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AN O-MINIMAL STRUCTURE WHICH DOES NOT
ADMIT C∞ CELLULAR DECOMPOSITION

by Olivier LE GAL & Jean-Philippe ROLIN

Abstract. — We present an example of an o-minimal structure which does
not admit C∞ cellular decomposition. To this end, we construct a function H
whose germ at the origin admits a Ck representative for each integer k, but no
C∞ representative. A number theoretic condition on the coefficients of the Taylor
series of H then insures the quasianalyticity of some differential algebras An(H)
induced by H. The o-minimality of the structure generated by H is deduced from
this quasianalyticity property.

Résumé. — Nous présentons un exemple de structure o-minimale n’admettant
pas la propriété de décomposition cellulaire C∞. Pour ce faire, nous construisons
une fonction H dont le germe en 0 admet un représentant Ck pour tout entier k,
mais n’admet aucun représentant C∞. Une condition de transcendance sur les
coefficients de la série de Taylor de H assure alors la quasi-analyticité de certaines
algèbres différentielles An(H) engendrées par H. La o-minimalité de la structure
engendrée par H est enfin déduite de cette quasi-analyticité.

Consider a family F of functions f : Rm → R for various m ∈ N. The
model theoretic notion of structure generated by F , denoted by RF or
〈R, <, 0, 1,+,−, ·,F〉, provides useful information about the real geometry
generated by functions in F . Recall that a subset of Rm, is said to be
definable in the structure RF (also called the expansion of the ordered
field of real numbers by F) if it belongs to the smallest collection of subsets
of Rn, n ∈ N, which

(i) contains the graphs of addition and multiplication, and all the
graphs of functions in F , and of constant maps;

(ii) contains the graph of the order relation <, and of the equality;
(iii) is closed under taking cartesian products, finite unions or intersec-

tions, complements, and images under linear projection maps.
A map f : Rn → Rm is also said to be definable if its graph is definable.

The two following properties express the tameness of definable sets. If in the
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544 Olivier LE GAL & Jean-Philippe ROLIN

previous definition, the operation of taking complement is superfluous, the
structure is model complete. This property is analogous to the classical
Gabrielov’s complement Theorem. On another hand, if each definable set
has finitely many connected components, the structure RF is o-minimal.
The o-minimality of a structure provides many nice geometric properties
for definable sets, such as Whitney stratification.

Let us mention classical examples of o-minimal structures. The family
of so-called restricted analytic functions generates the structure Ran,
which is also model complete (see [2, 6]). The structure RPfaff , where F is
the family of so-called pfaffian functions is o-minimal as well (see [10]). The
preceding implies the o-minimality of Rexp, generated by the exponential
function.

An important consequence of o-minimality is the property of Ck-cell
decomposition [3]: given a positive integer k, for any definable subset A ⊂
Rn, there exists a finite cellular decomposition of Rn into Ck cells adapted
to A (i.e. A and its complement Rn r A are finite unions of cells). It turns
out that most of the known o-minimal expansions of the real field admit
analytic cell decomposition. It has been proved in [9] that it is not always
the case: the o-minimal structures generated by convenient quasianalytic
Denjoy-Carleman classes admit C∞ cell decomposition but no analytic
cell decomposition.

The present work is devoted to the proof of the following result:

Theorem. — There exists an o-minimal expansion of the real field
which doesn’t admit C∞ cell decomposition.

We actually give an explicit construction of such a structure. More pre-
cisely, we build a function H : R → R such that the structure RH is o-
minimal and whose germ at the origin admits a Ck representative for any
k > 0 but no C∞ representative. The o-minimality of RH is, as in [9], a
consequence of the quasianalyticity of algebras of germs at 0 ∈ Rn, for
n > 0, containing the germ of H and closed under classical operations,
such as composition, partial derivation and solution of implicit equations.
The major part of our work shows how this quasianalyticity property is
guaranteed by a convenient choice of the formal Taylor expansion Ĥ of H

at 0. We prove that it is sufficient to impose a transcendence condition on
the coefficients of Ĥ (see section 2).

Let us conclude by the following questions regarding the methods devel-
oped in this paper. Could they be used to produce an o-minimal structure
RF which doesn’t admit C∞ cell decomposition but defines restricted ana-
lytic functions? On another hand, could they lead to another construction
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A COUNTEREXAMPLE TO C∞ CELL DECOMPOSITION 545

of an o-minimal structure which does admit smooth but not analytic cell
decomposition? The interest of such an approach would be to circumvent
the use of the deep (and difficult) Mandelbrojt’s theorem needed in [9],
which states that any C∞ function defined on a compact interval is the
sum of two functions belonging to different Denjoy-Carleman classes [8].

1. Main results

Throughout this paper, the letters i, j, k,m, n, p and s range over N. We
let x = (x′, xn) with x′ = (x1, . . . , xn−1), and y = (y′, ym) with y′ =
(y1, . . . , ym−1) be tuples of indeterminates. A real valued germ is called
weakly C∞ if it admits, for any non negative integer k, a Ck representative.
Likewise, a function f : Rn → R is called weakly C∞ if its germ at 0 is
weakly C∞. We denote by Wn the algebra of weakly C∞ germs at the origin
of Rn. For any germ g ∈ Wn, ĝ ∈ R [[x1, . . . , xn]] denotes its (infinite)
Taylor expansion. Finally, we put I = [−1, 1], and for r = (r1, . . . , rn) ∈
Rn

>0, Ir := [−r1, r1]× · · · × [−rn, rn].
Our proof of o-minimality is inspired by the method of [9], which in-

volves the quasianalyticity of algebras closed under some classical oper-
ations. Recall that a subalgebra An ⊂ Wn is quasianalytic if the only
element of An with zero Taylor expansion is the zero germ. The algebras
considered here are defined in the following way. Consider a weakly C∞
function H : R → R. We set A (H) to be the smallest collection of algebras
An (H) ⊂ Wn, with n ∈ N, satisfying the following conditions:

