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SINGULAR HECKE ALGEBRAS, MARKOV TRACES,
AND HOMFLY-TYPE INVARIANTS

by Luis PARIS & Loic RABENDA

ABSTRACT. — We define the singular Hecke algebra H(SBy) as the quotient
of the singular braid monoid algebra C(q)[SBn] by the Hecke relations 02 = (q —
1)or+¢q, 1 < k < n—1. We define the notion of Markov trace in this context, fixing
the number d of singular points, and we prove that a Markov trace determines an
invariant on the links with d singular points which satisfies some skein relation. Let
TR, denote the set of Markov traces with d singular points. This is a C(g, z)-vector
space. Our main result is that TRy is of dimension d + 1. This result is completed
with an explicit construction of a basis of TRg4. Thanks to this result, we define a
universal Markov trace and a universal HOMFLY-type invariant on singular links.
This invariant is the unique invariant which satisfies some skein relation and some
desingularization relation.

RESUME. — On définit 1’algébre de Hecke singuliere H(SB,,) comme le quotient
de l’algebre de monoide C(q)[SBy] par les relations de Hecke 02 =(qg— 1ok +q,
1 <k <n—1. On définit la notion de trace de Markov dans ce cadre, en fixant le
nombre d de points singuliers, et on démontre qu’une trace de Markov détermine un
invariant sur les entrelacs a d points singuliers qui vérifie une relation d’écheveau.
Soit TRy 'ensemble des traces de Markov a d points singuliers fixés. C’est un espace
vectoriel sur C(g, z). Notre résultat principal est que TRy est de dimension d + 1.
Ce résultat est complété par une construction explicite d’une base de TRy. Grace
a ces résultats, nous définissons une trace de Markov universelle et un invariant
universel de type HOMFLY sur les entrelacs singuliers. Cet invariant est 1’'unique
invariant qui vérifie une certaine relation d’écheveau et une certaine relation de
désingularisation.

1. Introduction
The Hecke algebra H(B;,) of the symmetric group is a one parameter de-

formation of the symmetric group algebra studied in representation theory
as well as in knot theory. Let K = C(q) be the field of rational functions on

Keywords: Singular Hecke algebra, singular link, singular knot, singular braid, Markov
trace.
Math. classification: 57M25, 20C08, 20F36 .



2414 Luis PARIS & Loic RABENDA

a variable ¢, and let B,, denote the braid group on n strands. Then H(B,,)
is the quotient of the group algebra K[B,,] by the relations

O—I%:(q_l)o—k'i_qv 1<k<n_1a
where o1,...,0,_1 are the standard generators of B,.

Let z be a new variable. A Markov trace on the tower of algebras
{H(B,)}, =3 is defined to be a collection of K-linear maps

tr, : H(By) = K(z), n>1,

such that

o tr,(af) = tr,(Ba) for all a, B € B, and all n > 1;
o tr,1(8) =tr,(0) for all 8 € B, C By41 and all n > 1;
o tr,1(80,) = z-try(B) for all B € B, and all n > 1.

Let Lo denote the set of (isotopy classes of) links in R3. According to
Jones [7], a Markov trace T = {tr,,},;>5 on {H(B,)}> determines a link
invariant Iy : Lo — K(/y), where y = Zﬁq%“. On the other hand, by a
result of Ocneanu (see [7], [3]), there exists a unique Markov trace which
takes the value 1 on the identity. In particular, the set of Markov traces
form a one dimensional K(z)-vector space spanned by the Ocneanu trace.

Let A be an abelian group, let I : Lo — A be an invariant, and let t,x € A.
We say that I satisfies the (¢,2) skein relation if

t—l-I(L+)—t'I(L*>:x'I(LO)7

for all links Ly, L_, Ly € Ly that have the same link diagram except in
a neighborhood of a crossing where they are as in Figure 1.1. It is well-
known that there exists a unique invariant I : Lo — C[t*!, %] which
satisfies the (¢, ) skein relation and which takes the value 1 on the trivial
knot. This invariant is equal to It (up to a change of variables), where T'
is the Ocneanu trace, and it is called the HOMFLY polynomial (see [3], [6],

(7], [10]).
/‘ \ ~—"
/ \ '

L. L_ Lo

Figure 1.1. The links Ly, L_, and Lyg.
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SINGULAR HECKE ALGEBRAS 2415

Our goal in this paper is to extend these constructions to the singular braids
and links.

Let SB,, denote the monoid of singular braids on n strands. After some
preliminaries on singular links and braids in Section 2, we develop the
study of singular Hecke algebras, Markov traces, and related singular link
invariants in Section 3. We define the singular Hecke algebra in a naive way,
as the quotient of the singular braid monoid algebra K[SB,] by the Hecke
relations

oi=(q—1op+q, 1<k<n—1.

For d > 0, let S4B, denote the set of braids with d singular points. The
algebra H(SB,,) has a natural graduation

+oo
H(SB,) = P H(S4Bn),
d=0

where H(S4By,) is the linear subspace of H(SB,,) spanned by S;B;,. The
algebra H(SB,,) itself is of infinite dimension, but we show that each sub-
space H(S¢B,,) of the graduation is of finite dimension over K (see Propo-
sition 3.1).

A Markov trace on the sequence {H(SqB,)};> is defined in the same
way as a Markov trace on {H(B,)}2. Let L4 denote the set of (iso-
topy classes of) links with d singular points. We prove that a Markov
trace T on {H(S4B,)},; determines an invariant It : L4 — K(,/y) (see
Proposition 3.3), and that this invariant satisfies the (¢, z) skein relation
for t = /q/y and z = \/q — ﬁ (see Proposition 3.4). Conversely, any
invariant I : Lq — C(,/q,/y) which satisfies the (¢,z) skein relation is
of the form I = Iz, where T is a Markov trace on {H(SqB,)}/ > (with

n=1
coefficients in C(\/q, \/¥))-

Section 4 contains the main result of the paper. Let TRy denote the set
of traces on H(SyB,). This is a K(z)-vector space. We prove that the
dimension of TRy is d + 1, and construct an explicit basis of TRy (see
Theorem 4.7).

Let £ denote the set of all (isotopy classes of) singular links. Thanks to
Section 4, we define in Section 5 a universal trace and a universal HOMFLY -
type invariant I : £ — C(va,y)[X,Y], where y, X,Y are variables. We
prove that I distinguishes two singular links L, L’ € L4 (where d is fixed) if
and only if there exists an invariant I : £; — C(,/q, \/y) which satisfies the
(t, z) skein relation for t = /q\/y and z = /q— ﬁ, and which distinguishes

TOME 58 (2008), FASCICULE 7



2416 Luis PARIS & Loic RABENDA

L and L' (see Theorem 5.3). We also prove that I is the unique invariant
with values in C[t*!, 2+, X, Y], which satisfies the (¢, z) skein relation and
some desingularization relation, and which takes the value 1 on the trivial
knot (see Proposition 5.4 and Theorem 5.5).

Our invariant I is more or less equivalent to the invariant of Kauffman and
Vogel defined in [9]. More precisely, the invariant of Kauffman and Vogel
is a specialization of our invariant (see Lemma 5.6), but this specialization
does not make much difference. Nevertheless, their approach is different
from ours in the sense that they use singular Reidemeister moves to prove
that their invariant is an invariant. They define some “generalized Hecke
algebras” and define a Markov trace on this family of generalized Hecke
algebras from which they can recover their invariant, but they definition of
generalized Hecke algebra involves many relations besides the Hecke ones
that are not natural in the context of an algebraic study.

