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INFINITE PERIODIC POINTS
OF ENDOMORPHISMS OVER SPECIAL
CONFLUENT REWRITING SYSTEMS

by Julien CASSAIGNE & Pedro V. SILVA

Abstract. — We consider endomorphisms of a monoid defined by a special
confluent rewriting system that admit a continuous extension to the completion
given by reduced infinite words, and study from a dynamical viewpoint the nature
of their infinite periodic points. For prefix-convergent endomorphisms and expand-
ing endomorphisms, we determine the structure of the set of all infinite periodic
points in terms of adherence values, bound the periods and show that all regular
periodic points are attractors.

Résumé. — On considère les endomorphismes d’un monoïde défini par un sys-
tème de réécriture spécial confluent qui admettent une extension continue à sa
complétion donnée par les mots infinis réduits, et on étudie d’un point de vue
dynamique la nature de leurs points périodiques infinis. Pour les endomorphismes
préfixe-convergents et les endomorphismes expansifs, on détermine la structure de
l’ensemble de tous les points périodiques infinis en termes de valeurs d’adhérence,
on borne les périodes et on prouve que tous les points périodiques réguliers sont
des attracteurs.

1. Introduction

The dynamical study of the automorphisms of a free group and their
space of ends is a well established subject in discrete Dynamical Systems
[4, 5, 10, 12, 13, 14]. This paper constitutes an effort to study these prob-
lems in a more general setting, by considering monoids defined by certain
types of rewriting systems instead of just free groups, and endomorphisms
instead of automorphisms. The idea is to use combinatorics on words and
automata theory to obtain results that have a marked geometric, topolog-
ical or dynamical nature.

Keywords: Periodic points, endomorphisms, rewriting systems, dynamics.
Math. classification: 68R15, 37B10, 20M35, 68Q70.



770 Julien CASSAIGNE & Pedro V. SILVA

The authors initiated this project in [8], where the foundations of the
whole approach were established. In view of the possibilities offered to lan-
guage theory by the study of free groups [19, 21] and more general struc-
tures such as PR-monoids [20], it seemed a natural idea to extend some of
the theory on infinite words to the more general setting of monoids defined
by finite special confluent rewriting systems. We recall that a rewriting
system {(r1, s1), . . . , (rn, sn)} is said to be special if s1 = . . . = sn = 1.

Monoids defined through finite special confluent rewriting systems allow
normal forms consisting of irreducible elements, hence they can be viewed
as proper subsets of a free monoid with a particular binary operation (con-
catenation followed by total reduction, such as in the free group case). This
approach can, up to some extent, be generalized to infinite words that are
endowed with algebraic and topological structures that constitute natural
generalizations of their free monoid counterparts. The fact that we can view
infinite words as the space of ends of the undirected Cayley graph of the
original monoid gives geometric significance to this topology.

We should note that infinite iteration of a (finite) word can no longer be
assumed in every case due to the existence of periodic elements, thus our
approach involves a partial version of the usual concept of ω-monoid [18].

The paper [8] was essentially devoted to the basic problem of endomor-
phism extensions: under which circumstances can an endomorphism ϕ of
the monoid of finite words be extended to an endomorphism (continuous
map, weak endomorphism) of the partial ω-monoid of infinite words? Char-
acterization theorems leading to positive decidability results were obtained
in most cases.

The well-developped geometric theory of hyperbolic groups has certainly
been an inspiration to this approach. Some of the results in [8] evoke classi-
cal results of the theory of hyperbolic spaces/groups, such as the extension
theorems for quasi-isometric embeddings [11].

In this paper we use the characterization of the uniformly continuous
endomorphisms (those that admit a continuous extension to the space of
infinite words – that may be viewed as the natural topological comple-
tion or as the space of ends originating from the geodesic metric of the
Cayley graph) to study the infinite periodic points of these extended endo-
morphisms. The main results are obtained for prefix-convergent endomor-
phisms and expanding endomorphisms, when we succeed in determining the
structure of the set of infinite periodic points, bounding the periods and
proving that all regular periodic points are attractors. We should remark
that free group automorphisms are never expanding, and most of them are
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INFINITE PERIODIC POINTS OF ENDOMORPHISMS 771

not prefix-convergent (see however Example 5.16), even though they are
all quasi-isometries. However, many free group endomorphisms have these
properties.

The main results will appear in Sections 5 and 6, after introducing all
the needed concepts and notation:

Theorem 1.1. — If ϕ is prefix-convergent uniformly continuous, then

Perr(Φ) =
⋃

a∈A2

(A∗
0ϕ

p) Ad(aϕn)n.

Moreover, every α ∈ Perr(Φ) is an attractor and there exists some M ∈ N
such that any α ∈ Per(Φ) has period at most M .

Theorem 1.2. — Let ϕ be expanding. Then Pers(Φ) = Per(ϕ) and
there exists some m ∈ N such that

Perr(Φ) =
⋃

|u|=m

Ad(uϕn)n.

is a finite nonempty set of attractors.

Corollary 1.3. — If ϕ is expanding and α ∈ Per(Φ), then the period
of α is bounded by |A|max{M,(hM(tR−1)−mϕ)|Q|}.

The paper is organized as follows: Section 2 is devoted to preliminaries.
In Section 3 we establish the dynamical concepts relevant to our project.
Note that most of these concepts are usually restricted to invertible map-
pings. In Section 4 we establish some preparatory results that will be used
in the next two sections. In Section 5 we discuss the periodic points for
prefix-convergent endomorphisms. This is a natural property to consider
from a topological point of view but does not appear to be decidable in
general. In Section 6 we accomplish a similar study in the case of expand-
ing endomorphisms, which is proved to be a decidable property for a given
endomorphism. As one should expect, the two properties are independent
from each other. In Section 7 we develop the particular case of the free
monoid, generalizing Konig’s Lemma [18] in the spirit of the preceding
sections.

2. Preliminaries

For basic concepts and results on language theory (respectively topol-
ogy), the reader is referred to [3] (respectively [9]).

TOME 59 (2009), FASCICULE 2



772 Julien CASSAIGNE & Pedro V. SILVA

Let A denote a finite alphabet. Given u, v ∈ A∗, we write u 6 v if u is
a prefix of v. A (finite) rewriting system over A is a (finite) subset R of
A∗ ×A∗. Given u, v ∈ A∗, we write u−→Rv if

u = xry, v = xsy

for some x, y ∈ A∗ and (r, s) ∈ R. We denote by ∗−→ the reflexive and tran-
sitive closure of the relation −→. The subscript R will be usually omitted.
The congruence on A∗ generated by R will be denoted by R]. Note that
R] = ∗−→R∪R−1 . The quotient M = A∗/R] is said to be the monoid defined
by the rewriting system R.

A rewriting system R over A is said to be
• special if R ⊆ A+ × {1};
• confluent if, whenever u

∗−→v and u
∗−→w, there exists z ∈ A∗ such

that v
∗−→z and w

∗−→z:

u
∗ //

∗
��

v

∗
���
�
�

w
∗ //___ z

Let R be a special confluent rewriting system over A. We say that w ∈ A∗

is irreducible (with respect to R) if w /∈ ∪(r,1)∈RA∗rA∗. For every u ∈ A∗,
there is exactly one irreducible v ∈ A∗ such that u

∗−→v: existence follows
from any reduction sequence being length-reducing, and uniqueness from
confluence. We denote this unique irreducible word by u. It is well known
(see [7]) that the equivalence

uR]v ⇔ u = v

holds for all u, v ∈ A∗, hence A∗ constitutes a set of normal forms for the
monoid M = A∗/R]. Moreover,

M ∼= (A∗, ·),

where · denotes the binary operation on A∗ defined by u·v = uv. We denote
the monoid (A∗, ·) by A∗

R. We shall often abuse notation and identify A∗
R

with A∗. We write also A+
R = A∗ \ {1}.

We denote by Aω the set of all infinite words of the form a1a2a3 . . ., with
an ∈ A for every n ∈ N = {1, 2, 3, . . .}. Write

A∞ = A∗ ∪Aω.

Given α ∈ A∞ and n ∈ N, we denote by α(n) the n-th letter of α (if α ∈ A∗

and n > |α|, we set α(n) = 1). We write also

α[n] = α(1)α(2) . . . α(n).

ANNALES DE L’INSTITUT FOURIER



INFINITE PERIODIC POINTS OF ENDOMORPHISMS 773

An infinite word α ∈ Aω is said to be irreducible (with respect to R) if α[n]

is irreducible for every n ∈ N. We denote the set of all irreducible infinite
words (with respect to R) by Aω

R and we write

A∞
R = A∗

R ∪Aω
R.

For all α, β ∈ A∞, we define

r(α, β) =
{

min{n ∈ N : α(n) 6= β(n)} if α 6= β

∞ if α = β

and we write
d(α, β) = 2−r(α,β),

using the convention 2−∞ = 0. It follows easily from the definition that d

is an ultrametric on A∞, satisfying in particular the axiom

d(α, β) 6 max{d(α, γ), d(γ, β)}.

We shall identify A∞ with the metric space (A∞, d). It is well known that
the metric space A∞ is compact (and therefore complete) [18, Chapter III].
Note that limn→∞ αn = α if and only if

∀k ∈ N ∃m ∈ N ∀n ∈ N (n > m ⇒ α[k]
n = α[k]).

Furthermore, since A∞ is complete, a sequence u1, u2, . . . ∈ A∗ converges
if and only if it is a Cauchy sequence, i.e., , if the condition

∀k ∈ N ∃m ∈ N ∀n, n′ ∈ N
(
n, n′ > m ⇒ u[k]

n = u
[k]
n′

)
holds. By [8, Corollary 2.3], (A∞

R , d) is compact (and therefore complete)
whenever R is special confluent. We remark that, since α = limn→∞ α[n] for
every α ∈ A∞, (A∞, d) (respectively (A∞

R , d)) is the completion of (A∗, d)
(respectively (A∗

R, d)). Note also that d induces the discrete topology on
A∗ since the open ball B2−(n+1)(u) = {u} for every u ∈ An.

Referring to [8], we can mention an interesting geometric viewpoint on
the nature of (Aω

R, d). Let Γ denote the Cayley graph of the monoid A∗
R

relative to the generating set A, and let s(u, v) denote the distance on A∗
R

given by the length of the shortest undirected path connecting u and v in
Γ. We can view Aω

R as the space of ends of Γ. By [8, Theorems 5.7 and
5.12], the metric d on Aω

R induces the Gromov topology on the space of
ends of the hyperbolic metric space (A∗

R, s).

Definition 2.1. — We recall that x ∈ X is an adherence value of (un)n

if:
∀ε > 0∀n ∈ N ∃m > n : d(um, x) < ε.

TOME 59 (2009), FASCICULE 2



774 Julien CASSAIGNE & Pedro V. SILVA

This is equivalent to say that there exists some infinite subsequence of
(un)n converging to x. We denote the set of all adherence values of (un)n

by Ad(un)n.

Definition 2.2. — Given a mapping ϕ : X → X, we say that x ∈ X

is ϕ-periodic if x = xϕm for some m ∈ N. If m = 1, we say that x is a
fixed point for ϕ. We denote by Per(ϕ) (respectively Fix(ϕ)) the set of all
periodic (respectively fixed) points of ϕ.

The following result is essential when considering rational languages in
the context of special confluent rewriting systems (see also [7, Theorems
4.1.2 and 4.2.4]):

Theorem 2.3. — [2, 6] Let R be a finite special confluent rewriting
system on A and let L ⊆ A∗ be rational. Then:

(i) L is rational;
(ii) DL = {u ∈ A∗ : u ∈ L} is deterministic context-free.

Moreover, both L and DL are effectively constructible from L.

We present now a series of results from [8] that will prove useful in the
forthcoming sections.

We fix R = {(r1, 1), (r2, 1), . . . , (rn, 1)} and write tR = max{|r1|, |r2|, . . . ,
|rn|}.

Lemma 2.4. — [8, Lemma 4.1] Let u, v, w ∈ A∗
R be such that |v| >

|w|(tR − 1) and uv ∈ A∗
R. Then uvw = uvw.

Lemma 2.5. — [8, dual of Lemma 4.2] For all u, v ∈ A∗
R,

(i) u = u′u′′ and v = v′v′′ with uv = u′v′′ and |u′′v′| 6 min{|u|, |v|}·tR.
(ii) |uv| > max{|v| − (tR − 1)|u|, |u| − (tR − 1)|v|}.

Lemma 2.6. — [8, Lemma 5.8] Let L ⊆ A∗
R be rational and let ϕ : A∗

R →
A∗

R be an endomorphism. Then Lϕ is rational and effectively constructible
from L.

