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A NEW PROOF OF OKAJI’S THEOREM
FOR A CLASS OF SUM OF SQUARES OPERATORS

by Paulo D. CORDARO & Nicholas HANGES (*)

Abstract. — Let P be a linear partial differential operator with analytic coef-
ficients. We assume that P is of the form “sum of squares”, satisfying Hörmander’s
bracket condition. Let q be a characteristic point for P . We assume that q lies on
a symplectic Poisson stratum of codimension two. General results of Okaji show
that P is analytic hypoelliptic at q. Hence Okaji has established the validity of
Treves’ conjecture in the codimension two case. Our goal here is to give a simple,
self-contained proof of this fact.

Résumé. — Soit P un opérateur différentiel analytique, de la forme “somme de
carrés”, avec la condition d’Hörmander réalisée. Soit q un point caractéristique de
P . On suppose que q est un point d’un “symplectic Poisson stratum” de codimen-
sion deux (au sens de Treves). D’après le théorème d’Okaji, P est hypoelliptique
analytique en q. Autrement dit, la conjecture de Treves est vraie en codimension
deux. On donne dans ce travail une preuve élémentaire de ce fait.

1. Introduction

Let M be a real analytic manifold and let X0, . . . , Xν be real valued,
real analytic vector fields on M. We study an operator P of the form “sum
of squares”. That is P has the form

(1.1) P = X0
2 + · · ·+Xν

2.

Definition 1.1. — We say that P is analytic hypoelliptic (in the strong
sense) on M if for every open O ⊂M we have the following: Pu analytic
on O implies that u is analytic on O. Here u is a distribution on O.

Keywords: Analytic hypoelliptic, sum of squares.
Math. classification: 35H10, 35H20, 35A17, 35A20, 35A27.
(*) Both authors were partially suported by CNPq (Brazil). The first author was also
partially suported by Fapesp, (Brazil) and the second author was also partially suported
by NSF grant INT–0227100.
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We always assume that the Xj satisfy Hörmander’s bracket (“finite
type") condition. That is, at each point of M, the Lie algebra generated by
the Xj (under the commutation bracket) has dimension equal to dimM.

Under these conditions a classical result of Hörmander [7] guarantees the
hypoellipticity of P . However analytic hypoellipticity will not hold unless
further assumptions are made.

If we assume that Σ, the characteristic set of P , is a symplectic manifold
and that the principal symbol of P vanishes precisely to second order on Σ,
then P is analytic hypoelliptic. This follows from results of Treves [16] and
Tartakoff [15]. Further work in this direction was done by Métivier [10]. All
this work assumes that the characteristic set is a symplectic manifold and
that the principal symbol vanishes uniformly on the characteristic set.

Very general results on analytic hypoellipticity were obtained by Okaji
[11] in the symplectic case, allowing non-uniform vanishing of the principal
symbol.

However, there are examples when the characteristic set is symplectic,
and analytic hypoellipticity fails. See Oleinik [12], Hanges – Himonas [6]
and Cordaro – Hanges [3]. These examples motivated Treves to introduce
the Poisson stratification of the characteristic set.

1.1. The Poisson Stratification of Σ

For simplification we assume that P is defined in an open subset Ω of
RN and let iFj , j = 0, . . . , ν (i =

√
−1) denote the symbols of the Xj . The

characteristic set of P is defined as

Σ = {p ∈ T ∗Ω \ 0 : Fj(p) = 0, j = 0, . . . , ν}.

It is a theorem of Treves [17] that Σ can be decomposed in the following
way:

(1) There exist connected, pairwise disjoint analytic submanifolds Σj ⊂
Σ such that

Σ = ∪Σj .

Furthermore, the union is locally finite.
(2) For each j we have

TpΣj ∩ TpΣj⊥

has constant dimension at each p ∈ Σj (here TpΣj⊥ denotes the
orthogonal space with respect to the natural symplectic form on
T ∗Ω).
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SUM OF SQUARES OPERATORS 597

(3) There exists, for each j, an integer nj such that FI vanishes on
Σj for all |I| < nj , but for each p ∈ Σj , there exists I with |I| =
nj such that FI(p) 6= 0. Note that if I = (i1, . . . , iq), then FI =
{Fi1 , . . . , {Fiq−1 , Fiq}, . . .}.

(4) Each Σj is maximal with respect to properties (2) and (3).
Each Σj is called a Poisson stratum of Σ.

1.2. Treves’ Conjecture

Treves’ conjecture [17] asserts that the following statement is true:
(S) For P to be analytic hypoelliptic on Ω it is necessary and sufficient that
every Poisson stratum of Σ be symplectic.

Treves’ conjecture is consistent with all known results. However, the ana-
log of the conjecture is not true in the global sense or in the sense of germs.
See Cordaro–Himonas [4] and Hanges [5]. Also, the contribution of Bove,
Derridj, Tartakoff [1] is a very interesting generalization of [5]. Indeed,
these papers have motivated Treves to give a more generalized conjecture,
see [18]. For this we need to introduce the concept of bicharacteristic leaves.

On each stratum Σj the association p 7→ TpΣj ∩ TpΣ⊥
j defines a vector

subbundle of TΣj which is closed under Lie brackets. By the Frobenius
theorem we can foliate Σj by leaves L such that TL = (TΣj ∩ TΣ⊥

j )|L.
Such leaves L are called bicharacteristic leaves of the operator P .

The generalized Treves conjecture can be stated as follows:
(C) For P to be analytic hypoelliptic on Ω it is necessary and sufficient
that every bicharacteristic leaf is vertical and relatively compact in T ∗Ω.

Note that here vertical means that the set is either empty or projects
(under the canonical projection π : T ∗Ω → Ω) to a point.

1.3. The main result

The following theorem is our main result, which follows from the work of
Okaji [11]. In particular this establishes Treves’ conjecture (in the positive
direction) in the codimension two case. Our goal here is to give a simple,
self-contained proof of this.

Theorem 1.2. — Let Ω ⊂ RN be open and let X0, . . . , Xν be real
valued, real analytic vector fields on Ω which satisfy Hörmander’s condition.
Let P have the form (1.1) with Σ the characteristic set of P . Let p ∈ Σ. We
assume that near p, Σ is a symplectic Poisson stratum of codimension 2.
Then P is analytic hypoelliptic at p.

TOME 59 (2009), FASCICULE 2



598 Paulo D. CORDARO & Nicholas HANGES

This means that whenever u ∈ D′(Ω), with p /∈ WFA(Pu), it follows
that p /∈ WFA(u). Note that D′(Ω) denotes the space of distributions on
Ω and WFA(u) denotes the analytic wave front set of u.