1) The germ of H belongs to A1 (H), and polynomial germs in n vari-
ables belong to An (H);

2) If f ∈ An (H), and if fi denotes the restriction of f to the hyperplane
xi = 0, for i = 1, . . . , n, then the germ which continuously extends
(f − fi) /xi at 0 ∈ Rm belongs to An (H);

3) If g1, . . . , gm ∈ An (H) and f ∈ Am (H), then:

f (g1 − g1 (0) , . . . , gm − gm (0)) ∈ An (H) ;

4) If n > 1 and f ∈ An (H), let

g (x) = f (x)− f (0)− xn∂f/∂xn (0) + xn,

so that ∂g/∂xn (0) = 1. Then the germ ϕ ∈ Wn−1 defined by
g (x′, ϕ (x′)) = 0 belongs to An−1 (H).

TOME 59 (2009), FASCICULE 2



546 Olivier LE GAL & Jean-Philippe ROLIN

Remark 1.1.
1) A straightforward computation shows that these hypotheses imply

the closure of the algebras An(H) under partial differentiation.
2) The definition of the algebras An (H) involves a slightly modified

version of the usual composition of functions and implicit equations.
These modified operations may be applied to any family of weakly
C∞ germs, without checking the classical assumptions. Of course, if
a germ f ∈ An (H) satisfies f (0) = 0 and ∂f/∂xn (0) 6= 0, the

germ g associated with F (x) =
1

∂f/∂xn (0)
f (x) as in the point 4)

of the foregoing definition is actually equal to F . Hence the algebra
An−1 (H) contains the implicit function defined by f (x) = 0.

The main result is an immediate consequence of the following theorems:

Theorem A. — There exists a weakly C∞ function H : R → R satisfy-
ing:

1) the germ of H at the origin of R is not C∞;
2) the restriction of H to the complement of any neighborhood of 0 ∈ R

is piecewise given by finitely many polynomials (or piecewise polyno-
mial for short);

3) the algebras An (H) are quasianalytic.

Theorem B. — Consider a weakly C∞ function H : R → R satisfying
properties 2) and 3) of Theorem A. Then the structure RH is o-minimal.
Moreover, if H denotes the collection of all derivatives H(i) : Iri

→ R of H

restricted to a neighborhood Iri
of 0 where H ∈ Ci(Iri

), the structure RH
is model complete.

The main result follows from these theorems in the following way: if H is
a function satisfying properties of Theorem A, there cannot exist in the o-
minimal structure RH any C∞ cell decomposition of the plane R2 adapted
to the graph of H.

We give in section 2 the proof of Theorem A, and in section 3 the proof
of Theorem B.

2. Proof of Theorem A

In order to build a function which satisfies the three properties of Theo-
rem A, we proceed in two steps. We first show, following Borel’s methods,
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how any formal power series in one variable can be realized as the Taylor
expansion at the origin of a weakly C∞ function H satisfying the two first
properties. Then we give a number theoretic condition on the coefficients
of the power series which insures, for this function H, the quasianalyticity
of the algebras An (H).

2.1. A weakly C∞ version of Borel’s Theorem

Notation. — For any compact polydisk B ⊂ Rn and any integer m > 0,
we denote by ‖·‖B,m (or simply ‖·‖m if B is clear from context) the norm
defined on Cm (B) by:

‖f‖B,m = max
|α|6m

(
‖∂αf/∂xα‖B,∞

)
where ‖·‖B,∞ denotes the supremum norm on B, and |α| = α1 + · · ·+ αn

for every multi-index α = (α1, . . . , αn).
Likewise, if B ⊂ Rn1 × · · · × Rns is the cartesian product of compact

polydisks Bi ⊂ Rni , i = 1, . . . , s, we denote by ‖·‖B,m (or ‖·‖m) the norm
defined on Cm (B1)× · · · × Cm (Bs) by

‖(f1, . . . , fs)‖B,m = max
i=1,...,s

‖fi‖Bi,m
.

From now on, we consider each space Cm(B) with its topology of Banach
space induced by the norm ‖·‖B,m.

Lemma 2.1. — Let f̂ (x1) ∈ R [[x1]]. There exists a weakly C∞ function
whose germ at 0 ∈ R is not C∞, which admits f̂ as a Taylor expansion,
and which is piecewise polynomial in restriction to the complement of any
neighborhood of the origin.

Proof. — We adapt the classical proof of Borel’s Theorem, as it can be
found for example in [7].

For each integer i, let Pi be the polynomial Pi (x1) = (1− x1)
i (1 + x1)

i.
We define, for ε ∈ (0, 1), a function vε

i by:

vε
i (x1) =

xi
1Pi

(x1

ε

)
if x1 ∈ (−ε, ε)

0 otherwise.

A straightforward computation shows that, for i > 1, the functions vε
i and

their derivatives satisfy the following properties:
i) For 0 6 m < i, we have vε

i ∈ Cm (I), (vε
i )

(m) (0) = 0 and ‖vε
i ‖m → 0

when ε → 0.

TOME 59 (2009), FASCICULE 2



548 Olivier LE GAL & Jean-Philippe ROLIN

ii) (vε
i )

(i) (0) = i!. This value does in particular not depend on ε.
Consider now a formal power series f̂ (x1) =

∑
aix

i
1. For each i ∈ N,

we define recursively the values εi, bi. We fix b0 = a0 and ε0 = 1. For
i > 0, suppose b0, b1, . . . , bi−1 and ε0, ε1, . . . , εi−1 defined, and let hi−1 =∑i−1

k =0 bkvεk

k . We fix bi = ai −
h

(i)
i−1 (0)

i!
. We then have

(hi−1 + biv
ε
i )

(i) (0) = i! ai.

