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SURPRISING PROPERTIES OF CENTRALISERS IN
CLASSICAL LIE ALGEBRAS

by Oksana YAKIMOVA

Abstract. — Let g be a classical Lie algebra, i.e., either gln, spn, or son and
let e be a nilpotent element of g. We study various properties of the centralisers ge.
The first four sections deal with rather elementary questions, like the centre of ge,
commuting varieties associated with ge, or centralisers of commuting pairs. The
second half of the paper addresses problems related to different Poisson structures
on g∗e and symmetric invariants of ge.

Résumé. — Soit g une algèbre de Lie classique, i.e., gln, spn, ou son, et soit e
un élément nilpotent de g. Nous étudions dans cet article diverses propriétés du
centralisateur ge de e. Les quatre premières sections concernent des problèmes assez
élémentaires portant sur le centre de ge, la variété commutante de ge, ou encore
les centralisateurs des paires commutantes. La seconde partie aborde des questions
liées aux différentes structures de Poisson sur g∗e et aux invariants symétriques
de ge.

Introduction

Suppose that G is a connected reductive algebraic group defined over a
field F and g = LieG. For x ∈ g let gx denote the centraliser of x in g.
Due to the existence of the Jordan decomposition many questions about
centralisers are readily reduced to nilpotent elements e ∈ g. In this paper
we restrict ourself to the case of classical g and study various properties of
centralisers. The first four sections deal with rather elementary questions,
like commuting varieties associated with ge or centralisers of commuting
pairs. The second half of the paper addresses problems related to different
Poisson structures on g∗e and symmetric invariants of ge. It pursues further
an approach and some methods of [15].

Keywords: Nilpotent orbits, centralisers, symmetric invariants.
Math. classification: 17B45.
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In Section 1, we introduce a basis of ge, which is used throughout the
paper. Section 2 is devoted to the description of the centre of ge. Let N(g) ⊂
g be the nilpotent cone, i.e., the set of nilpotent elements. Let rk g denote
the rank of g. Answering a question of Hotta and Kashiwara, Sekiguchi
wrote a short note [19], where he stated (without a proof) that, for each
classical Lie algebra g and each e ∈ N(g), there exists x ∈ ge such that
the centraliser g(e,x) = ge ∩ gx is of dimension rk g. He addressed the same
problem for the exceptional Lie algebras, but was not able to deal with
the E8 case and overlooked one orbit in type G2. Recently W. de Graaf [7]
calculated (using computer) that in the exceptional Lie algebras there are
only three nilpotent orbits Ge such that dim g(e,x) > rk g for all x ∈ ge,
one in G2, one in F4 and one in E8. In Section 3, we prove that, for each
x in a classical Lie algebra g, there is a nilpotent element e ∈ gx such that
dim g(x,e) = rk g.

In Section 4, we study mixed commuting varieties, C∗(ge) = {(x, α) ∈
ge×g∗e | α([x, ge]) = 0}, associated with centralisers. In contrast with the
reductive case, these varieties can be reducible. The simplest examples
are provided by a minimal nilpotent element in sl4 (defined by partition
(2, 1, 1))) and a nilpotent element e ∈ sp6 with Jordan blocks (4, 2). On
the other hand, we prove that if e ∈ N(gln) has at most two Jordan blocks,
then C∗(ge) is irreducible.

The last four sections are devoted to the coadjoint representation of
ge. In those sections we assume that the ground field F is algebraically
closed and of characteristic zero. For a linear action of a Lie algebra q on
a vector space V , let qv denote the stabiliser of v ∈ V in q. Recall that
ind q = minγ∈q∗ dim qγ . Set

q∗sing := {γ ∈ q∗ | dim qγ > ind q}.

For a reductive Lie algebra g we have codim g∗sing > 3. In Section 5, the
same is shown to be true for the centralisers in type A. In type C there
are elements such that codim(g∗e)sing = 2. In all other simple Lie algebras
g the codimension of (g∗e)sing may be 1, see [15, Section 3.9].

The dual space q∗ of a Lie algebra carries a Poisson structure induced
by the Lie-Poisson bracket on q. Having inequalities like codim q∗sing > 2, 3
one can construct interesting (maximal) Poisson-commutative subalgebras
in S(q), see [17].

By the Jacobson-Morozov theorem, e can be included into an sl2-triple
(e, h, f) in g. Let us identify g and g∗ by means of the Killing form on g.
Then g∗e is isomorphic to a so called Slodowy slice Se = e+ gf ⊂ g∗ at e to
the (co)adjoint orbit Ge. The Slodowy slice Se and hence g∗e, carries another

ANNALES DE L’INSTITUT FOURIER
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polynomial Poisson structure, obtained from g∗ via Weinstein reduction,
see e.g. [4] or [5]. This second Poisson bracket is not linear in general and its
linear part coincides with the Lie-Poisson bracket on g∗e. On the quantum
level, one can express the fact by saying that a finite W -algebra W (g, e)
is a deformation of the universal enveloping algebra U(ge). The centre of
W (g, e) is a polynomial algebra in rk g variables for all g and e. (It can
be deduced from the analogous statement on the Poisson level, which is
proved e.g. in [15, Remark 2.1].) In [15], the same is shown to be true for
the centre of U(ge), which is isomorphic to S(ge)ge , if g is of type A or C.
In type A another proof is given by Brown and Brundan [2]. In Section 6,
we compare construction of [15] and [2] and conclude that they produce
the same set of generating symmetric invariants.

In Section 7, we prove that, in types A and C, a generic fibre of the
quotient morphism g∗e → g∗e//Ge consists of a single (closed) Ge-orbit. The
most interesting fibre of this quotient morphism is the one containing zero,
the so called null-cone N(e). In type A it is equidimensional by [15, Sec-
tion 5]. Contrary to the expectations, see [15, Conjecture 5.1], the null-cone
is not reduced (as a scheme). A counterexample is provided by e ∈ N(gl6)
with partition (4, 2). This implies that the tangent cone at e to N(gl6) is
not reduced either. For this nilpotent element there is an irreducible com-
ponent of N(e), which contains infinitely many closed Ge-orbits and no
regular elements.

If e ∈ gln is defined by a rectangular partition dk, then ge is a truncated
current algebra glk ⊗ F[t]/(td) and it is also a so called Takiff Lie algebra.
As was noticed by Eisenbud and Frenkel [12, Appendix], a deep result
of Mustăţa [12] implies that N(e) is irreducible. Apart from that little is
known about the number of irreducible components of N(e). We compute
that N(e) has m+1 components for the hook partition (n, 1m) with n > 1,
m > 0 and min(n − m,m)+1 components for the partition (n,m) with
n > m.

Suppose that either g is an orthogonal Lie algebra and e ∈ g has only
Jordan blocks of odd size or g is symplectic and e has only Jordan blocks of
even size. Then, as shown in Section 8, all irreducible components of N(e)
are of dimension dim ge − rk g. In type A the same result is proved in [15,
Section 5] for all nilpotent elements.

In Sections 1–4, the ground field is supposed to be infinite and when-
ever dealing with orthogonal or symmetric Lie algebras we assume that
char F 6= 2.

TOME 59 (2009), FASCICULE 3
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1. Basis of a centraliser

The main object of this section is to introduce our notation. We con-
struct a certain basis in ge, which is used throughout the paper. Let V be
an n-dimensional vector space over F and let e be a nilpotent element in
g = gl(V). Let k be the number of Jordan blocks of e and W ⊆ V a (k-
dimensional) complement of Im e in V. Let di +1 denote the size of the i-th
Jordan block of e. We always assume that the Jordan blocks are ordered
such that d1 > d2 > · · · > dk so that e is represented by the partition
(d1+1, . . . , dk+1) of n = dim V. Choose a basis w1, w2, . . . , wk in W such
that the vectors ej · wi with 1 6 i 6 k, 0 6 j 6 di form a basis for V and
put V[i] := span {ej · wi | j > 0}. Note that edi+1 · wi = 0 for all i 6 k.

If ξ ∈ ge, then ξ(ej · wi) = ej · ξ(wi), hence ξ is completely determined
by its values on W . Each vector ξ(wi) can be written as

(1.1) ξ(wi) =
∑
j,s

cj,si es · wj , cj,si ∈ F.