Note that the notion of Markov traces to study singular braids and links is
also present in [1], but the considered algebra in this paper is a one param-
eter deformation of C[B,], which is specially adapted to study Vassiliev
invariants, but which has nothing to do with the Hecke relations.

2. Singular links and braids

Let n > 1, and let Sy,...,S, be n copies of the circle S'. A singular link on
n components is defined to be a smooth immersion L : S; U---US,, — R3
whose image has finitely many singularities (called singular points) that are
all ordinary double points. In this context, the admissible isotopies preserve
the local structures. Moreover, the circle S! as well as the links are always
assumed to be oriented.

Let P = {P,..., P,} be a set of n punctures in R? (except mention of the
contrary, we will always assume Py = (k,0) for all 1 < k < n). A singular
braid on n strands based at P is defined to be a n-tuple 8 = (b1, ...,by) of
smooth paths, by, : [0,1] — R? x [0, 1], such that:
o There exists a permutation x € Sym,, such that b;(0) = (P, 0) and
be(1) = (Py),1) forall 1 <k < n.
e [ (t) runs monotonically on the third coordinate for all 1 < k < n.
e The image of 51 U--- U (3, has finitely many singularities (called
singular points) that are all ordinary double points.

ANNALES DE L’INSTITUT FOURIER
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The isotopy classes of singular braids form a monoid (and not a group)
called the singular braid monoid on n strands and denoted by SB,,. The
monoid operation is the concatenation.

THEOREM 2.1 (Baez [1], Birman [2]). — The monoid SB,, has a monoid
presentation with generators
1 -1

OlyeeesOn1,07 5eveyOp 13TlyeesTn—1,
and relations

Ukak_lzok_lakzl forl<k<n—-1,
OkTk = ThOk forl<k<n—-1,

ORO|0L = 0100} if|k‘—l|=1,

OROITE = TIOkO] iflk—1=1,

OL0] = 010} if|k‘—l|>2,

OkTI = TIOk iflk—1]>2,

TeTI = TiTk iflk—=1]>2.

The braid o in the above presentation is the standard k-th generator of
the braid group B,, (see Figure 2.1). The braid 7 is a singular braid with
a single singular point which involves the k-th strand and the (k + 1)-th
strand (see Figure 2.1).

Figure 2.1. Generators of SB,,.

From a singular braid 8 = (b1,...,b,) one can construct a singular link,
called the closure of 8 and denoted by 8, connecting (P, 0) with (P, 1)
for all 1 < k < n as in Figure 2.2.

THEOREM 2.2 (Birman [2]). — Every singular link is a closed singular
braid.

Now, consider the set LIT>.SB,, of all singular braids. We may often use the
notation (4,n) to denote a braid 8 € SB,, in case we want to emphasize
the number n of strands.

TOME 58 (2008), FASCICULE 7
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N——

& e

Figure 2.2. A closed singular braid.

We say that two singular braids (a,n) and (8, m) are connected by a
Markov move if either
® n=m, a =717, and 3 = y271, for some 1,72 € SBy; or
en=m+1and a = Fotl;or
e m=n+1and 8 =act!

THEOREM 2.3 (Gemein [5]). — Let (a,n) and (8,m) be two singular
braids. Then & and [ are isotopic if and only if («,n) and (8, m) are
connected by a finite sequence of Markov moves.

3. Singular Hecke algebras, Markov traces, and singular
link invariants

Recall that K = C(¢) denotes the field of rational functions on a variable
q. We define the singular Hecke algebra H(SB,,) to be the quotient of the
monoid algebra K[SB,] by the relations

(3.1) or=(q—-Dop+q, 1<k<n—1.

For d > 0, we denote by SyB,, the set of (isotopy classes of) singular braids
on n strands with d singular points, and by K[S;B,] the K-linear subspace
of K[SB,] spanned by S;B,,. Note that SyB,, = B,, is the braid group, and
K[SoB,] = K[B,] is the group algebra of B,,. We have the graduation

K[SB,] = 5@ K[S4B,].

The relations (3.1) that define the singular Hecke algebra involve only ele-
ments of degree zero, thus the graduation of K[SB,] induces a graduation

ANNALES DE L’INSTITUT FOURIER
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of H(SB,):
+oo
H(SB,) = P H(S4B.),
d=0

where H(SyB,,) is the K-linear subspace of H(SB,,) spanned by SyB,,.

It is known that H(B,,) has dimension n!, and has a basis B,, which can be
described as follows. For n > 2 we set

Z/[n = {170'71—1’ Opn—-10pn—2,...,0pn_-10p—-2 """ 0'20'1} .
Then B, is defined by induction on n by
B ={1}, B,={fu; peBp_1anducld,} ifn=>2.

The singular Hecke algebra H(SB,,) is not of finite dimension, but each
subspace H(S4By,) of the graduation is of finite dimension. Indeed:

ProrosiTION 3.1. — Let d > 0, and let n > 2. Let Cq ,, denote the set of
singular braids of the form 7;, ---7;,3, where 1 <i; <n—1for1 <j<d,
and 8 € B,,. Then Cy,,, spans H(SqB).

Proof. — Observe that the Hecke relation (3.1) implies that
ak_l =qlop—qt(qg—1), forall<k<n—1.

Let 4,5 € {1,...,n — 1} such that |[i — j| = 1, and let a > 1. We calculate
J?T]‘»’ in two ways. Firstly,

a a

aij = oio'j_lajo'ﬂj
= aio'j_ TrO0;
= q loiojtioj0; —q (g — V)oTioj0;
= q '1foi0i0; —q (g — V)1i0i040
=q t(q— Drioiojoi+ (@ — )70 +qrf — ¢ g —V)1loi0j0;
Secondly,

0'7;27';-1 = (¢ — Doit] +q7] .

These two equalities imply

a —1_a —1,_a a
(3.2) 0iT] =q Tj0i0j0; —q T{0;0j0; +T]0;.

On the other hand, by Theorem 2.1, if 4,5 € {1,...,n — 1} are such that
|i — j] # 1, then

(3.3) 0Ty =Tj0;.

Equalities (3.2) and (3.3) show that every element of H(SqB,) is a linear
combination of elements of the form 7, --- 7;,w, where 1 < ¢; <n —1 for
1< j<d,and w € H(B,,). Now, since B,, is a basis of H(B,,), we conclude

TOME 58 (2008), FASCICULE 7



2420 Luis PARIS & Loic RABENDA

that every element of H(S4B,) is a linear combination of elements of the
form 7, ---7;,08, where 1 <i; <m—1for 1 <j<d, and g8 € B,. a

However, Cq., is not a basis of H(SqB,,) in general. Indeed:

LEMMA 3.2. — Leti,j € {1,...,n—1} such that |i—j| = 1, and let a > 1.
Then
(34) 7i(0ioj +0j0i — (¢ —1)o; — (¢ = 1)oj + (¢° =g+ 1))

=700+ 0joi — (¢ = )o; — (¢ — Do + (¢° =g +1)).
Proof. — Recall the equality (3.2) in the proof of Proposition 3.1:

0Ty =q 1TJ 0i00; — qilTiaoiji + 70

We multiply this equality on the right hand side by o, 10;1 and we get

-1 —1.a —1a a~—1
0'7,7']0' a —q Ti0i—q T (Ti+7'j0]-
=1 -1 _ ,—1._a -1 1, a -1 a
= o0, 0y T =q Tjo;—q Tloitq Tioj—q (¢ —1)7]

& ¢ logrt—q g -1t =q o —q o+ g o —qil(q -

thus
(3.5) o7 =7/(0i +0;—(¢—1)) =7 (0; = (¢ = 1)).
Now, we apply twice (3.5) to o;0,7{ and obtain

0,0;T{ = O'iT;l(O'i +o;,—(q—1)) —oii(o;i — (¢ —1))

=1i(0i+ 05— (q—1))* =7 (05 — (¢ = 1))(oi + 05 — (¢ = 1))
—1itoi(oi — (¢ — 1))

= 1{'(0i0j + 0j0i — (¢ —1)oi — (¢ — oj + (¢° — g + 1))
—1f(0j0i — (¢ = 1)oi — (g — Do + (¢* =g+ 1)).