By i), there exists a value εi in (0, inf (1/i, εi−1)) such that ‖biv
εi
i ‖I,i−1 <

1/2i. Therefore, for any m > 0, the series
∑

biv
εi
i is normally convergent in

Cm (Iεm
). It defines a weakly C∞ function on (−1, 1), which is not C∞ on the

sequence εi → 0. Hence its germ at 0 is not C∞. Finally, since (vεi
i )(m) (0) =

0 for i > m, its Taylor expansion at 0 is exactly the series f̂ . �

Notation. — Given a power series f̂ (x1) ∈ R [[x1]], the function built
in the preceding lemma is called the special realization of f̂ .

2.2. Definition of operators

Given a weakly C∞ function H, the algebras An (H), n ∈ N, are the
smallest algebras containing the germ of H at the origin, closed under
some classical operations (see section 1). In order to study their properties,
we establish a formalism of operators, such that every element of these
algebras is the image of the germ of H under such an operator. Moreover,
having in mind a proof of quasianalyticity, we also need to describe the
action of these operators on formal power series.

Operators acting on weakly C∞ germs. An elementary operator
is one of the following, where n, m denote any non negative integers:

1) the sum and the product acting on Wn ×Wn;
2) the natural embedding Wn →Wn+1;
3) for any c ∈ R, the constant operator W1 →W0 defined by f 7→ c;
4) for 1 6 i 6 n, the coordinates operators W1 →Wn defined by f 7→ xi;
5) the monomial division operators Wn → Wn defined for i = 1, . . . , n

by f 7→ Di (f), where Di (f) is the germ at 0 ∈ Rn of the continu-
ous extension of (f − fi) /xi, if fi denotes the restriction of f to the
hyperplane {xi = 0};

6) the composition operators Wm ×Wm
n →Wn defined by

(f, g1, . . . , gm) 7→ f (g1 − g1 (0) , . . . , gm − gm (0)) ;

ANNALES DE L’INSTITUT FOURIER
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7) the implicit function operator Wn → Wn−1 defined for n > 1 by
f 7→ ϕ , where ϕ ∈ Wn−1 is the germ characterized by ϕ (0) = 0 and
g (x′, ϕ (x′)) = 0, with x′ = (x1, . . . , xn−1) and

g = f − f (0)− xn∂f/∂xn (0) + xn

(note that g satisfies the hypotheses of the Implicit Function Theo-
rem).

We call operator a finite composition of elementary operators. Accord-
ing to 1.1, the partial differentiation with respect to any coordinate is an
operator. Moreover, given a germ H ∈ W1 and a positive n , for every ele-
ment g ∈ An (H) there exists (at least) one operator L such that L (H) = g.

Operators acting on formal power series. We remark that, for any
(f1, . . . , fs) ∈ Wn1 × · · · ×Wns

and any operator L acting on Wn1 × · · · ×
Wns

, the Taylor expansion of L (f1, . . . , fs) only depends on the Taylor
expansion of f1, . . . , fs. Therefore L has a “formal counterpart” L̂ acting
on R [[x1, . . . , xn1 ]]× · · · × R [[x1, . . . , xns

]], such that

̂L (f1, . . . , fs) = L̂
(
f̂1 . . . , f̂s

)
, (f1, . . . , fs) ∈ Wn1 × · · · ×Wns

.

By 2.1, since each formal series can be realized by a weakly C∞ germ, it
would be equivalent to define formal operators as in the definition of germ’s
operators, replacing Wn by R[[x1, . . . , xn]]. In particular, each formal op-
erator is a finite composition of elementary formal operators, and if L =
L1 ◦ · · · ◦Lk, where the Li’s are elementary, then we have L̂ = L̂1 ◦ · · · ◦ L̂k.

2.3. Continuity of operators

In order to prove a quasianalyticity property for operators, we need in the
next section the following classical property, which states how operators act
on functions. Actually, for a map f and an operator L, since the definition
domain of L(f) depends a priori on f , operators are not well defined on
maps spaces. But we have the following:

Proposition 2.2. — Let L : Wn1 × · · · × Wns → Wm be an operator.
Then L admits an order of derivation d, in the following meaning. Set r =
(r1, . . . , rs) ∈ Rn1

>0×· · ·×Rns
>0 and U = Ir1×· · ·×Irs . Then, for l > d and

any s-tuple of functions f = (f1, . . . , fs) in Cl (U), shrinking r if necessary,
there exist a neighborhood W of (f1, . . . , fs) in Cl (Ir1)× · · · × Cl (Irs

) and
r′ ∈ Rm

>0 such that L is well defined and continuous from W to Cl−d (Ir′).

TOME 59 (2009), FASCICULE 2



550 Olivier LE GAL & Jean-Philippe ROLIN

Let us give a sketch of proof for this proposition.

Proof. — An operator L being a finite composition of elementary opera-
tors, we proceed by induction on the length of L. In a first step we prove the
proposition for elementary operators, and more precisely for the monomial
division, composition and implicit function operators (the result for other
elementary operators being obvious).

Proof of 2.2 for the monomial division operator. Consider the
monomial division operator L defined on Wn by:

L (f) (x) =
f (x′, xn)− f (x′, 0)

xn
·

We claim that the order of derivation of L is 1. Consider indeed an integer
l > 1, r ∈ Rn

>0 and a function f ∈ Cl (Ir). Then we have

L (f) (x) =
∫ 1

0

∂f

∂xn
(x′, txn) dt, for x ∈ Ir.

This equality shows that the linear operator L is a bounded operator from
Cl (Ir) to Cl−1 (Ir).

