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HOLOMORPHIC RETRACTIONS AND BOUNDARY
BEREZIN TRANSFORMS

by Jonathan ARAZY, Miroslav ENGLIŠ & Wilhelm KAUP (*)

Abstract. — In an earlier paper, the first two authors have shown that the
convolution of a function f continuous on the closure of a Cartan domain and a K-
invariant finite measure µ on that domain is again continuous on the closure, and,
moreover, its restriction to any boundary face F depends only on the restriction
of f to F and is equal to the convolution, in F , of the latter restriction with
some measure µF on F uniquely determined by µ. In this article, we give an
explicit formula for µF in terms of F , showing in particular that for measures
µ corresponding to the Berezin transforms the measures µF again correspond to
Berezin transforms, but with a shift in the value of the Wallach parameter. Finally,
we also obtain a nice and simple description of the holomorphic retraction on these
domains which arises as the boundary limit of geodesic symmetries.

Résumé. — Dans un papier antérieur, les deux premiers co-auteurs ont démon-
tré que la convolution d’une fonction f continue sur l’adhérence d’un domaine de
Cartan avec une mesure finie µ K-invariante dans ce domaine est aussi continue
sur l’adhérence. De plus, sa restriction à chaque face F de la frontière dépend uni-
quement de la restriction de f sur F et est égale à la convolution, dans F , de cette
restriction-la, avec une certaine mesure µF sur F , déterminée uniquement par µ.
Dans cet article nous donnons une formule explicite pour µF en termes de F , en
montrant plus particulièrement que pour des mesures µ correspondant à des trans-
formées de Berezin, les mesures µF correspondent à nouveau à des transformées
de Berezin mais avec un décalage dans la valeur du paramètre de Wallach. Enfin,
nous obtenons aussi une description simple et jolie d’une rétraction holomorphique
sur ces domaines qui découle de la limite à la frontière de symétries géodésiques.

1. Introduction

Let Ω = G/K be an irreducible bounded symmetric domain in Cd in its
Harish-Chandra realization (i.e. a Cartan domain), with rank r and charac-
teristic multiplicities a and b. Here G is the identity connected component

Keywords: Berezin transform, Cartan domain, convolution operator.
Math. classification: 32M15, 17C27, 53C35.
(*) The second author was supported by GA AV ČR grant A1019304 and Ministry of
Education research plan no. MSM4781305904.
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of the biholomorphic automorphism group Aut(Ω) of Ω, and K ⊂ G the
subgroup stabilizing the origin 0 ∈ Ω. Under the action of G, the topological
boundary ∂Ω has a decomposition

∂Ω = ∂1Ω ∪ · · · ∪ ∂rΩ

into G-orbits; each ∂lΩ, l = 1, . . . , r, is a disjoint union of boundary faces,
which are also Cartan domains in their own right, except that they are
of lower dimension and have their center not at the origin but at some
point v ∈ ∂lΩ. The group G acts on ∂Ω by mapping the face Ω(v) centered
at v ∈ ∂lΩ into Ω(ṽ) with some ṽ ∈ ∂lΩ. Also, the Cartan domain Ω(v),
v ∈ ∂lΩ, has the same multiplicities a, b as Ω, and rank r−l; in particular, if
l = r then Ω(v) reduces to a point, and ∂rΩ is exactly the Shilov boundary
of Ω.

For any K-invariant finite measure µ on Ω which is absolutely continuous
with respect to the Lebesgue measure, consider the convolution operator

(1.1) Bµ : f 7→ f ∗ µ

acting on functions on Ω. That is,

(1.2) Bµf(x) :=
∫

Ω

f ◦ φ dµ where φ ∈ G, φ(0) = x.

Owing to the K-invariance of µ, the right-hand side does not depend on the
choice of φ satisfying φ(0) = x, so the definition is unambiguous. One can
take for φ e.g. the geodesic symmetry φx ∈ G interchanging x and the
origin, or the transvection gx defined by gx(z) := φx(−z). Note that for

(1.3) dµ(z) = cνh(z, z)ν−p dz,

where h(x, y) is the Jordan triple determinant, p = (r − 1)a + b + 2 is the
genus of Ω, dz stands for the Lebesgue measure, and cν is the normaliza-
tion constant making dµ a probability measure, the operator Bµ coincides
with the celebrated Berezin transform corresponding to the Wallach pa-
rameter ν > p− 1 ([5], [12], [14], [3], [16], [6]).

In [10] it has been shown that if x → a ∈ ∂Ω, then gx → ga, locally
uniformly on Ω, where the limit ga is a holomorphic retraction of Ω onto
the boundary face containing a. Further, if a ∈ Ω(v) and α = a − v, then
ga = gvgα = gαgv, where in the last occurrence gα is understood in the
Cartan domain Ω(v) rather than in Ω.