Thus, ξ is completely determined by the coefficients cj,si = cj,si (ξ). This
shows that ge has a basis {ξj,s

i } such that{
ξj,s
i (wi) = es · wj ,

ξj,s
i (wt) = 0 for t 6= i,

1 6 i, j 6 k and max{dj − di, 0} 6 s 6 dj .

Note that ξ ∈ ge preserves each V[i] if and only if cj,si (ξ) = 0 for i 6= j.
An example of ξj,1

i with i > j and dj = di+1 is shown on Figure 1.1. On
Figure 1.2, we indicate elements ξj,s

i using Arnold’s description of ge for e
with three Jordan blocks. In that interpretation e is given in a standard
Jordan form and each ξj,s

i as a matrix with entries 1 on one of the (above)
diagonal lines in one of the nine rectangles.

ANNALES DE L’INSTITUT FOURIER
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Figure 1.2

A direct computation shows that the following commutator relation holds
in ge:

(1.2) [ξj,s
i , ξ] =

∑
t,`

ci,`t (ξ)ξj,`+s
t −

∑
t,`

ct,`j (ξ)ξt,`+s
i , (∀ ξ ∈ ge);

see [24] for more detail.
Let (ξj,s

i )∗ be a linear function on ge such that (ξj,s
i )∗(ξ) = cj,si (ξ). Then〈

(ξj,s
i )∗

〉
form a basis of g∗e dual to the basis

〈
ξj,s
i

〉
of ge.

Let a : F× → GL(V)e be the cocharacter such that a(t) · wi = tiwi for
all i 6 k and t ∈ F×

and define a rational linear action ρ : F× → GL(g∗e)

TOME 59 (2009), FASCICULE 3



908 Oksana YAKIMOVA

by the formula

(1.3) ρ(t)γ = tAd∗(a(t)−1)γ,
(
∀ γ ∈ g∗e, ∀ t ∈ F

×)
.

Then ρ(t)(ξj,s
i )∗ = ti−j+1(ξj,s

i )∗ and for the adjoint action, denoted by the
same letter, we have ρ(t)ξj,s

i = tj−i−1ξj,s
i .

Let ( , ) be a nondegenerate symmetric or skew-symmetric bilinear form
on V, i.e., (v, w) = ε(w, v), where v, w ∈ V and ε = +1 or −1. Let J
be the matrix of ( , ) with respect to a basis B of V. Let X denote the
matrix of x ∈ gl(V) relative to B. The linear mapping x 7→ σ(x) sending
each x ∈ gl(V) to the linear transformation σ(x) whose matrix relative to
B equals −JXtJ−1 is an involutory automorphism of gl(V) independent
of the choice of B. The elements of gl(V) preserving ( , ) are exactly the
fixed points of σ. We now set g̃ := gl(V) and let g̃ = g̃0 ⊕ g̃1 be the
symmetric decomposition of g̃ corresponding to the σ-eigenvalues 1 and
−1. The elements x ∈ g̃1 have the property that (x · v, w) = (v, x · w) for
all v, w ∈ V.

Set g := g̃0 and let e be a nilpotent element of g. Since σ(e) = e, the
centraliser g̃e of e in g̃ is σ-stable and (g̃e)0 = g̃σ

e = ge. This yields the
ge-invariant symmetric decomposition g̃e = ge ⊕ (g̃e)1.

Lemma 1.1. — In the above setting, suppose that e ∈ g̃0 is a nilpotent
element. Then the cyclic vectors {wi} and thereby the spaces {V[i]} can
be chosen such that there is an involution i 7→ i′ on the set {1, . . . , k}
satisfying the following conditions:

• di = di′ ;
• (V[i],V[j]) = 0 if i 6= j′;
• i = i′ if and only if (−1)diε = 1.

Proof. — This is a standard property of the nilpotent orbits in sp(V)
and so(V), see, for example, [3, Sect. 5.1] or [8, Sect. 1]. �

Let {wi} be a set of cyclic vectors chosen according to Lemma 1.1. Con-
sider the restriction of the g-invariant form ( , ) to V[i] + V[i′]. Since
(w, es · v) = (−1)s(es · w, v), a vector edi · wi is orthogonal to all vectors
es ·wi′ with s > 0. Therefore (wi′ , e

di ·wi) = (−1)di(edi ·wi′ , wi) 6= 0. There
is a (unique up to a scalar) vector v ∈ V[i] such that (v, es · wi′) = 0 for
all s < di. It is not contained in Im e, otherwise it would be orthogonal
to edi · wi′ too and hence to V[i′]. Therefore there is no harm in replacing
wi by v. Let us always choose the cyclic vectors wi in such a way that
(wi, e

s · wi′) = 0 for s < di and normalise them according to:

(1.4) (wi, e
di · wi′) = ±1 and (wi, e

di · wi′) > 0 if i 6 i′.

ANNALES DE L’INSTITUT FOURIER
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Then ge is generated (as a vector space) by the vectors ξ
j,dj−s
i +

ε(i, j, s)ξi′,di−s
j′ , where ε(i, j, s) = ±1 depending on i, j and s in the fol-

lowing way

(edj−s · wj , e
s · wj′) = −ε(i, j, s)(wi, e

di · wi′).

Elements ξj,dj−s
i − ε(i, j, s)ξi′,di−s

j′ form a basis of (g̃e)1. In the following
we always normalise wi as above and enumerate the Jordan blocks such
that i′ ∈ {i, i+ 1, i− 1} keeping inequalities di > dj for i < j. In this basis
{es · wi} the matrix of the restriction ( , )

∣∣
(V[i]+V[i′])

is anti-diagonal with
entries ±1.

2. The centre of a centraliser

Let z be the centre of ge. The powers of e (as a matrix) are also elements
of gl(V ). Set E := g ∩ 〈e0, e, e2, . . . , ed1〉F. All higher powers of e are zeros;
the first element, e0, is the identity matrix. Clearly, E ⊂ z. If g is either
sl(V) or sp(V), then this inclusion is in fact the equality and in orthogonal
Lie algebras z can be larger. For g classical, the centre of ge was described
by Kurtzke [11] and that description is not quite correct.

The following result is well-known. The proof is easy and illustrates the
general scheme of argument very well.

Theorem 2.1. — If g = gl(V) , then z = E.

Proof. — We have es =
∑k

i=1 ξ
i,s
i and es ∈ g for all 0 6 s 6 d1. Suppose

η ∈ z. Then η commutes with the maximal torus t := 〈ξi,0
i 〉F ⊂ gl(V)e. We

have

[ξi,0
i , ξt,s

j ] =


−ξt,s

i if i = j, i 6= t;

ξi,s
j if i = t, i 6= j;

0 otherwise.

Therefore η ∈ 〈ξi,s
i 〉F. Adding an element of E we may assume that c1,s

1 (η) =
0 for all s. If η 6∈ E, then there is some ci,si (η), which is not zero. Now take
ξi,0
1 ∈ ge and compute that

[η, ξi,0
1 ] = ci,0i (η)ξi,0

1 + ci,1i (η)ξi,1
1 + · · ·+ ci,di

i (η)ξi,di

1 6= 0.

A contradiction! Thus z = E. �

Corollary 2.2. — Suppose that g = sl(V), then also z = E.

TOME 59 (2009), FASCICULE 3
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Theorem 2.3. — If g = so(V) and e is given by a partition (d1 +1, d2 +
1, d3+1, . . . , dk+1) with k > 2, where d2 > d3 and both d1 and d2 are even,
then z = E ⊕ F(ξ2,d2

1 − ξ1,d1
2 ). For all other nilpotent elements of classical

simple Lie algebras, we have z = E.

Proof. — First we show that indeed in the special case indicated in the
theorem we have an additional central element x := ξ2,d2

1 −ξ1,d1
2 . Note that

ξ2,d2
1 , ξ1,d1

2 do not commute only with the elements ξ1,0
1 , ξ2,0

2 , ξ1,d1−d2
2 and

ξ2,0
1 . Since 1′ = 1, 2′ = 2, the centraliser ge contains no elements of the form
aξ1,0

1 +bξ2,0
2 and we have to check only that [x, ξ2,0

1 +ε(1, 2, d2)ξ
1,d1−d2
2 ] = 0.