Proof of 2.2 for the implicit functions. We actually prove the result
for a system of implicit equations. Consider an integer l > 1, a polyradius
r ∈ Rn+m

>0 , and a tuple F = (f1, . . . , fm) of elements of Cl (Ir). We denote
by x the n-tuple (x1, . . . , xn), and by y the m-tuple (y1, . . . , ym). For any
F ∈ Cl (Ir), let G be the Cl map defined on Ir by:

(2.1) G(x, y) = F (x, y)− F (0) +
(
Id−∂yF (0)

)
(y),

where Id is the identity of Rm. Notice that ∂yG (0) = Id. Consider now the
map Ψ: Cl (Ir)× Ir → Rm defined by

Ψ
(
F , x, y

)
= G (x, y) .

We see that Ψ is continuously differentiable and satisfies the implicit func-
tion hypothesis with respect to y. It follows from the Implicit Function
Theorem applied to the Banach space Cl (Ir)×Rn+m that there exist a Cl-
neighborhood U of F , a polyradius (r′, r′′) ∈ Rn

>0×Rm
>0, and a continuously

differentiable map Φ: U ×Ir′ → Ir′′ such that, for
(
F , x, y

)
∈ U ×Ir′×Ir′′ ,

Ψ
(
F , x, y

)
= 0 ⇔ y = Φ

(
F , x

)
.

Since x ranges over the compact set Ir′ the operator L : F 7→ Φ
(
F , ·

)
is

continuous from U to Cl (Ir′). Therefore, the implicit function operator
admits 1 as an order of derivation.
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Proof of 2.2 for the composition operator. We claim that the order
of derivation of the composition operator is at most one. Actually, this op-
erator may be defined via a system of implicit equations, in the following
way. Consider a polydisk Ir× (Ir′)

m, with r ∈ Rm
>0 and r′ ∈ Rn

>0. Let l > 1
and (f, g1, . . . , gm) ∈ Cl (Ir) ×

(
Cl (Ir′)

)m. After shrinking r′ if necessary,
there exists a Cl-neighborhood U of (f, g1, . . . , gm) such that the composi-
tion f̄ (ḡ1 − ḡ1 (0) , . . . , ḡm − ḡm (0)) is well defined for

(
f̄ , ḡ1, . . . , ḡm

)
∈ U .

Moreover the equation

z = f̄ (ḡ1 (x)− ḡ1 (0) , . . . , ḡm (x)− ḡm (0)) ,

for x ∈ Ir′ , is equivalent to the system

∃y = (y1, . . . , ym) ∈ Ir


ḡ1 (x)− ḡ1 (0)− y1 = 0

...
...

...
ḡm (x)− ḡm (0)− ym = 0

f̄ (y1, . . . , ym)− z = 0

which satisfies the implicit function hypothesis with respect to the variables
(y1, . . . , ym, z). Consequently, if we let

F (x, y, z) =
(
ḡ1 (x)− ḡ1 (0)− y1, . . . , ḡm (x)− ḡm (0)− ym, f̄ (y)− z

)
we simply apply the foregoing continuity result for the implicit system(

∂y,zF (0)
)−1 · F (x, y, z) = 0

which continuously depends on F . The order of derivation of the composi-
tion operator is therefore at most 1.

Proof of 2.2 for any operator. Suppose that the proposition holds for
any operator of length less than or equal to `−1 > 1, and let L : Wn1×· · ·×
Wns

→Wm be an operator of length `. We may write L = L0 (L1, . . . ,Lk)
where L0 is elementary and each Li, i = 1, . . . , k, has length less than `.
We easily conclude by applying the induction hypothesis to the Li’s and
the previous continuity results to L0. �

Remark 2.3. — Let H : R → R be a weakly C∞ function, with germ H̃

at 0, and f = L(H̃) be a germ in An(H). As a direct consequence of the
proposition, for each i, there exist a restriction Hi of H, and a polyradius
ri ∈ Rn

>0, such that L(Hi) be well defined and Ci on Iri
. Each germ f in

An(H) then admits a natural representative defined on an appropriate
Ir0 , and Ci on a small enough polydisk Iri .
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552 Olivier LE GAL & Jean-Philippe ROLIN

2.4. Quasianalyticity for operators

This section is devoted to the proof of the following quasianalyticity
property for operators, which is a key step in the proof of Theorem A.
It shows that no “flat” operator exists, which would map each germ on a
“flat” germ, excepted for the null one.

Lemma 2.4. — Let L be an operator acting on W1. If L̂ = 0 then L = 0.

Proof. — Consider an operator L : W1 →Wn with order of derivation d,
such that L̂ = 0. We fix a germ f ∈ W1. It follows from Proposition 2.2 that
there exist r > 0, and a representative f0 of f in Cd (Ir), a Cd-neighborhood
U of f and a compact neighborhood V of 0 ∈ Rn such that the operator L
is well defined and continuous from U to C0 (V ).

Consider now a sequence (Pk) of polynomials which converges to f0 in
Cd (Ir). The sequence L (Pk) tends to L (f0) in C0 (V ). Since L̂ = 0, we
have L̂ (Pk) = L̂

(
P̂k

)
= 0. This implies, since the functions L (Pk) are

analytic, that L (Pk) = 0. By continuity, L (f0) = 0, and then L (f) = 0.
Since L(f) = 0 for arbitrary f , we deduce that L = 0. �

2.5. Algebraic expression for operators

In order to obtain a condition for the quasianalyticity of the algebras
An(H), we need a precise description of the action of operators on formal
power series. This classical result of commutative algebra is explained in
the following lemma, for which we give a short proof:

Lemma 2.5. — Let L̂ be a formal operator acting on R [[x1, . . . , xn1 ]]×
· · ·×R [[x1, . . . , xns

]] with values in R [[x1, . . . , xn]]. If ĝi ∈ R [[x1, . . . , xni
]],

i = 1, . . . , s, are given by ĝi (x1, . . . , xni
) =

∑
gi,βxβ , then there exist

a tuple a ∈ Rq and, for any multi-index α ∈ Nn, an integer Nα and a
polynomial

Pα ∈ Z [X1, . . . , Xq, Y1, . . . , YNα ] ,

such that:

(2.2) L̂ (ĝ1, . . . , ĝs) =
∑

α∈Nn

Pα (a, g̃α) xα

where g̃α denotes a Nα-tuple of coefficients of ĝ1, . . . , ĝs.
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Proof. — The operator L̂ is a finite composition of elementary operators.
The proof is an induction on the length ` of this composition.