In [1], two of the present authors showed that the existence of the re-
traction ga has important consequences for the boundary behaviour of the
convolution operators Bµ. Namely, whenever f is a continuous function on
Ω which extends continuously to Ω∪Ω(v), then the convolution Bµf = f ∗µ
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BOUNDARY BEREZIN TRANSFORMS 643

is also continuous on Ω ∪ Ω(v); further, the restriction of Bµf to Ω(v) de-
pends only on the restriction of f to Ω(v), and the operator

(1.4) f
∣∣
Ω(v)

7→ (Bµf)
∣∣
Ω(v)

is again an operator of the form (1.1), except that the convolution is taken
in Ω(v) rather than in Ω and in the place of µ there is some Kv-invariant
finite measure µv on Ω(v) (Kv being the K-group for Ω(v) ∼= Gv/Kv).

The actual determination of the measures µv from µ and v remained an
open problem in [1]; in particular, it was conjectured there that for the case
(1.3) of the Berezin transforms, the operators (1.1) are also of that type,
though possibly with different ν.

The aim of this note is to prove the last conjecture in full: we exhibit an
explicit formula relating µ and µv, which implies in particular that if µ is of
the form (1.3) and v ∈ ∂lΩ, then µv is also of the form (1.3) — taken in the
Cartan domain Ω(v) instead of Ω — except that ν gets replaced by ν− la

2 .
The proof goes by transferring everything, via the Cayley transform, from
the bounded domain Ω into its unbounded realization as Siegel domain
of type II, where additional computational machinery is available. This is
done in Section 2.

Our second result is that the unbounded realization also yields a very
simple formula for the holomorphic retraction gv: namely, upon conjugation
with the Cayley transform, gv becomes simply the orthogonal projection
onto (the image of) the corresponding boundary face Ω(v). This is proved
in Section 3, where also the special case of matrix balls — i.e. of Cartan
domains of type I in the notation of Hua’s book [9] — is worked out as an
example.

2. The measures µv

As in the Introduction let Ω = G/K be a Cartan domain in Cd of
type (r, a, b), given in its Harish-Chandra realization; and let φx and gx,
x ∈ Ω, be the geodesic symmetries interchanging x and the origin and the
transvections gx(z) = φx(−z), respectively.

We will use the language of Jordan theory, see e.g. [11], [7] or [2] for
the details and notation. In particular, we let Z (∼= Cd) stand for the JB*-
triple whose unit ball is Ω, {xyz} for the triple product of Z, D(x, y) for the
multiplication operators D(x, y)z = {xyz}, and Q(x) for the (antilinear)
quadratic operator Q(x)z = {xzx}. An element v ∈ Z is a tripotent if
{vvv} = v. Two tripotents u, v are said to be orthogonal if D(u, v) = 0

TOME 59 (2009), FASCICULE 2



644 Jonathan ARAZY, Miroslav ENGLIŠ & Wilhelm KAUP

(this is equivalent to D(v, u) = 0). Associated to a tripotent v is the Peirce
decomposition

(2.1) Z = Z1(v)⊕ Z1/2(v)⊕ Z0(v),

with Zν(v) = Ker(D(v, v)−ν) for ν = 0, 1
2 , 1. Each Zν(v) is a subtriple of Z,

and Z1(v) is a JB*-algebra under the product x ◦ y = {xvy}, with unit v

and involution z∗ = {vzv}. A tripotent v is called minimal if dim Z1(v) = 1
and is called maximal if Z0(v) = 0.

To a system e1, . . . , em of pairwise orthogonal tripotents, there is simi-
larly associated the joint Peirce decomposition

(2.2) Z =
⊕

06i6j6m

Zij

of Z into subspaces

(2.3) Zij =
{

z ∈ Cd : D(ek, ek)z =
δik + δjk

2
z0,∀k = 1, . . . ,m

}
,

of which (2.1) is a special case (for m = 1).
Any maximal system of pairwise orthogonal minimal tripotents e1, . . . , er

is called a frame; its cardinality r is the same for all frames in Z and equal
to the rank of Ω. The characteristic multiplicities

a :=

{
2, r = 1

dim Z12, otherwise

and
b := dim Z01

then depend neither on the ordering nor on the choice of the frame
e1, . . . , er.