The proof of Theorem 1.2 is given in the next three sections. In sec-
tion 2 the geometric assumption is discussed. We make a detailed study
of symplectic Poisson strata of codimension two. In particular we choose
local coordinates which are convenient for the analysis. In sections 3 and 4
we prove the regularity result. We work in special coordinates given in sec-
tion 3. We use a version of the FBI transform specially suited to our needs.
A key tool is the Green’s function for an associated ordinary differential
operator. Finally we employ a simple symbolic calculus based on the work
of Sjöstrand [14] to estimate error terms.

Finally we remark that once the operator P of Theorem 1.2 is written
in the special coordinates of section 3, then the regularity result proved
in section 4, also follows from the main result of [11]. Our methods are
much different from those of [11] and it is our belief that our technique will
extend to strata of higher codimension. We can also obtain optimal Gevrey
regularity results in the codimension two case with our techniques. This
result will appear elsewhere.

2. The Geometric Hypothesis

2.1. Preliminaries

Let U be an open set of R2N , equiped with the standard symplectic
structure. We assume given real-analytic functions F0, . . . , Fµ on U and we
let

Σ .= {p ∈ U : Fj(p) = 0, j = 0, . . . , µ}.
In other words, Σ is the locus of the ideal I spanned by F0, . . . , Fµ.

Given p ∈ U we shall denote by Ip the ideal of germs of real-analytic
functions at p spanned by the germs F0 . . . ,Fµ of the functions F0, . . . , Fµ
at p.

Given k > 1 we shall consider the ideals Ikp spanned by the germs of
Poisson brackets of length ` 6 k at p

FJ
.= {Fj` , . . . {Fj1 ,Fj0} . . .} , J = (j0, . . . , j`).

Thus we have an ascending chain of ideals Ip = I0
p ⊂ I1

p ⊂ . . . ⊂ Ikp ⊂
Ik+1
p ⊂ . . .

Needless to say that the ideals Ikp are generated by global sections.

ANNALES DE L’INSTITUT FOURIER
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Our main hypothesis, which will be assumed throughout, is the validity
of the microlocal version of the Hörmander finite type condition, that is,
for every p ∈ U there is k ∈ N such that Ikp equals the space of germs of all
real-analytic functions at p. The smallest k for which this property holds
is then denoted by ρ(p).

Lemma 2.1. — ρ is upper semicontinuous.

Proof. — We must show that each point p0 has an open neighborhood V0

such that ρ(p) 6 ρ(p0) for p ∈ V0. Since the germ of the constant function 1
at p0 belongs to Iρ(p0)p0 there are aI , real-analytic in an open neighborhood
V0 of p0, such that ∑

aIFI = 1 in V0,

where FI are multiple Poisson brackets of the functions F0, . . . , Fµ of length
6 ρ(p0). But then, for any p ∈ V0, the germ of the constant function 1
at p belongs to the ideal spanned by the germs of the FI at p. Hence
ρ(p) 6 ρ(p0). �

We shall then say that Σ satisfies property (?) with respect to I if ρ is
constant on Σ.

2.2. A model

We now take Ω ⊂ Rm+1, an open neighborhood of the origin, where
the coordinates are written as (x, t) = (x1, . . . , xm, t) and let U = Ω ×
(Rm+1 \ {(0, 0)}), where now the coordinates are written as (x, t, ξ, τ) =
(x1, . . . , xm, t, ξ1, . . . , ξm, τ). We shall take

(2.1) F0 = τ, Fj(x, t, ξ)
.= fj(x, t, ξ) =

m∑
`=1

aj`(x, t)ξ`, j = 1, . . . , µ.

We assume that, in an open and conic neighborhood V0 of p0 =(0, 0; ξ0, 0),
Σ is a symplectic manifold of codimension 2. Thus we can assume that Σ
is defined, in V0, by the equations τ = 0, t − λ(x, ξ) = 0, where λ is real-
analytic in a conic neighborhood W0 of (0, ξ0) and positively homogeneous
of degree zero. In other words we are assuming

Σ ∩ V0 = {(x, λ(x, ξ); ξ, 0) : (x, ξ) ∈W0}.

We shall also assume that Σ satisfies property (?) with respect to the ideal
generated by f0, . . . , fµ in V0.

We start by proving the following:

TOME 59 (2009), FASCICULE 2



600 Paulo D. CORDARO & Nicholas HANGES

Lemma 2.2. — Let g be a real-analytic function in V0 vanishing in Σ∩
V0. If p ∈ Σ ∩ V0 and if (∂tg)(p) = 0 then the Hamilton vector field Hg

vanishes at p.

Proof. — Indeed we have g(x, λ(x, ξ), ξ) = 0 for all (x, ξ) ∈ W0. Differ-
entiation of this expression with respect to x` and ξq proves the result. �

Lemma 2.3. — Let p ∈ Σ ∩ V0 and suppose that, for some r > 1, we
have (∂st fj) = 0 in Σ ∩ V0 for all j = 1 . . . , µ and all s ∈ {0, . . . , r − 1}
and that (∂rt fj)(p) = 0 for all j = 1 . . . , µ. Then every Poisson bracket of
length 6 r vanishes at p.

Proof. — Lemma 2.1 implies that H∂s
t fj vanishes at p for all j = 1, . . . , µ

and all s = 0, . . . , r − 1. Consider then a general Poisson bracket of length
σ 6 r

F = Hfiσ
Hfiσ−1

. . .Hfi1
fi0 .

If iσ = . . . = i1 = 0 then F = (∂σt fi0) vanishes at p by hypothesis.
Otherwise let iq be such that iq ∈ {1, . . . , µ} and iσ = iσ−1 = . . . = iq+1 =
0. We then have

F = (∂t)σ−qHfiq
G

for some G. Now given any g we have

∂tHg = Hg∂t + [∂t,Hg] = Hg∂t +H∂tg.

Applying this remark to the expression of F we see that F can be expressed
as a sum of terms, each of them starting as H∂j

t fiq
. . ., with j = 0, . . . , σ−q.

Since q > 1 it follows that σ − q 6 σ − 1 6 r − 1 and hence F vanishes
at p. �

We then have

Proposition 2.4. — Let κ .= ρ(p) for p ∈ Σ∩V0. Then there are j0 and
V ′

0 , an open neighborhood of p0 = (0, 0; ξ0, 0) in Σ∩V0, such that ∂κt fj0 6= 0
in V ′

0 and ∂pt fj = 0 on V ′
0 for all 0 6 p < κ and j = 1 . . . , µ.