We generalize the concept of ω-semigroup [18, Chapter I.4] as follows.
A partial ω-monoid is a structure of the form (M1,M2, ·, ◦, π), where · :
M1 × M1 → M1 and ◦ : M1 × M2 → M2 are binary operations and
π : Mω

1 = M1×M1× . . . → M1∪M2 is a surjective partial map, such that:
(w1) (M1, ·) is a monoid;
(w2) if (u1, u2, . . .)π is defined and i1 < i2 < . . . is a sequence in N,

then (u1 . . . ui1 , ui1+1 . . . ui2 , ui2+1 . . . ui3 , . . .)π is defined and equal
to (u1, u2, . . .)π;

ANNALES DE L’INSTITUT FOURIER



INFINITE PERIODIC POINTS OF ENDOMORPHISMS 775

(w3) if (u1, u2, . . .)π is defined and v ∈ M1, then (v, u1, u2, . . .)π is defined
and equal to v ◦ ((u1, u2, . . .)π);

(w4) (1, 1, . . .)π is defined and equals 1.

We noted in [8] that these axioms imply the mixed associative law given
by

u ◦ (v ◦ α) = (u · v) ◦ α

for all u, v ∈ M1 and α ∈ M2.
If M1 ∪M2 is endowed with a distance d such that:

• the operations · and ◦ are continuous (considering the product
topology on M1 × (M1 ∪ M2), for instance via the max metric on
the components);

• (u1, u2, . . .)π is defined if and only if limn→∞ u1u2 . . . un exists, in
which case they coincide;

then we have a metric partial ω-monoid.
It follows easily from (w3) and (w2) that the identity of M1 is a left

identity for the mixed product ◦. If π is a full map, we have the standard
concept of ω-monoid (ω-semigroup if we don’t require (M1, ·) to have an
identity).

If u ∈ M1 and (u, u, u, . . .)π is defined, we denote it by uω.
An endomorphism of (M1,M2, ·, ◦, π) is a mapping ϕ : M1 ∪ M2 →

M1 ∪M2 such that:

(h1) M1ϕ ⊆ M1;
(h2) for all u, v ∈ M1, (u · v)ϕ = (uϕ) · (vϕ);
(h3) for all u ∈ M1 and α ∈ M2,

(u ◦ α)ϕ =
{

(uϕ) · (αϕ) if αϕ ∈ M1

(uϕ) ◦ (αϕ) if αϕ ∈ M2

(h4) if (u1, u2, . . .)π is defined, then (u1ϕ, u2ϕ, . . .)π is defined and equal
to (u1, u2, . . .)πϕ.

An endomorphism is said to be proper if M2ϕ ⊆ M2.
We define a binary operation

◦ : A∗
R ×Aω

R → Aω
R

(u, α) 7→ uα

by uα = limn→∞ uα[n].
The partial operation π : (A∗

R)ω → A∞
R is defined as follows: for every

sequence (un)n ∈ (A∗
R)ω, (u1, u2, . . .)π is defined if and only if (u1 . . . un)n

TOME 59 (2009), FASCICULE 2



776 Julien CASSAIGNE & Pedro V. SILVA

converges. In such a case, we have

(u1, u2, . . .)π = lim
n→∞

u1 . . . un.

Theorem 2.7. — [8, Theorem 4.4] With the ultrametric d, (A∗
R, Aω

R, ·,
◦, π) is a metric partial ω-monoid.

The next result shows necessary and sufficient conditions for the existence
of a continuous extension to A∞

R of an endomorphism ϕ of A∗
R. We refer to

the constant homomorphism as the trivial homomorphism.

Theorem 2.8. — [8, Theorems 8.4 and 8.7] Let ϕ be a nontrivial en-
domorphism of A∗

R. Then the following conditions are equivalent and de-
cidable:

(i) ϕ can be extended to a continuous mapping Φ : A∞
R → A∞

R ;
(ii) ϕ can be extended to a proper uniformly continuous endomorphism

of the metric partial ω-monoid A∞
R ;

(iii) ϕ is uniformly continuous;
(iv) wϕ−1 is finite for every w ∈ A∗

R.

Moreover, if these conditions hold the continuous mapping Φ is unique and
given by αΦ = limn→∞ α[n]ϕ.

This result constitutes a generalization of its well-known free group coun-
terpart, stating that a nontrivial endomorphism of a free group can be ex-
tended to a continuous mapping of its completion/boundary if and only it
is injective ([11], [8]).

Surjectivity of Φ is determined by the surjectivity of ϕ:

Proposition 2.9. — Let ϕ be a uniformly continuous endomorphism
of A∗

R and let Φ : A∞
R → A∞

R be its continuous extension. Then Φ is onto
if and only if ϕ is onto.

Proof. — By Theorem 2.8, Φ is proper and so if Φ is onto, ϕ must be
onto as well.

Conversely, assume that ϕ is onto and let α ∈ Aω
R. Let

X =
⋃
n>1

α[n]ϕ−1.

Since ϕ is onto and by Theorem 2.8, α[n]ϕ−1 is a finite nonempty subset of
A∗

R for every n > 1. Thus X is a countable infinite subset of the compact
space (A∞

R , d) and so must have some adherence value in A∞
R , that is,

∃β ∈ A∞
R ∀ε > 0 ∃w ∈ X : 0 < d(w, β) < ε.

ANNALES DE L’INSTITUT FOURIER



INFINITE PERIODIC POINTS OF ENDOMORPHISMS 777

We show that βΦ = α. Suppose that α(m) 6= (βΦ)(m) for some m > 1.
Since Φ is uniformly continuous,

∃M > 1 ∀α1, α2 ∈ A∞
R (r(α1, α2) > M ⇒ r(α1Φ, α2Φ) > m).

Let w ∈ X be such that 0 < d(w, β) < 2−M . Since there are infinitely many
such w and each α[n]ϕ−1 is finite, we may assume that wϕ = α[n] with
n > m. Hence r(w, β) > M and so r(α[n], βΦ) = r(wϕ, βΦ) > m. Since
n > m, it follows that α(m) = (βΦ)(m), a contradiction. Thus βΦ = α and
Φ is onto. �

3. Endomorphism dynamics

We fix a nontrivial uniformly continuous endomorphism ϕ of A∗
R. Let

Φ be its continuous extension to A∞
R . We intend to classify Φ-periodic

points from a dynamical viewpoint. Clearly, given α ∈ A∞
R , we consider

{αΦn : n ∈ N} to be the orbit of α. Then α is Φ-periodic if and only
α = αΦp for some p > 1. This is of course equivalent to α being a fixed
point for the power endomorphism Φp, and most of the terminology we are
about to introduce is usually defined for fixed points. The smallest such p

is said to be the period of α.
Given α ∈ Per(Φ), we define the attraction basin to be

Att(α) = {β ∈ A∞
R : α ∈ Ad(βΦn)n}.

If Φ is onto, it makes sense to define the repulsion basin of α to be

Rep(α)={α}∪{β ∈ A∞
R : ∀ε > 0∀n ∈ N ∃m>n ∃γ ∈ βΦ−m : d(α, γ) < ε.}

Note that Φ is onto if and only if ϕ is onto by Proposition 2.9. In terms of a
dynamical system, we can say that the future of α – the orbit (αΦ, αΦ2, . . .)
– is uniquely determined but the past of α may be not so (unless Φ is one-
to-one). In that case, its past is a ramified tree corresponding to the various
elements of αΦ−1, αΦ−2, . . . The idea is to collect in the repulsion basin of
α all those words that could have been arbitrarily close to α in the past
but got away from it (and also α for technical reasons).

Definition 3.1. — We say that α is singular if α belongs to the topo-
logical closure of Per(ϕ). Otherwise, we say that α is regular. We denote
the set of all regular (respectively singular) Φ-periodic points of A∞

R by
Perr(Φ) (respectively Pers(Φ)). Clearly, Perr(Φ) ⊆ Aω

R.

Definition 3.2. — We say that α ∈ Perr(Φ) is

TOME 59 (2009), FASCICULE 2



778 Julien CASSAIGNE & Pedro V. SILVA

• an attractor if some neighbourhood of α is contained in Att(α).

If ϕ is onto, we say also that α ∈ Perr(Φ) is

• a repeller if some neighbourhood of α is contained in Rep(α);
• hyperbolic if α is neither an attractor nor a repeller, but some

neighbourhood of α is contained in Att(α) ∪ Rep(α);
• degenerate if no neighbourhood of α is contained in Att(α)∪Rep(α).

If Φ is an automorphism, then Per(Φ−1) = Per(Φ) and it is straightfor-
ward that the attraction basin of α ∈ Per(Φ) relatively to Φ is the repulsion
basin of α relatively to Φ−1. Hence α ∈ Per(Φ) is an attractor for Φ if and
only if it is a repeller for Φ−1 and vice-versa.

The dynamical study of automorphisms of the free group has been carried
on by different authors (e.g., [4, 5, 10, 12, 13, 14]). In particular, it is known
that:

Theorem 3.3. — [10, 13, 14] Let A∗
R be a free group of rank k and let

ϕ be an automorphism of A∗
R. Then:

(i) There are at least two infinite Φ-periodic points of period at most
2k. If Aω

R has a single orbit of Φ-periodic points, then this orbit has
period 2.

(ii) The period of α ∈ A∞
R is bounded by some constant Mk depending

only on k, and verifying Mk ∼
√

k log(k) when k → +∞.
(iii) Every regular Φ-periodic point is either an attractor or a repeller.

We intend to deal with a more general situation, going beyond the free
group and beyond automorphisms. It is therefore natural that the condition
(iii) of the theorem does not hold any longer, as we show in the next
example. In the presence of formal inverses in an alphabet, we say that an
endomorphism is matched if it preserves (formal) inverses.

Example 3.4. — Let A = {a, b, c, b−1} and R = {(bb−1, 1), (b−1b, 1)}.
Let ϕ : A∗

R → A∗
R be the matched endomorphism defined by

aϕ = ab, bϕ = b, cϕ = b−2c.

Then Aω
R contains (regular) hyperbolic Φ-periodic points.

Proof. — It is clear that abω and a(b−1)ω are Φ-periodic. Suppose that
u ∈ A+

R is Φ-periodic. If u /∈ b∗ ∪ (b−1)∗, we may write u = bkxv for some
k ∈ Z and x ∈ {a, c}. Clearly, x = c implies uϕn = bk−2nc . . . for every
n ∈ N, hence x = a. If u = bkabm, then uϕn = bkabm+n for every n ∈ N
and u is not periodic. If u = bkabmav, then uϕn = bkabm+na . . . and u
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INFINITE PERIODIC POINTS OF ENDOMORPHISMS 779

is not periodic either. Finally, if u = bkabmcv, then uϕn = bkabm−nc . . ..
Thus Per(ϕ) = b∗ ∪ (b−1)∗ and so abω and a(b−1)ω are regular.

Since limn→∞(abkc)ϕn = a(b−1)ω, we have abkc /∈ Att(abω) for every
k ∈ Z. Since every neighbourhood of abω must contain some word of the
form abkc, it follows that abω is not an attractor.

Clearly, ϕ is onto. Suppose that abk ∈ Rep(abω) with k > 0. Then in
particular

∃m > k ∃w ∈ (abk)Φ−m : r(abω, w) > k,

yielding a contradiction since (abk)Φ−m = abk−m. Thus abk /∈ Rep(abω)
for every k > 0. Since every neighbourhood of abω must contain some word
of the form abk, it follows that abω is not a repeller.

Similarly, we can check that

ab∗ ∪ ab∗aA∗
R ⊆ Att(abω),

ab∗cA∗
R ⊆ Rep(abω),

thus

d(β, abω) < 2−2 ⇒ β = ab . . . ⇒ β ∈ Att(abω) ∪ Rep(abω)

and abω is hyperbolic. �

In the following example, we present a case where all the regular periodic
points are degenerate.

Example 3.5. — Let A = {a, b, c, b−1} and R = {(bb−1, 1), (b−1b, 1)}.
Let ϕ : A∗

R → A∗
R be the matched endomorphism defined by

aϕ = ab, bϕ = b, cϕ = b−1cb.

Then Perr(Φ) is infinite and all its elements are degenerate.

Proof. — First we show that

(3.1) (u 6 v ∧ uϕ = ub) ⇒ v /∈ Per(ϕ).

Indeed, assume that v ∈ Per(ϕ) possesses a prefix u such that uϕ = ub. We
may assume that u is maximal for this property. Since v cannot be of the
form v = ubk since ϕn(ubk) = ubk+n nor v = ubkaw since ϕn(ubkaw) ∈
ubk+naA∗

R, it follows that v = ubkcw for some k ∈ Z and w ∈ A∗
R. However,

this contradicts the maximality of u since ubkc 6 v and (ubkc)ϕ = ubkcb.
Thus (3.1) holds.

Adapting the argument in Example 3.4, it is now easy to prove that
Per(ϕ) = b∗∪(b−1)∗. Hence Pers(Φ) = {bω, (b−1)ω}. Write B = b∗∪(b−1)∗.
We show next that

(3.2) Perr(Φ) = Ba(Bc)∗{bω, (b−1)ω} ∪ Ba(Bc)ω.
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Let α ∈ Perr(Φ) and write α = b0x1b1x2b3 . . . where the xi represent
all the occurrences of either a or c. Similar arguments to those we used in
the finite case show that xixi+1 ∈ {a2, ca} contradicts α ∈ Perr(Φ). Thus
xixi+1 ∈ {ac, c2} for every i and so the direct inclusion of (3.2) holds. The
opposite inclusion is easily verified and so (3.2) holds.