. a_ —a-
Since 0,0,7]" = 70505, it follows that

7(0i05 + 0j0i — (q— 1)oi — (¢ — 1)oj + (¢ — ¢+ 1))
= 1i(0i0j + 050 — (g — Vo — (¢ — Doy + (¢* —q+ 1)) .
O

Remark. — We do not know the dimension of H(S¢B,) if d > 1 and
n > 3.

We turn now to the definition of a Markov trace, but, before, we make the
following remark.

ANNALES DE L’INSTITUT FOURIER
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Remark. — The basis B,, of H(B,) can be viewed as a subset of B, 1.
This implies that the natural embedding B,, — B, 11 leads to an injective
homomorphism H(B,,) — H(Bp+1). In the case of singular Hecke algebras,
the natural embedding SB,, — SB,,+1 also leads to a homomorphism ¢, :
H(SB,) — H(SBu+1), but we do not know whether this homomorphism
is injective.

Let z be a new variable. Let d > 0. A Markov trace on the sequence
{H(SaBy)}2] is defined to be a collection of K-linear maps

trd . H(SqB,) — K(z), n=>1,

such that

o trd(aB) = trd(Ba) for all singular braids o € S, B,, and 3 € S;B,,
such that k+1=d, and all n > 1;

o trf o, =trd foralln > 1;

o tr¢  (1n(B)oy) = 2 - trd(B3) for all B € S4B, and all n > 1.

Define a Markov trace on the sequence {H(SB,,)}1>5 to be a collection of
K-linear maps

tr, : H(SB,) = K(2), n>1,
such that

e tr,(af) = tr,(Ba) for all singular braids «, 8 € SB,, and all n > 1;
® tr,, 101, =tr, foralln>1;
o tr,11(tn(B)on) =2z - tr,(08) for all § € SB, and all n > 1.

Note that, if T = {tr,};>] is a Markov trace on {H(SB,)}, >, then, for
all d > 0, the collection T = {trd = try |3 (s,5,)}, ] of restrictions is a
Markov trace on {H(SqB,)}, 2. Conversely, a collection {79} 7% where
T4 is a Markov trace on {H(SyB,)};125 for all d > 0, determines a unique
Markov trace on {H(SB,)},;25 . So, both definitions of Markov traces are
more or less equivalent. Now, since the number d of singular points can
be fixed in our study, we will mainly consider Markov traces with a fixed

number of singular points in the remainder.

Remark. — We do not impose the condition tri(1) = 1 in the above
definitions because this condition has no real meaning in the context of
singular braids. Moreover, without this condition, the Markov traces on
{H(SB,)}, 2 (or on {H(S4B,)}2) form a K(z)-vector space. This will
be of importance in the remainder.

Let L4 denote the set of (isotopy classes of) singular links with d singular
points. We fix a Markov trace T' = {trd}>9 on {H(S:B,)},}25, and turn

n n=1>

TOME 58 (2008), FASCICULE 7



2422 Luis PARIS & Loic RABENDA

to define an invariant I : £; — K(/y). We follow the same strategy as
Jones in [7].

Let 7 : SB,, — H(SB,) denote the natural map, and let ¢ : SB,, — Z be
the homomorphism defined by

g(oi)=1, e(o;')=—1, e(r;) =0, for 1 <i<n—1.

i
We consider the following change of variables:
—1 — 1
_ 4 o gofzatbt
I—qy qz
For a braid § € S4B, we set

—n+1
1+(8) = ( ¢—1 ) (O e ((8))

1—aqy
This is an element of K(/y).

PROPOSITION 3.3. — Let (a,n) and (3, m) be two singular braids with d
singular points. If & is isotopic to (3, then Ip(«) = I ().

Proof. — This is standard application of Theorem 2.3. ]

For L € L4, we choose a singular braid (3, n) such that B =L, and we set
Ir(L) = It(B). By Proposition 3.3, IT(L) is a well-defined invariant.

Let A be an abelian group, let [ : £L; — A be an invariant, and let ¢,z € A.
We say that I satisfies the (¢,2) skein relation if

t_l I(LJF)_tI(L*) :xI(L0)7

for all singular links Ly, L_, Ly € L4 that have the same link diagram
except in a neighborhood of a crossing where they are as in Figure 3.1.

N —
/ \ N

L, L_ Lo
Figure 3.1. The singular links L4, L_, and Lyg.

Now, we set

=TV v
and we define fre. : S4B, — C(\/G,/7) by
& (8) = (V) @) tad (x(8).

1
\/a )

ANNALES DE L’INSTITUT FOURIER
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With these new notations It(3) can be written

n—1
1r(8) - (1 ‘tg) 05 (B).

tx

PROPOSITION 3.4. — The invariant It : L4 — C(\/q,./y) satisfies the
(t,z) skein relation.

Proof. — Let L,L_, Ly € L4 be three singular links that have the same
singular link diagram except in a neighborhood of a non-singular crossing
where they are as in Figure 3.1. A careful reading of Birman’s proof of
Theorem 2.3 shows that there exist a singular braid (3,n) with d/sﬂlgular
points, and an index 1 <4 < n — 1, such that Ly = Ecr\i, L_ = ﬂoi_l, and
Lo = /3. On the other hand, the Hecke relation (3.1) implies

e (Boy) = atra(8) + fra(Bo; ).

Hence,

(L) — (L) — (HQ) EO G (o) — (B0 )

42 n—1 ~
(LE) e

O
Define a Markov trace on the sequence {H(SqB,,)}, 125 with coefficients in

C(y/q,v/y) to be a collection of K-linear maps

try : H(SaBn) — C(Va,\y), n>1,

such that

e trd(aB) = trd(Ba) for all singular braids o € S, B,, and 3 € S;B,,

such that £+ 1 =4d, and all n > 1;

o trf o, =trd foralln > 1;

o tr¢  (1n(B)oy) = 2 - trd(B3) for all B € S4B, and all n > 1.
Using the same trick as above, a Markov trace T on the sequence
{H(S4B,)},2 with coefficients in C(,/q,,/y) defines an invariant I :
Lq — C(/q,+/y) which satisfies the (¢, ) skein relation for ¢t = ,/y,/q and
T =.,/q— % Now, the reverse of Proposition 3.4 is true in the following
sense.
PROPOSITION 3.5. — Let I : L; — C(\/q,/y) be an invariant which

satisfies the (t, ) skein relation fort = \/y./q and x = \/q— %. Then there

TOME 58 (2008), FASCICULE 7



2424 Luis PARIS & Loic RABENDA
exists a Markov trace T on {H(S4By)},/2 with coefficients in C(,/q, \/7)
such that I = Ip.

