, there is a close connection to the Chas-
Sullivan BV-structure from [1]. In this analogy, H should be compared to
the homotopy of [1, figure 7].

We now calculate the boundary δ(H) term by term:
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A close investigation shows that all terms in δ(H) cancel, except for the
terms in −X + Y + Z. This implies the claim.
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2) In order to see that Y (f, g) ∼= −M(∆f, g), we consider the following
differential:

Since ∆ is a chain map, we can pre-compose this equation by ∆⊗ Id, which
shows that the following induced operations are cohomologous:

The left term is exactly F ◦ (M(∆f, g)), when applying f and g to it. The
term on the right will be seen to be equal to Y (f, g), after applying the
description for ∆ from lemma 17:

3) We now show that ∆(M(f, g)) ∼= Z(f, g) − (−1)‖f‖·‖g‖ · Z(g, f). For
this, we calculate the differential of

We remark, that the first three terms were already used in part 1) as terms
in H, and will now be subtracted again. We chose this way of proceeding,
in order to have a closer analogy to the proof in [1]. So, for the differential
of H ′, we will only perform the calculation for the last two terms, and refer
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to the calculation in 1) for the first three terms.

A thorough investigation shows that all terms in δ(H ′) cancel, except for

which is equal to Z(f, g)− (−1)µ·ν · Z(g, f) when applied to elements f, g

in C•(A,A), together with the remaining terms
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which are equal to

In the last line we indicated that for f, g ∈ C•(A,A), we apply M(g, f) ∈
C•(A,A) to the operations associated to the sum of symbols. Using lemma
17, and the graded commutativity of M , we see that this is exactly−(−1)µ·ν ·
∆(M(g, f)) ∼= −∆(M(f, g)). �
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