In particular, Perr(Φ) is infinite. Take α ∈ Perr(Φ). It follows from (3.2)
that Perr(Φ) contains no isolated points, so there exists a sequence (αi)i of
distinct elements of Perr(Φ) such that α = limi→∞ αi. We may assume that
no element of this sequence is in the orbit of α. Since αi ∈ Perr(Φ), it follows
that αi /∈ Att(α) for every i. Since ϕ is an automorphism, Rep(α) relatively
to Φ equals Att(α) relatively to Φ−1. Since αi ∈ Perr(Φ−1), it follows by
duality that αi /∈ Rep(α) for every i. Therefore every neighbourhood of α

contains some αi /∈ Att(α) ∪ Rep(α) and so α is degenerate. �

4. Preparatory results

We fix an endomorphism ϕ of A∗
R throughout the section. We define

Definition 4.1.
Fin(ϕ) = {u ∈ A∗

R : {uϕn : n > 1} is finite } = (Per(ϕ))(ϕ−1)∗,

Inf(ϕ) = A∗
R\Fin(ϕ), A0 = A ∩ Fin(ϕ), A1 = A \A0.

Clearly, Fin(ϕ) is a submonoid of A∗
R and

(Fin(ϕ))ϕ ∪ (Fin(ϕ))ϕ−1 ⊆ Fin(ϕ).

In particular, A∗
0 ⊆ Fin(ϕ) and A∗

0ϕ ⊆ Fin(ϕ).

Lemma 4.2. — (Fin(ϕ))(Inf(ϕ)) ⊆ Inf(ϕ).

Proof. — Let u ∈ Fin(ϕ) and v ∈ Inf(ϕ). Since (uv)ϕn = (uϕn)(vϕn),
it follows from Lemma 2.5(ii) that (uv)ϕn has unbounded length and so
uv ∈ Inf(ϕ). �

By Theorem 2.8, ϕ admits a continuous extension Φ to A∞
R if and only

if it is uniformly continuous. Henceforth, we shall assume that, whenever
ϕ is uniformly continuous, Φ denotes its (unique) continuous extension to
A∞

R .

Lemma 4.3. — Let ϕ be uniformly continuous and let u ∈ A∗
R. Then

the following conditions are equivalent:
(i) Ad(uϕn)n is finite;
(ii) (uϕnk)n converges for some k > 0.
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Moreover, if limn→∞ uϕnk = α, then αΦk = α and

Ad(uϕn)n = {α, αΦ, . . . , αΦk−1} ⊆ Per(Φ).

Proof. — Assume that Ad(uϕn)n is finite. We observe that

∀ε > 0 ∃n0 ∈ N ∀n > n0 ∃αn ∈ Ad(uϕn)n : d(uϕn, αn) < ε.

Indeed, let ε > 0. Since A∞
R is compact, we have A∞

R = ∪m
i=1Bε/2(βi) for

some β1, . . . , βm ∈ A∞
R . If uϕn ∈ Bε/2(βi) for infinitely many values of

n, then Bε(βi) ∩ Ad(uϕn)n 6= ∅. Hence we take n0 such that, whenever
uϕn ∈ Bε/2(βi) for only finitely many values of n, then n0 > n for all
such n.

If ε is chosen so that

ε 6 ε1 =
1
2

min{d(α, β) : α, β ∈ Ad(uϕn)n, α 6= β},

then αn is uniquely defined. Now, as Φ is uniformly continuous, there exists
ε2 > 0 such that

∀α1, α2 ∈ A∞
R (d(α1, α2) < ε2 ⇒ d(α1Φ, α2Φ) < ε1).

Taking ε3 = min{ε1, ε2}, d(uϕn, αn) < ε3 yields d(uϕn+1, αnΦ) < ε1.
Then, since we have d(uϕn+1, αn+1) < ε1 and αn ∈ Ad(uϕn)n yields αnΦ ∈
Ad(uϕn)n, we obtain αnΦ = αn+1 by uniqueness. Since Ad(uϕn)n is finite,
there exists some k > n0 such that αk = α2k = αkΦk. Thus

∀ε ∈ ]0, ε3] ∃n0 ∈ N ∀n > n0 : d(uϕnk, αk) < ε

and so limn→∞ uϕnk = αk. Thus (ii) holds.
Conversely, assume that limn→∞ uϕnk = α. Since Φ is continuous, it

commutes with limits. It follows that, for i = 0, . . . , k − 1,

lim
n→∞

uϕi+nk = lim
n→∞

uϕnkΦi = ( lim
n→∞

uϕnk)Φi = αΦi.

Thus αΦi ∈ Ad(uϕn)n ∩Aω
R for i = 0, . . . , k − 1.

Suppose now that β ∈ Ad(uϕn)n. Then β = limn→∞ uϕjn for some
infinite subsequence (uϕjn)n of (uϕn)n. Clearly, there exists some i ∈
{0, . . . , k − 1} such that the intersection {jn : n ∈ N} ∩ {i + nk : n ∈ N} is
infinite. Thus

β = lim
n→∞

uϕjn = lim
n→∞

uϕi+nk = αΦi

and so
Ad(uϕn)n = {αΦi : i = 0, . . . , k − 1}.

Finally, we remark that

(αΦi)Φk = ( lim
n→∞

uϕi+nk)Φk = lim
n→∞

uϕi+(n+1)k = αΦi
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and so αΦi ∈ Per(Φ). �

Lemma 4.4. — Let Φ : A∞
R → A∞

R be an endomorphism. If both u ∈ A∗
R

and α ∈ Aω
R are Φ-periodic, then so is uα.

Proof. — If uΦp = u and αΦq = α for some p, q ∈ N, then

uαΦpq = (uΦpq)(αΦpq) = uα

as required. �

Lemma 4.5. — Let (un)n be a sequence in A∗
R with |un| bounded and

let (vn)n, (wn)n be sequences in A∞
R such that

∀k ∈ N ∃l ∈ N ∀n > l r(vn, wn) > k.

Then
∀k ∈ N ∃l ∈ N ∀n > l r(unvn, unwn) > k.

Moreover, Ad(unvn)n = Ad(unwn)n.

Proof. — Assume that M = max{|un| : n ∈ N}. Let k ∈ N. Then there
exists l ∈ N such that r(vn, wn) > k +M(tR− 1) for every n > l. It follows
from Lemma 2.5 that r(unvn, unwn) > k as required. Hence

∀ε > 0 ∃l ∈ N ∀n > l d(unvn, unwn) < ε.

If α ∈ Ad(unvn)n, then α = limn→∞ uinvin for some increasing sequence
(in)n in N. Thus

∀ε > 0 ∃q ∈ N ∀n > q d(uin
vin

, α) < ε.

Since d is an ultra-metric, it follows that

∀ε > 0 ∃h ∈ N ∀n > h d(uinwin , α) < ε

and so α ∈ Ad(unwn)n. Thus Ad(unvn)n ⊆ Ad(unwn)n and the lemma
follows by symmetry. �

Next we fix

(4.1) p = min{n > 1 : ∀a ∈ A0 aϕ2n = aϕn}.

Since A0 is finite and {aϕn : n > 1} is finite for every a ∈ A0, p is well
defined. If u = a1 . . . an ∈ A∗

0 with ai ∈ A0, it follows that

(4.2) uϕ2p = (a1ϕ2p) . . . (anϕ2p) = (a1ϕp) . . . (anϕp) = uϕp.

As a consequence, we obtain:

Lemma 4.6. — A∗
0ϕ

p ⊆ Per(ϕ).

We note that if A1 = ∅, we can always identify all Φ-periodic points:
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Proposition 4.7. — Let ϕ be nontrivial and uniformly continuous. If
A = A0, then:

(i) Per(Φ) = A∗
Rϕp ∪Aω

RΦp;
(ii) if A∗

R is infinite, there exist Φ-periodic words in both A+
R and Aω

R.

Proof.
(i) By Lemma 4.6, we have A∗

Rϕp ⊆ Per(ϕ). Conversely, let u ∈ Per(ϕ).
Then u = uϕn for some n > 1 and so u = uϕnp. Let v = uϕ(n−1)p, then
u = vϕp and so u ∈ A∗

Rϕp. Therefore Per(ϕ) = A∗
Rϕp.

Take α ∈ Aω
R and let β = αΦp. Since Φ is proper, then β ∈ Aω

R. Moreover,

βΦp = αΦ2p = (limn→∞ α[n])Φ2p = limn→∞ α[n]ϕ2p

= limn→∞ α[n]ϕp = (limn→∞ α[n])Φp = αΦp = β

and so Aω
RΦp ⊆ Per(Φ). The inclusion Per(Φ) ∩ Aω

R ⊆ Aω
RΦp is proved

similarly to the finite case.
(ii) Assume that A∗

R is infinite. By Theorem 2.8, wϕ−1 is finite for every
w ∈ A∗

R. Iteration of this argument shows that 1(ϕp)−1 must be finite and
thus a proper subset of A∗

R. Therefore uϕp 6= 1 for some u ∈ A∗
R and so

A+
R contains ϕ-periodic words, infinitely many in fact.
On the other hand, A∗

R infinite implies Aω
R 6= ∅. Since Φ is proper, it

follows that Per(Φ) ∩Aω
R = Aω

RΦp is nonempty as well. �

Given u ∈ A∗
R \ A∗

0, let uθ denote the (unique) prefix of u in A∗
0A1. We

define
A2 = {a ∈ A1 : ∃m ∈ N ∀n ∈ N |aϕnθ| 6 m}.

Lemma 4.8. — If A∗
0 is finite, then A2 = A1.

Proof. — For every a ∈ A1, we have aϕnθ ∈ A∗
0A1 and therefore |aϕnθ|

is bounded if A∗
0 is finite. Hence A2 = A1. �

5. Prefix-convergent endomorphisms

We fix an endomorphism ϕ of A∗
R throughout the section and adopt all

the notation introduced in Section 4.

Definition 5.1. — We say that the endomorphism ϕ is prefix-conver-
gent if:
(5.1)
∀a ∈ A1 ∀k ∈ N ∃m ∈ N ∀v ∈ A∗

R ∀n > m (a 6 v ⇒ r(aϕn, vϕn) > k).

The concept expresses the fact that, for every a ∈ A1, the sequences
(d(aϕn, vϕn))n converge uniformly to 0 for all v having a as prefix.
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Lemma 5.2. — If ϕ is prefix-convergent, then:
(i) Fin(ϕ) = A∗

0;
(ii) A∗

0ϕ ⊆ A∗
0;

(iii) ∀u ∈ A∗
0 ∀v ∈ A∗

R \A∗
0 uv /∈ A∗

0.

Proof.
(i) By a previous remark, we only have to show that Fin(ϕ) ⊆ A∗

0. Let
u ∈ Fin(ϕ) and suppose that u /∈ A∗

0. Then we may write u = vaw with
v ∈ A∗

0, a ∈ A1 and w ∈ A∗
R. Applying (5.1) to a and aw, we get

∀k ∈ N ∃m ∈ N ∀n > m r(aϕn, (aw)ϕn) > k.

Thus, as a ∈ Inf(ϕ), we also have aw ∈ Inf(ϕ). Since v ∈ Fin(ϕ), we obtain
u = vaw ∈ Inf(ϕ) by Lemma 4.2, a contradiction. Therefore u ∈ A∗

0 as
required.

(ii) follows from (i) and A∗
0ϕ ⊆ Fin(ϕ).

(iii) follows from (i) and Lemma 4.2. �

Lemma 5.3. — Let ϕ be prefix-convergent uniformly continuous and let
α = uaβ ∈ A∞

R with u ∈ A∗
0 and a ∈ A1. Then

∀k ∈ N ∃l ∈ N ∀n > l r((ua)ϕn, αΦn) > k.

Moreover, Ad((ua)ϕn)n = Ad(αΦn)n.

Proof. — Let k ∈ N. Since a ∈ A1 and ϕ is prefix-convergent, there exists
some l ∈ N such that:

∀n > l ∀s ∈ N r(aϕn, (aβ[s])ϕn) > k + 1.

Let n> l. Since Φn is continuous, lims→∞ aβ[s] =aβ yields lims→∞(aβ[s])ϕn

= (aβ)Φn. Thus d(aϕn, (aβ[s])ϕn) < 2−k−1 for every s ∈ N yields d(aϕn,

(aβ)Φn) 6 2−k−1 < 2−k and so r(aϕn, (aβ)Φn) > k. Since |uϕn| is
bounded, Lemma 4.5 yields

∀k ∈ N ∃l ∈ N ∀n > l r((ua)ϕn, αΦn) > k

and Ad((ua)ϕn)n = Ad(αΦn)n. �

We discuss next the periodic points of ϕ, recalling the definition of p in
(4.1).