Proof. — Recall that 7 : SB,, — H(SB,) denotes the natural map, and
that € : SB,, — Z is the homomorphism defined by (o;) = 1, 5(0;1) = -1,
and g(r;) =0, for 1 <i<n—1.

Let t~ri : 84B,, — C(\/q,/y) be the map defined by

o) == (4 t) 1),

tr

and let try, : K[SyB,] — C(,/q,/y) be the K-linear map defined by

2% (8) = (V@)@ - (), for B € SuB,.

Thanks to the (¢, z) skein relation, it is easily checked that tr : K[SyB,] —
C(y/q, /y) induces a K-linear map tr : H(S4B,) — C(,/q,/¥), and that
T = {trd}>] is a Markov trace on {H(S;B,)},:> with coefficients in

C(v/q, v/¥)- On the other hand, a direct calculation shows that I = Ip. [

4. The space of traces

For d > 0, we denote by TR, the set of all traces on {H(S4B,)},">. This is
a K(z)-vector space. Note also that the space of all traces on {H(SB,)},/>
is the completion of TR = @jﬁBTRd. We start our analysis recalling the

following.

THEOREM 4.1 (Ocneanu [7], [3]). — There exists a unique trace T) =
{tr93:725 on {H(B,)}12 such that tr{(1) = 1.

COROLLARY 4.2. — TRy is a one-dimensional K(z)-vector space spanned
by T¢.

The above trace T3 is called the Ocneanu trace. It will be a master piece
in our study.

In this section we prove that TRy is of dimension d 4+ 1 and construct an
explicit basis {T¢, T¢, ..., T$} of TRy.

We start with the definition of the Markov traces T,f, 0<k<d.

Let
98, g : H(Say1By) — H(SaBn)

ANNALES DE L’INSTITUT FOURIER
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be the K-linear maps defined as follows. Let § € Sy41B,. Write § in the
form
8= aonloq ST A Ti g Qg1
where 1 <i; <n—1for1<j<d+1,ando; € B, for 0 <j<d+ 1.
Then
d+1
0 p) = ZaOTilal T T Q=1 QG T Qg1 Ty Qd 1

d+1
= E 0607‘1‘10(1 . 'Tz'j_loéj_l . (TijOlj . Tij+1aj+1 . 'Tid+1ad+1 .

It is easily seen from the presentation of SB, given in Theorem 2.1 that

gd and gf are well-defined.

Let
dd @Y : TRy — TRay1

be the K(z)-linear maps defined as follows. Let 7' = {tr&} 7> be an element
of TRy. Then, for w € H(Sq4+1Bn), we set

H(T)(w) = try(gs(w)),  @UT)(w) = try(gf (w)).
It is easily checked that <I>d <I>d ! =dfo <I>d Lfor all d > 1.

Now, we define T,c by induction on d. According to the previous notation,
Tg is the Ocneanu trace of Theorem 4.1. If d > 1, then

. eINTY) ik <d—
Pl edi ) itk =d.
Note that we also have T,‘j = @ffl(ngll) foralll1<k<d-1.

THEOREM 4.3. — Let d > 0. Then {Tg,T¢,...,T¢} is a linearly indepen-
dent family of TRy.

The following lemmas 4.4 to 4.6 are preliminaries to the proof of Theo-
rem 4.3.

The submonoid of B,, generated (as a monoid) by o1,...,0,-1 is called
the positive braid monoid and is denoted by B;T. By [4], it has a monoid
presentation with generators o1,...,0,_1 and relations
0;0j0; = 040,04 if |i—j|:1,
005 = 0404 if |Z—j|>2

LEMMA 4.4. — Letn > 1, and let 3 € B,. Then T3 (3) € Zlq, 2].
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Proof. — Let U,, denote the Z[g]-submodule of H(B,,) spanned by B;". We
prove by induction on n > 2 that U, is actually spanned as a Z[g]-module
by Bf | U{ao,_1a/;0,0' € B |}

Suppose n = 2. Then Us is spanned as a Z[g]-module by {¢¢;a > 0}. Now,
the Hecke relation (3.1) implies that

ol =(qg—1)0% 4 qot %, foralla>2,
thus U is spanned by {1,01}.

Suppose n = 3. Let V,, be the Z[q]-submodule spanned by B, ,U{ac,_10/;
a,a’ € B | }. Let 3 € B;f. We write 3 in the form

B =Boon-1P1- on-181,

where o, B1,...,3 € B}, and prove that 8 € V,, by induction on I. The
cases | = 0 and [ = 1 are obvious. So, we can suppose that [ > 2. By
induction (on n), we can assume that either 3; € B ,, or 81 = {0,203}
for some 3;,3) € B ,. If B, € B]_,, then

B = Bofroz_1820m-185 " 013
=(q—1)-Bof10n-1020n-183 - 0n_10
+q - Bof1PB20n-183--0n_101,

thus, by induction (on 1), we have 8 € V,,. If B = B{o,_20/ for some
ﬂia il 6 n 2 then

B = PoBion—10n—20n_101B20n-103 - on_10
= (BoB10n—2)0n—1(0n—28!B2)0n-183 - on-10,
thus, by induction (on [), we have 3 € V,.

Now, we take 3 € B, and turn to prove that T3 (8) € Z[q, z]. We argue by
induction on n.

Suppose n = 2. By the above observation, we can assume that either g €

Bl |, or B = _1a’ for some o,/ € BY . If B € Bl |, then, by
induction, 73 (8 ) [ 2]. If B = ao,_1a’ for some a,a’ € B |, then, by
induction, T9(8) = z - T (ad') € Zlg, 2]. O
LEMMA 4.5. — Let1 < a <n—1,andlet a,a’ € (0441,...,0,_1)", where
(0a41y---,0n_1)" denotes the submonoid generated by coi1,...,0n_1.
Then

Tg(aaaa/”z:o =0,

T5(aoga’)]=0 = ¢ - Tg (aa)] =0
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Proof. — The first equality is a consequence of the following one
T (o) = 2 - TY (ac)

whose proof is left to the reader. The second equality follows from the first
one and the Hecke relation (3.1). O

The following lemma is a direct consequence of the previous one.

LEMMA 4.6. — Let 0 < a,b < n—1, and let 4y,...,i, € {1,...,n — 1}
such that i1 < i9 < --- < 14. Let

Y =0i, " 04,04,0102" " 0p.
Then

@ ifa=b,i1=1,...,9,=a
TO P q 1 s U1 ) ) ta )
0 (le=0 { 0 otherwise.

Proof of Theorem 4.3. For 0 < b < d, we set
d _
Yo = Td- - T2T10102 - 0p.
A direct calculation shows that

Ty = (d - a)! a! Z T, - 04,04, 0109 - 0) .

1< < <ig<n—1
By Lemma 4.4, we have T¢(y{) € Z[q, 2], and, by Lemma 4.6,

(d—a)lalg® ifa=0b,

T —
o (0)==0 {0 otherwise .

This implies that Téi, T ... ,Tj are linearly independent. O

THEOREM 4.7. — Let d > 0. Then TRy is a K(z)-vector space of dimen-
sion d + 1. In particular, {T¢, T, ..., T3} is a basis of TRg.