Here d1 and d2 are even, therefore ε(1, 2, d2) = −1. We get[
x, ξ2,0

1 − ξ1,d1−d2
2

]
= −ξ1,d1

1 − ξ2,d1
2 + ξ1,d1

1 + ξ2,d1
2 = 0.

Let us prove that z is not larger than stated in the theorem. The case
g = gl(V) (or sl(V)) was treated above. Thus assume that g is either sp(V)
or so(V). Then E is a vector space generated by all odd powers of e.

Suppose that η ∈ z. If η preserve the cyclic spaces V[i], then η ∈ E. It can
be shown exactly in the same way as in the gl(V ) case. Note that whenever
i 6= i′ there is an sl2-triple (subalgebra) qi = 〈ξi,0

i − ξi′,0
i′ , ξi′,0

i , ξi,1
i′ 〉F ⊂ ge.

Equality [η, qi] = 0 forces cj,si (η) = 0 whenever i 6= i′ (or j 6= j′) and i 6= j,
also ci,si (η) = ci

′,s
i′ (η) for i 6= i′.

Assume that η 6∈ E. Take the minimal i such that there is a non-zero
cj,si (η) with j 6= i. (Necessary i′ = i and j′ = j.) Fix this i and take the
minimal j and then the minimal s, with this property. Since ci,dj−di+s

j (η) 6=
0, we have also j > i and therefore j > 1, 1′. There is an element ξ :=
ξ1,d1−s
j + ε(j, 1, s)ξj,dj−s

1′ ∈ ge. Consider the commutator [ξ, η] = ξη − ηξ.
We are interested in the coefficient ai := c1,d1

i ([ξ, η]). Since all coefficients
c1

′,r
i (η) are zeros and j 6= i, we get

ai = cj,si (η)− δi,1ε(j, 1, s)c
1,d1−dj+s
j (η).

In particular, if i 6= 1, then η is not a central element. Therefore i = 1.
In the symplectic case d1 and dj are odd, hence dj−s and s have different

parity and ε(j, 1, s)ε(1, j, dj − s) = −1. Thus ai = 2cj,si 6= 0. We get a
contradiction.

The orthogonal case is more complicated. If j > 2, then also j > 2′ and

c2,d2
1

([
ξ2,d2−s
j + ε(j, 2, s)ξj,dj−s

2′ , η
])

= cj,s1 (η) 6= 0.

Since η ∈ z, we get j = 2. If d3 = d2, then 3′ = 3 and there is a semisimple
element ξ3,0

2 − ξ2,0
3 ∈ ge, which does not commute with η.

ANNALES DE L’INSTITUT FOURIER
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It remains to consider only the special case d2 > d3. There is no harm in
replacing η by η − c2,d2

1 (η)(ξ2,d2
1 − ξ1,d1

2 ). In other words, we may assume
that c2,d2

1 (η) = 0 and thereby s < d2. It is not difficult to see that η does
not commute either with ξ2,1

1 + ξ1,d1−d2+1
2 or ξ2,0

1 − ξ1,d1−d2
2 , depending on

the parity of s. Thus if η 6∈ E ⊕ F(ξ2,d2
1 − ξ1,d1

2 ), then η is not a central
element. This completes the proof. �

Remark 2.4. — In [11, Proposition 3.5], Kurtzke overlooked nilpotent
elements in so(V) such that E is of codimension 1 in z and k > 2.

3. Centralisers of commuting pairs

By Vinberg’s inequality, dim(ge)α > rk g for any α ∈ g∗e. A famous
conjecture of Elashvili states that there is α ∈ g∗e such that dim(ge)α = rk g.
In the classical case, Elashvili’s conjecture is proved in [24] and for the
exceptional Lie algebras it is verified (with a computer aid) by W. de Graaf
[7]. In [7], de Graaf also showed that in the exceptional Lie algebras there
are only three nilpotent orbits Ge such that dim(ge)x > rk g for all x ∈ ge.
The result was predicted by Elashvili.

By a result of Richardson [18], the commuting variety C(g) := {(x, y) ∈
g×g | [x, y] = 0} is irreducible for each reductive Lie algebra g. It coincides
with the closure of a G-saturation G(t, t), where t ⊂ g is a maximal torus.
Hence dim(ge)x > rk g for all x ∈ ge. A general belief is that in the classical
Lie algebras there is always an element x ∈ ge for which the equality holds.
The statement even appeared in the literature without a proof, [19]. Here
we prove a slightly stronger statement. Set g(e,x) := (ge)x = ge ∩ gx.

Theorem 3.1. — Suppose that g is a classical simple Lie algebra and
e ∈ N(g). Then there is a nilpotent element x ∈ ge such that dim g(e,x) =
rk g.

Proof.

(1) If g = sln, then e can be included into a so called principal nilpotent
pair (e, x), where x :=

∑k−1
i=1 ξ

i+1,0
i and dim g(e,x) = n− 1, see [6].

(2) Now assume that g ⊂ gl(V) is either symplectic or orthogonal. The
required element x ∈ ge is defined as

x :=
k−1∑
i=1

ξi+1,0
i + ε(i, i+1, 0)ξi′,di−di+1

(i+1)′ .

TOME 59 (2009), FASCICULE 3
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Set g̃ := gl(V). Let a : F× → GL(V)e be the cocharacter such that a(t)·wi =
tiwi for all i 6 k and t ∈ F×

(the same as in (1.3)). Then Ad(a(t)) · x =
tx+ + t−1x−, where x = x+ + x− and x+ =

∑k−1
i=1 ξ

i+1,0
i . As in part

(1) of the proof, e and x+ form a principal nilpotent pair in g̃. Therefore
dim g̃(e,x+) = n = dim V. Points x+ + t2x− with t ∈ F×

form a dense (if
F is algebraically closed, then open) subset of the line x+ + Fx−. Hence,
using semi-continuity of dimension, one can show that also dim g̃(e,x) 6 n.

Consider a product of matrices erxl as an element of g̃e. Then erxl ·w1 =
er · wl + v, where

v ∈ V1 ⊕ · · · ⊕ Vl−1 ⊕
〈
wl, e

1 · wl, . . . , e
r−1 · wl

〉
.

Hence dim
〈
erxl ·w1 | r, l > 0

〉
= n. Clearly each erxl is an element of g̃(e,x).

Therefore dim g̃(e,x) > n. Taking into account that dim g̃(e,x) 6 n, we get
the equality dim g̃(e,x) = n. The centraliser g̃(e,x) is the linear span of the
vectors erxl.

Recall that there is a g-invariant bilinear form on V such that (ξ ·v, w) =
−(v, ξ · w) and (η · v, w) = (v, η · w) for all vectors v, w ∈ V, ξ ∈ g, η ∈ g̃1.
Hence erxl ∈ g if r+ l is odd and erxl ∈ g̃1 if r+ l is even. The centraliser of
the pair (e, x) in g is equal to the intersection g̃(e,x)∩g, which has dimension
[(n+1)/2] = rk g. �

Remark 3.2. — Suppose that y = ys + yn is the Jordan decomposition
of y ∈ g and g is classical. Then gy = (gys

)yn
and gys

is a direct sum of
the centre and simple classical ideals. Therefore Theorem 3.1 is valid for
all (not necessary simple) classical Lie algebras g and all (not necessary
nilpotent) y ∈ g.

4. Commuting varieties

With a non-reductive Lie algebra q one can associate two different com-
muting varieties. The usual one C(q), consisting of commuting pairs (ξ, η) ∈
q×q, appeared in the previous section. In this section we consider mixed
commuting varieties

C∗(q) := {(x, α) ∈ q×q∗ | α([x, q]) = 0},

associated with centralisers. These varieties are closely related to some
questions concerning rings of differential operators. Another way to define
C∗(q) is to say that it is the zero fibre of the moment map q× q∗ → q∗.

The usual commuting variety C(ge) is not always irreducible, see [24].
Here we show that C∗(ge) can be reducible as well, even if g is of type A.
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However, let us start with examples outside of type A. The first of them is
related to the following property:

(4.1) qreg ∩

( ⋃
α∈q∗reg

qα

)
= ∅.

Here q∗reg := q∗ r q∗sing and ξ ∈ qreg if and only if the stabiliser qξ has the
minimal possible dimension.