Any z ∈ Z can be written in the form (called the “polar-spectral decom-
position” of z)

z = k(t1e1 + · · ·+ trer),

where k ∈ K and t1 > t2 > · · · > 0. The numbers t1, . . . , tr depend
only on z (but not on the Jordan frame e1, . . . , er used) and generalize the
singular values of rectangular matrices. Further, z belongs to Ω, ∂Ω or ∂lΩ
(l = 1, . . . , r), respectively, if and only if t1 < 1, t1 = 1, or 1 = t1 = · · · =
tl > tl+1 > · · · > tr; and z is a tripotent in ∂lΩ (or, a tripotent of rank l)
if and only if t1 = · · · = tl = 1, tl+1 = · · · = tr = 0. For any such tripotent,
the intersection

Ω0(v) := Ω ∩ Z0(v)

ANNALES DE L’INSTITUT FOURIER



BOUNDARY BEREZIN TRANSFORMS 645

is a Cartan domain of type (r − l, a, b), and its translate

Ω(v) := v + Ω0(v)

is precisely the boundary face centered at v. (The closure Ω(v) is a face in
the sense of convex geometry, i.e. intersection of Ω with a supporting real
hyperplane in Z. Further, Ω(v) is also a “holomorphic arc component” in
the sense of being a maximal set whose points can be connected to one
another by a chain of holomorphic images of the disc. See [11], Chapter 6.)
All boundary faces arise in this way. The element

e := e1 + e2 + · · ·+ er

is a maximal tripotent.
Recall that in any Jordan algebra J with unit e and product x ◦ y an

element x is called invertible if it has a (necessarily unique) inverse y =:
x−1 satisfying x ◦ y = e and x2 ◦ y = x. In the special case that the
Jordan algebra arises as J = Z1(e) for a tripotent of the JB*-triple Z,
the invertibility of z ∈ J is equivalent to the invertibility of the operator
Q(z) on J and then z−1 = Q(z)−1Q(e)z. In particular, taking the inverse
is a rational map on J that can be written (see e.g. [15, Chapter 4]) in
exact (i.e. reduced) form as z−1 = p(z)/N(z), where p : J → J is a
polynomial which generalizes the matrix adjoint and N : J → C is a
polynomial called the determinant polynomial, or Koecher norm, of the
Jordan algebra. In particular, fixing a Jordan frame e1, . . . , er of Z the
above applies to the Jordan algebras Z1(e1 + · · ·+ej), 1 6 j 6 r; we denote
the corresponding determinant polynomials by Nj and extend them to all
of Z by defining Nj(z) := Nj(P1j(z)), where P1j is the canonical projection
of Z onto Z1(e1 + · · ·+ ej) given by the Peirce decomposition (2.1). For an
r-tuple m = (m1, . . . ,mr) of integers satisfying m1 > m2 > · · · > mr > 0,
the conical polynomial Nm associated with m is

Nm := Nm1−m2
1 Nm2−m3

2 · · ·Nmr
r .

In particular,

Nm
( r∑

j=1

tjej

)
=

r∏
j=1

t
mj

j .

For all z ∈ Z and all λ = (λ1, . . . , λr) ∈ Cr such that for some integer l

Nj(z) > 0, ∀j 6 l and λk = 0, ∀k > l

we can even define

(2.4) Nλ(z) :=
l∏

j=1

N
λj−λj+1
j (z),

TOME 59 (2009), FASCICULE 2



646 Jonathan ARAZY, Miroslav ENGLIŠ & Wilhelm KAUP

where for convenience we have put λr+1 := 0. This applies, in particular,
for l = r to all z in the convex cone

Λ :=
{
expx : x = x∗ ∈ Z1(e)

}
of positive elements in Z1(e) since Nj > 0 on Λ for all j.

The Cayley transform γ = γ[Ω,e] associated with the domain Ω and a
maximal tripotent e ∈ Z is defined by(1)

(2.5)
γ(z) = (e− z1) ◦ (e + z1)−1 − 2{(e + z1)−1, e, z1/2}

= {e− z1 − 2z1/2 , e , (e + z1)−1},

for z = z1 + z1/2 ∈ Z1(e)⊕Z1/2(e) = Z. Let F : Z1/2(e)×Z1/2(e) → Z1(e)
be the Z1(e)-valued Hermitian form

F (x, y) := {x, y, e},

and define

τ(z) :=
z1 + z∗1

2
− F (z2, z2).

Then the Cayley transform (2.5) maps Ω biholomorphically onto the Siegel
domain

(2.6) S := {z ∈ Z : τ(z) ∈ Λ}.

Its inverse is given by

γ−1(w) = (e− w1) ◦ (e + w1)−1 − 4{(e + w1)−1, e, w2}

= {e− w1 − 4w2, e, (e + w1)−1}.

The following lemma is immediate from the definition (2.5) of γ. Note that
γ maps e into 0 and 0 into e.