The main ingredient in the proof of Theorem 4.7 are the relations in
H(SB,,) that will be proved in the following lemmas 4.8 to 4.11. We will
prove Theorem 4.7 after these lemmas.

LEMMA 4.8. — Leti,j € {1,...,n—1} such that |i—j| = 1, and let a > 1.
Set

Bij:O'i—l-O'j—(q—l).

TOME 58 (2008), FASCICULE 7



2428 Luis PARIS & Loic RABENDA

Then

(4.1) O’i’l’;-l = qileJinoi — qilTiaO'inO'i + 7';10'1' ;

(4.2) o =710+ 05— (q—1)) —7{(0s — (¢ = 1));

(43) BijTl-a:quBij;

(4.4) (005 +0j0i — (¢ —1oi — (¢ = 1)aj + (¢° — g +1))

= 7(0i0j +0j0i = (= 1)oi — (¢ = 1)oj + (¢* — g +1)).

Proof. — The equalities (4.1), (4.2), and (4.4) are proved in Section 3 (see
(3.2), (3.5), (3.4)). Since 7 commutes with o; — (¢ — 1), the equality (4.3)
is a direct consequence of (4.2). O

LEMMA 4.9. — Leti,j € {1,...,n— 1} such that |i — j| = 1. Then B, is
invertible in H(B,,).

Proof. — A direct calculation shows that
—¢ Hqg+1)"2*(q(q—1) —2qo; — 2qo; —(¢—1)oy0; — (g —1)ojo; +20,050;)
is the inverse of B ;. O

LEMMA 4.10. — Let i,j € {1,...,n — 1} such that |i — j| > 2, and let
a>1. Let

Cij=20i0; — (q—1)os — (¢ — 1)o; +¢° + 1.

Then

(4.5) 0Ty =Tj0;

(46) (O'i—O'j)Q = (q+1)2—0ij;
(47) Ti“C’ij == T](-J’C’ij .

Proof. — The equality (4.5) is a straightforward consequence of Theo-
rem 2.1, and (4.6) can be easily proved with a direct calculation. So, it
remains to prove (4.7).

First, we study the case where i = 1 and j = 3. We apply twice (4.2) to
01037y and obtain

010378 = 0175 (02 + 05 — (¢ — 1)) — 0178 (02 — (¢ — 1))

=1501(02 + 03— (¢ —1)) = 7{(01 + 02 — (¢ — 1)) (02 — (¢ — 1))
+75 (02 — (¢ — 1))?

= 1§(0102 + 0103 — (¢ — 1)o1) — 7 (0102 —(¢g—1)o1 — (g — 1)o2

@ —q+1)) + (o2~ (- 1)°.
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Similarly,

03017y = Ty (0302 + 0103 — (¢ — 1)o3) — 15 (0302 — (¢ — 1)02
—(g—Dos+(¢" —q+1)) + 75 (02 — (¢ — 1))*.

Since 010378 = 030174, it follows that

i (0102 + 0302 + 9103 — (0= Dou — (4= Doz — (g~ o

+(*—q+ 1))
(4.8)
=75 (O’lag + 0309+ 0105 — (@ —1)o1 — (¢ — 1)o2 — (¢ — 1)o3
+(*—q+ 1)) :
Set

wo = 0109 + 0309 + 0103 — (g — 1oy — (g — Doz — (g — Doz + (¢* —q+1).
By (4.8), we have 1{'wy = T{wq. A direct calculation shows that

Cis = q 2(qo1wo + qwoos + (¢ — 1)o1we0s — o1weo302) (01 — (¢ — 1)) -
Since 71 and 73 commute with oy, it follows that

(4.9) 1C13 =715C13.

Now, suppose that 1 <i<j—1<n—2. Set
Bjs=DBjj 1+ Bs4Bys, Bij1=DB;i1---B32B21, 6;j=DBi1By3.
By Lemma 4.9, §; ; is invertible, and by (4.3), we have
51‘3‘015;]‘1 =0y, 6ij71§;j1 =T, 5ij03(5;j1 =0y, (51']-7'352-31 =1T;,
thus, by (4.9),

a N -1 _ ¢ _a -1 _ _arv .
Ticij—éuTlclg,(sij —(5”7'3013(5ij —TjC”.

LEMMA 4.11. — Let a,b > 1. Then
(4.10)  7878(03 — 01) = (2T + 8T8 (03 — 01) + TéH_b(BlQ — By3).
Proof. — Applying twice (4.2) to o27{7% we obtain

ooy = (01 + o2 — (¢ — 1)) — (01 — (¢ — 1))7§

=1878(01 — (¢ — 1)) + 780278 — 7{73(01 — (¢ — 1))
= 787801 — (q— 1)) + 75 (02 + 03 — (¢ — 1))

—573(03 — (¢ — 1)) — 7{75(01 — (¢ — 1))

3
= 18718 (01 — 03) + T§+b323 —7irb(or — (g —1)).
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Similarly,

oamyT = 191 (03 — 01) + 75 Bra — {73 (03 — (¢ — 1)) .

Since oo7{78 = oo7é7Td, it follows that
b b b b
(o3 —01) = (o + 1978) (03 — 1) + 75T (B12 — Ba3).
O

Proof of Theorem 4.7. — We fix once for all the number d > 1 of singular

points. We set
+oo

:fﬁd = @ (K(Z) ® H(SdBn)) .

n=2
Then TR, can and will be viewed as the quotient of TRy by the following
relations:

o (af,n) = (Ba,n)forall « € Sy B, and 8 € S; B, such that k+I = d,
and all n > 2;

e (B,n+1)=(B,n) for all € S4B, and all n > 2;

o (Bop,n+1)==z-(B,n) for all € S4B, and all n > 2.

For w € K(z) ® H(SqB,), we will denote by [w] the element of TR, repre-
sented by w.

We already know that dimTRg > d + 1 (see Theorem 4.3). So, in order
to prove Theorem 4.7, it suffices to show that TRy is spanned by d + 1
elements.

Recall the basis B,, of H(B,) described in Section 3. For n > 2 we set
Un ={1,0p-1,0n-10n-2,...,0pn_1"+0201}.
Then B, is defined by induction on n by
By ={1}, B,={pu;f€Br_1andueld,} ifn=2.

Let C,, be the set of elements of TRy of the form [r;, - - 7;,0], where 1 <
ij<n—lforl<j<d andfeB,. SetCsx = Ujli%(fn. By Proposition 3.1,
Cs spans TRy.

Let w € C,,. Let 1 <1 < d. If w can be written in the form w = [Tiall .- ~TZIBL
where 1 <i; <n—1landa; 21for1 <j<l,a1+--+a =d, and
B € By, then we say that w has a syllable length less or equal to l, and we
write Syl(w) < I. We set

Dy = {w € Cy;Syl(w) <1}, and Dy o = US2SDy, .
Note that Dy o = Cos spans TRy.
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For X C TRy, we denote by Span(X) the K(z)-linear subspace spanned
by X. The first step in the proof of Theorem 4.7 will consist on proving
that Span(D; o) = Span(Dj_1 ) for all I > 3 (see Claims 1 to 4). Since
TRy = Span(Dg o), it will follow that TRq = Span(Ds,). The second
step will consist on proving that there exists a subset F3 C Dy 3 with d +1
elements such that Span(F3) = Span(Dsz,) = TRq4 (see Claims 5 to 7).