Proposition 4.1. — Suppose that q satisfies (4.1). Then C∗(q) is re-
ducible.

Proof. — Clearly U1 := C∗(q)∩ (qreg×q∗) and U2 := C∗(q)∩ (q×q∗reg) are
open subsets of C∗(q) and according to (4.1), U1 ∩ U2 = ∅. �

Example 4.2. — Let e ∈ N(sp6) be defined by the partition (4, 2). Then
ge has a basis

ξ1,1
1 , ξ2,1

2 , ξ1,3
1 , ξ = ξ2,0

1 + ξ1,2
2 , η = ξ2,1

1 − ξ2,3
1

with the only non-trivial commutators being [ξ, ξ1,1
1 ] = [ξ2,1

2 , ξ] = η and
[η, ξ] = 2ξ1,3

1 . Suppose that α ∈ (g∗e)reg and x ∈ (ge)α. Since α is regular, it
is non-zero on [ge, ge] =

〈
ξ1,3
1 , η

〉
. On the other hand α([x, ge]) = 0, hence

dim[x, ge] 6 1 and dim(ge)x > 4 > rk g. Therefore x is not regular and
condition (4.1) holds for ge.

Remark 4.3. — The simplest example of a Lie algebra satisfying condi-
tion (4.1) is a Heisenberg algebra. The centralisers of subregular elements
(given by partitions (2n−2, 2)) in sp2n also satisfy (4.1).

The second example is slightly different.

Proposition 4.4. — Suppose that for each α ∈ (g∗e)reg the stabiliser
(ge)α consists of nilpotent elements, but ge itself contains semisimple ele-
ments. Then C∗(ge) is reducible.

Proof. — Clearly U1 :=
{
(ge)α×{α} | α ∈ (g∗e)reg

}
is an open subset

of C∗(ge). On the other hand, there is an open subset in ge containing no
nilpotent elements. Its preimage U2 ⊂ C∗(ge) is again an open subset. By
our assumptions U1 ∩ U2 = ∅. �

There are such nilpotent elements in the orthogonal Lie algebra.

Example 4.5. — Let e ∈ N(so7) be defined by the partition (3, 2, 2).
Then x := ξ2,0

2 − ξ3,0
3 ∈ ge is a semisimple element, which is unique up

to conjugation and multiplication by scalars. Suppose that α ∈ g∗e is such
that (ge)α does not consist of nilpotent elements. Since (ge)α is the Lie
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algebra of an algebraic group (Ge)α, it contains a semisimple element, we
may assume that x. Then α is zero on [x, ge]. Note that the centraliser of
x in ge is three dimensional. More precisely, it is generated by x, ξ1,1

1 and
η := ξ2,1

2 +ξ3,1
3 . Since x is semisimple, α = a1((ξ

2,0
2 )∗−(ξ3,0

3 )∗)+a2(ξ
1,1
1 )∗+

a3((ξ
2,1
2 )∗ + (ξ3,1

3 )∗), where a1, a2, a3 ∈ F. It not difficult to see that (ge)α

contains elements ξ2,1
1 − ξ1,2

3 , ξ3,1
1 + ξ1,2

2 , ξ1,1
1 and, by the assumption, x.

Hence dim(ge)α > 4 and α ∈ (g∗e)sing.

Remark 4.6. — It is possible to show that if e ∈ N(so(V)) is given by
a partition (d1 + 1, . . . , dk + 1) with d1 being even and all other di odd,
then (ge)α consists of nilpotent elements for each α ∈ (g∗e)reg. Note that ge

contains semisimple elements, if k > 1.

Let us say that a point γ ∈ g∗e is generic and (ge)γ is a generic stabiliser if
there is an open subset U0 ⊂ g∗e such that (ge)δ is conjugate to (ge)γ for each
δ ∈ U0. Suppose that g = gl(V). Consider a point α =

∑k
i=1 ai(ξ

i,di

i )∗ ∈
g∗e, where ai are pairwise distinct non-zero numbers. Then, as was proved
in [24], α is a generic point in g∗e and h := (ge)α =

〈
ξi,s
i

〉
F is a generic

stabiliser for the coadjoint action of ge. Set h∗ :=
〈
(ξi,s

i )∗
〉

F ⊂ g∗e. Then {γ ∈
g∗e | ad∗(h)γ = 0} = h∗ and C0 := Ge(h×h∗) is an irreducible component
of C∗(ge). Likewise, if e ∈ sp(V), then C0 ∩ C∗(sp(V)e) is an irreducible
component of the mixed commuting variety associated with sp(V)e.

Example 4.7. — Let e be a minimal nilpotent element in g = sln+2

with n > 1. Then the mixed commuting variety C∗(ge) has at least two
irreducible components.

Proof. — Let us include e into an sl2-triple
〈
e, h, f

〉
in g. Then h defines

a Z-grading of g:

g(−2)⊕ g(−1)⊕ g(0)⊕ g(1)⊕ g(2),

where g(−2) = Ff , g(2) = Fe, g(−1) ⊂ gf and g(1) ⊂ ge. The centraliser
ge is a semidirect product of gln = g(0)e and a (normal) Heisenberg Lie
algebra n = V ⊕Fe, where V = g(1) ∼= Fn⊕(Fn)∗ as a gln-module. Making
use of the Killing form, we identify g∗e and gf . Let χf be the element of g∗e
corresponding to f . Fix the h-invariant decomposition g∗e = gl∗n⊕V ∗⊕(Fe)∗.

The theory of sl2-actions tells us that V ∗ = ad∗(V )χf and that the
stabiliser of a point γ + 0 + χf , with γ ∈ gl∗n, is equal to (gln)γ ⊕ Fe. Let
N ⊂ Ge be the unipotent radical. Then LieN = n and N(gl∗n + Fα) is
an open subset of g∗e. Taking its preimage in C∗(ge), we obtain that the
N -saturation

Y := N
{

(gln)γ ⊕ Fe)× (γ + 0 + F∗χf ) | γ ∈ gl∗n

}
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is an open subset of C∗(ge). It is irreducible, because the usual commuting
variety associated with gln (∼= gl∗n) is irreducible by a result of Richard-
son [18]. Thus Y is an irreducible component of C∗(ge). A generic point
α ∈ g∗e can be chosen as α = γ + χf , where γ is a generic point in gl∗n.
Therefore Y coincides with the irreducible component C0 related to generic
stabiliser.

Suppose that ((x, y, z)× (γ, β, δ)) ∈ Y . Then there is unique ξ ∈ V such
that β = ad∗(ξ)δ. Hence y = [ξ, x] by the construction of Y .

Take a pair ((x, y, z) × (γ, β, 0)) ∈ ge×g∗e. It belongs to C∗(ge) if and
only if (γ + β)([x + y, gln]) = 0 and β([x, V ]) = 0. Fix β ∈ V ∗ and x ∈
(gln)β . Then the second condition is automatically satisfied and the first
one can be rewritten as ad∗(x)γ + ad∗(y)β = 0. Varying γ we can get any
element of (gln/(gln)x)∗ on the first place in this sum. Thus, if ad∗(y)β is
zero on (gln)x, i.e., if β([y, (gln)x]) = 0, then there is γ ∈ gl∗n such that
((x, y, z)× (γ, β, 0)) ∈ C∗(ge).

Suppose that ((x, y, z)×(γ, β, 0)) ∈ Y . Then there are curves {ξ(t)} ⊂ V

and {x(t)} ⊂ gln such that limt→0 x(t) = x, limt→0 ad∗(ξ(t))tχf = β and
limt→0[ξ(t), x(t)] = y. Clearly this is possible only if either β or x or y is
zero.

If n > 1, then there are non-zero x ∈ gln and β ∈ V ∗ such that x ∈
(gln)β . Since ad∗(gln)β 6= V ∗, there is also a non-zero y ∈ V such that
((x, y, z)× (γ, β, 0)) ∈ C∗(ge). Therefore C∗(ge) is reducible. �

Remark 4.8. — It seems that the mixed commuting variety C∗(ge) con-
sidered in Example 4.7 has exactly two irreducible components. The first
one is Y and the closure of{

(x, y, z)× (γ, β, 0) | (gln)β
∼= gln−1, x ∈ (gln)β ,

β([y, (gln)x]) = 0, ad∗(x)γ + ad∗(y)β = 0
}

is the second.