1) If ` = 1, the operator L̂ is elementary. If L̂ is an operator of type
1), 2), 3) , 4) or 5), the result is clear. If L̂ is a composition operator
R[[x1, . . . , xm]]× (R[[x1, . . . , xn]])m → R[[x1, . . . , xn]], we have:

L̂ (f, g1, . . . , gm) =
∑

α∈Nm

fα

 ∑
β∈Nnr{0}

g1,βxβ

α1

· · ·

 ∑
β∈Nnr{0}

gm,βxβ

αm

The result is obtained by expanding the above expression and rearranging
the powers of x.

Finally, if L̂ is an implicit function operator, and f̂ ∈ R [[x1, . . . , xn]],
we expand the equation solved by L̂ (f). We obtain a triangular system
of polynomial equations. Notice that we actually solve an implicit equa-
tion g (x′, xn) = 0 with ∂g/∂xn (0) = 1 (see section 2.2 for the definition
of elementary operators). Therefore, solutions of the above triangular sys-
tems may be expressed as polynomials (and not rational fractions) in the
coefficients of f̂ .

2) If ` > 1, the operator L̂ is the composition of an elementary operator
B̂ with operators whose length are strictly smaller than `:

L̂ (ĝ1, . . . , ĝs) = B̂
(
L̂1 (ĝ1, . . . , ĝs) , . . . , L̂k (ĝ1, . . . , ĝs)

)
,

with each ĝi ∈ R [[x1, . . . , xni ]]. According to the induction hypothesis, for
each operator L̂i there exist ai ∈ Rqi and polynomials Pα,i such that

L̂i (ĝ1, . . . , ĝs) =
∑

α∈Nmi

Pα,i (ai, g̃α,i) xα

where x = (x1, . . . , xmi) and each g̃α,i is a finite family of coefficients
of ĝ1, . . . , ĝs. On another hand, to the operator B̂ are associated a tu-
ple a ∈ Rq and polynomials Qβ such that for any ĥ1, . . . , ĥk, with ĥi ∈
R [[x1, . . . , xmi

]]:

B̂
(
ĥ1, . . . , ĥk

)
=

∑
β∈Nn

Qβ

(
a, h̃β

)
xβ

where x = (x1, . . . , xn) and each h̃β is a finite family of coefficients of
ĥ1, . . . , ĥk. Therefore,

B̂
(
L̂1 (ĝ1, . . . , ĝs) , . . . , L̂k (ĝ1, . . . , ĝs)

)
=

∑
β∈Nn

Qβ

(
a, ˜(Pα,i (ai, g̃α,i))β

)
xβ .

Hence the expansion of the formal power series B̂
(
L̂1, . . . , L̂k

)
(ĝ1, . . . , ĝs)

has the required shape. �
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2.6. Transcendence and quasianalyticity

The last step in the proof of Theorem A consists in building a formal
power series Ĥ ∈ R [[x1]] such that, if H is a weakly C∞ function with
Taylor expansion Ĥ, the algebras An (H) are quasianalytic. This means,
in the language of operators, that for every operator L:

L̂ (H) = 0 implies L (H) = 0.

The next lemma gives an answer to this question:

Lemma 2.6. — Consider a sequence hi of real numbers such that

trdeg Q (h1, . . . , hi) = i, for i ∈ N.

If H : R → R is a weakly C∞ function whose Taylor expansion at the
origin is Ĥ (x1) =

∑
hix

i
1 ∈ R [[x1]], then the algebras An (H), n ∈ N, are

quasianalytic.

Remark 2.7. — Let us provide an explicit example of such a sequence
(hi). It is well known that the reals √pi, where pi denotes the i-th prime
number, are Q-linearly independent. Hence, according to Lindemann’s The-
orem, the sequence hi = exp

(√
pi

)
, i ∈ N, satisfies the hypothesis of the

lemma.

Proof of Lemma 2.6. — In a first step, we notice that the transcendence
hypothesis satisfied by the coefficients hi implies that, for any a ∈ Rq, there
exists an integer N > 0 such that every finite family of coefficients hi dis-
joint from {h1, . . . , hN} is algebraically independent on Q (a, h1, . . . , hN ).
Indeed, since di = trdeg Q (a, h1, . . . , hi) > i for any integer i, the numbers
of indexes i such that di+1 = di is finite. If i0 denotes the greatest of these
indexes, the required number N is i0 + 1.

Next we claim that the power series Ĥ (x1) =
∑

hix
i
1 satisfies the fol-

lowing property: for any operator L̂ acting on R [[x1]], if L̂
(
Ĥ

)
= 0, there

exists an integer N > 0 such that

(2.3) for all ĝ ∈ R [[x1]] , L̂
(
h1x1 + · · ·+ hNxN

1 + xN+1
1 ĝ (x1)

)
= 0.