Let 1 <l <d,andlet 1 <r <I. Set e =2if riseven, and € = 1 if r is
odd. Then we denote by &, ,, the set of elements of D, ,, of the form

w= [T ~'T:"'T:TT11 et Bl
where 1 < i <n—1forr+1<j <, and 8 € B, Weset &0 =

UtoSErin.

Cramm 1. — Let 2 <1< d. Then

(4.11) Span(D; o) = Span(Di—1,00 UE21,00) -

Proof. — For k > 2, we denote by &, (k) the set of elements w € Dy,
of the form w = [ttt g, where 1 <ip <k 1<i<n-1
for 2 < j <1, and 3 € B,. We set &, (k) = UF25E] (k). Note that
Eiloo() 5lloo,anlen—Dl 1nU51ln(n 1) for all n > 2.

We prove that

(4.12) Span (D 1,00 U E] 1 o (k) = Span(Dy 1,00 U E] o (k — 1))

for all £ > 2. This implies that

(4.13) Span(D;,00) = Span(Di—1,00 U &1 1,00) -

Let w € &1 (k) be of the form w = [r* 7,22 - - - 77 3]. By (4.1), we have

12

-1 _—1 —1_a a
w = [Tt okOK_10%0y 010y 7'1'22"'7'2'1[6}

= [mlamy 7 Bl — dlowmt 1Uk10k11‘7k1 Ty T Bl
Falrit ooy T )
= [T "'Txl ]_‘J[Tlgilaklak 11‘7k1 1(22 50k]
+q[7'k_10k_10'k TZZQ Tt Bl

It is easily checked by means of (4.2) and (4.5) that this element belongs
to Span(Di—1,00 U&7 o (k —1)).

Now, for k > 2, we denote by &, (k) the set of elements w € Dy, of

the form w = [7’{“7';1227'%3'“ ‘”ﬂ] where 2 < iy < k, 1 < i < n-—1
for 3 <j <[, and B € B,. We set &, (k) = U+°‘§521n( ). Note that
é)lm( ) 5271,00, and 527 n( 1) = Sl,lm for all n > 2.
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Using the same arguments as in the proof of (4.12), one can easily show
that

(4.14) Span(Di_1,00 U € o (k) = Span(Di_1,06 U Ey o (k — 1))

for all k& > 3. (Here we also need to use the fact that o, commutes with
71.) It follows that

Span(D; o) = Span(Di—1,00 U &2 1.00) -

CLAIM 2. — Letl >3, and let 2 <r <1—1. Then
(4.15) Span(qu,oo U 5T7l)oo) = Span(Dl,l’oo U 5T+1,l’oo) .

Proof. — Set ¢ = 2 if r is even, and ¢ = 1 if r is odd. For £ > 3,
we denote by &, ;, (k) the set of elements w € D, of the form w =
[ritTe2r® - 'TgTTi’:lq—i‘lr::r; .. ’Ti{jlm» where 1 < i1 <k, 1< i <n—1

forr+2<j <l and g€ B, Weset &, (k)= Uzi%é';“,l’n(k). Note
that 5/+1,l,n(n —1)=¢&.,, foraln>2.

r

Using the same arguments as in the proof of (4.12), one can easily show
that

(416)  Span(Di 100 UEL 1 1 ao(k)) = Span(Di_1, UEL 1y o (k — 1))

for all k > 4. (Here we also need to use the fact that o, commutes with 7
and 75.) This implies that

(4.17) Span(Dy_1,06 U Erl,00) = Span(Dy—1,00 UE 11 1.00(3)) -
Let w € &, ,(3) be an element of the form
W= [ r R )

Now, in order to prove Claim 2, it suffices to show that such an element
belongs to Span(D;_1 00 U Ert1,1,00)-

Assume that r is odd. So,

__[.-a1 Ar—1__ap, _Qr41,__Gr42 a;
w=[1" Ty T Ty i T g].
Let
_ al Ar—1_ay __Ar+1 2, Ar42 ay
wi = [ty T3 (03 —01) Tivrn " Tiy Bl
_ [ ay |, Ar—1 __a, ar+1c Ar42 . alﬂ]
%) = Tl 7'2 ’/"1 T3 13Ti,,~+2 Til .
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By Lemma 4.11, we have

w = [7{11 . T;T71+GT7_§7‘+1 (0_3 _ 0_1)27_514;2 . iC:L ]
Mg gy g e g
_|_[7-f’1 . 7_2(Lr—1+a7‘+a7‘+1 (Bl 2 — ng)(a'g, — 0'1)7'5:;2 c.. Ti(jl ]
S Span(Dl_l,oo) C Span(Dl_l,oo U S7’+1,l,oo) .
On the other hand, by Lemma 4.10,
wy = [T ~T§T7171ar+ar+lC1 37'1-?:22 R

€ Span(Dj_1,00) C Span(Di—1.00 U&rt1,1,00) -
Hence, by Lemma 4.10,
W= (q + 1)72((“)1 + WQ) S Span(Dl—l,oo U €r+1,l,oo) .

Now, assume that r is even. So

_ al Ar—1__Qp, Qr41 __Gr42 ag
w=[rtm Ty Tirrn Ty ]
Let
_ ai Ar—1__a, Qr41 Ar42 a; -2
w o= [t et T Bro By 3T T 8B15],
_ ar L %r—1_ap Qr+l _ ar42  _ap —1
wy = [Ty Ty T Ty (0 03)7'“” Ti BBy;]-

Obviously, w1 € Span(Dj—1,00 UEr+1,1,00). On the other hand, by Lemma 4.11,

wy = [mg ey T o0y — o) T BB
+[7_éll . T§r71+ar+17_{lr (01 o 03)7_;:;2 . Tglﬁszl]
r—1tar+ar, r -
_|_[7.2a1 "'Tg 1t+ar+a +1(B23 _ 312)7_5:22 . .TZzﬁBlzl]

€ Span(Di—1,00) C Span(Di—1 00 UEri1,1,00) -
Hence, by Lemma 4.8,

w = [Biamt-- -Tf’"’lTSTTg”"“TZT; .- ~T;:IBBI_21]
= [ By 1 BB
= [ (o — (g = D) T BB
F[rgt - -T;T_lT{MO'QTgH—lTZTj _ TslﬂBl_Zl]
= [ (o — (g = D) T BB

al Ar—1 _Qp _QAr41 Ar42 ap —1
S S P i Byst T, BB5]

—[rt T s (o5 — (¢ = )7 T BB ]

= W) twsg € Span(Dl_Loo @] 57«4_1,[700) .
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At this point, thanks to Claims 1 and 2, we have proved that
(4.18) Span(D; o) = Span(D)—1,00 U Ell00)
for all I > 3.
CramMm 3. — Let ! > 3. Then
(4.19) Span(Di—1 00 U &l 100) = Span(Di_1,06 U &1 3) -
Proof. — It suffices to show that

Span(Di—1.00 U & 1) = Span(Dj_1,00 U &1 n—1)

for all n > 4.