Lemma 5.4. — If ϕ is prefix-convergent, then Per(ϕ) = A∗
0ϕ

p.

Proof. — Assume that u ∈ Per(ϕ). Then u = uϕq for some q > 1. Let
v = uϕp(q−1). Then u = uϕpq = vϕp. Suppose that v = v′av′′ with v′ ∈ A∗

0

and a ∈ A1. Since ϕ is prefix-convergent,

∀k > 0 ∃m ∈ N ∀n > m r(aϕn, (av′′)ϕn) > k.
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Since v, v′ ∈ Fin(ϕ), we have av′′ ∈ Fin(ϕ) as well by Lemma 4.2. Thus

∃m ∈ N ∀n > m aϕn = (av′′)ϕn

and so a ∈ Fin(ϕ), contradicting a ∈ A1. Therefore v ∈ A∗
0 and so Per(ϕ) ⊆

A∗
0ϕ

p.
The opposite inclusion follows from Lemma 4.6. �

We can now determine the singular Φ-periodic points.

Theorem 5.5. — If ϕ is prefix-convergent uniformly continuous, then

Pers(Φ) = Per(Φ) ∩A∞
0 = (A∞

R ∩A∞
0 )Φp.

Moreover, every α ∈ Pers(Φ) has period at most p.

Proof. — Assume that α ∈ Pers(Φ). Then

∀k > 0 ∃m > k α[m] ∈ Per(ϕ).

It follows that α[m] ∈ A∗
0ϕ

p ⊆ A∗
0 by Lemmas 5.2(ii) and 5.4. Hence α ∈

Per(Φ) ∩A∞
0 .

Assume next that α ∈ Per(Φ)∩A∞
0 . Then α = αΦq for some q > 1, and

so α = αΦpq. Write β = αΦp(q−1). Since

β = αΦp(q−1) = ( lim
n→∞

α[n])Φp(q−1) = lim
n→∞

α[n]ϕp(q−1)

by continuity of Φ and α[n]ϕp(q−1) ∈ A∗
0 by Lemma 5.2(ii), we obtain

β ∈ A∞
0 and so α ∈ (A∞

R ∩A∞
0 )Φp.

Finally, assume that α = βΦp for some β ∈ A∞
R ∩A∞

0 . We have

αΦp = βΦ2p = (limn→∞ β[n])Φ2p = limn→∞ β[n]ϕ2p

= limn→∞ β[n]ϕp = (limn→∞ β[n])Φp = βΦp = α

by continuity of Φ and (4.2), hence α ∈ Per(Φ). By Lemma 5.4, α =
limn→∞ β[n]ϕp is singular.

Since αΦp = α, the lemma is proved. �

Next we determine the regular Φ-periodic points.

Theorem 5.6. — If ϕ is prefix-convergent uniformly continuous, then

(5.2) Perr(Φ) =
⋃

a∈A2

(A∗
0ϕ

p) Ad(aϕn)n.

Moreover, every α ∈ Perr(Φ) is an attractor and there exists some M ∈ N
such that any α ∈ Per(Φ) has period at most M .
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Proof. — Let a ∈ A2. For every n > 1, write aϕn = unanvn with un ∈ A∗
0

and an ∈ A1. Since a ∈ A2, we have usas = us+qas+q for some q, s > 1.
We show that (aϕs+nq)n converges. Indeed, since ϕ is prefix-convergent,
we get

∀k > 0 ∃m ∈ N ∀n > m r(asϕ
nq, (asvs)ϕnq), r(asϕ

nq, (asvs+q)ϕnq) > k.

Thus

∀k > 0 ∃m ∈ N ∀n > m r((asvs)ϕnq), (asvs+q)ϕnq) > k.

Since us ∈ Fin(ϕ) and k is arbitrary, we get

(5.3) ∀k > 0 ∃m ∈ N ∀n > m r(aϕs+nq, aϕs+q+nq)

= r((usasvs)ϕnq), (usasvs+q)ϕnq) > k

and so

∀k > 0 ∃m ∈ N ∀n, n′ > m r(aϕs+nq, aϕs+n′q) > k.

Thus (aϕs+nq)n is a Cauchy sequence and therefore converges since A∞
R

is compact. Applying Lemma 4.3 with u = aϕs, we get Ad(aϕs+n)n =
Ad(aϕn)n ⊆ Per(Φ). Then Lemmas 4.4 and 5.4 yield

∪a∈A2(A∗
0ϕ

p) Ad(aϕn)n ⊆ Per(Φ).

Since aϕn = unanvn and |un| is bounded, we get Ad(aϕn)n ∩A∞
0 = ∅ and

so

(∪a∈A2(A∗
0ϕ

p) Ad(aϕn)n) ∩A∞
0 = ∅

by Lemma 5.2(iii). In view of Theorem 5.5, we obtain

∪a∈A2(A∗
0ϕ

p) Ad(aϕn)n ⊆ Perr(Φ).

Conversely, let α ∈ Perr(Φ) satisfy α = αΦq. By Theorem 5.5, we
may write α = uaβ with u ∈ A∗

0 and a ∈ A1. Then Lemma 5.3 yields
Ad((ua)ϕn)n = Ad(αΦn)n, which is finite since α ∈ Per(Φ). Write αΦn =
unanβn with un ∈ A∗

0 and an ∈ A1. Let k = max{|un| : n ∈ N}.
Since in a compact space any infinite sequence has an adherence value
and any convergent subsequence of ((ua)ϕn)n must converge to some αΦi

(i ∈ {0, . . . , q − 1}), it follows that

∃l ∈ N ∀n > l ∃i ∈ {0, . . . , q − 1} r((ua)ϕn, uiaiβi) > k.

Then |(ua)ϕnθ| = |uiai| 6 k + 1. As |uϕn| is bounded, it follows from
Lemma 2.5 that |aϕnθ| is bounded, hence a ∈ A2. By the first part of the
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proof, it follows that some subsequence (aϕnr)n converges and so does its
subsequence (aϕnpqr)n. Thus

α = lim
n→∞

(uϕp)(aϕnpqr) = (uϕp) lim
n→∞

aϕnr ∈ (A∗
0ϕ

p) Ad(aϕn)n

and so (5.2) holds.
Let α ∈ Perr(Φ). We show that α is an attractor. As we have already

proved, we may write α = uaβ with u ∈ A∗
0 and a ∈ A2. It is enough to

show that α′ ∈ Att(α) whenever r(α, α′) > |u|+ 1.
Indeed, if r(α, α′) > |u| + 1, then we may write α′ = uaβ′ for some

β′ ∈ A∞
R . By Lemma 5.3, we have Ad(αΦn)n = Ad((ua)ϕn)n = Ad(α′Φn)n

and so α ∈ Ad(α′Φn)n as required.
Since aϕ2p = aϕp for every a ∈ A0, to show that the period of α ∈ Per(Φ)

is bounded, it is enough to prove it for α ∈ Ad(aϕn)n. By Lemma 4.3 and
by the early part of the proof, the period of α is bounded by |{aϕnθ : n >
1}|. �

Corollary 5.7. — Let ϕ be prefix-convergent uniformly continuous.
If A∗

0 is finite and A1 6= ∅, then Per(Φ) ∩ Aω
R is a finite nonempty set of

(regular) attractors.

Proof. — Since A∗
0 is finite, it follows from Theorem 5.5 that Per(Φ) ∩

Aω
R = Perr(Φ). By Lemma 4.8, we have A1 = A2 and so

Perr(Φ) =
⋃

a∈A1

(A∗
0ϕ

p) Ad(aϕn)n

by Theorem 5.6. As we saw in the proof of Theorem 5.6, we may apply
Lemma 4.3 to conclude that Ad(aϕn)n is finite and nonempty, and A∗

0ϕ
p

is finite and nonempty as well. Thus Per(Φ) ∩ Aω
R = Perr(Φ) is finite and

nonempty since A1 6= ∅. All its elements are attractors by Theorem 5.6. �

The existence of fixed points follows from the following condition:

Theorem 5.8. — Let ϕ be prefix-convergent uniformly continuous. Let
u ∈ A+

R \ A∗
0 and w ∈ A+

R be such that uϕ = uw. Then limn→∞ uϕn ∈
Fix(Φ).

Proof. — Write u = u′au′′ with u′ ∈ A∗
0 and a ∈ A1. Since ϕ is prefix-

convergent and uw = u′au′′w is irreducible, we have

∀k ∈ N ∃m ∈ N ∀n > m (r(aϕn, (au′′)ϕn) > k ∧ r(aϕn, (au′′w)ϕn) > k).

Since |u′ϕn| is bounded and k is arbitrary, we get

(5.4) ∀k ∈ N ∃m ∈ N ∀n > m (r((u′a)ϕn, (u′au′′)ϕn) > k

∧ r((u′a)ϕn, (u′au′′w)ϕn) > k),
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that is,

∀k ∈ N ∃m ∈ N ∀n > m (r((u′a)ϕn, uϕn) > k ∧ r((u′a)ϕn, uϕn+1) > k).

Hence
∀k ∈ N ∃m ∈ N ∀n > m r(uϕn, uϕn+1) > k

and so
∀k ∈ N ∃m ∈ N ∀n, n′ > m r(uϕn, uϕn′) > k.

Thus (uϕn)n is a Cauchy sequence and therefore converges to some α ∈ Aω
R

by compactness of A∞
R . By Lemma 4.3, α ∈ Fix(Φ). �

We proceed now to discuss prefix-convergency through examples and
particular cases.

We say that an endomorphism ϕ of A∗
R preserves prefixes if, for every

prefix v of u ∈ A∗
R, vϕ is still a prefix of uϕ.

Lemma 5.9. — If ϕ preserves prefixes, it is prefix-convergent.

Proof. — Let a ∈ A1 and k ∈ N. Then there exists some m ∈ N such
that |aϕn| > k for every n > m. Since ϕ preserves prefixes, so does ϕn.
Thus, whenever n > m,

a 6 v ⇒ aϕn 6 vϕn ⇒ r(aϕn, vϕn) = |aϕn|+ 1 > k.

Therefore ϕ is prefix-convergent. �

We show next that preserving prefixes is a decidable property.

Lemma 5.10. — For every v ∈ A∗
R, the language L = {u ∈ A∗

R : u 6 uv}
is rational and effectively constructible.

Proof. — Let k = (tR − 1)|v|, L′ = {u ∈ L : |u| < k} and L′′ = {u ∈ L :
|u| = k}. We show that

(5.5) L = L′ ∪ ((A∗
RL′′) ∩A∗

R).

Let w ∈ A∗
R and u ∈ L′′ with wu irreducible. Then u 6 uv and so

wu 6 wuv. By Lemma 2.4, we get wu 6 wuv = wuv and so wu ∈ L. Thus
L′ ∪ ((A∗

RL′′) ∩A∗
R) ⊆ L.

Conversely, let u ∈ L. We may assume that |u| > k and write u = wz

with |z| = k. Since wz = u 6 uv = wzv and wzv = wzv by Lemma 2.4, it
follows that z 6 zv and so z ∈ L′′. Therefore u ∈ (A∗

RL′′) ∩ A∗
R and (5.5)

holds. It follows that L is rational.
Since L′ and L′′ can be effectively computed, L is effectively constructible.

�

Proposition 5.11. — It is decidable whether or not an endomorphism
ϕ of A∗

R preserves prefixes.
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Proof. — We remark that ϕ preserves prefixes if and only if

(5.6) ∀u ∈ A∗
R ∀a ∈ A (ua ∈ A∗

R ⇒ uϕ 6 (ua)ϕ).

Indeed, if (5.6) holds and ua1 . . . an ∈ A∗
R (ai ∈ A), successive application

of (5.6) yields

uϕ 6 (ua1)ϕ 6 (ua1a2)ϕ 6 . . . 6 (ua1 . . . an)ϕ.

For every a ∈ A, let

La = {u ∈ A∗
R : u 6 u(aϕ)},

Ka = {u ∈ A∗
R : ua ∈ A∗

R}.

Then ϕ preserves prefixes if and only if

∀u ∈ A∗
R ∀a ∈ A (u ∈ Ka ⇒ uϕ ∈ La),

or equivalently,

(5.7) ∀a ∈ A Kaϕ ⊆ La.

Now Ka = (A∗
R ∩ (A∗a))a−1 is rational and effectively constructible by

the standard closure properties of rational languages and so is Kaϕ by
Lemma 2.6. Since La is rational and effectively constructible by Lemma
5.10, it follows that (5.7) is decidable as required. �

We shall present now a number of examples. Most of them involve a free
group on 2 generators, so the following lemma will come handy:

Lemma 5.12. — Let A∗
R be the free group on the alphabet A={a, b, a−1,

b−1} and let ϕ be a nontrivial endomorphism of A∗
R. Then ϕ is uniformly

continuous if and only if (ab)ϕ 6= (ba)ϕ.