This property is a consequence of the expansion 2.2. Consider an operator
L such that L̂ (H) = 0. There exists a ∈ Rq and polynomials Pα such that,
for each f̂ (x1) =

∑
fix

i
1 ∈ R [[x1]], we have

L̂
(
f̂
)

(x) =
∑

α∈Nn

Pα

(
a, f̃α

)
xα
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where f̃α denotes a finite family of coefficients of f̂ . Let N be the integer
produced for this tuple a in the first step of the proof. If f̂ has initial part
h1x1 + · · ·+ hNxN

1 , i.e. fi = hi for 0 6 i 6 N , this equality becomes

L̂
(
f̂
)

(x) =
∑

α∈Nn

Pα

(
a, h1, . . . , hN , f̄α

)
xα,

where f̄α denotes a finite family of coefficients fi disjoint from {f1, . . . , fN}.
Setting Qα

(
f̄α

)
= Pα

(
a, h1, . . . , hN , f̄α

)
, it comes

(2.4) L̂
(
f̂
)

(x) =
∑

α∈Nn

Qα

(
f̄α

)
xα,

where the coefficients of Qα belong to Q (a, h1, . . . , hN ). If we apply these
notations to f̂ = Ĥ, since L̂

(
Ĥ

)
= 0, we have Qα

(
h̄α

)
= 0 for each α ∈

Nn. But the family h̄α is algebraically independent on Q (a, h1, . . . , hN ).
Hence the polynomials Qα vanish identically, which implies, by the expres-
sion 2.4, that any formal power series with initial part h1x1 + · · ·+ hNxN

1

belongs to the kernel of L̂.
Consider finally a weakly C∞ germ g ∈ An (H) such that ĝ = 0. There

exists an operator L acting on W1 such that g = L (H). Hence L̂
(
Ĥ

)
= 0.

According to the previous claim, there exists an integer N > 0 such that, for
any power series f̂ ∈ R [[x1]], L̂

(
h1x1 + · · ·+ hNxN

1 + xN+1
1 f̂ (x1)

)
= 0.

Hence, the operator M defined on W1 by

M (f) (x1) = L
(
h1x1 + · · ·+ hNxN

1 + xN+1
1 f (x1)

)
,

verify M̂ = 0 . It follows from the “quasianalyticity property for operators”
(see Lemma 2.4) that M = 0. If f0 ∈ W1 is the germ defined by

H (x1) = h1x1 + · · ·+ hNxN
1 + xN+1

1 f0(x1),

we have M (f0) = L (H) = g. By the nullity of M, we conclude that g = 0,
which proves the quasianalyticity of the algebra An (H). �

Proof of Theorem A. We simply sum up the different steps. Let Ĥ be a
formal series satisfying the transcendence hypothesis of Lemma 2.6, and H

be its special realization obtained by the Borel’s process. The construction
of H prove that H is weakly C∞ with no C∞ germ at 0, and that H is
piecewise polynomial on the complement of each neighborhood of 0 (see
Lemma 2.1). Moreover, Lemma 2.6 shows that the algebras An(H) are
quasianalytic. Points 1), 2) and 3) then hold, and Theorem A is proved.
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3. Proof of Theorem B

The proof of Theorem B is merely an adaptation of Gabrielov’s method,
which has been already used in several contexts ([1] for analytic func-
tions, [4] for generalized power series, [5] for multisummable series). The in-
troduction of algebras similar to our An (H) is done in [9]: the o-minimality
of the generated structure is shown to be a consequence of a normaliza-
tion process applied to the elements of these algebras, followed by the
proof of a convenient Λ-Gabrielov property. We follow the same scheme
for the structure RH . We won’t give all over again the details of these well
known proofs, but we will recall their main steps and insist on some precise
points specific to our framework.

3.1. Basic definitions

We fix H a weakly C∞ function which satisfies hypothesis of Theorem B.
We noticed in section 2.3 that each element of An (H) admits a natural
representative defined on an appropriate polydisk. We do not distinguish
between a germ in An(H) and its natural representative, when there is
no confusion. If f, g1, . . . , gp ∈ An (H) admit natural representatives on a
common polydisk Ir ⊂ Rn, they define the H-basic set

A =
{

x ∈ Ir ; f (x) = 0, g1 (x) > 0, . . . , gp (x) > 0
}

.

A finite union of H-basic sets is called an H-set. A subset A ⊂ Rn is H-
semianalytic at a ∈ Rn if there exists r > 0 such that (A− a) ∩ Ir is an
H-set; the set A is H-semianalytic if it is H-semianalytic at each point
of Rn. Consider an integer d ∈ N. If a d-dimensional manifold A ⊂ Rn

is H-semianalytic at a ∈ Rn, and if there exist f1, . . . , fn−d in An(H)
vanishing on A− a with linearly independent gradients at 0, then A is an
H-semianalytic manifold at a. If A is an H-semianalytic manifold at
each point of Rn, it is an H-semianalytic manifold.

Remark 3.1. — The graph gr (f) of a natural representative of f ∈
An (H) is H-semianalytic at (0, f (0)) ∈ Rn+1, but is not, a priori, H-
semianalytic at any other point. This is a typical difference with the pre-
vious frameworks. Nevertheless, being semialgebraic on the complement of
each neighborhood of 0, the graph of H is H-semianalytic.

Given m6n, we let Πn
m : Rn→Rm be the projection map

(
x1, . . . , xn

)
7→

(x1, . . . , xm). More generally, given an injective λ : {1, . . . ,m} → {1, . . . , n},
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we let Πn
λ : Rn → Rm be the linear map Πn

λ (x) =
(
xλ(1), . . . , xλ(m)

)
. We

simply write Πm and Πλ if n is clear from context. The following manifolds
play a crucial role in the proof of Theorem B.

Definition 3.2. — Let r ∈ Rn
>0. A subset B ⊂ Ir is H-trivial if one

of the following holds:

1) There exist sign conditions σ1, . . . , σn ∈ {<,=, >} such that

B = {x ∈ Ir : x1σ10, . . . , xnσn0} .

2) There exist a permutation λ of {1, . . . , n}, an H-trivial set C ⊂ Is

where s =
(
rλ(1), . . . , rλ(n−1)

)
and an element g of An−1 (H) with C1

natural representative defined on Is, such that g (Is) ⊂
(
−rλ(n), rλ(n)

)
and Πλ (B) = gr

(
g|C

)
.

The image of an H-trivial set under a translation is said to be H-trivial
again.