Set e =2 if [ is even, and € = 1 if [ is odd. Let w € &, be an element of

al a2 a3

the form w = [r"*1527y® - - - 72 5], where 8 € B,,. By construction, either
8 € B,_1, or 8 = ai0,_109 for some a1,a0 € B,_1. If 8 € B,,_1, then

w €& na If B=o010,-102 for some oy, € By,_1, then

ayl, __az,__as

w=z[r"t 2t agas) € Span(Di—1,00 UELIn-1) -

CrAaM 4. — Let ! > 3. Then
(4.20) Span(Di—1,00 U&r13) = Span(Di_1,00) -
Proof. — Let
Jo=(*=(¢g=1)z2=q) ' (z=(g=1) +1).
A direct calculation shows that we have
do(z—01)=(2—01)0p =1

in K(2) ® H(B).

We set ¢ = 1if [ is odd, and € = 2 if [ is even. Let w € & ;3. We write

w=[rM782 ... 79 5] where § € Bs. Set

w1 = [t TRTyd BraTyt - T8 Bd0]
wy = [T (o3 —o1)Tst -T2 BO]

w3 = [Tf1+a2B1 o 3 Tah - T2 Bdg)
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Obviously, we, ws € Span(D;_1 ). On the other hand, by Lemma 4.11,

[(03 — 01)* i 752 75 Bya7g ™ - - - 72 B0
= [(o3 — 01)*1{" 7524 By oyt - 78 360
+ (o3 — 01) 27275 T By ordt - T8 B
+ [(03 — 01)(B12 — Ba3) 7t T2 T By ordt - 721 B50]
€ Span(Di—1 ) -
Moreover, by Lemma 4.10,
[Cy 3T 752758 ByoTg® - 721 B60] = [C1 37 T2 753 By omg -+ - 721 B¢
€ Span(D;_1,x0) -
Hence, by Lemma 4.10,

wi = (q+1)7%(o3 — 01) > 18T BroTyt - - - T8 300
+(q + 1)_2[0137'{117;27';33127';4 .- 'Tglﬁéo]
€ Span(Dj_1,00) -

Finally, by (4.2),

(2 — o) rgtris gt w1 55,

az__az,__a4

w=]|
= [(o3 — o)1y T2 T3 et - T2 Bdg)
= [r{tosTy Tyt - 78 o] — [yt oumy ety - T B
=

T
T g oa Ty Pyt T8 B0o] + [ T T (03 — (g — 1)) 75 - 78 B0
—[T{ll+a2 Bl 27_183 7_514 .. Tg'”ﬁ(So]

= w1 +wy —ws € Span(Dj_1 ) -

At this point we have proved that

Span(D; o) = Span(D;_1,0)
for all I > 3. This implies that
(4.21) TR, = Span(Dy,«) = Span(Ds, ) -

Now, let
he {[Tld]’ [Tldal]} N {[7{17—5]’ [ri 7501, [T 7500, [T TS 0100], [ T3 00,
[rir8010901); a,b>1and a+b = d} )

CrLAam 5. — TRy = Span(Fy).
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Proof. — One can easily prove using the same arguments as in the proof
of Claim 1 that

Span (D2 ) = Span(€1,1,00 UE2.2,00) -

On the other hand, using the same arguments as in the proof of Claim 3,
it is easily seen that

Span(&1 1,00 U E2.2.00) = Span(F)

Now, let

Fo = {[r8), [rlo1]} U {[r872], [re7801]; a,b > 1 and a + b= d} .
CLAIM 6. — TRy = Span(Fs).
Proof. — Let a,b > 1 such that a + b = d. Then

[T1a7'50'10'20'1] = [7'1‘10102017'{’] = [T{H'balagol] = Z[T{H_ba'%]

= z(q = D[r{'o1] + zq[r{'] € Span(F2).

+b

[TfTé’Ulch] = [7'1“(71027{’] = [ 0109] = Z[Tldcfl] € Span(Fa) .

By (4.3) we have
(775 B12] = [r{ Biaty] = [r{*(01 + 02 — (¢ — 1))]
= [t8(o1 + 2z — (g — 1))] € Span(Fs).
On the other hand,
[r{r302] = [r{ 75 Bia] = [r{m501] + (¢ — D)[r{'73],
thus [{7805] € Span(F,). By (4.4) we have
({3 (0102 + 0201 — (¢ = 1)o1 — (¢ — Voo + (¢° — ¢ +1))]
= [r{** (0109 + 0201 — (¢ = V)o1 — (¢ = oo + (¢° — g+ 1))]
= [r{(2201 — (¢ = Vo1 — (¢ = 1)z + (¢* — ¢ +1))]
€ Span(Fz).
On the other hand,

[TngO'QO'l] = [Tfrg (0102 + 0901 —(g—1)oy — (g — 1)oo
+(¢* = q+1)) | = [Firbor0s] + (g = i hon] + (g = Do)
—(¢* = g+ D[r{2],

thus [r{7m50901] € Span(Fy). O
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Let
Fs = {[r), [t} U{[r78];a>b>1and a+b=d}
U{[rirlo1];a>b>1and a+b=d}.
Note that |F3| = d+1, thus the following finishes the proof of Theorem 4.7.
CLAM 7. — TRy = Span(F3).
Proof. — Let a,b > 1 such that a < b and a + b = d.
[P 73] = [r27i'] = [Br2my i By = [r/75] € Span(F3) .
By Lemma 4.8,
({75 B12] = [r{ Bio7{] = [r{ ™" (01 + 02 — (¢ = 1))]
= [t(o1 + 2z — (¢ — 1))] € Span(Fs).
Moreover,
[ri7s00] = [1/75 Bio] = [r{m50n] + (¢ — 1)[r{75],
thus [rP7¢05] € Span(F3). It follows that
(301 = [o17{'3] = [rfo173] = [m37{o1] = [Bi2myr{o1 By,
= [rt180s] € Span(Fs) .
Now, assume that d is even, and let a = b = %. We have

[rirso1)=[o1r{ms]=[rfo1m8]|=[rs7{01] =[Biams {01 By 5] = [r{T502] .

Moreover,
[r'75 B1o] = [ Bia7{] = [1{ (01 + 02 — (¢ — 1))]
= [ri(o1 + 2z — (¢ — 1))] € Span(Fs) .
Thus
rirson] = 5 (rfrson] + [rirgon))

1 1
= S[rims Bual + S(a — Dris] € Span(F).

O
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5. Universal Markov trace and universal HOMFLY-type
invariant

Let X,Y be two new variables. We define the universal Markov trace as
the collection T' = {fr,, },.> of K-linear maps
tr, : H(SB,) — C(v/q,2)[X,Y], n=>1,
defined as follows. Let d > 0, and let w € H(SyB,). Then
d

k
- _ V4 k yd—k d
trn(w) = ,;)m)( YR T (W),
where {T¢, T{, ..., T$} is the K(2)-basis of TRy constructed in Section 4.
ProroSITION 5.1. —

(1) We have tr,(a3) = tr,(Ba) for all o, 3 € SB,,, and all n > 1.
(2) Let ¢y, : H(SB,) — H(SBn+1) be the morphism induced by the
inclusion SB,, — SByt1. Then tArn_H oLy =tr, forallm > 1.
(3) trpp1(tn(w)oy) = 2 - trp(w) for allw € H(SB,,), and alln > 1.
(4) We have
fr, (riw) = X/q - trp(ow) + Y - tr, (w)
for allw € H(SBy,), alln > 2, and all 1 <i<n-— 1.
Proof. — Parts (1), (2), and (3) follow from the definition of a Markov

trace (see Section 3), and from the fact that T¢, T¢,...,T¢ are Markov
traces for all d > 0.