Proof. — By Theorem 2.8, ϕ is uniformly continuous if and only if wϕ−1

is finite for every w ∈ A∗
R. Since A∗

R is a group, this is equivalent to 1ϕ−1

being finite. Since the unique finite subgroup of a free group is the trivial
subgroup, this is equivalent to ϕ being injective.

Clearly, if ϕ is injective then (ab)ϕ 6= (ba)ϕ. Conversely, assume that
(ab)ϕ 6= (ba)ϕ. By the Nielsen-Schreier Theorem [17, Section I.2], A∗

Rϕ is a
free group that must therefore have rank 2 since it is nonabelian and so is
the quotient group A∗

R/1ϕ−1. Since a finitely generated free group cannot
be isomorphic to a proper quotient [17, Proposition I.3.5], it follows that ϕ

is injective. �

In the examples to follow, when we say that A∗
R be the free group on B,

we assume that A = B ∪B−1.
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Example 5.13. — Let A∗
R be the free group on {a, b} and let ϕ be the

endomorphism of A∗
R defined by aϕ = ab, bϕ = ba. Then ϕ preserves

prefixes, is uniformly continuous and |Per(Φ)| = 5. There are no finite
nontrivial Φ-periodic points.

Proof. — Let x, y ∈ A. If xy is irreducible, so is (xϕ)(yϕ). Hence ϕ

preserves prefixes. By Lemma 5.12, ϕ is uniformly continuous.
Clearly, the sequences (aϕn)n and (bϕn)n converge to some instance of

the Thue-Morse infinite word [15, Section 2.2]. Since a−1ϕ2 = a−1b−2a−1

and b−1ϕ2 = b−1a−2b−1, it is a simple exercise to check that

Ad(a−1ϕn)n = Ad(b−1ϕn)n = {a−1b−1b−1a−1 . . . , b−1a−1a−1b−1 . . .}

consist of two further instances of the Thue-Morse word, hence A0 = ∅
and Per(ϕ) = {1} by Lemma 5.4. By Theorem 5.6, the 4 instances of the
Thue-Morse word

abba . . . , baab . . . , a−1b−1b−1a−1 . . . , b−1a−1a−1b−1 . . .

are the unique infinite Φ-periodic points. �

The next example shows an instance of Corollary 5.7.

Example 5.14. — Let A∗
R be the free group on {a, b} and let ϕ be the

endomorphism of A∗
R defined by aϕ = a−2ba2, bϕ = a−1ba. Then ϕ is

prefix-convergent uniformly continuous and A2 = A. Moreover, Per(ϕ) =
{1} and |Perr(Φ)| = 1.

Proof. — By Lemma 5.12, ϕ is uniformly continuous.
It is easy to see that if u = x1 . . . xn ∈ A+

R with x1, . . . , xn ∈ A, then
uϕ = ar0bs1ar1 . . . bsnarn with

si ∈ {−1, 1} (i = 1, . . . , n), r0 ∈ {−2,−1},
ri ∈ {−1, 0, 1} (i = 1, . . . , n− 1), rn ∈ {1, 2}.

Let u′ = ar0bs1ar1 . . . bsn . Then vϕ ∈ u′A∗ whenever u 6 v. Moreover,
|u| < |u′|. Thus |uϕn| > |u|+ n for every n and so A0 = ∅. By Lemma 4.8,
we obtain A = A2. We show that

(5.8) ∀u, v ∈ A+
R (u 6= v ⇒ r(u, v) < r(uϕ, vϕ)).

Indeed, if u = wu0, v = wv0 with w 6= 1, then w′ is a common prefix of wϕ,
uϕ and vϕ. Since |w| < |w′|, (5.8) holds if r(u, v) > 1. Since r(uϕ, vϕ) > 1
in any case, (5.8) holds. Thus

(5.9) ∀u, v ∈ A+
R ∀n ∈ N r(uϕn, vϕn) > n

and so ϕ is prefix-convergent.
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Since A0 = ∅, Lemma 5.4 yields Per(ϕ) = {1}. By Theorems 5.5 and
5.6, we get Pers(Φ) = {1} and Perr(Φ) = ∪a∈A Ad(aϕn)n. As all sequences
converge to the same point by (5.9), we get |Perr(Φ)| = 1. �

Note that in the preceding example ϕ does not preserve prefixes.
The next example shows an instance of Theorem 5.6 with A∗

0 infinite.

Example 5.15. — Let A∗
R be the free group on {a, b} and let ϕ be the

endomorphism of A∗
R defined by aϕ = aba−1, bϕ = b. Then ϕ is prefix-

convergent uniformly continuous, A1 = A2 = {a, a−1}, and Perr(Φ) is
infinite.

Proof. — By Lemma 5.12, ϕ is uniformly continuous.
It is easy to show by induction that, for every n > 1,

aϕn = abε1a−1bε2abε3a−1 . . . abε2n−1a−1

with εi = ±1 for i = 1, . . . , 2n − 1. Thus A1 = {a, a−1} since bϕn = b

for every n ∈ N. Since aϕnθ = a−1ϕnθ = a for every n > 1, we obtain
A2 = A1.

For every q > 1, we have

(5.10) aqϕn = (aϕn−1)bq(a−1ϕn−1).

Let x ∈ A2 and let k ∈ N. Take m = k and assume that xw is irreducible.
If w /∈ (a ∪ a−1)A∗

R, then (xw)ϕn = (xϕn)(wϕn) and so

r(xϕn, (xw)ϕn) = |xϕn|+ 1 = 2n+1 > k

whenever n > m.
Otherwise, w = xqw′ for some q > 1, w′ /∈ (a ∪ a−1)A∗

R and so in view
of (5.10)

r(xϕn, (xw)ϕn) = r(xϕn, xq+1ϕn) = |aϕn−1|+ 2 = 2n + 1 > k

whenever n > m. Thus ϕ is prefix-convergent. By Theorem 5.6, we get
Perr(Φ) = {bqα : q ∈ Z} where α = limn→∞ aϕn = limn→∞ a−1ϕn (α is
related to the paperfolding sequence, see [1, Example 5.1.6]). �

In the next example, A∗
0 is also infinite, but now A2 = ∅ so there are no

regular periodic points.

Example 5.16. — Let A∗
R be the free group on {a, b} and let ϕ be the

automorphism of A∗
R defined by aϕ = bab, bϕ = b. Then ϕ is prefix-

convergent uniformly continuous, A1 = {a, a−1}, A2 = ∅, and Perr(Φ) = ∅.

Proof. — Observe first that ϕ is indeed an automorphism, its inverse
being given by aϕ−1 = b−1ab−1 and bϕ−1 = b. By Lemma 5.12, ϕ is
uniformly continuous.
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For n ∈ Z, it is immediate that aϕn = bnabn and (a−1)ϕn = b−na−1b−n,
so that A0 = {b, b−1}, A1 = {a, a−1}, and A2 = ∅.

Write u ∈ A∗
R\A∗

0 as u = bs0aε1bs1aε2 . . . aεkbsk with εi = ±1 and si ∈ Z.
Then uϕn = bt0aε1bt1aε2 . . . aεkbtk with t0 = s0 +ε1n, ti = si +(εi +εi+1)n
for 1 6 i < k, tk = sk + εkn. Note that no cancellation between a and a−1

occurs. In particular, if the first letter of u is a, we get that bna is a prefix
of uϕn, so that r(aϕn, uϕn) > n+1. Similarly, if the first letter of u is a−1,
then r((a−1)ϕn, uϕn) > n + 1. Hence ϕ is prefix-convergent.

As A2 = ∅, Theorem 5.6 yields Perr(Φ) = ∅. �

The next example shows that, as far as fixed points are concerned, we
cannot expect reduction to finite fixed points and Ad(aϕn)n in the spirit
of Theorem 5.6.

Example 5.17. — Let A = {a, b} and R = {(a3, 1)}. Let ϕ : A∗
R → A∗

R

be the endomorphism defined by aϕ = a2 and bϕ = aba2b. Then ϕ is
prefix-convergent and uniformly continuous and Fix(Φ) = {1, (a2b)ω}.

Proof. — Clearly, A0 = {a} and (a2b)ϕ = (a2b)2. A simple induction
shows that

∀n ∈ N (bϕ2n = b(a2b)2
2n−1 ∧ bϕ2n+1 = ab(a2b)2

2n+1−1),

hence
Ad(bϕn)n = {b(a2b)ω, ab(a2b)ω}.

Since the number of occurrences of b increases in each iteration of ϕ, it
follows easily that ϕ is prefix-convergent and uniformly continuous. It is
immediate that Fix(ϕ) = {1}. Suppose that α = (a2b)kalbβ ∈ Fix(Φ)
with l ∈ {0, 1}. Then α = αΦ = (a2b)2kaba2b(βΦ) if l = 0 and α =
αΦ = (a2b)2kba2b(βΦ) if l = 1, a contradiction in any case. Thus Fix(Φ) =
{1, (a2b)ω}. �

A non prefix-convergent endomorphism does not have to produce regular
periodic points:

Example 5.18. — Let A∗
R be the free group on {a, b} and let ϕ be the

endomorphism of A∗
R defined by aϕ = ab, bϕ = ab−1a−1. Then ϕ is not

prefix-convergent but is uniformly continuous and A0 = ∅. There exist just
finitely many infinite Φ-periodic points, but no regular ones.

Proof. — By Lemma 5.12, ϕ is uniformly continuous.
Let z = aba. Since zϕ = z, we have zω, (z−1)ω ∈ Per(Φ). A simple

induction shows that

aϕ2n+1 = znabz−n, bϕ2n+1 = znab−1a−1z−n, bϕ2n = znbz−n (n > 0),
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aϕ2n = znb−1a−1z−(n−1) (n > 1),

hence limn→∞ xϕn = zω for every x ∈ A. It follows that A0 = ∅ and so
A = A2 by Lemma 4.8. Since r(aϕn, zϕn) 6 4 for every n ∈ N, it follows
that ϕ is not prefix-convergent.

We show now that zω and (z−1)ω are the unique infinite Φ-periodic
points. Let α ∈ Per(Φ)∩Aω

R. Then α = αΦp for some p > 0. Since xϕ2p =
zpxz−p for every x ∈ A, we get

α = αΦ2p = (limn→∞ α[n])Φ2p = limn→∞(α[n]ϕ2p)
= limn→∞ zpα[n]z−p = limn→∞ zpα[n] = zpα.

We may write zp = uv, α = v−1β with zpα = uβ. Thus v−1β = α = zpα =
uβ. Since uv = zp, we must have either u = 1 or v = 1.

If u = 1, then β = z−pβ yields β = (z−p)ω and so α = z−pβ = (z−1)ω.
Otherwise β = α and so α = zpα yields α = zω.

Since zω and (z−1)ω are both singular, we conclude that there exist no
regular Φ-periodic points. �

We end this sequence of examples by considering the famous Fibonacci
endomorphism:

Example 5.19. — Let A∗
R be the free group on {a, b} and let ϕ be the

endomorphism of A∗
R defined by aϕ = ab, bϕ = a. Then ϕ is not prefix-

convergent but it is uniformly continuous and A0 = ∅.

Proof. — By Lemma 5.12, ϕ is uniformly continuous.
Clearly, limn→∞ aϕn = limn→∞ bϕn = α, where α = abaab . . . denotes

the Fibonacci (infinite) word [16, Section 2.1]. It follows that A0 = ∅.
We have

(a−1ba)ϕ2 = (b−1ab)ϕ = ba,

hence (a−1ba)ϕn ∈ (a ∪ b)A∗
R for n > 2. Since a−1ϕn ∈ (a−1 ∪ b−1)A∗

R for
every n ∈ N, it follows that r(a−1ϕn, (a−1ba)ϕn) = 1 for every n > 2. Thus
ϕ is not prefix-convergent. �

However, if we consider the Fibonacci endomorphism for A = {a, b, a−1,

b−1} and R = {(aa−1, 1), (bb−1, 1)}, it preserves prefixes since xy irre-
ducible implies (xϕ)(yϕ) irreducible for all x, y ∈ A. We still have uniform
continuity and A0 = ∅, therefore Corollary 5.7 applies. It is a simple exer-
cise to check that

Per(Φ) = {1, lim
n→∞

aϕn, lim
n→∞

a−1ϕ2n, lim
n→∞

b−1ϕ2n}.
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6. Length-increasing endomorphisms

Let ϕ be a nontrivial endomorphism of A∗
R.

Definition 6.1. — We say that ϕ is

• length-increasing if

∀u ∈ A+
R |uϕ| > |u|;

• eventually length-increasing if

(6.1) ∃m ∈ N ∀u ∈ A+
R (|u| > m ⇒ |uϕ| > |u|);

• expanding if

(6.2) ∀k ∈ N ∃m ∈ N ∀u ∈ A+
R (|u| > m ⇒ |uϕ| > |u|+ k).

Obviously, if ϕ is either length-increasing or expanding, then it is eventu-
ally length-increasing. Examples 6.14 and 6.15 show that length-increasing
and expanding are independent properties.