Proof. — There is β ∈ N such that ∂pt fj = 0 on Σ ∩ V0 for every p =
0, 1, . . . , β and j = 1, . . . , µ and such furthemore that (∂β+1

t fq)(A) 6= 0 for
some q and some p ∈ Σ∩V0. From Lemma 2.3 we obtain β+1 = κ. We now
claim the existence of j0 ∈ {1, . . . , µ} such that (∂κt fj0)(p0) 6= 0. Indeed if
this were not true Lemma 2.3 would again imply that all Poisson brackets
of length 6 β vanish at p0 and consequently ρ(p0) > β = ρ(p), which is a
contradiction. �

Application of Taylor’s formula then gives

ANNALES DE L’INSTITUT FOURIER
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Corollary 2.5. — Same hypotheses of Proposition 2.4. We can write,
for (x, t) near (0, 0) and ξ in a conic neighborhood of ξ0,

fj(x, t, ξ) = (t− λ(x, ξ))κ Ej(x, ξ) + O
(
(t− λ(x, ξ))κ+1 |ξ|

)
where Ej is positively homogeneous of degree one and

E(x, ξ) =
m∑
j=1

Ej(x, ξ)2

is an elliptic symbol of degree 2 defined in a conic neighborhood of (0, ξ0)
in Rm × (Rm \ {0}).

Remark 2.6. — Still under the hypotheses of Proposition 1, since every
Poisson bracket of length 6 κ − 1 vanishes identically on Σ ∩ V0, we in
particular have

∂pt {fj , fk} = 0 in Σ ∩ V0 for all j, k and all 0 6 p 6 κ− 2.

Thus
{fj , fk}(x, t, ξ) = O

(
(t− λ(x, ξ))κ−1|ξ|

)
for (x, t) near (0, 0) and ξ in a conic neighborhood of ξ0.

3. Proof of Theorem 1.2 (beginning)

3.1. First reduction

We recall that we are dealing with a “sum of squares operator” of the
form (1.1) which is defined in an open subset Ω of RN . Here X0, X1, . . . , Xµ

are real-analytic, real vector fields defined in Ω. Our main hypotheses are
the following:
[H1] The vector fields X0, X1, . . . , Xµ satisfy Hörmander condition.
[H2] Near a characteristic point p0 ∈ T ∗Ω \ 0 the characteristic set is
a two-codimensional symplectic manifold which satisfies property (?) with
respect to ideal generated by the symbols of the vector fields X0, . . . , Xµ.

Assume, without loss of generality, that the base projection of p0 is the
origin. [H1] implies in particular that one of the vector fields does not vanish
at the origin. We choose local coordinates (x1, . . . , xm, t), where N = m+1,
in such a way that X0 = ∂/∂t. Let

Xj = bj(x, t)∂t +
m∑
k=1

aj,k(x, t)∂xk
, j = 1, . . . , µ.

TOME 59 (2009), FASCICULE 2



602 Paulo D. CORDARO & Nicholas HANGES

According to our previous notation we can write

Xj = bj(x, t)
∂

∂t
+ fj(x, t, ∂x).

If we denote the dual coordinates as (ξ1, . . . , ξm, τ) it follows that the
characteristic set of P is defined by the vanishing of the functions (2.1).

Define a positive definite matrix Djk(x, t) by

1
A(x, t)

µ∑
j,k=1

Djk(x, t)vjvk = |v|2 −

 µ∑
j=1

bj(x, t)
A(x, t)1/2

vj

2

,

where v = (v1, . . . , vµ) ∈ Rµ and A = 1 +
∑
b2j .

By a direct computation it can be seem that

P = Q+ a•(x, t)∂t +
µ∑
j=1

[
b•j (x, t)fj(x, t, ∂x) + c•j (x, t)(∂tfj)(x, t, ∂x)

]
,

where a•, b•j and c•j are real-analytic and real-valued and Q is the operator

Q
.= A(x, t)


∂t +

1
A(x, t)

µ∑
j=1

bj(x, t)fj(x, t, ∂x)

2

+
µ∑

j,k=1

Djk(x, t)fj(x, t, ∂x)fk(x, t, ∂x)

 .
We shall now perform a diffeomorphism near the origin in Rm+1 of the

form

(3.1) x′ = x′(x, t), t′ = t

such that the vector field ∂/∂t +
∑
bjfj(x, t, ∂x)/A becomes ∂/∂t′. We

consider the local (symplectic) diffeomorphism of T ∗Ω defined near A =
(0, 0, ξ0, 0) and associated to (3.1): it can be written as

(x, t, ξ, τ) 7→ (x′, t′, ξ′, τ ′) = χ(x, t, ξ, τ)

where
(3.2)

x′ = x′(x, t), t′ = t, ξ′ = M(x, t)ξ, τ ′ = τ +
µ∑
j=1

bj(x, t)
A(x, t)

fj(x, t, ξ)

and M(x, t) is the transpose of the matrix (∂x′/∂x)−1 at (x, t).

ANNALES DE L’INSTITUT FOURIER
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We write A] = A ◦ χ−1, f ]j = fj ◦ χ−1, etc... Since χ is a symplectic
diffeomorphism, property (?) remains true for the ideal I generated by f ]j ,
j = 0, 1, . . . , µ, where fj are given by (2.1). We have

f ]0(x
′, t′, ξ′, τ ′) = τ ′ −

µ∑
j=1

b]j(x
′, t′)

A](x′, t′)
f ]j (x

′, t′, ξ′)

and then it is easily seem that the ideals IqX (q = 0, 1, . . . , ) are also spanned
by the germs at X of the Poisson brackets of length 6 q of the functions
τ ′, f ]1, . . . , f

]
µ. Consequently, the conclusions of Corollary 2.5 hold for the

functions f ]j substituted for fj and the variables (x′, t′, ξ′, t′) substituted
for (x, t, ξ, τ).

As a further remark we observe that in the new variables P can be
written as

P = A](x′, t′)

∂2
t′ +

µ∑
j,k=1

D]
jk(x

′, t′)f ]j (x
′, t′, ∂x′)f

]
k(x

′, t′, ∂x′)


+ a•](x′, t′)

∂t′ +
µ∑
j=1

b]j(x
′, t′)

A](x′, t′)
f ]j (x

′, t′, ∂x′)


+

µ∑
j=1

[
b•]j (x′, t′)f ]j (x

′, t′, ∂x′) + c•]j (x′, t′)(∂tfj)](x′, t′, ∂x′)
]
.