We turn now to prove (4). Let 8 € SyB,,. We write (8 in the form
B = aoTi, a1 TiyQa,

where 1 < i <n—1forl1 < j<d and a; € B, for 0 < j < d. For
S c{l,...,d} weset

B(S) = apuran - ugag
where u; = oy, if j € S, and u; = 1if j ¢ S. It is easily checked that, for
0<k<d, T,gl(ﬁ) is given by the formula
(5.1) TLB) =kd=R)! > THA(S9)).

Sc{1,....d}
|S|=k

This implies that
(5.2) a8 = > V@TIxISyaISLT(5(9)).

Sc{1,....d}
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Now, from (5.2), it follows that
tr,(18) = X\/q Z \/ZI\S|X|S\Yd—|S| “TR(0:6(9))

Sc{1,....d}
+Y Y VP IXISly IS T (5(8))
Sc{1,...,d}

O

Recall from Section 3 that 7 : SB,, — H(SB,,) denotes the natural map,
and that € : SB,, — Z is the homomorphism defined by

g(o)) =1, elo;)=-1, e(n)=0, forl<i<n—1.

We consider the following change of variables:

-1 z— 1
1—qy qz
For g € SB,,, we set

_ —n+l1 R
i(g) = ( q-1 ) (WO G (x(8))

L—qy
This is an element of C(,/q, \/y)[X,Y].

The following can be proved in the same way as Proposition 3.3.

PROPOSITION 5.2. — Let (o, n) and (3, m) be two singular braids. If & is
isotopic to 3, then I(a) = I(f3).

Let £ denote the set of (isotopy classes of) singular links. For L € L, we
choose a singular braid (8,n) such that 3 = L, and we set I(L) = I(3).
By Proposition 5.2, the map I : £ — C(va,y)[X,Y] is a well-defined
invariant that we call the universal HOMFLY-type invariant of L.

For d > 0, we denote by Sy the set of invariants I : L4 — C(/q,/¥)
which satisfies the skein relation for ¢t = |/y,/q and z = /q — % Now, the
above terminology “universal HOMFLY-type invariant” is justified by the
following.

THEOREM 5.3. — Let d > 0, and let L, L' € Lq. We have I(L) = I(L) if
and only if I(L) = I(L') for all I € S.

Proof. — Let TR/, be the space of traces on {H(SyB,)}, > with coeffi-
cients in C(/q, \/y). Clearly, TR} is a C(,/g, \/y)-vector space, and

TR!, = C(v/4, %) ® TRy.
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On the other hand, we have

d k

k= 0

for all 8 € SyB,,.

Let L, L' € Lg such that [(L) = I(L'). By (5.3), we have Iza(L) = Iza(L')
for all 0 < k < d. Let I € S4. By Proposition 3.5, there exists T € TR},
such that I = Ir. By Theorem 4.7, there exist Ao, A1,...,Aa € C(\/q,/¥)
such that

T =XTgd +NT¢+ -+ \TY.
Then

d
= Mlpa(L Z MIpa(L') = I(L).
k=0

Now, let L,L' € L4 such that I(L) = I( ") for all I € Sq. We have in
particular IT,f(L) = ITd( ") for all 0 < k < d, thus, by (5.3), (L) =
Iw). 0
Let A be an abelian group, let I : £ — A be an invariant, and let X, Y € A.
We say that I satisfies the (X,Y) desingularization relation if

I(Lx)=X-1(Ly)+Y -1(Lo),

for all singular links Lx, Ly, Ly € £ that have the same link diagram except
in a neighborhood of a crossing where they are as in Figure 5.1.

/‘ ~—"
/ —

Lx L Lo
Figure 5.1. The singular links Lx, Ly, and Ly.

We set
= VIVE T
and we define tr, : SB,, — C(v/a,vy)[X,Y] by
() = ()= - trn(n(6)) .
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With these new notations, 7(3) can be written

i) = (1 - tz)nl B 5.(8).

tx

PROPOSITION 5.4. — The invariant I satisfies the (t,z) skein relation and
the (X,Y) desingularization relation.

Proof. — The fact that I satisfies the (¢,z) skein relation is proved in the
same way as Proposition 3.4. So, we only need to show that I satisfies the
(X,Y) desingularization relation.

Let Lx, Ly, Ly € L be three singular links that have the same link diagram
except in a neighborhood of a crossing where they are as in Figure 5.1. A
careful reading of Birman’s proof of Theorem 2.2 shows that there exist
a singular braid (£,n) and an index 1 < ¢ < n — 1 such that Ly = Ti/\ﬁ,
Ly = m, and Ly = 3. On the other hand, Proposition 5.1(4) implies that

tr, (1,0) = Xt - trp(0:8) + Y - tr,,(8) .

Hence

n—1
X H(Le)+Y - I(Lo) = 2) A L (Xt Ten(048) + Y - 1 (B))

n—1
) 20 gy, (1:8)
=1I(Ly). O

Now, the following shows that our invariant I is a reasonable extension of
the HOMFLY polynomial to the singular links.

THEOREM 5.5. — There exists a unique invariant I : L—C(\/q,/y)[X,Y]
which satisfies the (t,xz) skein relation and the (X,Y) desingularization
relation, and which takes the value 1 on the trivial knot. Moreover, I(L) €
Clt*, 2*, X, Y] for all L € L.

Proof. — The existence of the invariant is given by Proposition 5.4.

Suppose that I’ : £ — C(y/q,v¥)[X,Y] is an invariant which satisfies the
(t,z) skein relation and the (X,Y") desingularization relation, and which
takes the value 1 on the trivial knot. Let L € L4 be a singular link with
d singular points. We prove by induction on d > 0 that I’(L) = I(L), and
that this element belongs to C[t*!, 21, X, Y].

The case d = 0 is well-known (see [7], [3]). We assume d > 1. Let P be
a singular point of L. Set Lx = L, and let L, and Ly be the singular
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links having the same link diagram as L except in a neighborhood of P
where they are as in Figure 5.1. Then, by induction and by the (X,Y)
desingularization relation, we have

I'L)y=X -1"(Ly)+Y -T'(Lo) = X - I(Ly)+ Y - I(Lo) = I(L).
Moreover, again by induction,
I(L)=X-I(Ly)+Y - I(Ly) € C[t*, z*', X, Y].
0

In [9] Kauffman and Vogel proved that there exists an invariant Ixy : £ —
C(a, A, B) defined by the equalities

a-Igv(Ly)=A-Igv(Lo) + Ixv(Lx),

a ' Igv(L-)=B-Ixv(Lo) + Ixv(Lx),

for all links Lx,Ly,L_,Ly € L that have the same link diagram except
in a neighborhood of a crossing where they are as in Figure 3.1 or as in
Figure 5.1. Tt is easily checked that (5.4) is equivalent to

a- IKv(L+) —q7! -IK\/(L_) = (A - B) . IKv(Lo),
Ixv(Lx) =a-Igv(Ly) = A-Ixv(Lo),

thus Iy is defined by the (a=!, A — B) skein relation and the (a, A™')
desingularization relation. In other words, we have:

(5.4)

(5.5)

LEMMA 5.6. — The invariant Ixy can be obtained from the universal
HOMFLY-type invariant I by setting t = a=!, 2 = A— B, X = a, and
Y =—-A.
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