Lemma 6.2. — If ϕ is eventually length-increasing, then it is uniformly
continuous.

Proof. — Assume that ϕ is eventually length-increasing. Then wϕ−1 is
finite for every w ∈ A∗

R and so ϕ is uniformly continuous by Theorem 2.8.
�

We fix ϕ and
h = max{|aϕ| : a ∈ A}.

Lemma 6.3. — Let ϕ be uniformly continuous. Then

(6.3) ∃M ∈ N ∀u ∈ A∗
R (|u| > M ⇒ |uϕ| > 2h).

Proof. — Suppose not. Then

∀n ∈ N ∃un ∈ A∗
R (|un| > n ∧ |unϕ| < 2h).

Since there are only finitely many words v of length < 2h, it follows that
vϕ−1 is infinite for some v, contradicting Theorem 2.8. �

We fix M > max{tR, 2h} satisfying (6.3).

Lemma 6.4. — Let uvw ∈ A∗
R with |v| > M . Then there exists a fac-

torization vϕ = v1v2v3 such that v2 6= 1 and

(uvw)ϕ = (uϕ)v1 v2 v3(wϕ).
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Proof. — Let v ∈ A∗
R be such that |v| > M . Suppose the lemma fails for

some choice of u and w. We may assume that |uw| is minimal.
Assume that u, w 6= 1. Let u0 denote the first letter of u and write

u = u0u1. Let w0 denote the last letter of w and write w = w1w0. By
minimality of |uw|, we have a factorization v = v1v2v3 with v2 6= 1 and
(u1vw1)ϕ = (u1ϕ)v1 v2 v3(w1ϕ). Write x1 = (u1ϕ)v1, y1 = v3(w1ϕ). We
discuss the reduction process in

(uvw)ϕ = (u0ϕ)x1v2y1(w0ϕ)

and show that (uvw)ϕ is the product of a proper prefix of u0ϕ by a proper
suffix of w0ϕ. By minimality of |uw|, the factor v2 cannot be fully cancelled
in the reduction (u0ϕ)x1v2y1. We consider two cases:
Case I: some part of the factor v2 is cancelled.
Then we may write (u0ϕ)x1v2y1 = u2v3y1 where u2 < u0ϕ and v3 is a
proper suffix of v2. Note that v3 6= 1, otherwise w0 would be superfluous.
Now in the reduction of (uvw)ϕ = u2v3y1(w0ϕ) we get a word of the form
u3w2 with u3 6 u2 and w2 a proper suffix of w0ϕ.
Case II: the factor v2 remains intact.
Then we may write (u0ϕ)x1v2y1 = u2x2v2y1 where u2 6 u0ϕ and x2 is a
suffix of x1. Now in the reduction of (uvw)ϕ = u2x2v2y1(w0ϕ) part of u2

must be cancelled, otherwise u0 would be superfluous. Hence we get a word
of the form u3w2 with u3 < u2 and w2 a proper suffix of w0ϕ.

In any case, we get |(uvw)ϕ| < |u0ϕ|+ |w0ϕ| 6 2h and so |v| 6 |uvw| <
M by (6.3), a contradiction.

The cases u = 1 or w = 1 are actually a simplification of the case
discussed and can therefore be omitted. �

Lemma 6.5. — Let ϕ be expanding. Then

∃m ∈ N ∀u, v ∈ A+
R (r(u, v) ∈ ]m,+∞[ ⇒ r(uϕ, vϕ) > r(u, v)).

Proof. — Since ϕ is expanding,

(6.4) ∃m > M ∀u ∈ A+
R (|u| > m ⇒ |uϕ| > |u|+ hM(tR − 1)).

Let u, v ∈ A+
R be distinct with r(u, v) > m. Let w be the longest common

prefix of u and v. Write u = wu′. We show that there exists a factorization
wϕ = w1w2 such that

(6.5) uϕ = w1w2(u′ϕ) and |w1| > |w|.

Since |w| > m > M , it follows from Lemma 6.4 that there exists a factor-
ization wϕ = w1w2 such that w1 6= 1 and uϕ = w1w2(u′ϕ). We assume
that w1 has maximal length.
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Suppose that |w1| 6 |w|. By (6.4), we have

|w|+ |w2| > |w1|+ |w2| = |wϕ| > |w|+ hM(tR − 1)

and so |w2| > hM(tR−1). By maximality of |w1|, w2 must be fully cancelled
in the reduction w2(u′ϕ). Let u′′ be the shortest prefix of u′ such that w2 is
fully cancelled in the reduction w2(u′′ϕ). Since the image of the last letter
of u′′ must necessarily help to cancel the first letter of w2, we conclude that
|w2(u′′ϕ)| < h. Now let w0 be the shortest suffix of w such that w2 is a
suffix of w0ϕ. Since the first letter of w2 must necessarily originate from
the image of the first letter of w0, we conclude that |w0ϕ| < |w2|+h. Since
w0u

′′ is a factor of wu′ = u, it is reduced. Writing w0ϕ = xw2, we have
(w0u

′′)ϕ = xw2(u′′ϕ) and so

|(w0u
′′)ϕ| = |xw2(u′′ϕ)| 6 |x|+ |w2(u′′ϕ)| < 2h.

By (6.3), it follows that |w0u
′′| < M and so |u′′| < M . Hence |u′′ϕ| < hM .

By Lemma 2.5(ii), it follows that u′′ϕ cannot cancel a word with length
> hM(tR − 1) and so |w2| < hM(tR − 1), a contradiction. Thus |w1| > |w|
and (6.5) holds.

Applying the same argument to vϕ, we conclude that uϕ and vϕ have a
common prefix of length |w|+1 and so r(uϕ, vϕ) > r(u, v) as required. �

Lemma 6.6. — Let ϕ be expanding. Then Ad(uϕn)n is finite and no-
nempty for every u ∈ A∗

R.

Proof. — Let u ∈ A∗
R. As A∞

R is compact, Ad(uϕn)n is nonempty. If
u ∈ Fin(ϕ), then Ad(uϕn)n ⊆ {uϕn : n > 1} is finite. Assume now that
u ∈ Inf(ϕ).

By Lemma 6.5,

(6.6) ∃m ∈ N ∀u, v ∈ A+
R ∀n ∈ N (r(u, v) > m ⇒ r(uϕn, vϕn) > n).

Since (|uϕn|)n is unbounded, there exist some s, q > 1 such that uϕs and
uϕs+q have a common prefix w of length m. Write uϕs = wv and uϕs+q =
wv′. By (6.6), we have

r(wϕn, uϕs+n) = r(wϕn, (wv)ϕn) > n,

r(wϕn, uϕs+q+n) = r(wϕn, (wv′)ϕn) > n,

hence r(uϕs+n, uϕs+q+n) > n for every n ∈ N. It follows that r(uϕs+nq,

uϕs+(n+1)q) > n for every n > 1 and so

∀k ∈ N ∀n, n′ > k r(uϕs+nq, uϕs+n′q) > k.
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Thus (uϕs+nq)n is a Cauchy sequence and therefore convergent since A∞
R

is compact. By Lemma 6.2, we may apply Lemma 4.3 and conclude that
Ad(uϕn)n is finite. �

We are now ready for the characterization of the periodic points. We
denote as usual by Φ the continuous extension of ϕ to A∞

R .

Theorem 6.7. — Let A∗
R be infinite and ϕ be expanding. Then Pers(Φ)

= Per(ϕ) and there exists some m ∈ N such that

(6.7) Perr(Φ) =
⋃

|u|=m

Ad(uϕn)n

is a finite nonempty set of attractors.

Proof. — Since ϕ is expanding, Per(ϕ) is finite and so Pers(Φ) = Per(ϕ).
We take m from (6.6). Since A∗

R is infinite, the set {u ∈ A∗
R : |u| = m}

is finite nonempty. Then by Lemmas 6.2, 4.3, and 6.6, ∪|u|=m Ad(uϕn)n

is finite nonempty and contained in Per(Φ). Since ϕ is expanding and m

in (6.6) originates from (6.4), then Ad(uϕn)n ⊆ Aω
R and so Ad(uϕn)n ⊆

Perr(Φ).
Conversely, let α ∈ Perr(Φ). We may write α = uβ for some u ∈ A∗

R of
length m and some β ∈ Aω

R. For all n, k ∈ N, we have r(uϕn, α[m+k]ϕn) > n

by (6.6) and since Φn is continuous we get

αΦn =
(

lim
k→∞

α[m+k]
)
Φn = lim

k→∞
α[m+k]ϕn,

hence r(uϕn, αΦn) > n for every n. Since α ∈ Per(Φ), we have α = αΦp for
some p > 1. Hence r(uϕnp, α) > np for every n and so α = limn→∞ uϕnp ∈
Ad(uϕn)n. Thus (6.7) holds.

To show that α is an attractor, we check the inclusion B2−m(α) ⊆ Att(α).
Let γ ∈ B2−m(α). Then r(α, γ) > m and so γ = uβ′ for some β′ ∈ A∞

R .
Since r(uϕn, γ[m+k]ϕn) > n for all n and k by (6.6), we get r(uϕn, γΦn) > n

similarly to the case of α. In view of r(uϕnp, α) > np, it follows that
r(γΦnp, α) > np for every n and so limn→∞ γΦnp = α. Thus α ∈ Ad(γΦn)n

and so γ ∈ Att(α). Therefore B2−m(α) ⊆ Att(α) and α is an attractor. �

We address now the decidability question.
Given u ∈ A∗, let uξ denote the suffix of length M of u if |u| > M .

Otherwise, let uξ = u.
We define a finite (A, Z)-transducer Tϕ = (Q, q0, T, E) as follows:

Q = {u ∈ A∗
R : |u| 6 M} is the set of states;

q0 = 1 is the initial state;
T = Q \ {1} is the set of terminal states;
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E = {(u, a, n, v) ∈ Q×A× Z×Q : ua ∈ A∗
R, n = |(ua)ϕ| − |uϕ| −

1, v = (ua)ξ} is the set of edges.

The label of a path p in Tϕ is denoted by pλ and its projections on A∗ and
Z by pλ1 and pλ2, respectively.

For details on automata and transducers, the reader is referred to [3].

Lemma 6.8. — Let uv, vw ∈ A∗
R with |v| > M . Then uvw ∈ A∗

R and

|(uvw)ϕ| − |(uv)ϕ| = |(vw)ϕ| − |vϕ|.

Proof. — Since |v| > tR, we have uvw ∈ A∗
R. By Lemma 6.4, there exists

a factorization vϕ = v1v2v3 such that v2 6= 1 and

(uvw)ϕ = (uϕ)v1 v2 v3(wϕ).

Hence

|(uvw)ϕ| − |(uv)ϕ| = |(uϕ)v1|+ |v2|+ |v3(wϕ)| − |(uϕ)v1| − |v2v3|
= |v1v2|+ |v3(wϕ)| − |v1v2v3| = |(vw)ϕ| − |vϕ|

and the lemma holds. �

Let

mϕ = min{pλ2 : p is a cycle-free successful path in Tϕ}.

Theorem 6.9. — The following conditions are equivalent:

(i) ϕ is eventually length-increasing;
(ii) cλ2 > 0 for every cycle c in Tϕ and pλ2 > 0 for every successful

path p with

(max{0, 2−mϕ})|Q| 6 |p| < (1 + max{0, 2−mϕ})|Q|.

Proof. — Suppose that

p : q0
(a1,n1)−−−→ q1

(a2,n2)−−−→ . . .
(ak,nk)−−−→qk

is a successful path in Tϕ. For every i ∈ {1, . . . , k}, we have ni = |(qi−1ai)ϕ|
−|qi−1ϕ|−1, qi−1ai ∈ A∗

R, and qi = (qi−1ai)ξ. We show that a1 . . . ai ∈ A∗
R

and

(6.8) ni = |(a1 . . . ai)ϕ| − |(a1 . . . ai−1)ϕ| − 1.

Assume first that i 6 M . Then qj = qj−1aj for every j 6 i and the
claims follow immediately. Assume now that i > M and the claims hold
for i − 1. Let u = a1 . . . ai−1−M . By the induction hypothesis, we have
a1 . . . ai−1 ∈ A∗

R. It is easy to check that qj = (qj−1aj)ξ for every j 6 i

yields a1 . . . ai−1 = uqi−1. Now i > M implies |qi−1| = M . Since uqi−1,
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qi−1ai ∈ A∗
R, we may apply Lemma 6.8 and obtain a1 . . . ai = uqi−1ai ∈ A∗

R

and also

ni = |(qi−1ai)ϕ| − |qi−1ϕ| − 1 = |(ui−1qi−1ai)ϕ| − |(ui−1qi−1)ϕ| − 1
= |(a1 . . . ai)ϕ| − |(a1 . . . ai−1)ϕ| − 1.