Since finally we have

(∂tfj)] = (Hf0fj)
] = Hf]

0
f ]j = ∂t′f

]
j −

∑
k

{
b]k
A]
f ]k, f

]
j

}
and {

b]k
A]
f ]k, f

]
j

}
= f ]k

{
b]k
A]
, f ]j

}
+
b]k
A]

{
f ]k, f

]
j

}
we can apply Corollary 2.5 and Remark 2.6 to reach the conclusion that
we can assume P written as

(3.3) P = ∂2
t +

µ∑
j,k=1

Ajk(x, t)XjXk + b(x, t)∂t + Y

where:

(1) Xj and Y are real-analytic, real vector fields in ∂/∂x1, . . . , ∂/∂xm
defined in Ω;

TOME 59 (2009), FASCICULE 2
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(2) There exists C > 0 such that

〈Aθ, θ〉 =
µ∑

j,k=1

Ajk(x, t)θjθk > C|θ|2,

for all θ ∈ Rµ and (x, t) ∈ Ω;
(3) b is a real-valued, real-analytic function;
(4) The characteristic set is defined by the equations τ = 0, fj(x, t, ξ) =

0, where fj are such that Xj = fj(x, t, ∂x).
(5) The conclusions of Corollary 2.5 hold for fj .
(6) If Y = g(x, t, ∂x) then

|g(x, t, ξ)| = O
(
(t− λ(x, ξ))κ−1|ξ|

)
for (x, t) near (0, 0) and ξ in a conic neighborhood of ξ0.

3.2. Final Simplification

By Corollary 2.5 we may write

Xl = fl(x, t, ∂x) =
m∑
j=1

blj(x, t)∂x ,

where

(3.4) fl(x, t, ξ) = (t− λ(x, ξ))κEl(x, ξ) + O((t− λ(x, ξ))κ+1|ξ|),

for (x, t) near (0, 0) and ξ in a conic neighborhood of ξ0.
Next we study the growth of each individual blj(x, t). We will show that

for all l = 1, . . . , µ and j = 1, . . . ,m we have

(3.5) blj(x, t) = O ((t− λ(x, ξ))κ) ,

for (x, t) near (0, 0) and ξ in a conic neighborhood of ξ0.
Indeed, differentiating with respect to ξj yields

blj(x, t) = (t− λ(x, ξ))κ−1 ∂λ

∂ξj
(x, ξ)E`(x, ξ) + O ((t− λ(x, ξ))κ) .

Differentiating again with respect to ξj shows that (∂λ/∂ξj)El vanishes
when t = λ(x, ξ), and (3.5) follows.

We now define λ0(x) = λ(x, ξ0). It follows from (3.5) that

(3.6) blj(x, t) = O ((t− λ0(x))κ) ,

ANNALES DE L’INSTITUT FOURIER
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for (x, t) near (0, 0) and all l, j. A similar statement (with κ− 1 in place of
κ) holds for the coefficients of the vector field Y . More precisely, we have

fj(x, t, ξ) = (t− λ0(x))κE[j(x, ξ) + O
(
(t− λ0(x))κ+1|ξ|

)
where, by Corollary 2.5,

(3.7)
µ∑
j=1

E[j(x, ξ0)
2 =

µ∑
j=1

E(x, ξ0)2 > 0

for all x near the origin.
We now make a change of variable near the origin in (x, t) space. We

define new coordinates (y, s) as follows:

y = x, s = t− λ0(x).

Notice then that the corresponding covector changes as

(η, σ) 7→ (ξ + τ(∇λ0)(x), τ).

In particular (ξ0, 0) is fixed under such transformation.
We start with P in the form (3.3). In the new variables (y, s) we can

write

Xj = d∗j (y, s)
∂

∂s
+ f∗j (y, s, ∂y), Y = c∗(y, s)

∂

∂s
+ g∗(y, s, ∂y)

where d∗(y, s)=(d∗1(y, s), . . . , d
∗
µ(y, s))=O(sκ), and g∗(y, s, η) = O(sκ−1|η|)

for s near 0. Notice moreover that

f∗j (y, s, η) = sκE[j(y, η) + O(sκ+1|η|).

Hence, we can write [cf. (3.3)]

P = ∂2
s +

µ∑
j,k=1

A∗jk(y, s)
(
d∗j∂s + f∗j (y, s, ∂y)

)
(d∗k∂s + f∗k (y, s, ∂y))

+ b∗(y, s)∂s + g∗(y, s, ∂y)

= G∗ {∂s + h∗(y, s, ∂y)}2 +
µ∑

j,k=1

A∗∗jk(y, s)f
∗
j (y, s, ∂y)f∗k (y, s, ∂y)

+ b∗∗(y, s)∂s + g∗∗(y, s, ∂y).

Here G∗ = 1 + 〈A∗d∗, d∗〉 and {A∗∗j,k(y, s)} denotes the quadratic form

Rµ 3 θ 7→ 〈A∗θ, θ〉 −
(
〈A∗d∗, θ〉+ 〈 tA∗d∗, θ〉

2G∗

)2

,

which is still positive definite in a small neighborhood of the origin in the
(y, s)-space since d∗(y, s) = O(sκ). Furthermore g∗∗(y, s, η) = O(sκ−1|η|).
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It follows then, that after a new local diffeomorphim

(y, s) 7→ (x, t) = (x(y, s), s)

which changes the vector field ∂s + h∗(y, s, ∂y) into ∂t, we obtain the fol-
lowing form for P/G∗ near the origin:

(3.8)

P/G∗ = ∂2
t + t2κ

µ∑
j,k=1

A�jk(x, t)Zj(x, t, ∂x)Zk(x, t, ∂x) + tκ−1W (x, t, ∂x)

+ b(x, t)∂t

where A�jk is positive definite for (x, t) near (0, 0),

Zj(x, t, ξ) = f∗j (y(x, t), t, B(x, t)ξ)/tκ,

W (x, t, ξ) = g∗(y(x, t), t, B(x, t)ξ)/tκ−1

and B(x, t) denotes the transpose of the matrix (∂x/∂y) at (y(x, t), t). Since
x(y, t) can be chosen in such a way that x(0, 0) = 0 and that ∂x/∂y is the
identity at the origin we have

Zj(x, t, ξ0) = Ej(y(x, t), ξ0) + O(t), j = 1, . . . , ν

when (x, t) is near the origin. Hence (3.7) implies the existence of a constant
C > 0 such that