If n = 1, i.e., the minimal nilpotent element has only two Jordan blocks,
then the argument of Example 4.7 does not work. This is not a coincidence.
As we will prove below, C∗(ge) is irreducible for all nilpotent elements
with at most two Jordan blocks. Similar result for C(ge) was obtained by
Neubauer and Sethuraman in [13].

Theorem 4.9. — Suppose that e ∈ N(gl(V)) has at most two Jordan
blocks. Then the mixed commuting variety C∗(ge) is irreducible.
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Proof. — For regular nilpotent elements the statement is clear. Therefore
assume that e is given by a partition (m,n) with m > n. Let z be the centre
of ge and Ann([ge, ge]) ⊂ g∗e the annihilator of the derived algebra [ge, ge].
Suppose that {(ξ, α)} ∈ C∗(ge). Then also (ξ + z) × (α + Ann([ge, ge]) ⊂
C∗(ge). The centre z is the linear span of vectors ξ1,s

1 +ξ2,s
2 with 0 6 s < m.

The derived algebra [ge, ge] is spanned by vectors ξj,s
i with i 6= j and

(ξ1,s
1 − ξ2,s

2 ). Let us choose complementary subspaces to z (in ge) and to
Ann([ge, ge]) (in g∗e) consisting of the elements ξ and α of the following
form:

ξ =
n−1∑
i=0

ai+1ξ
2,i
1 +

n−1∑
i=0

ci+1ξ
2,i
2 +

n−1∑
i=0

bi+1ξ
1,i+m−n
2

and

α =
n−1∑
i=0

xi+1(ξ
2,i
1 )∗ +

n−1∑
i=0

zi+1((ξ
1,m−n+i
1 )∗ − (ξ2,m−n+i

2 )∗)

+
n−1∑
i=0

yi+1(ξ
1,i+m−n
2 )∗,

for some ai, bi, ci, xi, zi, yi ∈ F. We will prove irreducibility for the set of
“commuting” pairs (ξ, α).

Set X := (x1, . . . , xn)t, Y := (y1, . . . , yn)t and Z := (z1, . . . , zn)t. Con-
sider X, Y and Z as vectors of an n-dimensional vector space W . Let A, B
and C be the upper triangular n×n matrices with entries ai, bi and ci on
the ith diagonal line. So the first line of A is (a1, a2, . . . , an), the second
(0, a1, a2, . . . , an−1) and so on. Note that these matrices lie in the centraliser
gl(W )ê of a regular nilpotent element ê. Hence they commute with each
other. The mixed commuting variety C∗(ge) is defined by equations of three
types α([ξ, ξ2,s

2 ]) = 0, α([ξ, ξ2,s
1 ]) = 0 and α([ξ, ξ1,s

2 ]) = 0. Take the first of
them with s = 0. Then we get the following

∑n
i=1 biyi −

∑n
i=1 aixi = 0.

The vector ξ2,1
2 will give us that

∑n−1
i=1 biyi+1 =

∑n−1
i=1 aixi+1. In matrix

terms this can be expressed as AX = BY . Explicitly writing down equa-
tions of all three types one can deduce that C∗(ge) is defined by the matrix
equations

(4.2) AX = BY, CX = BZ, CY = AZ.

Thus our problem is reduced to a simple exercise in linear algebra. The
following lemma solves this exercise and thereby completes the proof. �

Lemma 4.10. — Suppose that W is an n-dimensional vector space and
ê ∈ gl(W ) is a regular nilpotent element. Let P be the set of six-tuples
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(A,B,C ; X,Y, Z), where A,B,C ∈ gl(W )ê, X,Y, Z ∈W , satisfying equa-
tions (4.2). Then P is irreducible.

Proof. — Suppose that ê is written in the normal Jordan form. Keep no-
tation of Theorem 4.9. Let U ⊂ P be an open subset, where b1 6= 0 or, which
is the same, rkB = n. Then U = {(A,B,C;X,B−1AX,B−1CX) | b1 6= 0}
is a 4n-dimensional irreducible affine variety. On U the third equation
CY = AZ reduces to CB−1AX = AB−1CX and is satisfied automati-
cally because CB−1A = AB−1C.

Equations (4.2) are invariant under simultaneous cyclic permutation of
(A,B,C) and (Z, Y,X). Therefore we may consider only those solutions,
where rkB > max(rkA, rkC). Note that rkB = n− d (with d > 0) if and
only if b1 = · · · = bd = 0 and bd+1 6= 0. Set

Pd :=
{

(A,B,C;X,Y, Z) ∈ P | rkB = n− d, rkA 6 n− d, rkC 6 n− d
}
.

Our goal is to show that Pd ⊂ U for each 0 < d 6 n.
Let A′ be the (n − d)×(n − d) right upper corner of A and X ′ :=

(xd+1, . . . , xn)t. Define B′, C ′, Y ′ and Z ′ in the same way. Then Pd is de-
fined by:

b1 = · · · = bd = a1 = · · · = ad = c1 = · · · = cd = 0, bd+1 6= 0;

Y ′ = (B′)−1A′X ′ and Z ′ = (B′)−1C ′X ′.

Clearly Pd is an irreducible affine variety and it contains an irreducible
open subset (Pd)◦ where xnynzn 6= 0. It suffices to prove that (Pd)◦ ⊂ U .
Therefore assume that xnynzn 6= 0. We would like to replace A by A+EA,
where EA ∈ GL(W )ê is non-degenerate and “small”, and do the same
with B and C. Since xnynzn 6= 0, the vectors X, Y and Z lie in the
single open orbit of GL(W )ê. In particular Y = EAY and Z = ECX for
some EA,EC ∈ GL(W )ê. Let E ∈ GL(W ) be the identity matrix. Then
(A+λEA, B+λE,C+λEC ;X,Y, Z) ∈ U for all λ ∈ F×

. Taking limit with
λ tending to zero, we conclude that (Pd)◦ ⊂ U and P is irreducible. �

Question 4.11. — Is it true that in the case of two Jordan blocks the
defining ideal of C∗(ge) is generated by Equations (4.2)? Here the singu-
larities of C∗(ge) form a subset of codimension 3 (defined by the equation
a1 = b1 = c1 = 0). Maybe this can help to solve the problem.

Remark 4.12. — Let x = xs + xn be the Jordan decomposition of x ∈
gln. Then (gln)x is a sum of centralisers (glni

)ei , where all ei are nilpotent.
Suppose that each ei has at most two Jordan block. In that case x is said to
be two-regular, see [13]. The mixed commuting variety associated with gx
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is a product of mixed commuting varieties associated with (glni
)ei . Hence

it is irreducible.

5. Poisson structures on the dual space of a centraliser

From now on, we assume that F is algebraically closed and of character-
istic zero.

By the Jacobson-Morozov theorem, e can be included into an sl2-triple
(e, h, f) in g. By means of the Killing form on g, we identify g and g∗.
Consider e as an element of g∗ and let Se denote the Slodowy slice e+ gf

at e to the coadjoint orbit Ge. The Slodowy slice Se is a transversal slice
to coadjoint G-orbits (symplectic leaves) in a sense of [23] and therefore
carries a transversal Poisson structure obtained from g∗ by the Weinstein
reduction, see e.g. [4] or [5]. This Poisson structure, which is in general
non linear, turns out to be polynomial [4]. For each element F ∈ S(g)g

its restriction F |Se
lies in the centre ZF[Se] of the Poisson algebra F[Se].

Moreover ZF[Se] is a polynomial algebra in rk g variables generated by the
restrictions Fi|Se for each generating system of invariants {F1, . . . , Frk g} ⊂
S(g)g, see e.g. [15, Remark 2.1].

The G-equivariance of the Killing form implies that ge = [e, g]⊥. On
the other hand, g = [e, g] ⊕ gf by the sl2-theory. Thereby Se is naturally
isomorphic to g∗e and F[Se] ∼= F[gf ] ∼= S(ge). Remarkably, the linear part
of the transversal Poisson structure on Se gives us the usual Lie-Poisson
bracket on g∗e, see e.g. [4]. This leads to a natural construction of symmetric
ge-invariants.