The induction is therefore complete and so (6.8) holds.
It follows that

pλ2 =
k∑

i=1

ni =
k∑

i=1

(|(a1 . . . ai)ϕ| − |(a1 . . . ai−1)ϕ| − 1) = |(a1 . . . ak)ϕ| − k

and so

(6.9) pλ2 = |pλ1ϕ| − |pλ1|.

Notice that

(6.10) {pλ1 : p is a successful path in Tϕ} = A+
R.

Indeed, we have just proved the direct inclusion and the opposite one follows
from the following inductive argument: if ua ∈ A+

R and we assume that
there is a successful path p ending in state uξ with pλ1 = u, then we
can always extend p by means of some edge of the form (uξ, a, n, (ua)ξ).
Therefore (6.10) holds.

Assume now that (i) holds and let c be a cycle in Tϕ. Suppose that
cλ2 < 0. Since Tϕ is trim, we have a successful path of the form pc and so
pcn is also a successful path for every n ∈ N. Let u = pλ1 and v = cλ1.
Then uv∗ is an infinite subset of A+

R by (6.10), and (6.9) implies

|(uvn)ϕ| − |uvn| = (pcn)λ2 = pλ2 + n(cλ2) 6 pλ2 − n

for every n, yielding |(uvn)ϕ| 6 |uvn| for infinitely many n, contradicting
(i). Thus cλ2 > 0.

Next we show that

(6.11) pλ2 > min
{

1,mϕ +
|p|
|Q|

− 1
}

for every successful path p by induction on |p|. Let p be a successful path
and assume the claim holds for all shorter paths. If p is cycle-free, then
|p| < |Q| and pλ2 > mϕ + |p|

|Q| − 1 follows from the definition of mϕ. Hence
we may assume that p = p1cp2 for some cycle c. Since cλ2 > 0, we may
assume that

(6.12) (p1p2)λ2 < 1,
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otherwise we are done. Suppose first that cλ2 > 0. Then |c| 6 |Q| yields

|p|
|Q|

=
|p1p2|
|Q|

+
|c|
|Q|

6
|p1p2|
|Q|

+ 1

and by (6.12) the induction hypothesis yields

pλ2 = (p1p2)λ2 + cλ2 > (p1p2)λ2 + 1 > mϕ +
|p1p2|
|Q|

> mϕ +
|p|
|Q|

− 1

and (6.11) holds. Assume now that cλ2 = 0. By (6.12), p1c
∗p2 is an infinite

set of successful paths with (p1c
∗p2)λ2 ⊆ ]−∞, 0], contradicting (i). Hence

(6.11) holds in any case.
Thus, if we take a successful path p with (max{0, 2 − mϕ})|Q| 6 |p| <

(1 + max{0, 2−mϕ})|Q|, we get

mϕ +
|p|
|Q|

− 1 > mϕ + max{0, 2−mϕ} − 1 = max{mϕ − 1, 1} > 1

hence (6.11) yields pλ2 > 0 and so (ii) holds.
Conversely, assume that (ii) holds. Let n = (max{0, 2 −mϕ})|Q|. Then

pλ2 > 0 for every successful path p with n 6 |p| < n + |Q|. We show that
pλ2 > 0 for every successful path p with n + |Q| 6 |p| by induction on |p|.
Assume that n + |Q| 6 |p| and the claim holds for shorter paths of that
form. We may factor p = p1cp2 for some cycle c. Since n 6 |p1p2| < |p|
it follows from (ii) and the induction hypothesis that (p1p2)λ2 > 0. Since
cλ2 > 0 by (ii), we obtain pλ2 = (p1p2)λ2 + cλ2 > 0.

Therefore pλ2 > 0 for every successful path p with n 6 |p| and so (i)
holds by (6.10) and (6.9). �

It follows from the proof of Theorem 6.9 that

Corollary 6.10. — If ϕ is eventually length-increasing, then

∀u ∈ A+
R (|u| > (max{0, 2−mϕ})|Q| ⇒ |u| < |uϕ|).

Theorem 6.11. — The following conditions are equivalent:
(i) ϕ is expanding;
(ii) cλ2 > 0 for every cycle c in Tϕ.

Proof. — Assume that (i) holds and let c be a cycle in Tϕ. Suppose that
cλ2 6 0. Since Tϕ is trim, we have a successful path of the form pc and so
pcn is also a successful path for every n ∈ N. Let u = pλ1 and v = cλ1.
Then uv∗ is an infinite subset of A+

R by (6.10), and (6.9) implies

|(uvn)ϕ| − |uvn| = (pcn)λ2 = pλ2 + n(cλ2) 6 pλ2

for every n, contradicting (i). Thus (ii) holds.
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Conversely, assume that (ii) holds. We show that

(6.13) pλ2 > mϕ +
|p|
|Q|

− 1

for every successful path p by induction on |p|. Let p be a successful path
and assume the claim holds for all shorter paths. If p is cycle-free, then
|p| < |Q| and (6.13) follows from the definition of mϕ. Hence we may
assume that p = p1cp2 for some cycle c. Since cλ2 > 0 and |c| 6 |Q|, we
get

|p|
|Q|

=
|p1p2|
|Q|

+
|c|
|Q|

6
|p1p2|
|Q|

+ 1

and the induction hypothesis yields

pλ2 = (p1p2)λ2 + cλ2 > (p1p2)λ2 + 1
> mϕ + |p1p2|

|Q| > mϕ + |p|
|Q| − 1

and so (6.13) holds.
Let k > 0. We show that

(6.14) ∀u ∈ A∗
R (|u| > (k −mϕ + 1)|Q| ⇒ |uϕ| > |u|+ k).

Let u ∈ A∗
R be such that |u| > (k −mϕ + 1)|Q|. By (6.10), there exists a

successful path p such that pλ1 = u. Since |p| > (k−mϕ +1)|Q|, (6.9) and
(6.13) yield

|uϕ| − |u| = pλ2 > mϕ +
|p|
|Q|

− 1 > mϕ + k −mϕ + 1− 1 = k

and so (6.14) holds. Therefore ϕ is expanding. �

Corollary 6.12. — It is decidable whether or not an arbitrary endo-
morphism ϕ is

(i) length-increasing;
(ii) eventually length-increasing;
(iii) expanding.

Proof. — By Theorem 2.8, we may decide whether or not ϕ is uniformly
continuous. This is a necessary condition for ϕ to be eventually length-
increasing by Lemma 6.2. Thus we may assume that ϕ is uniformly contin-
uous. As it is proved in [8, Theorem 8.7], we may effectively compute wϕ−1

for any given word w. It follows that M can be effectively computed. Now
decidability of (ii) and (iii) follows from Theorems 6.9 and 6.11 since we
can construct the transducer T and then check if conditions 6.9(ii), 6.11(ii)
hold. In view of Corollary 6.10, decidability of (i) follows from (ii) since we
only need to test finitely many short words. �
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We can use previous results to bound the periods:

Corollary 6.13. — If ϕ is expanding and α ∈ Per(Φ), then the period
of α is bounded by |A|max{M,(hM(tR−1)−mϕ)|Q|}.

Proof. — Assume first that α ∈ Aω
R. By Theorem 6.7, we have α ∈

Ad(uϕn)n for some u ∈ A∗
R. By the proof of Lemma 6.6 and Lemma 4.3,

αΦp = α if r(uϕs, uϕs+p) > m where s ∈ N and m is given by (6.6). By
the proofs of Lemmas 6.5 and 6.6, m originates from (6.4). By (6.14), we
can take m = max{M, (hM(tR− 1)−mϕ)|Q|}. Since (uϕn)[m] with length
m can take at most |A|m values, it follows that αΦp = α for some

p 6 |A|m 6 |A|max{M,(hM(tR−1)−mϕ)|Q|}.

Assume now that α ∈ A∗
R. Then |uϕn| < max{0, (2 −mϕ)|Q|} 6 m for

every n ∈ N by Corollary 6.10 and so αΦp = α for some p 6 |A|m as
required. �

We end the section by presenting some examples.

Example 6.14. — Let A = {a, b, b−1} and R = {(bb−1, 1)}. Let ϕ :
A∗

R → A∗
R be the matched endomorphism defined by aϕ = b−1ab and

bϕ = b3. Then ϕ is length-increasing but not expanding.

Proof. — Given u = x1 . . . xn ∈ A+
R with x1, . . . , xn ∈ A, we have

|(x1ϕ) . . . (xnϕ)| = 3n. It is easy to check that the maximum number of
letters that can be cancelled in the reduction of (x1ϕ) . . . (xnϕ) is 2(n− 1),
hence |uϕ| > 3n− 2(n− 1) = n + 2 = |u|+ 2 and so ϕ is length-increasing.

Since anϕ = b−1anb for every n > 1, ϕ is not expanding. �

For the next counterexample, we reuse the endomorphism from Exam-
ple 5.17.

Example 6.15. — Let A = {a, b} and R = {(a3, 1)}. Let ϕ : A∗
R → A∗

R

be the endomorphism defined by aϕ = a2 and bϕ = aba2b. Then ϕ is
expanding but not length-increasing.

Proof. — As |a2ϕ| < |a2|, ϕ is not length-increasing. Every u ∈ A∗
R can

be written as u = u1 . . . unv with ui ∈ {b, ab, a2b} and v ∈ {1, a, a2}. Then
uϕ = u′1 . . . u′nv′ with u′i ∈ {aba2b, ba2b, a2ba2b} and v′ ∈ {1, a2, a}, so
|uϕ| > 2|u| − 3 and ϕ is expanding. �

Given u ∈ A∗ and a ∈ A, we denote by |u|a the number of occurrences
of the letter a in u.

Example 6.16. — Let A∗
R be the free group on {a, b, c} and let ϕ be the

endomorphism of A∗
R defined by aϕ = ac, bϕ = c−1a−1b3 and cϕ = ca.

Then ϕ is expanding and length-increasing but not prefix-convergent.
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Proof. — The unique reducible words of the form (xϕ)(yϕ) with x, y ∈ A

and xy reduced are (aϕ)(bϕ) and (b−1ϕ)(a−1ϕ). Let u ∈ A∗
R. We replace

any occurrence of ab (respectively b−1a−1) by d (respectively d−1) to get a
reduced word u′ in the free group F on B = {a, b, c, d}. Write u′ = x1 . . . xn

with x1, . . . , xn ∈ B ∪ B−1. We extend ϕ to an endomorphism ϕ̂ of F by
taking dϕ̂ = (ab)ϕ = b3. It is easy to check that

uϕ = u′ϕ̂ = (x1 . . . xn)ϕ̂ = (x1ϕ̂) . . . (xnϕ̂)

and

|uϕ| = |x1ϕ̂|+ . . . + |xnϕ̂| > 2n + |u′|d + |u′|d−1 = n + |u| > 3
2
|u|.

Thus ϕ is expanding and length-increasing.
Since ϕ is length-increasing, we have A0 = ∅ and so A2 = A by Lemma

4.8. We have a 6 ab and aϕn ∈ aA∗ for every n ∈ N. However, (ab)ϕ =
b3 and a simple induction shows that (ab)ϕn ∈ {a−1, c−1, b}A∗ for every
n > 1. Thus r(aϕn, (ab)ϕn) = 1 for every n > 1 and so ϕ is not prefix-
convergent. �

Concerning fixed points, we see in the next example they do not neces-
sarily exist, even when aϕ = aw for some a ∈ A.

Example 6.17. — Let A∗
R be the free group on {a, b} and let ϕ be the

endomorphism of A∗
R defined by aϕ = ab and bϕ = b−1a−2b3a. Then ϕ is

expanding and length-increasing but has no nontrivial fixed points.

Proof. — The unique reducible words of the form (xϕ)(yϕ) with x, y ∈ A

and xy reduced are (aϕ)(bϕ) and (b−1ϕ)(a−1ϕ).
Let u ∈ A∗

R. We replace any occurrence of ab (respectively b−1a−1)
by c (respectively c−1) to get a reduced word u′ in the free group F on
B = {a, b, c}. Write u′ = x1 . . . xn with x1, . . . , xn ∈ B ∪ B−1. We extend
ϕ to an endomorphism ϕ̂ of F by taking cϕ̂ = (ab)ϕ = a−1b3a.

It is easy to see that (xiϕ̂)(xi+1ϕ̂) is reducible if and only if xixi+1 ∈
{bc, c−1b−1, c2, c−2} and in that case reduction goes no further than aa−1 =
1. Since uϕ = (x1ϕ̂) . . . (xnϕ̂), we get

|uϕ| > 3n− |u′|a − |u′|a−1 = 3(|u′|b + |u′|b−1 + |u′|c + |u′|c−1)

+ 2(|u′|a + |u′|a−1)

>
3
2
(|u′|b + |u′|b−1 + |u′|c + |u′|c−1)+

3
2
(|u′|a + |u′|c + |u′|a−1 +|u′|c−1)

=
3
2
(|u|b + |u|b−1 + |u|a + |u|a−1) =

3
2
|u|.