(3.9)
m∑

j,k=1

A�jk(x, t)Zj(x, t, ξ)Zk(x, t, ξ) > C|ξ|2

for (x, t) near the origin and ξ conically close to ξ0.
We summarize what we have reached in the following key result:

Proposition 3.1. — Same hypotheses as in Theorem 1.2. We can choo-
se local coordinates (x, t) ∈ Rm × R (m + 1 = N) near the origin in such
a way that p = (0, 0; ξ0, 0) and, up to a non vanishing analytic factor, the
operator P can be written as

(3.10) P = ∂2
t + t2κ

m∑
j,k=1

ajk(x, t)∂xj∂xk
+ tκ−1

m∑
j=1

bj(x, t)∂xj + b(x, t)∂t,

where κ > 1 is an integer, ajk, bj , b are real-valued, real-analytic functions
defined near the origin and, for some constant C > 0,

(3.11)
m∑

j,k=1

ajk(x, t)ξjξk > C|ξ|2

for (x, t) near (0, 0) and ξ in a conic neighborhood of ξ0.
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4. Proof of Theorem 1.2 (conclusion)

Thanks to Proposition 3.1, the proof of Theorem 1.2 will follow if the
following slightly more general statement can be proved:

Proposition 4.1. — Let P have the following form
(4.1)

P = ∂2
t + t2κ

m∑
j,k=1

ajk(x, t)∂xj∂xk
+ tκ−1

m∑
j=1

bj(x, t)∂xj + a(x, t)∂t + b(x, t) ,

where κ > 1 is an integer and ajk, bj , a, b are real-analytic functions defined
near the origin, with ajk, bj real valued (a, b are allowed to be complex
valued). Assume also the validity of (3.11) for (x, t) near the origin and ξ

conically close to ξ0. Then if u(x, t) is a distribution near the origin such
that (0, 0; ξ0, 0) 6∈WFA(Pu) it follows that (0, 0; ξ0, 0) 6∈WFA(u).

From now on we shall work under this set-up.

4.1. A preliminary reduction

Let u be a distribution near (0, 0) ∈ Rm+1 such that

(4.2) (0, 0; ξ0, 0) /∈WFA(Pu).

Our goal is to show that (0, 0; ξ0, 0) /∈ WFA(u). We now make some pre-
liminary reductions involving u.

After multiplication by a smooth cutoff function we may assume that
u has compact support, with (4.2) still satisfied. We now apply Corol-
lary 8.4.13 of [8]. Let Γ ⊂ Rm+1 be a small (so that Γ contains no points
of the form (0, τ)), closed, convex, proper cone containing (ξ0, 0) as an in-
terior point. Then there exist u1, u2 ∈ S ′(Rm+1), the space of tempered
distributions, such that u = u1 + u2 and

(4.3) WFA(u1) ⊂ Rm+1 × Γ

and

(4.4) (0, 0; ξ0, 0) /∈WFA(u2).

It follows then that

(4.5) (0, 0; ξ0, 0) /∈WFA(Pu1).

Furthermore we see that (0, 0; ξ0, 0) /∈ WFA(u) if and only if (0, 0; ξ0, 0) /∈
WFA(u1). It is important to note that u1 has well defined traces on all
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hyperplanes t = t0, since Γ avoids the normals to these hyperplanes; this
follows from Theorem 8.2.4 in [8], whose proof also implies that u1 is a
smooth function in t valued in the space of distributions in x.

Next let χ(x) = χ ∈ C∞
0 (Rm) with χ ≡ 1 near x = 0. Note that

(0, 0; ξ0, 0) /∈ WFA(P (χu1)) and that (0, 0; ξ0, 0) /∈ WFA(u) if and only
if (0, 0; ξ0, 0) /∈WFA(χu1). Next we will cut in the t variable. Let ϕ(t) be a
smooth function with compact support, depending only on t. Assume that
ϕ is identically equal to 1 near the origin. We have

(4.6) P (ϕχu1) = ϕP (χu1) + ϕ′′χu1 + 2ϕ′(χu1)t + aϕ′χu1 .

Because of (4.6), we see that (0, t; ξ0, 0) /∈ WFA(χu1) for all t 6= 0 and
small. Indeed, the characteristic set of P is defined, near (0, 0; ξ0, 0) by
t = τ = 0. Hence it follows from (4.6) that

(4.7) (0, t; ξ0, 0) /∈WFA(P (ϕχu1))

for all t ∈ R, as long as the support of ϕ is small enough.
Summing up, we have the right to assume, from the beginning, that

u ∈ E ′(Rm+1) ∩ C∞(Rt,D′(Rmx )) has support contained in an arbitrarily
small neighborhood of the origin in Rm+1 and that

(4.8) (0, t; ξ0, 0) /∈WFA(Pu)

for all t ∈ R.
Notice moreover that, if (Pu)t ∈ D′(Rm) denotes the trace of Pu at t

then

(4.9) (0; ξ0) /∈WFA((Pu)t)

for all t ∈ R (cf. Theorem 8.2.4 in [8]).

Remark 4.2. — Our assumptions show that Γ = C0, where C is an open
convex cone, and C0 denotes the dual cone. We now apply Theorem 8.4.15
of [8]. It follows that if U is a small neighborhood of the origin in Rm+1

and if V is an open convex cone with closure contained in C ∪ {0}, then
there exist a function f holomorphic on U × iVδ, of slow growth, such that
u = lim(y,s)→(0,0) f(· + iy, · + is). Here the limit is of course taken when
(y, s) ∈ Vδ and exists in the sense of distributions on U . (1)

(1) Here, for δ > 0, Vδ denotes the truncated cone {(y, s) ∈ V : |(y, s)| < δ}.
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4.2. The FBI transform

We introduce the FBI transform of u, defined by

(4.10) I[u](z, t, ξ) =
∫
e−iy·ξ−|ξ|(z−y)

2/2u(y, t)dy.

Note that, for each ξ ∈ (Rm\0) fixed, I[u] is a smooth function of t valued
in the space of entire functions of z in Cm. By the standard characterization
of the analytic wave front set via the FBI transform it follows from (4.9)
that there exist C > 0 and an ε > 0 such that if |z| < ε, then

(4.11) |I[Pu](z, t, ξ)| 6 Ce−ε|ξ|,

for all t ∈ R and for all ξ in a conic neighborhood of ξ0.
Our goal is, of course, to derive a similar estimate for I[u].
We have the following formulas for I[u]:

(4.12) I[∂xju] = (∂zj + iξj)I[u],

and

(4.13) I[yju] =
(

1
|ξ|
∂zj

+ zj

)
I[u].