For a homogeneous F ∈ S(g), let eF be the component of minimal degree
of the restriction F |Se . (The restriction is not necessary homogeneous.)
Identifying F[Se] and F[g∗e], we consider eF as an element of S(ge).

Lemma 5.1 ([15], Proposition 0.1). — Keep the above notation. Then
eF ∈ S(ge)ge for each homogeneous F ∈ S(g)g.

In types A and C it is possible to choose generating sets {F1, . . . , Frk g} ⊂
S(ge)ge such that the eFi’s are algebraically independent and generate the
whole algebra of symmetric ge-invariants, see [15, Theorems 4.2 and 4.4].
The success is partially due to the fact that in those two cases
codim(g∗e)sing > 2. In all other simple Lie algebras there are nilpotent
elements, for which the codimension is 1. Here we show that in type A the
codimension of (g∗e)sing in g∗e is greater than or equal to 3.
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Suppose that g = gl(V). Then there are certain points α :=∑k
i=1 ai(ξ

i,di

i )∗, with ai ∈ F×
being pairwise distinct, and β :=

∑k−1
i=1 (ξi,di

i+1)
∗

in g∗e such that (Fα⊕ Fβ) ∩ (g∗e)sing = {0}, see [15, Section 3].
To prove that the codimension of (g∗e)sing is greater than 2, we need to

find the third, linear independent with α and β, regular point. The following
is a slight modification of [15, Proposition 3.2].

Lemma 5.2. — Suppose that g is of type A. Take γ :=
∑k−1

i=1 (ξi+1,di+1
i )∗.

Then γ ∈ (g∗e)reg.

Proof. — From (1.2) and the definition of γ it follows that γ([ξj,s
i , ξ]) =

c
i,dj−s
j−1 (ξ) − c

i+1,di+1−s
j (ξ) for all ξ ∈ ge. Suppose that ad∗(ξ)γ = 0. Then

γ([ξ, ge]) = 0 forcing ci,dj−s
j−1 (ξ) = c

i+1,di+1−s
j (ξ) for all i, j ∈ {1, . . . , k} and

all s such that max(0, dj − di) 6 s 6 dj .
We claim that ci,sj (ξ) = 0 for i > j. Suppose for a contradiction that

this is not the case and take the maximal j for which there are i > j and
0 6 t 6 di such that ci,tj (ξ) 6= 0. Recall that, according to our convention,
di 6 dj . Moreover, di 6 dj+1, since i > j + 1. Set s := dj+1 − t. Then
dj+1 − di 6 s 6 dj+1 and c

i,dj+1−s
j (ξ) = c

i+1,di+1−s
j+1 (ξ). As j + 1 > j

and i + 1 < j + 1, the right hand side of the equality is zero, forcing
c
i,dj+1−s
j (ξ) = ci,tj (ξ) to be zero.

Now take ξi,s
i−1 ∈ ge with 0 6 s 6 di. Since γ([ξ, ξi,s

i−1]) = 0, we have
ci,di−s
i (ξ) = ci−1,di−s

i−1 (ξ). Therefore, ci,ti (ξ) = ci−1,t
i−1 (ξ) = c1,t

1 (ξ) for 0 6 t 6

di. In the same way one can show that ci,ti+`(ξ) = ci−1,t
i+`−1(ξ) = c1,t

1+`(ξ) for
di − di+` 6 t 6 di. Hence ξ is determined by a pair (`, t), where 0 6 ` < k

and d1 − d`+1 6 t 6 d1 and a scalar c1,t
1+`(ξ). Thus dim(ge)γ 6 dim V and

γ ∈ (g∗e)reg. �
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Corollary 5.3. — The stabiliser (ge)γ has a basis ηi,s with 1 6 i 6 k

and d1 − di 6 s 6 d1, where ηi,s = ξ1,s
i + ξ2,s

i+1 + · · ·+ ξk−i+1,s
k .

For a nilpotent element with three Jordan blocks, points α, β and γ

are shown on Figure 5.1. Here β and γ are sums of two matrix elements
with coefficients 1 and α is the sum with coefficients a1, a2, a3. All of them
are considered as elements of gf . On the same picture we remind Arnold’s
description of a generic element of ge (see also Figure 1.2).

Theorem 5.4. — If g = gl(V) with dim V > 3, then codim(g∗e)sing > 3.

Proof. — If e is a regular element, then (g∗e)sing = ∅ and the codimen-
sion of this subset is equal to dim ge = dim V. Suppose that e is not reg-
ular and let elements α =

∑k
i=1 ai(ξ

i,di

i )∗, β =
∑k−1

i=1 (ξi,di

i+1)
∗ and γ =∑k−1

i=1 (ξi+1,di+1
i )∗ be as above. We claim that (Fα⊕Fβ⊕Fγ)∩(g∗e)sing = {0}.

Indeed each non-zero point xα + yβ is regular by [15, Proposition 3.3]. In
order to prove that γ + xα + yβ is regular for all x, y ∈ F, we use the
action ρ of F∗ defined by Formula (1.3). Direct calculation shows that
ρ(t)(γ + xα + yβ) = γ + xtα + yt2β. Since γ = limt→0 ρ(t)(γ + xα + yβ)
and it is regular by Lemma 5.2, all points ρ(t)(γ + xα + yβ), including
γ + xα+ yβ, are regular.

The result follows, since the subset (g∗e)sing is conical and Zariski closed.
�

Let us say that a subalgebra A is Poisson-commutative if {A,A} = 0.
Our main interest in the “codim 3” property is motivated by some appli-
cation related to Poisson-commutative subalgebras of S(ge).

Definition 5.5 (Panyushev). — A Lie algebra q is said to be n-
wonderful if

(i) S(q)q = F[H1, . . . ,Hind q] is a polynomial algebra in ind q variables;

(ii) all Hi are homogeneous and
∑ind q

i=1 degHi =
dim q + ind q

2
;

(iii) codim(q∗sing) > n.

The centralisers in types A and C are 2-wonderful by [15]. Now we know
that in type A they are 3-wonderful.

For a ∈ q∗ let ∂a be a linear differential operator (partial derivative) on
S(q) such that ∂aξ = a(ξ) on ξ ∈ q.

Theorem 5.6 ([17]). — Suppose that q is 3-wonderful and a ∈ q∗reg.
Let Fa ⊂ S(q) be a subalgebra generated by the partial derivatives ∂m

a Hi

(m > 0, 1 6 i 6 ind q). Then Fa is a polynomial algebra in (dim q+ind q)/2
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variables and it is maximal (with respect to inclusion) Poisson-commutative
subalgebra of S(q).

Theorem 5.6 is applicable to the centralisers ge in type A. Similar results
concerning Fα with α ∈ g∗e being slightly more general or the same as in
Theorem 5.4 are recently obtained by A. Joseph.

In type C the picture is not so nice. There are nilpotent elements such
that subalgebras Fa are never maximal.

Example 5.7. — Let e ∈ N(sp6) be defined by the partition (4, 2). (It was
considered in Example 4.2.) Then dim[ge, ge] = 2, hence codim(g∗e)sing = 2.
Let Fa be as in Theorem 5.6 with a ∈ g∗e. For this centraliser, Fa is never
maximal among Poisson-commutative subalgebras of S(ge). The general
construction of [15] allows us to write down the invariants. They are H1 =
ξ1,1
1 + ξ2,1

2 , H2 = ξ1,3
1 and H3 = 4ξ1,3

1 e2 + ηη, with η = ξ2,1
1 − ξ2,3

1 . If a is
not regular, i.e., a is zero on [ge, ge] =

〈
ξ1,3
1 , η

〉
F, then ∂aH3 is proportional

to ξ1,3
1 = H2 and Fa = S(ge)ge is not maximal.

Assume that a ∈ (g∗e)reg. Then Fa is generated by four elements, the
invariants Hi and x = ∂aH3, which is an element of (ge)a. According
to Example 4.2, ge satisfies condition (4.1), hence x is not regular, i.e.,
dim(ge)x > 3. Clearly (ge)x commutes with Fa, but is not contained in it.
Therefore Fa is not maximal.

It is quite possible that there are some wide classes of nilpotent elements
in type C for which “codim 3” condition holds. For example, it is satisfied
for nilpotent elements given by partitions (dk) with odd d and even k. By
the contrast, it is not satisfied for partitions (dk) with even d and k > 1.