Lemma 2.1. — Let e = e1 + · · · + er be a maximal tripotent and v =
e1 + · · ·+ el a tripotent of rank l. Then for any x ∈ Z0(v),

γ(v + x) = 0 + γ[Ω0(v),e−v](x),

γ(0 + x) = v + γ[Ω0(v),e−v](x),

γ−1(v + x) = 0 + (γ[Ω0(v),e−v])−1(x),

γ−1(0 + x) = v + (γ[Ω0(v),e−v])−1(x),

where γ[Ω0(v),e−v] stands for the Cayley transform associated with the Car-
tan domain Ω0(v) and its maximal tripotent e− v.

(1) The Cayley transform defined here differs slightly from the one used by many other
authors (that will also occur in Section 3).

ANNALES DE L’INSTITUT FOURIER
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In particular, γ maps the boundary face Ω(v) of Ω biholomorphically
onto the boundary face S0(v) of S, where

S0(v) = the interior of S ∩ Z0(v)

(where the interior is understood in Z0(v), and the bar over S denotes the
closure).

It has been proved in [14] (see also [4]) that for “any” linear operator T

on C∞(Ω) which commutes with G, i.e.

T (f ◦ φ) = (Tf) ◦ φ, ∀φ ∈ G,

the functions

eλ(z) := Nλ(τ(γ(z))), z ∈ Ω, λ ∈ Cr,

are eigenfunctions of T :

(2.7) Teλ = T̃ (λ)eλ,

for any λ for which eλ belongs to the domain of T . This applies, in par-
ticular, to all G-invariant differential operators T on Ω, as well as to all
convolution operators T = Bµ of the form (1.1) with K-invariant finite
measures µ. For the former, Teλ is defined for any λ ∈ Cr and the map
T 7→ T̃ (λ + ρ), with ρ defined by

ρj =
j − 1

2
a +

b + 1
2

, j = 1, . . . , r,

is known as the Harish-Chandra isomorphism; its image consists precisely
of all polynomials on Cr invariant under the Weyl group W generated by all
permutations of the coordinates λ1, . . . , λr and the sign change λ1 7→ −λ1.
For T = Bµ, we will write just µ̃(λ) instead of T̃ (λ); note that in view of
the K-invariance of µ, we then have Teλ = Tφλ where φλ are the spherical
functions

φλ(z) :=
∫

K

eλ(kz) dk,

dk being the normalized Haar measure on K. It is known that, unlike eλ

which is always unbounded, φλ is a bounded function on Ω whenever λ be-
longs to the set

W := the closed convex hull of {ρ + πρ : π ∈ W}.

Since µ is assumed to be finite, µ̃ is thus defined at least for λ ∈ W (in par-
ticular — on some open set containing ρ) and is analytic there. Finally,
for µ of the form (1.3) (so that Bµ is a Berezin transform), the eigenvalues

TOME 59 (2009), FASCICULE 2
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were computed explicitly by Unterberger and Upmeier [14] (see also [4]):
the result is

(2.8) µ̃(λ) =
r∏

j=1

Γ(ν + λj − d
r −

j−1
2 a)Γ(ν + 2ρj − λj − d

r −
j−1
2 a)

Γ(ν − d
r −

j−1
2 a)Γ(ν + 2ρj − d

r −
j−1
2 a)

.

Theorem 2.2. — Let µ be a K-invariant measure on Ω, absolutely
continuous with respect to the Lebesgue measure, v a tripotent of rank l,
Ω(v) the boundary face with center v and µv the associated measure on
the Cartan domain Ω0(v). Then

µ̃v(λ1, . . . , λr−l) = µ̃(λ1, . . . , λr−l, 0, . . . , 0)

for all (λ1, . . . , λr−l, 0, . . . , 0) ∈ W .

Note that in view of the injectivity of the Harish-Chandra transform
µ 7→ µ̃, the formula in Theorem 2.2 determines the measure µv uniquely.

Proof. — Choosing a suitable Jordan frame, we may assume that v =
er−l+1+· · ·+er. Let γ and S be the Cayley transform and the Siegel domain,
respectively, associated to the maximal tripotent e = e1 + · · ·+ er. We will
use the subscript [v] or the superscript [v] to denote objects corresponding to
the Cartan domain Ω0(v) and the boundary face Ω(v) = v + Ω0(v) instead
of Ω; in particular, the ambient complex space is Z[v] = Z0(v), the element

e[v] := e− v = e1 + · · ·+ er−l

is a maximal tripotent of Ω0(v), and the Cayley transform γ[v] associ-
ated to Ω0(v) and e[v] coincides with the γ[Ω0(v),e−v] from Lemma 2.1,
which also relates it to the Cayley transform (2.5) associated with Ω and e.
The same lemma also shows that the corresponding Siegel domain S[v] =
γ[v](Ω0(v)) coincides with the boundary face γ(Ω(v)) = S0(v) of S. Fur-
ther, Z