Note that (4.13) follows from

(4.14) (yj − zj)e−iy·ξ−|ξ|(z−y)
2/2 =

1
|ξ|
∂zj

(
e−iy·ξ−|ξ|(z−y)

2/2
)
.

It follows that we have, for all α,

(4.15) (y − z)αe−iy·ξ−|ξ|(z−y)
2/2 = Fα(e−iy·ξ−|ξ|(z−y)

2/2),

where we define the partial differential operator Fα = Fα

(
1
|ξ| ,

1
|ξ|∂z

)
as

follows:

(4.16) Fα =
α!

(−2)|α|
∑

2β6α

1
β!(α− 2β)!

(
2
|ξ|

)|α|−|β|

∂α−2β
z .

Observe that, given α = (α1, . . . , αm), the sum is taken over all β =
(β1, . . . , βm) such that 0 6 2βj 6 αj .

Formula (4.15) follows from the following one–variable version. If t ∈ R
and m is a positive integer we have

(4.17) tme−t
2

=
m!

(−2)m
∑

062j6m

1
j!(m− 2j)!

(
d

dt

)m−2j

(e−t
2
).
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This formula follows by induction. It is clearly true for m = 1, 2. Now we
assume true for m and m− 1. Since

tm+1e−t
2

=
m

2
tm−1e−t

2
− 1

2
d

dt
(tme−t

2
)

(4.17) follows by induction hypothesis.
Next let a(z, t) be smooth function of t ∈ R valued in the space of

holomorphic functions of z ∈ U . Here U is a neighborhood of the origin in
Cm. We also assume that there is h > 0 such that

sup {|∂αz a(z, t)| : (z, t) ∈ U × R} 6 h|α|+1 α!, α ∈ Zm .

We wish to compare I[au] with aI[u]. If, say, |x| 6 1/(2h) on the support
of u we can write

I[au](z, t, ξ)− a(z, t)I[u](z, t, ξ)

=
∫
e−iy·ξ−|ξ|(z−y)

2/2
∑
α6=0

∂αz a(z, t)
α!

(y − z)αu(y, t)dy.

for z in a neighborhood of the origin in Cm. Note that given δ > 0, there
exist C > 0 and ε > 0, such that

(4.18)

∣∣∣∣∣∣
∫
e−iy·ξ−|ξ|(z−y)

2/2
∑

|α|>δ|ξ|

∂αz a(z, t)
α!

(y − z)αu(y, t)dy

∣∣∣∣∣∣ 6 Ce−ε|ξ|

for z near 0, t ∈ R and all ξ large. So we see that we may truncate such
sums as above, modulo an exponentially decreasing error, which leads us
to introduce the operators

(4.19) Ra,δ =
∑

16j6δ|ξ|

Aj
|ξ|j

,

where Aj is the differential operator of order j given by:

(4.20) Aj =
∑

|α−β|=j, 2β6α

∂αz a(z, t)
2|β|

(−1)|α|

β!(α− 2β)!
∂α−2β
z .

Formula (4.18) can then be written as

(4.21) I[au] ∼ (a+Ra,δ)I[u],

where ∼ means that the difference is exponentially decreasing in |ξ| uni-
formly for z near 0 and t ∈ R.
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4.3. A Formula for I[Pu]

We wish to write I[Pu] in terms of I[u]. Since u is compactly supported
we can assume that the coefficients of P in (4.1) have been extended for
all t ∈ R as a compactly supported function of t, real-analytic near the
origin in Rm+1. Using our formulas, and assuming that the support of u
is contained in an appropriately small neighborhood of the origin, we see
that there exists a partial differential operator Q = Q(z, t, ξ, ∂z, ∂t) such
that

(4.22) QI[u](z, t, ξ) ∼ I[Pu](z, t, ξ)

for (z, t) near (0, 0) and ξ ∈ Rm. We see that Q can be written as follows :

Q(z, t, ξ, ∂z, ∂t) = ∂2
t + t2κ

m∑
j,k=1

(ajk(z, t) +Rajk,δ)(iξj + ∂zj
)(iξk + ∂zk

)

(4.23)

+ tκ−1
m∑
j=1

(bj(z, t) +Rbj ,δ)(iξj + ∂zj
)

+ (a(z, t) +Ra,δ)∂t + (b(z, t) +Rb,δ).

Next we introduce the change of variable

s = t|ξ|1/(κ+1).

We denote by Q#(z, s, ξ, ∂z, ∂s) the transformed operator. We have the
following

|ξ|−2/(κ+1)Q# = ∂2
s + s2κ|ξ|−2

m∑
j,k=1

(ajk +Rajk,δ)(iξj + ∂zj )(iξk + ∂zk
)

(4.24)

+ sκ−1|ξ|−1
m∑
j=1

(bj +Rbj ,δ)(iξj + ∂zj )

+ |ξ|−1/(κ+1)(a+Ra,δ)∂s + |ξ|−2/(κ+1)(b+Rb,δ),

where, by abuse of notation, we denote the transformed coefficients and
operators (e.g. a,Ra,δ) by the same letters.

Note that all terms are of order zero in ξ, or of lower order. We first
examine the term of order precisely zero. We will write, for example,
a(z, t) = a0(z) + tã(z, t) near the origin. We see that the term of order
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zero is
(4.25)

∂2
s−s2κ

m∑
j,k=1

a0
jk(z)

ξjξk
|ξ|2

+isκ−1
m∑
j=1

b0j (z)
ξj
|ξ|

= ∂2
s−s2κE(z, ξ)−isκ−1ϕ(z, ξ),

where E and ϕ are defined by left hand side. Note that E and ϕ are real for
real z, and positively homogeneous of degree 0 in ξ, with E > 0 in a conic
neighborhood of (0, ξ0) in Rm × (Rm \ {0}) [cf. (3.9)].