Remark.
1) Consider a germ g = L(H) in An(H), where L is an operator. Since

L is a composition of elementary operators, the graph of a natural repre-
sentative of g is the projection of the solution of a semialgebraic system
involving H and its derivatives. Hence every H-trivial set is the projection
of a bounded H-semianalytic set.

We call Λ-set an H-semianalytic subset of In, for n ∈ N. A subset
B ⊂ Im is a sub-Λ-set if there exist n > m and a Λ-set A ⊂ In such that
B = Πm (A). If in addition B is a manifold, it is a sub-Λ-manifold. In
order to state the property which implies Theorem B, let us give a final
definition. A subset A ⊂ In satisfies the Λ-Gabrielov property if for each
m 6 n there are connected sub-Λ-manifolds Bi ⊂ In+qi , with i = 1, . . . , k

and q1, . . . , qk > 0, such that

Πm (A) = Πm (B1) ∪ · · · ∪Πm (Bk) ,

and for each i ∈ {1, . . . , k} we have

(G1) frBi is contained in a closed sub-Λ-set Di ⊂ In+qi such that Di

has dimension and dim (Di) < dim (Bi);
(G2) d := dim (Bi) 6 m and there is a strictly increasing λ : {1, . . . , d} →

{1, . . . ,m} such that Πλ|Bi : Bi → Rn is an immersion.

Remark 3.3. — Notice that an H-trivial set B ⊂ In is a sub-Λ-manifold
which satisfies condition (G1).
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Since the restriction to I2 of the graph of H is a Λ-set, the structure
generated by all Λ-sets is exactly RH . It is well known (see [5]), that model
completeness and o-minimality — and hence Theorem B — are consequence
of the following:

Proposition 3.4. — Every Λ-set has the Λ-Gabrielov property.

We prove this statement in the next section. To this end, we establish
several properties of H-semianalytic sets.

3.2. Towards the Λ-Gabrielov property

We follow the main steps of section 4 of [9], and sometimes adapt it to a
“local” frame. We first apply the normalization process of [9]; it provides
a local description of H-semianalytic sets in terms of finite union of diffeo-
morphic projections of H-trivial manifolds. We then prove a fiber cutting
lemma. Run over geometric arguments then conclude.

Proposition 3.5 (compare to 3.8 in [9]). — Let A ⊂ Rn be H-semiana-
lytic at a ∈ Rn, and W be a neighborhood of a. Then, there is a polyradius
r ⊂ Rn

>0, with Ir ⊂ W , and for i = 1, . . . , s, there are ni > n and H-trivial
manifolds Bi ⊂ Rni such that

(a + Ir) ∩A = Πn (B1) ∪ · · · ∪Πn (Bs)

and for each i and each b ∈ (Πni
n )−1 (a), Bi is H-semianalytic at b, Πn (Bi)

is a manifold and Πn|Bi : Bi → Πn (Bi) is a diffeomorphism. In particular,
(a + Ir) ∩A has dimension.

Proof. — As the proof follows faithfully the one given in [9], we recall
only its main ideas. The statement is a consequence of a normalization
process of the elements of the algebras An (H). Let us recall that a germ
f ∈ An is called normal if f (x) = xru (x), with r ∈ Nn and u a unit of
An. A set defined by sign condition on a normal germ is a trivial manifold.
Remark also that, by the quasianalyticity of the algebras An(H), a germ f

in An(H) is normal as soon as f̂ is normal. The normalization then deals
with Taylor expansions. Theorem 2.5 in [9] states that there exists a finite
sequence of admissible substitutions τ1, . . . , τm such that τ1τ2 · · · τm(f̂) is
normal. An admissible substitution may be a linear substitution, a trans-
lation by formal series ĝ obtained from f̂ by the action of an operator, a
power substitution or a blow-up substitution. To each substitution corre-
sponds a geometric counterpart. Applying these geometric transformations
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allows one to describe locally a set defined by a sign condition on an el-
ement of An(H) as the union of finitely many projections of trivial sets.
All the closure properties of the algebras An(H) are required all along this
process. �

Remark 3.6.

1) The previous proposition joint with the compactness of In implies
corollary 4.4 of [9].

2) Although trivial manifolds are not H-semianalytic in general, the
manifolds Bi of the above property are H-semianalytic at each point
of (Πni

n )−1 (a). It simply reflects the fact that if f belongs to A(H),
the germ of the image of f under a blowing up transformation at any
point of the exceptional divisor belongs to A(H).

The next statement is a version of the classical fiber cutting lemma
adapted to our framework.

Lemma 3.7 (compare with 4.5 in [9]). — Let 0 6 ` < m 6 n, and k 6 n.
Consider M ⊂ Rn an m-dimensional H-semianalytic manifold at a ∈ Rn.
Suppose that Πk|M has constant rank `. Then there exist a polyradius
r ∈ Rn, and a set A ⊂ M such that:

a) A is H-semianalytic at a;
b) Πk(A) = Πk(M ∩ (a + Ir));
c) dim(A) < dim(M).

Proof. — We adapt the traditional proof (see [1]) to a local frame. We
denote x = (x1, . . . , xn) ∈ Rn by x = (y, z), where y = (x1, . . . , xk),
z = (xk+1, . . . , xn), and reduce to the case where a = 0 and M is an H-
basic set, with non empty germ at a. Let r ∈ Rn

>0 be a polyradius such
that

M =
{

x ∈ Ir; f1(x) = 0, . . . , fn−m(x) = 0, g1(x) > 0, . . . , gq(x) > 0
}

,

where f1, . . . , fn−m, g1, . . . , gq belong to An(H), and ∇f1, . . . ,∇fn−m are
linearly independent. We denote by F the map F = (f1, . . . , fn−m). Each
fiber My = {z ∈ Rn−k; (y, z) ∈ M}, for y ∈ Πk(Ir), is empty or has
dimension m− `. We put

ϕ0(x) =
q∏

i=1

gi(x) ·
n∏

i=1

(ri − xi) ,

A0 =
{

x = (y, z) ∈ M ; ϕ0|My is critical at z
}

.
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Since ϕ0 has positive values on M and vanishes on its boundary, ϕ0 ad-
mits critical points on each non empty fiber My. Then Πk(A0) = Πk(M).
Since the equations which define A0 depends algebraically on the functions
which define M , A0 is H-semianalytic at 0. If dim(A0) < dim(M) in a
neighborhood of 0, the proof is done.