[v]
1/2(e[v]) = Z0(v) ∩ Z1/2(e) and F (x, y) = {x, y, e} = {x, y, e[v]} =

F[v](x, y) for x, y ∈ Z0(v)∩Z1/2(e); it follows that τ[v] is just the restriction
of τ to Z0(v), and its image is contained in Z0(v)∩Z1(e). Finally, the Jor-
dan algebras Z1(e1 + · · · + ej), 1 6 j 6 r − l, are the same for Ω0(v) as
for Ω, since they are contained in Z0(v) ∩ Z1(e). It follows that

(2.9) N
[v]
j (τ[v](w)) = Nj(τ(w)) > 0, ∀j = 1, . . . , r − l, ∀w ∈ S0(v),

and

N
(λ1,...,λr−l)
[v] (τ[v](w)) = N (λ1,...,λr−l,0,...,0)(τ(w)), ∀w ∈ S0(v)

where the right-hand side makes sense in view of (2.4) and (2.9).
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Combining this with the facts about the Cayley transforms mentioned a
few lines above and with Lemma 2.1, we get

(2.10)
e
[v]
λ (x) = Nλ

[v](τ[v](γ[v](x)))

= N (λ,0)(τ(γ(v + x))) = e(λ,0)(v + x), ∀x ∈ Ω0(v),

where, for brevity, we write (λ1, . . . , λr−l) = λ and (λ1, . . . , λr−l, 0, . . . , 0) =
(λ, 0), and e(λ,0) is extended continuously to Ω(v) via (2.9). Consequently,
for any x ∈ Ω0(v),

µ̃v(λ)e[v]
λ (x) = (B[v]

µv
e
[v]
λ )(x) by (2.7)

= (Bµe(λ,0))(v + x) by the definition of µv

= µ̃(λ, 0)e(λ,0)(v + x) by (2.7) again

= µ̃(λ, 0)e[v]
λ (x).

Since e
[v]
λ does not vanish identically on Ω0(v) (for instance, e

[v]
λ (0) = 1),

we must have µ̃v(λ) = µ̃(λ, 0), which proves the theorem. �

Corollary 2.3. — If µ is of the form (1.3) for some ν > p−1, then µv

is of the same form (with respect to Ω0(v)) only with ν replaced by ν− la
2 ,

where l = rank v.

Proof. — For µ as in (1.3) we have by (2.8)

µ̃(λ1, . . . , λr−l, 0, . . . , 0)(2.11)

=
r∏

j=1

Γ(ν + λj − d
r −

j−1
2 a)Γ(ν + 2ρj − λj − d

r −
j−1
2 a)

Γ(ν − d
r −

j−1
2 a)Γ(ν + 2ρj − d

r −
j−1
2 a)

=
r−l∏
j=1

Γ(ν + λj − d
r −

j−1
2 a)Γ(ν + 2ρj − λj − d

r −
j−1
2 a)

Γ(ν − d
r −

j−1
2 a)Γ(ν + 2ρj − d

r −
j−1
2 a)

.

On the other hand, for Ω0(v) =: Ω[v] in the place of Ω we have r[v] = r− l,
a[v] = a, b[v] = b, so ρ

[v]
j = ρj while

d[v]

r[v]
=

r[v] − 1
2

a[v] + b[v] + 1 =
r − l − 1

2
a + b + 1 =

d

r
− la

2
.

Thus for a measure η of the form (1.3) but on Ω0(v) and with σ in the
place of ν we have

TOME 59 (2009), FASCICULE 2



650 Jonathan ARAZY, Miroslav ENGLIŠ & Wilhelm KAUP

η̃(λ1, . . . , λr−l)(2.12)

=
r−l∏
j=1

Γ(σ + λj−d[v]

r[v]− j−1
2 a[v])Γ(σ + 2ρ

[v]
j −λj−d[v]

r[v]− j−1
2 a[v])

Γ(σ−d[v]

r[v]− j−1
2 a[v])Γ(σ + 2ρ

[v]
j −d[v]

r[v]− j−1
2 a[v])

=
r−l∏
j=1

Γ(σ + λj−d
r + la

2 −
j−1
2 a)Γ(σ + 2ρj−λj−d

r + la
2 −

j−1
2 a)

Γ(σ−d
r + la

2 −
j−1
2 a)Γ(σ + 2ρj−d

r + la
2 −

j−1
2 a)

.