Next we discuss the terms of negative order. We define operators Tj ,
j = 1, 2, 3, 4, as follows

(4.26) T1 = −s2κ+1|ξ|−1/(κ+1)
m∑

j,k=1

ãjk
ξjξk
|ξ|2

;

(4.27) T2 = sκ|ξ|−1/(κ+1)
m∑
j=1

b̃j

(
i
ξj
|ξ|

+
1
|ξ|
∂zj

)
+ |ξ|−2/(κ+1)(b+Rb,δ) ;

(4.28) T3 = |ξ|−1/(κ+1)(a+Ra,δ)∂s ;

T4 = s2κ
m∑

j,k=1

ajk

(
i
ξj
|ξ|2

∂zk
+ i

ξk
|ξ|2

∂zj +
1
|ξ|2

∂zj∂zk

)
(4.29)

+ s2κ
m∑

j,k=1

Rajk,δ

(
i
ξj
|ξ|

+
1
|ξ|
∂zj

) (
i
ξk
|ξ|

+
1
|ξ|
∂zk

)

+ sκ−1
m∑
j=1

Rbj ,δ

(
i
ξj
|ξ|

+
1
|ξ|
∂zj

)
.

If we finally define T# = −(T1 + T2 + T3 + T4), we see that

(4.30) |ξ|−2/(κ+1)Q# = q# − T# ,

where we have written

(4.31) q# = q#(s, ∂s; z, ξ) = ∂2
s − s2κE(z, ξ)− isκ−1ϕ(z, ξ).

4.4. The Green function for the operator q#

We now study the Green’s function for q#. Note that q# can be trans-
formed into the operator q given by

(4.32) q(s, ∂s; z, ξ) = ∂2
s − s2κ − iE(z, ξ)−1/2ϕ(z, ξ)sκ−1.
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The operators q and q# are related as follows: q#f# = 0 if and only if
qf = 0, where f and f# are related by the formula

(4.33) f#(s; z, ξ) = f(sE(z, ξ)1/(2κ+2); z, ξ)

(recall that automaticaly f and f# are entire functions of s).
We first analyse the Green’s function of q. First observe that this operator

is injective on the Schwartz space for each (z, ξ) fixed, because ϕ and E are
real valued for real z. Also, the coefficient of sκ−1 is positively homogeneous
of degree 0 in ξ and hence is uniformly bounded for z near 0 in Cm for ξ
in Rm \ {0}.

Following the arguments in [2], almost without change, we have, when
κ is even, two linearly independent functions f, g, both in the kernel of q
such that
(4.34)
f(s; z, ξ) = (1/2)s−(κ−iψ(z,ξ))/2e|s|

κ+1/(κ+1) [1 + O (1/s)] , s→ +∞;

(4.35)
f(s; z, ξ)=−(1/2)(−s)−(κ−iψ(z,ξ))/2e−|s|

κ+1/(κ+1) [1+O (1/s)] , s→ −∞;

(4.36)
g(s; z, ξ) = −(1/2)s−(κ+iψ(z,ξ))/2e−|s|

κ+1/(κ+1) [1 + O (1/s)] , s→ +∞;

(4.37)
g(s; z, ξ) = (1/2)(−s)−(κ+iψ(z,ξ))/2e|s|

κ+1/(κ+1) [1 + O (1/s)] , s→ −∞,

where we have written ψ(z, ξ) = ϕ(z, ξ)/E(z, ξ)1/2.
Similarly, when κ is odd, we have two linearly independent functions f, g,

both in the kernel of q such that
(4.38)
f(s; z, ξ) = (1/2)s−(κ−iψ(z,ξ))/2e|s|

κ+1/(κ+1) [1 + O (1/s)] , s→ +∞;

(4.39)
f(s; z, ξ)=−(1/2)(−s)−(κ+iψ(z,ξ))/2e−|s|

κ+1/(κ+1) [1+O (1/s)] , s→ −∞;

(4.40)
g(s; z, ξ) = −(1/2)s−(κ+iψ(z,ξ))/2e−|s|

κ+1/(κ+1) [1 + O (1/s)] , s→ +∞;

(4.41)
g(s; z, ξ) = (1/2)(−s)−(κ−iψ(z,ξ))/2e|s|

κ+1/(κ+1) [1 + O (1/s)] , s→ −∞.

The terms O(1/s) are uniform for z near 0 in Cm for ξ in Rm \ {0}:
this follows from Theorem 6.1 of Sibuya [13], since the same is true for the
coefficient of sκ−1 in (4.32). Similar uniform asymptotics are valid for the
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derivatives of f and g. These series can be obtained by formal differentiation
of the given series.

We introduce G, the Green’s function for q. We have

G(s, s′; z, ξ) = W (z, ξ)−1 [g(s; z, ξ)f(s′; z, ξ)H(s− s′) + g(s′; z, ξ)

f(s; z, ξ) H(s′ − s)] ,

where H denotes the Heaviside function

H(s) = 1, s > 0; H(s) = 0, s < 0,

and W denotes the Wronskian of f and g.
The asymptotics for f and g show that there exists a constant C > 0

such that

C−1 6 |W (z, ξ)| 6 C

for for z near 0 in Cm for ξ in Rm \ {0}.
Using the aymptotics above, (or following arguments of Menikoff [9]), we

have C > 0 such that

(4.42)
∫ +∞

−∞
|s′|j |G(s, s′; z, ξ)|ds′ 6 C, 0 6 j 6 2κ,

for all s ∈ R, z near 0 in Cm and ξ in Rm \ {0}.
We denote by G#(s, s′; z, ξ) the Green’s function for q#. We see that we

have

G#(s, s′; z, ξ) = W#(z, ξ)−1
[
g#(s; z, ξ)f#(s′; z, ξ)H(s− s′)(4.43)

+ g#(s′; z, ξ)f#(s; z, ξ)H(s′ − s)
]
,

where W#(z, ξ) denotes the Wronskian of f#, g#. Clearly we have C > 0
such that

C−1 6 |W#(z, ξ)| 6 C

for z near 0 in Cm and ξ in Rm \ {0}.
We now obtain the analog of (4.42). There exists C > 0 such that

(4.44)
∫ +∞

−∞
|s′|j |G#(s, s′; z, ξ)|ds′ 6 C, 0 6 j 6 2κ,

for all s ∈ R, z near 0 in Cm and ξ in Rm \ {0}.
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4.5. Final Estimates

We begin by defining

U#(z, s, ξ) = I[u](z, s|ξ|−1/(κ+1), ξ),

V #(z, s, ξ) = |ξ|−2/(κ+1)I[Pu](z, s|ξ|−1/(κ+1), ξ).

We now make use of formula (4.22). We see that we have

(4.45) Q#U# ∼ |ξ|2/(κ+1)V #.

Making use of (4.30) and (4.31) we obtain

(4.46) (q# − T#)U# ∼ V #

and hence

(4.47) (I −G#T#)U# ∼ G#V #.