Suppose then that the restrictions of A0 to any small neighborhood of 0
have dimension m. We claim that there exists a polyradius r′ such that ϕ0

is constant on every connected component of each fiber My restricted to
Ir′ . Indeed, A0 contains a set B, open in M ′ = F−1(0), with 0 ∈ B. The
tangent plane of M ′

y admits a base whose coordinates depend algebraically
on x and the coordinates of ∇f1, . . . ,∇fn−m. Any derivative of ϕ0 with
respect to a vector of this base then belongs to An(H), and vanishes on
B. Since by Proposition 3.5, M ′ is parametrized by functions whose germs
belong to Am(H), the quasianalyticity allows one to conclude that there
exists a neighborhood of 0 in M ′ where all theses derivatives vanish. Hence,
on this neighborhood, ϕ0 is constant along each connected component of
each fiber My. In particular, there exists a polyradius r′ such that: A0∩Ir′ =
M ∩ Ir′ = M ′ ∩ Ir′ .

Therefore, up to replacing M by M ∩ Ir′ , each fiber My is a compact
manifold whose boundary is the intersection of My with the frontier of Ir′ .
For i = k + 1, . . . , n, let us define ϕi : x 7→ |x|2 + x2

i , and

Ai =
{

(y, z) ∈ M ; ϕi|My is critical at z
}

.

The level sets {x ∈ Rn; ϕi(x) = ε} don’t intersect the frontier of Ir for
small ε. Hence, by the same arguments as above, shrinking r′ if necessary,
we have:

a) Ai is H-semianalytic at 0;
b) Πk(Ai ∩ Ir′) = Πk(M ∩ Ir′);
c) If dim(Ai∩Ir′) = m, then ϕi|My has constant value on any connected

component of each restricted fiber My ∩ Ir′ .

At least one Ai has dimension less than m and then satisfies the con-
clusion of the lemma. Otherwise, all the functions ϕi are constant on the
restricted fibers My∩Ir′ . Now, on each quadrant, the forms dϕk+1, . . . , dϕn

generate the space < dxk+1, . . . , dxn >. Hence, for i = k+1 · · ·n, the coor-
dinate xi is constant on the connected components of the restricted fibers
My ∩ Ir′ , which is impossible since M ∩ Ir′ has dimension m. �

The normalization process, joint with the fiber cutting lemma imply the
following.
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Proposition 3.8 (compare to 4.7 in [9]). — Let A ⊂ Rn be H-
semianalytic at a, and k 6 n. Then, there exist a polyradius r, and trivial
manifolds Ni ⊂ Rni , i = 1, . . . , s such that

Πk(A ∩ (a + Ir)) = Πk(N1) ∪ · · · ∪Πk(Ns).

Moreover, for each i we have d = dim(Ni) 6 k, and there is a strictly
increasing ι : [1, . . . , d] → [1, . . . , k] such that Πι|Ni : Ni → Rd is an immer-
sion.

Proof (see [9], 4.6 and 4.7 for details). — We proceed by induction on
dim(A). If dim(A) = 0, there exists a polyradius r such that A ∩ Ir is
empty or is a single point, and the proposition hold. Otherwise, we ap-
ply Proposition 3.5. There exists a polyradius r, and finitely many trivial
manifolds Ni, i = 1, . . . , ` with dimension less than or equal to dim(A)
such that

⋃
16i6` Πk(Ni) = Πk(A ∩ (a + Ir)). Notice that these manifolds

are H-semianalytic at each point of the exceptional divisor (see remark 2
in 3.6). If for all 1 6 i 6 `, dim(Ni) = rank(Πk|Ni), the statement is
obtained by the use of Proposition 3.5 applied to each submanifold P of
the Ni’s such that a canonical projection restricted to P is an immersion,
and by the use of the inductive hypothesis for the rest. Otherwise, by a
decomposition of Ni into manifolds where projections have constant rank,
we may suppose that Ni satisfies hypothesis of Lemma 3.7. The fiber cut-
ting lemma then provides, for all 1 6 i 6 `, and all b ∈ Π−1

k (a), a set Ai,b

which is H-semianaytic at b, such that Πk(Ai,b) = Πk(Ni∩(b+Iri,b
)), with

dim(Ai,b) < dim(A). By induction, the proposition holds for each Ai,b.
The compactness of Π−1

k (a) ∩Ni then allows one to consider only a finite
number of trivial manifolds, which achieve the proof. �

Proof of Theorem B. Recall that we only need to prove Proposi-
tion 3.4. Let A ⊂ Rn be a Λ-set, and a ∈ In. We apply Proposition 3.8 to
the set A, H-semianalytic at a. There exists a polyradius ra such that

Πm(A ∩ (a + Ira)) = Πm(Ba,1) ∪ · · · ∪Πm(Ba,sa),

where all the manifolds Ba,i satisfy condition (G2). We may suppose that
these manifolds Ba,i are included in Ini . According to remark 3.3, they
satisfy also condition (G1). By the compactness of In, there exists a finite
family of points b1, . . . , bk in In such that A =

⋃
16i6k A ∩ (bi + Irbi

). We
then have:

Πm (A) =
⋃

16i6k

Πm (Bbi,1) ∪ · · · ∪Πm

(
Bbi,kbi

)
,
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where each Bbi,j satisfies (G1) and (G2). Hence, any Λ-set A has the Λ-
Gabrielov property, and the proof is done.
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