Comparing (2.11) and (2.12), we see that µ̃ = η̃ if ν = σ + la
2 . Since the

function η̃ determines η uniquely, this completes the proof. �

Note that since ρ[v] = ρ, we have W[v] = W ∩ (Cr−l × {0}), so that
(λ, 0) ∈ W whenever λ ∈ W[v].

We also remark that the relation σ = ν − la
2 can be rewritten as

ν − p− 1
2

= σ − p[v] − 1
2

.

In particular, ν > p−1 implies that σ > p[v]+p
2 −1 = p[v]−1+ la

2 > p[v]−1
as well.

3. The retraction ρv on Siegel domains

Consider again a bounded symmetric domain Ω ⊂ Z in its Harish-
Chandra realization that is not necessarily irreducible in the sequel.
Throughout we denote by σ ∈ K ⊂ G the symmetry at the origin de-
fined by σ(z) = −z. For every a ∈ Ω we will describe in more detail the
limit transvection

ga := lim
Ω3x→a

gx

on Ω by using a suitable Siegel domain realization. The image of ga is
known to be a holomorphic arc component Ω(v) of Ω for some tripotent
v ∈ Z. Because of ga = ggvg−1 for a suitable g ∈ G it is enough to study
the special case a = v for a fixed tripotent v ∈ Z in the following. There
exists an open connected neighbourhood U ⊂ Z of Ω ∪ Ω(v) such that gv

extends to a holomorphic map gv : U → U with gv = g2
v and range Ω(v)

— thus justifying the name “limit retraction”.
Consider the Peirce decomposition (2.1) associated to v and let Pν =

Pν(v) ∈ End(Z) stand for the canonical projection with range Zν(v) for
ν = 1, 1/2, 0. Also let e ∈ Z be a maximal tripotent such that v, e− v are
orthogonal tripotents in Z. With γ = γ[Ω,e] we denote the Cayley transform
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as defined in Section 2. Then γ maps Ω biholomorphically onto the Siegel
domain S, see (2.6), and Ω(v) onto S0(v). The main result of this section
now states that gv gets a very simple form when transformed to the Siegel
domain S.

Theorem 3.1. — γgvγ−1 on the Siegel domain S is nothing but the
Peirce-0-projection P0(v) restricted to S.

Instead of Theorem 3.1 we prove the more general Theorem 3.2 below
and start with some preliminaries: Denote by M be the compact dual of the
bounded symmetric domain Ω. Then, in particular, M is a homogeneous
complex manifold containing Z as a dense open subset and such that every
g ∈ Aut(Ω) extends to a biholomorphic automorphism of M . In this sense
we consider Aut(Ω) as a subgroup of Aut(M). The identity connected com-
ponent L of Aut(M) is a complex Lie group containing G as a real form,
that is, l = g⊕ ig for the Lie algebra l of L.

Now for the vector field ξ := (v + {zvz}) ∂/∂z ∈ ig ⊂ l,

(3.1) κv := exp
(π

4
ξ
)
∈ L

is the partial Cayley transform defined by v (see Loos [11], Section 10).
It maps Ω biholomorphically onto the Siegel domain of third kind

D :=
{
z1 ⊕ z1/2 ⊕ z0 ∈ Z = Z1(v)⊕ Z1/2(v)⊕ Z0(v) :

<
(
z1 − Fz0(z1/2, z1/2)

)
∈ Λv and z0 ∈ Ω

}
.

Here Λv ⊂ Z1(v) is again the positive cone Λv := {expx : x = x∗ ∈ Z1(v)}
with <(x) := (x + x∗)/2 for x ∈ Z1(v). Also for every z0 ∈ Z0(v), the
sesquilinear map Fz0 : Z1/2(v)×Z1/2(v) → Z1(v) is defined by Fz0(y, y′) =
{y, (I + Φz0)

−1y′, v} with Φz0 ∈ End
(
Z1/2(v)

)
given by y 7→ 2{eyz0}.

The partial Cayley transform satisfies κ−1
v = κ−v and κ8

v = idM for
its eighth power. With respect to the Peirce decomposition Z = Z1(v) ⊕
Z1/2(v)⊕ Z0(v) it is given by the explicit formula

(3.2) κv(z1 ⊕ z1/2 ⊕ z0) =
{
(v − z1)−1, v, v + z1 + 2

√
2z1/2

}
+ {z1/2, (v − z∗1)−1, z1/2}+ z0

provided (v − z1) is invertible in the unital Jordan algebra Z1(v).
As projective algebraic manifold M is rational and every λ ∈ End(V ) can

be extended to a meromorphic selfmap of M that we also denote by λ, see
Remark 3.3. In particular, every Peirce projection on Z can be considered
as a meromorphic selfmap of M . Since gv on Ω is given by

(3.3) gv(z) = v + z0 − {z1/2, (v + z∗1)−1, z1/2}
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(see [10] or [1]), gv also can be considered as a meromorphic map on M .
In this sense we can state the next result (where in contrast to Theorem 3.1
the tripotent e is not assumed to be maximal).