Here G# will denote both the operator and the Green’s function for q#.
Recall that I[u] has compact support in t. We choose χ ∈ C∞

0 (R) such
that

I[u](z, t, ξ) = χ(t)I[u](z, t, ξ)

for all (z, t, ξ). Define χ#(s, ξ) = χ(s|ξ|−1/(κ+1)). Hence it follows from
(4.47) that we have

(4.48) (I − χ#G#T#)U# ∼ χ#G#V #.

It follows by induction that we have

(4.49) U# ∼ (χ#G#T#)NU# +

N−1∑
j=0

(χ#G#T#)j

χ#G#V #,

for all N > 1.
Now we introduce the spaces where we shall work. First choose ρ > 0

small, such that χ is supported in the interval {|t| 6 ρ}. Let H(τ) denote
the Banach space of all continuous functions on the closure of Bτ × R,
which are holomorphic on

(4.50) Bτ = {z ∈ Cm : |zj | < τ, j = 1, . . . ,m}

for each s ∈ R and vanish for |s| > ρ|ξ|1/(κ+1). We must keep in mind that
the spaces H(τ) depend on ξ.

If v(z, s) ∈ H(τ) we set

‖v‖τ = sup{|v(z, s)| : z ∈ Bτ , s ∈ R}.

TOME 59 (2009), FASCICULE 2



616 Paulo D. CORDARO & Nicholas HANGES

We wish to estimate ‖(χ#G#T#)M‖τ,τ ′ for 0 < τ ′ < τ , where ‖ · ‖τ,τ ′
denotes the norm in the space of bounded linear operators between H(τ)
and H(τ ′) and M is an arbitrary positive integer.

We begin by studying χ#G#T1. We have, for v ∈ H(τ) and τ small
enough,∣∣(χ]G]T ])(v)(z, s; ξ)∣∣ =

∣∣∣∣χ(
s|ξ|−1/(κ+1)

) ∫
G](s, s′)(T1)(v)(z, s′, ξ) ds′

∣∣∣∣
6 Cρ

(∫
|s′|2κ |G](s, s′; z, ξ)|ds′

)
‖v‖τ ,

by (4.26) and (4.44), since |s′||ξ|−1/(κ+1) 6 ρ on the support of v. Hence
there exist C > 0 and τ0 > 0, depending only on the operator P , such that

(4.51) ‖(χ#G#T1)M‖τ,τ 6 (ρC)M ,

for all M and 0 < τ < τ0.
Using similar arguments, we may also estimate χ#G#S, where S is the

first term in T2. We see that there exist C > 0 and 0 < τ ′ < τ , such that
for all M > 1 we have

(4.52) ‖(χ#G#S)M‖τ,τ ′ 6 |ξ|−M/(κ+1)CM .

The second term in T2 is |ξ|−2/(κ+1)(b+Rb,δ) and we see that χ#G#(b+
Rb,δ) can be written as

(4.53) χ#G#(b+Rb,δ) =
∑

06j6δ|ξ|

B#
j

|ξ|j
,

where B#
j satisfies the following : there exist D > 0 and τ0 > 0 such that

we have

(4.54) ‖B#
j ‖τ,τ ′ 6

Djjj

(τ − τ ′)j
,

for all j > 0 and all 0 < τ ′ < τ < τ0. Since

(4.55) (χ#G#(b+Rb,δ))M =
∑

06j`6δ|ξ|

B#
j1
· · ·B#

jM

|ξ|j1+···+jM

we have

(4.56) ‖(χ#G#(b+Rb,δ))M‖τ,τ ′ 6
∑
j`>0

(
Dδ

τ − τ ′

)j1+···+jM
.
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We choose δ > 0 and 0 < τ ′ < τ such that Dδ/(τ − τ ′) < 1 and then we
obtain

(4.57) ‖(χ#G#(b+Rb,δ))M‖τ,τ ′ 6 CM

for some constant C > 0.
Thus, from (4.52) and (4.57), there are 0 < τ ′ < τ and C > 0 such that,

if δ > 0 is small enough,

(4.58) ‖(χ#G#T2)M‖τ,τ ′ 6 |ξ|−M/(κ+1)CM .

Next we estimate (χ#G#T3)N using the same methods, combined with
the asymptotics (4.34) - (4.41) for the derivatives of f and g and the anal-
ogous estimate of (4.44) for ∂G#/∂s′. We see that there exists C > 0 and
0 < τ ′ < τ , such that for all M > 1 we have

(4.59) ‖(χ#G#T3)M‖τ,τ ′ 6 |ξ|
−M
κ+1CM .

Finally we estimate (χ#G#T4)N . We see, using the estimates (4.44), that
χ#G#T4 can be written as

(4.60) χ#G#T4 =
∑
j>1

B##
j

|ξ|j
,

where B##
j satisfies the following : there exist D̃ > 0 and τ0 > 0 such that

we have

(4.61) ‖B##
j ||τ,τ ′ 6

D̃jjj

(τ − τ ′)j
,

for all j > 1 and all 0 < τ ′ < τ < τ0. It then follows, as before, that for all
M ,

(4.62) ‖(χ#G#T4)M‖τ,τ ′ 6
∑
j`>1

(
Dδ

τ − τ ′

)j1+···+jM
.

Since j > 1 in the summation we see that given ε > 0 we can choose δ > 0
and 0 < τ ′ < τ such

(4.63) ‖(χ#G#T4)M‖τ,τ ′ 6 εM .

If we combine estimates (4.51), (4.58), (4.59) and (4.63) we obtain the
following: there exist 0 < τ ′ < τ , δ > 0, C > 0 such that

(4.64) ‖(χ#G#T#)M‖τ,τ ′ 6 2(Cρ)M

for all M > 1 and all large ξ in a conic neighborhood of ξ0.
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From this the proof of Proposition 4.1 can be easily concluded. It follows
from (4.11) and (4.49) that there exist C, η > 0 such that
(4.65)
‖U#‖τ ′ 6 ‖(χ#G#T#)NU#‖τ ′ + Ce−η|ξ| 6 2(Cρ)N‖U#‖τ + Ce−η|ξ|.

We know that we have, for some C > 0 and R > 0,

‖U#‖τ 6 CeR|ξ|.

Hence, if ρ > 0 is small and N > |ξ| we see that there exists a new
constant C > 0 such that

(4.66) ‖U#‖τ ′ 6 C
(
e−|ξ| + e−η|ξ|

)
for ξ in a conic neighborhood of ξ0. Then (0, 0; ξ0, 0) /∈ WFA(u) and the
proof is complete.
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