Thus ϕ is expanding and length-increasing.
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Suppose that α ∈ x1x2A
∞
R is a fixed point with x1, x2 ∈ A. Let α′ =

x′1x
′
2β be the word on B ∪B−1 obtained as before. If x′1 = a, then x1 = a

and x2 6= b and so αΦ ∈ abA∞
R , a contradiction. If x′1 = c, then x1x2 = ab

and so αΦ ∈ a−1A∞
R , a contradiction. We omit the remaining cases, that

confirm that Fix(Φ) = {1}. �

7. The free monoid case

We develop now the particular case of the free monoid, making more
explicit existence results such as Konig’s Lemma [18]. It is well known that
regular infinite fixed points for nonerasing free monoid endomorphisms are
of the form u limn→∞ aϕn, where u ∈ Fix(ϕ), a ∈ A, aϕ ∈ aA+, and |aϕn|
is not bounded [16]. Hence we concentrate our efforts once again in the
periodic case. In view of Theorem 2.8, we remark that an endomorphism ϕ

of A∗ is uniformly continuous if and only if wϕ−1 is finite for every w ∈ A∗,
and this is clearly equivalent to have aϕ 6= 1 for every a ∈ A. Moreover,
Theorem 2.8 asserts that this is equivalent to the existence of a proper
endomorphism extension of ϕ to A∞, henceforth denoted by Φ. We keep
the notation A = A0 ∪A1 introduced in Section 5.

By Lemma 5.9, we obtain:

Lemma 7.1. — Let ϕ : A∗ → A∗ be a uniformly continuous endomor-
phism. Then ϕ is prefix-convergent.

We further introduce

A3 = {a ∈ A : ∀n ∈ N |aϕn| = 1} ⊆ A0.

We define also a directed graph G(ϕ) by

V (G(ϕ)) = A1 ∪A3;
E(G(ϕ)) = {(a, b) ∈ A1 ×A1 : aϕ ∈ A∗

0bA
∗}

∪ {(a, b) ∈ A3 ×A3 : aϕ = b}.

As usual, a cycle is a closed path

a0 → a1 → . . . → an = a0

satisfying
∀i, j ∈ {0, . . . , n− 1} (ai = aj ⇒ i = j).

Since G(ϕ) is finite, it has only finitely many cycles. Moreover, there exists
at least one cycle in each connected component of G(ϕ) since, in each
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(a, b) ∈ E(G(ϕ)), b is uniquely determined by a and so |E(G(ϕ))| =
|V (G(ϕ))|. We define

l3 = lcm{|c| : c is an A3-cycle in G(ϕ)}

and
L(ϕ) = max{lcm(l3, |c|) : c is an A1-cycle in G(ϕ)},

with l3 = 1 if A3 = ∅, and L(ϕ) = l3 if A1 = ∅. Clearly, L(ϕ) 6
|A3|!max{1, |A1|} 6 |A|!.

Lemma 7.2. — Let ϕ be a uniformly continuous endomorphism of A∗

and let a ∈ A0. Then every letter of aϕ|A0|−1 lies in an A3-cycle.

Proof. — We use induction on |A0|. If |A0| = 1, then A0 = {a} = A3

since aϕ = a, thus the claim holds. Assume now that |A0| > 1 and the
claim holds for smaller values of |A0|.

If aϕq = uav for some q ∈ N, then a ∈ A0 yields u = v = 1 and so a ∈ A3

since ϕ is uniformly continuous. Therefore a lies in an A3-cycle.
Otherwise, let A′

0 be the set of letters occurring in {aϕn : n > 1}. We
may apply the induction hypothesis to ϕ|A′

0
to conclude that every letter of

bϕ|A
′
0|−1 lies in an A3-cycle for every b occurring in aϕ. Since |A′

0| < |A0|,
this completes the proof. �

Theorem 7.3. — Let ϕ be a uniformly continuous endomorphism of
A∗ and let a0 ∈ A. Then

0 < |Ad(a0ϕ
n)n| 6 L(ϕ).

Proof. — By Lemma 7.2, for every a ∈ A0, every letter of aϕ|A| lies in
an A3-cycle. Thus

(7.1) ∀a ∈ A0 aϕ|A|+l3 = aϕ|A|.

In fact, since every letter of aϕ|A| lies in an A3-cycle and l3 is a multiple of
the length of any A3-cycle, (7.1) holds.

If a0 ∈ A0, then (7.1) yields directly that Ad(a0ϕ
n)n = {aϕ|A|+i : 0 6

i < l3}, hence 0 < |Ad(a0ϕ
n)n| 6 l3 6 L(ϕ) as required. Assume now that

a0 ∈ A1.
For every a ∈ A1, we have aϕ ∈ A∗

0A1A
∗. Hence, for every n ∈ N, we may

write a0ϕ
n = unanu′n for some un ∈ A∗

0, an ∈ A1 and u′n ∈ A∗. Clearly,
there exists some A1-cycle c in G(ϕ) such that

(7.2) ∀j > |A1| aj+|c| = aj .

In fact, j > |A1| implies that aj lies in some A1-cycle. Hence (7.2) holds.
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Let l = lcm(l3, |c|). We show that:

(7.3) ∀i ∈ {0, . . . , l − 1} (a0ϕ
|A|+i+ln)n converges.

Let i ∈ {0, . . . , l − 1} and k = |A| + i. We have a0ϕ
k = ukaku′k and (7.2)

yields

uk+laku′k+l = uk+lak+lu
′
k+l = a0ϕ

k+l = (ukaku′k)ϕl

= (ukϕl)(akϕl)(u′kϕl).

Since uk+l, ukϕl ∈ A∗
0, it follows that uk+l = (ukϕl)v and akϕl = vakw for

some v ∈ A∗
0 and w ∈ A∗.

Suppose first that v 6= 1. For every n ∈ N, we have

a0ϕ
k+ln = (ukaku′k)ϕln = (ukϕln)(vϕl(n−1))(vϕl(n−2)) . . . (vϕl)vak . . .

Since uk, v ∈ A∗
0, it follows from (7.1) that, for n > |A|, ukϕln = ukϕl|A|

and vϕln = vϕl|A|. Moreover, if n > |A|+ n0,

a0ϕ
k+ln = (ukϕl|A|)(vϕl|A|)n0 . . .

Since vϕl|A| 6= 1, it is immediate that

lim
n→∞

a0ϕ
|A|+i+ln = (ukϕl|A|)(vϕl|A|)ω.

Suppose now that v = 1. Since ak ∈ A1, we have w 6= 1. For every n ∈ N,
we get

a0ϕ
k+ln = (ukaku′k)ϕln = (ukϕln)akw(wϕl)(wϕ2l) . . . (wϕl(n−1))(u′kϕln)

Since uk ∈ A∗
0, it follows from (7.1) that, for n > |A|, ukϕln = ukϕl|A|.

Since wϕln 6= 1 for every n ∈ N, it is immediate that

lim
n→∞

a0ϕ
|A|+i+ln = (ukϕl|A|)akw(wϕl)(wϕ2l)(wϕ3l) . . .

Therefore (7.3) holds.
It is straightforward that the limits of the subsequences in (7.3) are the

only adherence values of (a0ϕ
n)n since any such adherence value must be

an adherence value for one of the l subsequences of the partition, and a
convergent sequence has its limit as its only adherence value. Therefore

0 < |Ad(a0ϕ
n)n| 6 l 6 L(ϕ)

as required. �

The next example shows that the bound L(ϕ) is in some sense tight.

Example 7.4. — Let A = {a1, . . . , a8} and let ϕ be the (uniformly con-
tinuous) endomorphism of A∗ defined by:

a1ϕ = a2a5, a4ϕ = a2, a8ϕ = a2
5, aiϕ = ai+1 (i ∈ {2, 3, 5, 6, 7}).
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Then a1 ∈ A1 and |Ad(a1ϕ
n)n| = L(ϕ).

Proof. — It is easy to see that

A1 = {a1, a5, a6, a7, a8}, A3 = {a2, a3, a4},

hence G(ϕ) is the graph described by

a1 // a5 // a6

��

a2 // a3

��
a8

OO

a7oo a4

aaBBBBBBBB

hence L(ϕ) = lcm(3, 4) = 12. We have

aiϕ
12 =

{
ai for i = 2, 3, 4
a8

i for i = 5, 6, 7, 8.

A straightforward induction shows that

a1ϕ
12n = a4a

8n−14
8 a1ϕ

12n+4 = a2a
8n

8 a1ϕ
12n+8 = a3a

8n2
8

a1ϕ
12n+1 = a2a

8n

5 a1ϕ
12n+5 = a3a

8n2
5 a1ϕ

12n+9 = a4a
8n4
5

a1ϕ
12n+2 = a3a

8n

6 a1ϕ
12n+6 = a4a

8n2
6 a1ϕ

12n+10 = a2a
8n4
6

a1ϕ
12n+3 = a4a

8n

7 a1ϕ
12n+7 = a2a

8n2
7 a1ϕ

12n+11 = a3a
8n4
7 .

In particular, a1 ∈ A1 and

Ad(a1ϕ
n)n = {aia

ω
j : i ∈ {2, 3, 4}, j ∈ {5, 6, 7, 8} }

has 12 elements. �

We can now identify all the Φ-periodic points:

Theorem 7.5. — Let ϕ be uniformly continuous. Let B = {a ∈ A :
aϕl3 = a}. Then

(7.4) Per(Φ) = B∞ ∪
( ⋃

a∈A2

B∗ Ad(aϕn)n

)
and each α ∈ Per(Φ) has period at most L(ϕ). Moreover, if α is regular
then it is an attractor.

Proof. — Since ϕ is uniformly continuous, we have B ⊆ A3. Given u ∈
Per(ϕ), we must have u ∈ A∗

0 and so uϕ|A|+l3 = uϕ|A| by (7.1). If uϕn = u,
we get

u = uϕn|A| = uϕn|A|+l3 = uϕl3 .

Thus Per(ϕ) ⊆ B∗ since ϕ is uniformly continuous. The opposite inclusion
being obvious, we obtain Per(ϕ) = B∗. By Lemma 7.1, we may apply
Lemma 5.4 and Theorem 5.5 to get B∗ = A∗

0ϕ
p and Pers(Φ) = A∞

0 Φp.
Hence Pers(Φ) = B∞.
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Now Theorem 5.6 yields

Perr(Φ) =
⋃

a∈A2

B∗ Ad(aϕn)n

and implies that all these regular periodic points are attractors.
Finally, we bound the period. It is immediate that αΦl3 = α for every

α ∈ B∞, hence we only need to show that every α ∈ Ad(aϕn)n (a ∈
A1) satisfies αΦl = α for some l 6 L(ϕ) with l3|l. By the remark at the
end of the proof of Theorem 7.3, Ad(aϕn)n consists of the limits of the
subsequences in (7.3), thus

α = lim
n→∞

aϕk+nl

for some k ∈ N and l 6 L(ϕ) with l3|l. Since Φ is a continuous endomor-
phism of A∞ extending ϕ, it follows that

αΦl = (limn→∞ aϕk+nl)Φl = limn→∞(aϕk+nlϕl)
= limn→∞ aϕk+(n+1)l = limn→∞ aϕk+nl = α.

Therefore each α ∈ Per(Φ) has period at most L(ϕ). �

Write
A4 = {a ∈ A1 : aϕka ∈ aA+ for some ka > 1}.

Alternatively, A4 is the set of vertices of G(ϕ) lying in some A1-cycle.

Corollary 7.6. — Let ϕ be uniformly continuous and let B = {a ∈
A : aϕl3 = a}. Then there exists a finite subset F of Aω with |F | = |A4|
such that

(7.5) Per(Φ) = B∞ ∪B∗F

and all elements of B∗F are attractors.

Proof. — For every a ∈ A4, let αa = limn→∞ aϕnka . Let

F = {αa : a ∈ A4}.

We show that (7.5) holds.
Assume that α ∈ Per(Φ) and αΦm = α (m > 1). By Theorem 7.5, we

have Per(Φ) = B∞ ∪ B∗F1 with F1 = ∪a∈A1 Ad(aϕn)n. Hence we may
assume that α ∈ B∗F1. Write α = uaβ with u ∈ A∗

0 and a ∈ A1. Since
αΦm = α, A0ϕ ⊆ A∗

0 and aϕm 6= a, it follows that uϕm = u and aϕm = av

for some v ∈ A+. By Theorem 5.8, limn→∞ aϕnm ∈ Fix(Φm) and it is now
straighforward to check that

α = αΦm = uav(vϕm)(vϕ2m) . . . = u lim
n→∞

aϕnm.
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Moreover, a ∈ A4 and α = uαa since two convergent sequences sharing an
infinite subsequence must share the same limit. Thus Per(Φ) ⊆ B∞∪B∗F .

Trivially, F ⊆ F1 and so (7.5) follows from Theorem 7.5. Thus (7.5)
holds.

Since all the αa start with different letters, we get |F | = |A4|. Finally,
all elements of B∗F are attractors by Theorem 7.5. �
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