Theorem 3.2. — Let u, v ∈ Z be orthogonal tripotents and e := u+ v.
Then gv is a meromorphic selfmap of M with gvκe = κeP0, where P0 =
P0(v).

Proof. — In a first step we consider the special case u = 0, that is e = v.
Then σκvσ = κ−v and by (3.2) we have

P0κvσ(z) = {z1/2, (v + z∗1)−1, z1/2} − z0

on Ω. On the other hand, by (3.2) and (3.3) we have

κvσgv(z) = −z0 + {z1/2, (v + z∗1)−1, z1/2}.

This implies P0κvσ = κvσgv = κvg−vσ and thus, replacing v by −v, the
claim follows for the special case u = 0.

In the second step we consider the case u 6= 0. Since κu commutes with
D(v, v) it also commutes with P0 = P0(v). But then

gvκe = gvκvκu = κvP0κu = κvκuP0 = κeP0.

�

It remains to note that Theorem 3.2 implies Theorem 3.1 in case e is a
maximal tripotent. Indeed, δ := P1(e) +

√
2P1/2(e) commutes with P0 =

P0(v) and κeσ = δγ gives γgvγ−1 = δ−1κeσgvσκ−eδ = δ−1κeg−vκ−eδ =
δ−1P0δ = P0. �

Remark 3.3. — A few words concerning the notion of a “meromorphic
mapping”, see also [13] p. 830: Suppose that M,N are connected complex
manifolds and that PN is the power set of N , that is, the set of all subsets
of N . We consider N in the canonical way as subset of PN by identifying
every x ∈ N with {x} ∈ PN . Now a mapping h : M → PN is called a
meromorphic map from M to N if

(i) The graph {(x, y) ∈ M×N : y ∈ h(x)} is a complex analytic subset
of M×N , that is, locally given by the solution set of a finite system
of holomorphic equations.

(ii) There is an open dense subset U ⊂ M with h(U) ⊂ N ⊂ PN .
(iii) Γ is the closure of Γ ∩ (U ×N) in M ×N .

The irreducible bounded symmetric domains come in the six types I –
VI. For the largest class among these, those of type I, we give a direct proof
of Theorem 3.1 that does not use Jordan theory.
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Example 3.4. — Fix integers s > r > 1 and let Z := Cr×s be the space
of all complex r×s-matrices (r rows and s columns). Then, if we denote in
the following by I the unit matrix of any size and by z∗ = zt the conjugate
transpose of the matrix z,

Ω := {z ∈ Z : (I − zz∗) positive definite}

is a bounded symmetric domain in Z of rank r and with characteristic
multiplicities a = 2, b = s − r. The corresponding triple product on Z is
given by

{x, y, z} =
xy∗z + zy∗x

2
.

Considering every Cn ∼= C1×n in the standard way as complex Hilbert
space we also may interpret every z ∈ Z as linear operator z : Cr → Cs

via z(x) := xz, and then Ω becomes the open operator unit ball in Z. Also,
the tripotents in Z are precisely the partial isometries and the maximal
tripotents are precisely the isometries. For fixed integer l with 1 6 l 6 r

we write every z ∈ Z as block matrix

z =
[
A B

C D

E

F

]
with A ∈ Cl×l, E ∈ Cl×b and all the other blocks of fitting sizes. Then

v :=
[
I 0
0 0

0
0

]
and u :=

[
0 0
0 I

0
0

]
form a pair of orthogonal tripotents in Z such that e := u + v is maximal
(and, on the other hand, every other pair of orthogonal tripotents u′, v′ with
u′ + v′ maximal can be brought to this form with l suitable). The Peirce
spaces Z1(e) and Z1/2(e) are characterized by the vanishing of the blocks
E,F and A,B, C, D respectively. In particular, the JB*-algebra Z1(e) is
isomorphic to Cl×l with Jordan product x◦y = (xy+yx)/2 and involution
x 7→ x∗ = xt. Also the Jordan inverses in Z1(e) are the usual matrix
inverses in Cl×l. It follows that the Cayley transform (2.5) associated with
e is given by

(3.4) γ(z) =
[
I + A B

C I + D

]−1 [
I −A −B

−C I −D

−E

−F

]
for all z ∈ Ω.