6. Explicit formulas for symmetric invariants of
centralisers in type A

In types A and C algebras of symmetric invariants S(ge)ge were described
in [15]. The outline of that approach is given in Section 5. In type A we have
an alternative description of S(ge)ge suggested by Brown and Brundan [2].
They reproved that this algebra is a polynomial algebra in rk g variables.
Comparing the approaches of [2] and [15] we confirm [15, Conjecture 4.1].

Brown and Brundan used different notation. At first we should rein-
terpret symbols ei,j;r introduced in [2] in terms of ξj,r

i . According to [2,
Formula (1.1)], ei,j;r is a sum of matrix units eh,k, where wh is a basis vec-
tor of V[i] and wk is a basis vector of V[j], in the notation of Section 1 of
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the present paper. Thus ei,j;r ∈ Hom(V[j],V[i]). More precisely, ei,j;r is a
sum of the matrix units on the (above) diagonal line in the i, j-rectangular,
see Figure 1.2. Hence ei,j;r = ξi,s

j for some s. In order to calculate s, note
that if r = λj − 1 = dj , then s = di and for r = λj − min(λi, λj) we get
s = di−min(di, dj). The final answer is that ei,j;r = ξi,s

j with s = r+di−dj .
The cardinality of a finite set I is denoted by |I|. Given a permutation

σ of a subset I = {i1, . . . , im} ⊂ {1, . . . , k} and a nonnegative function
s̄ : I → Z>0, we associate with the triple (I, σ, s̄) the monomial

Ξ(I, σ, s̄) := ξ
σ(i1), s̄(i1)
i1

ξ
σ(i2), s̄(i2)
i2

· · · ξσ(im), s̄(im)
im

∈ S(ge)

of degree m = |I|. If s̄(ij) does not satisfies the restriction on s given in
Section 1, then we assume that ξσ(ij),s̄(ij)

ij
= 0. For every Ξ = Ξ(I, σ, s̄)

we denote by λ(I, σ, s̄) the weight of Ξ with respect to h, where h is a
characteristic of e. Obviously, λ(I, σ, s̄) is the sum of the adh-eigenvalues
(h-weights) of the factors ξσ(ij),s̄(ij)

ij
.

Suppose that g = gl(V). Let {∆1, . . .∆rk g} be a generating set in F[g]g

such that ∆i(ξ) are coefficients of the characteristic polynomial of ξ ∈ g.
Identifying g and g∗ we identify also F[g]g and S(g)g. Let {Fi} be the
corresponding (to {∆i}) set of generators of S(g)g. By a result of [15],
the eFi’s form a generating set of S(ge)ge . The following statement was
conjectured to be true in [15]. It will be proved in this section.

Theorem 6.1. — Let 1 6 ` 6 rk g and set m := deg eF`. Then up to a
non-zero constant,

eF` =
∑

|I|= m, λ(I,σ,s̄) = 2(`−m)

(sgn σ) Ξ(I, σ, s̄),

where the summation is taken over all subsets I, all permutations σ of I
and over all functions s̄.

Lemma 6.2. — In the above notation we have λ(I, σ, s̄) = 2
∑

j∈I s̄(j).

Proof. — It is not difficult to compute that the weight of ξj,s
i is equal to

2(di − dj + s). Therefore

λ(I, σ, s̄) = 2
∑
j∈I

(dj − dσ(j) + s̄(j)) = 2
∑
j∈I

s̄(j).

The second equality holds because σ is a permutation. �

Set ξ̃j,s
i := ξj,s

i −δs,0δi,j(i−1)(di +1), where δi,j = 1 for i = j and is zero
otherwise. Note that ei,i;0 = ξi,0

i and, as above, for a permutation σ of I
we have

∑
j∈I(s̄(j) + dj − dσ(j)) =

∑
j∈I s̄(j). Taking these two facts into
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account, we rewrite Formulas (1.2) and (1.3) of [2] in the ξi,s
j -notation. For

each set I of indices 1 6 i1 < i2 < · · · < im and each permutation σ, define

Ξ̃(I, σ, s̄) := ξ̃
σ(i1), s̄(i1)
i1

ξ̃
σ(i2), s̄(i2)
i2

. . . ξ̃
σ(im), s̄(im)
im

∈ U(ge).

Let ` be in the range 1 6 ` 6 rk g and m = deg eF`. In view of Lemma 6.2,
we can express elements z` of [2] as follows

(6.1) z` =
∑

|I|=m, λ(I,σ,s̄)=2(`−m)

(sgnσ) Ξ̃(I, σ, s̄),

where the summation is taken over all subsets I, all permutations σ of I
and over all functions s̄.

The main theorem of [2] states that the elements z` generate the cen-
tre of U(ge) and that their symbols, elements of S(ge), denoted z`, are
algebraically independent.

Proof of Theorem 6.1. — In [15] a slightly weaker statement was proved.
More precisely, it was shown that for each ` 6 rk g, we have

eF` =
∑

|I|= m, λ(I,σ,s̄) = 2(`−m)

a(I, σ, s̄) Ξ(I, σ, s̄)

for some a(I, σ, s̄) ∈ F. Here we prove that each eF` is a non-zero multiple
of the symbol z`.

Following Brown and Brundan, restrict the invariants to an affine slice
η + V ⊂ g∗e. In our notation, η =

∑k−1
i=1 (ξi,di

i+1)
∗ and V is the subspace

generated by (ξi,s
1 )∗. According to [2], this restriction map ψ : S(ge)ge →

F[η + V ] is an isomorphism.
Suppose that deg eF` = m. Then both ψ(eF`) and ψ(z`) are proportional

to ξm,s
1 with s = ` − (d1 + · · · + dm−1) −m. This completes the proof of

Theorem 6.1. �

7. Fibres of the quotient morphism g∗e → g∗e//Ge

Suppose that g is either of type A or C. Then S(ge)Ge = F[H1, . . . ,Hrk g],
where Hi = eFi for a certain (good) generating set {Fi} ⊂ S(g) of g-
invariants, see [15]. In particular, the algebra of symmetric Ge-invariants
is finitely generated and we can consider the quotient morphism g∗e →
g∗e//Ge, where g∗e//Ge = Spec S(ge)Ge and each x ∈ g∗e maps to (H1(x), . . . ,
Hrk g(x)). In this section we are interested in the fibres of the quotient
morphism. By [15, Section 5], in type A all fibres of this morphism are of
dimension dim ge − rk g.
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Consider a point α =
∑k

i=1 ai(ξ
i,di

i )∗ ∈ g∗e, where ai are pairwise distinct
non-zero numbers and g = gl(V). As was already mentioned, it is a generic
point and h = (ge)α is a generic stabiliser for the coadjoint action of ge. In
case e ∈ sp(V), similar statements remain true for the restriction of α to
sp(V)e and h ∩ sp(V), see [24]. Set H := (GL(V)e)α. Then H is connected
and (GL(V)e)γ is conjugate to H whenever (gl(V)e)γ is conjugate to h. In
other words, H is a generic stabiliser for the coadjoint action of GL(V)e.
Again, if e ∈ sp(V), then H ∩Sp(V) is a generic stabiliser for the coadjoint
action of Sp(V)e.

Recall that h =
〈
ξi,s
i

〉
and h contains a maximal torus t =

〈
ξi,0
i

〉
of

gl(V)e. Thereby H = T n U , where T is a maximal torus of GL(V)e and
U is contained in the unipotent radical of GL(V)e. Likewise, for e ∈ sp(V),
the generic stabiliser H ∩ Sp(V) contains a maximal torus T ∩ Sp(V) of
Sp(V)e. Applying the following lemma, we get that generic coadjoint orbits
of centralisers in types A and C are closed.

Lemma 7.1. — Suppose that an algebraic group G acts on an affine
variety X and a stabiliser Gx of a point x ∈ X contains a maximal torus
T of G. Then the orbit Gx is closed.

Proof. — Let us choose a Borel subgroup B ⊂ G containing T . Then
the B-orbit Bx is closed, because it coincides with the orbit of a unipotent
group, in this case of the unipotent radical of B.