The Peirce components z1, z1/2, z0 (with respect to v) of z in (3.3) are

z1 =
[
A 0
0 0

0
0

]
, z1/2 =

[
0 B

C 0
E

0

]
, z0 =

[
0 0
0 D

0
F

]
.
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Consequently,

gv(z) =
[
I 0
0 D

0
F

]
−

[
0 B

C 0
E

0

] [
(I + A∗)−1 0

0 0
0
0

]∗ [
0 B

C 0
E

0

]
=

[
I 0
0 D − d

0
F − f

]
,

where

(3.5) d := C(I + A)−1B, f := C(I + A)−1E.

Thus by (3.4)

γ(gv(z)) =
[
2I 0
0 I + D − d

]−1 [
0 0
0 I −D + d

0
f − F

]
=

[
0 0
0 (I + D − d)−1(I −D + d)

0
(I + D − d)−1(f − F )

]
.(3.6)

Setting [
η θ

α β

]
:=

[
I + A B

C I + D

]−1

we have for the Peirce projection P0 = P0(v)

P0(γ(z)) =
[
0 0
α β

] [
0 −B

0 I −D

−E

−F

]
=

[
0 0
0 −αB + β(I −D)

0
−αE − βF

]
.

Comparing with (3.6), we see that for the proof of γ(gv(z)) = P0(γ(z)) we
only have to show that

(3.7)
−αB + β(I −D) = (I + D − d)−1(I −D + d),

αE + βF = (I + D − d)−1(F − f).

As a shorthand we put U := I + A and V := I + D. Then ‖A‖ 6 ‖z‖ < 1
implies that U−1 exists and thus, with X := CU−1, Y := U−1B,[

U B

C V

]
=

[
I 0
X I

][
U 0
0 V − CU−1B

][
I Y

0 I

]
.

Consequently,[
U B

C V

]−1

=
[
I −Y

0 I

][
U−1 0

0 (V − CU−1B)−1

][
I 0
−X I

]
=

[
U−1 + Y (V − CU−1B)−1X −Y (V − CU−1B)−1

−(V − CU−1B)−1X (V − CU−1B)−1

]
.
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Hence

β = [I + D − C(I + A)−1B]−1, α = −βC(I + A)−1.

By (3.5), β = (I + D − d)−1. Consequently,

−αB + β(I −D) = βC(I + A)−1B + β(I −D)

= β(I −D + C(I + A)−1B)

= β(I −D + d)

= (I + D − d)−1(I −D + d),

while

αE + βF = −βC(I + A)−1E + βF

= −βf + βF

= (I + D − d)−1(F − f).

Thus γgv = P0γ, verifying Theorem 3.1 independently for the case of all
Cartan domains Ω of type I. �

The compact dual M of the bounded symmetric domain Ω ⊂ Z = Cr×s

is the Grassmannian Gr,s of all r-dimensional linear subspaces in Cr+s.
The embedding Z ↪→ M is given by identifying every z ∈ Z with its graph{

(x, xz) ∈ Cr+s : x ∈ Cr
}
∈ Gr,s.

In particular, in case r = s = 1 the dual M = G1,1 is nothing but the
Riemann sphere C ∪ {∞}.

Remark 3.5. — The last example makes it possible to handle also some
Cartan domains of types II – IV (in Hua’s notation [9]). Namely, every JB*-
triple Z of type II – IV containing an invertible element can be reduced
to the worked out type I case W := Cn×n for suitable n. More concretely,
for tripotents e, v as before such a Z can be realized as subtriple of W in
such a way that e is the unit matrix and v has the block form ( I 0

0 0 ) in W .
Indeed, if Z is of type II, i.e. the space of symmetric matrices in Cr×r,
then this is obvious. If Z is of type III, that is, the space of skew-symmetric
matrices in W = Cn×n, n even, we may assume without loss of generality
that e is a unitary matrix. Then the triple automorphism z 7→ ze∗ of W

maps Z to an isomorphic subtriple containing the identity matrix I = ee∗.
Finally, for Z of type IV such an embedding can be obtained in terms of
Pauli spin matrices, see Harris [8], page 19. �

For every tripotent v ∈ Z let ρv : Ω → Z be defined by

ρv(z) := gv(z)− v.

TOME 59 (2009), FASCICULE 2



656 Jonathan ARAZY, Miroslav ENGLIŠ & Wilhelm KAUP

Then ρv is a holomorphic retraction of Ω onto Ω0(v) = Ω ∩ Z0(v), see [1].

Corollary 3.6. — Using again the notation γ[v] for the Cayley trans-
form in Z0(v) associated with the Cartan domain Ω0(v) and the maximal
tripotent e− v, we have

ρv = γ−1
[v] ◦ P0(v) ◦ γ.

Proof. — Immediate from Theorem 3.1 and Lemma 2.1. �
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