We have a closed subgroup B ⊂ G such that the quotient G/B is com-
plete and the orbit Bx is closed. It follows that G ·Bx = Gx is also closed,
see e.g. [21, Lemma 2 in Section 2.13]. �

Lemma 7.1 is a well-known and classical fact. In case of complex reductive
group G, similar result was proved by Kostant in 1963, see [10, proof of
Lemma 5].

Theorem 7.2. — If g is either gl(V) or sp(V), then a generic fibre of
the quotient morphism g∗e → g∗e//Ge consists of a single closed Ge-orbit.

Proof. — In both these cases the coadjoint action of Ge has a generic
stabiliser, which contains a maximal torus of Ge, see [24, Section 4] and
discussion before Lemma 7.1. By Lemma 7.1, generic orbits are closed.
Since ind ge = rk g, generic coadjoint Ge-orbits and generic fibres of the
quotient morphism have the same dimension, dim ge − rk g. Hence there is
an open subset U ⊂ g∗e//Ge such that the fibre over each u ∈ U contains
a closed Ge-orbit of maximal dimension and that orbit is an irreducible
component of the fibre.
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In cases of our interest S(ge)Ge = S(ge)ge , see [15, Theorems 4.2 and 4.4].
Hence each element of S(ge), which is algebraic over Quot(F[g∗e]

Ge), is ge-
and Ge-invariant. This means that S(ge)Ge is algebraically closed in S(ge).
By Theorem A.1, proved in the appendix, generic fibres of the quotient
morphism are connected. Shrinking U if necessary, we may assume that
the fibres over elements of U are connected. Then each of them consists of
a single closed Ge-orbit of maximal dimension. �

Theorem 7.2 was proved in a discussion with A. Premet during his visit
to the Max-Planck Institut für Mathematik (Bonn) in Spring 2007.

Remark 7.3. — The proof of Theorem 7.2 can be completed in a slightly
different way. The ring F[g∗] is a unique factorisation domain. If a ∈ S(ge)ge ,
then all prime factors of a are also ge-invariant. One can show quite ele-
mentary that the field Quot(F[g∗e]

Ge) is algebraically closed in F(g∗). Then
generic fibres are known to be irreducible, see e.g. [20, Chapter 2, Sec-
tion 6.1].

Remark 7.4. — If g is of type A or C, then, as was mentioned above, the
coadjoint action of Ge has a generic stabiliser, which contains a maximal
torus of Ge. This means that the ring of semi-invariants S(ge)

ge

si coincides
with S(ge)ge . Lie algebras q with S(q)q

si being a polynomial ring are actively
studied, see e.g. [14]. In particular, if g is of type A and ge is non-Abelian,
then [14, Proposition 1.6] combined with Theorem 5.4, implies that each
irreducible component of (g∗e)sing has dimension dim ge−3.

In contrast with a generic fibre, the null-cone N(e) (the fibre containing
zero) may have infinitely many closed orbits and there might be no regular
elements (and hence no open orbits) in some of its components. Dealing
with N(e), we will freely use the explicit formulas for the generators Hi =
eFi, obtained in Section 6.

Example 7.5. — Let e ∈ N(gl6) be given by the partition (4, 2). Here
dim ge − rk g = 4, hence all irreducible components of N(e) are of dimen-
sion 4. There are 4 elements in the centre of ge, they are linear invariants
H1,H2,H3,H4. The other two invariants H5 and H6 are of degree 2. Until
the end of the example, we replace g∗e by a subspase P ⊂ g∗e defined by
H1 = · · · = H4 = 0 and regard N(e) ⊂ P as the zero set of H5 and H6.

Then restricted to P , the invariants H5 and H6 are expressed by the
formulas H6 = ξ2,1

1 ξ1,3
2 and H5 = ξ2,1

1 ξ1,2
2 + ξ2,0

1 ξ1,3
2 . Both are zero on the

linear subspace defined by ξ2,1
1 = ξ1,3

2 = 0. Hence a four-dimensional vector
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space X ⊂ P generated by vectors

(ξ1,0
1 )∗−(ξ2,0

2 )∗, (ξ1,1
1 )∗−(ξ2,1

2 )∗, (ξ2,0
1 )∗, (ξ1,2

2 )∗

is an irreducible component of the null-cone N(e). The action of Ge on
X has a 7-dimensional ineffective kernel. Since coadjoint orbits are even-
dimensional, Ge-orbits on X are either trivial or 2-dimensional. Essentially
the only non-trivial actions are:

ad∗(ξ1,0
1 − ξ2,0

2 )(ξ2,0
1 )∗ = (ξ2,0

1 )∗, ad∗(ξ1,0
1 − ξ2,0

2 )(ξ1,2
2 )∗ = −(ξ1,2

2 )∗,

and
− ad∗(ξ2,0

1 )(ξ2,0
1 )∗ = ad∗(ξ1,2

2 )(ξ1,2
2 )∗ = (ξ1,0

1 )∗ − (ξ2,0
2 )∗.

Thus X contains a 2-parameter family of closed 2-dimensional Ge-orbits;
two non-closed 2-dimensional orbits; and a 2-parameter family of Ge-
invariant points. In particular, X contains no regular elements.

For this nilpotent element the ideal I = (S(ge)
ge
◦ )CS(ge) generated by the

homogeneous invariants of positive degree is not radical. After restriction
to P , where I is generated by H5 and H6, we have ξ2,1

1 ξ1,2
2 6∈ I, but(

ξ2,1
1 ξ1,2

2

)2 = ξ2,1
1 ξ1,2

2 H5 − ξ2,0
1 ξ1,2

2 H6 ∈ I.

A very interesting problem is to describe the irreducible components of
N(e) in type A. Here we compute the number of these components in two
particular cases.

Lemma 7.6 ([16], Theorem 1.2). — Suppose that q is a Lie algebra
such that codim q∗sing > 2 and H1, . . . ,Hrk q are algebraically independent
homogeneous elements of S(q)q with

∑rk q
i=1 degHi = (dim q + rk q)/2. Then

H1, . . . ,Hrk q generate the whole algebra S(q)q of symmetric q-invariants.

Proposition 7.7. — Suppose that e ∈ glm+n is defined by the partition
(n, 1m) with n > 2. Then N(e) has m+ 1 irreducible components.

Proof. — Let P ⊂ g∗e be the zero-set of linear invariants. Then P is
isomorphic to the dual space of a Lie algebra q = glm n V , where V ∼=
Fm ⊕ (Fm)∗ is a commutative ideal. Note that q is a quotient of ge and ge

acts on P via the coadjoint representation of q.
Set L = GLm and l = LieL. Identifying l∗ with the annihilator Ann(V ) ⊂

q∗ and V ∗ with Ann(l) ⊂ q∗, we consider l∗ and V ∗ as subspaces of q∗ and
of g∗e. Take Hi = eFi with i > n. Then degHi = i−n+1 and the restriction
Hi|P is a bi-homogeneous polynomial in variables l and V of bi-degree
(i−n−1, 2).

The image of the projection N(e) → V ∗ coincides with the zero set N(V )
of Hn+1|P . There are four L-orbits in N(V ): the open orbit, zero and two
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intermediate, in (Fm)∗ and Fm. Note that the subsets l∗⊕(Fm)∗ and l∗⊕Fm

of g∗e are defined by the equations ξ1,t
1 = 0 (t = 0, . . . ,m− 1) and ξi,1

1 = 0
or ξ1,m−1

i = 0, respectively (here i > 1). Explicit formulas exhibited in
Section 6 show that both these subspaces are contained in N(e). Since
they are irreducible and of the right dimension, dim ge − (m+n), they are
irreducible components of N(e).

Let X be an irreducible component of N(e) distinct from either l∗⊕(Fm)∗

or l∗ ⊕ Fm. Then the image of the projection X → V ∗ is either zero
or contains an open L-orbit O. The first case is not possible because
dim l∗ < dim N(e). Thus, it remains to deal with the irreducible components
of the intersection N(e) ∩ (l∗×O). Since Ge is connected, each irreducible
component of N(e) is Ge-invariant and the problem reduces to the inter-
section N(e) ∩ (l∗×{v}), where v ∈ O. Since V is a commutative ideal of
q, it acts on the fibre l∗×{v}. This action of V has a slice S ⊂ l∗×{v},
isomorphic to l∗v×{v}, which meets each V -orbit exactly once, see e.g. [22,
Lemma 4]. Since both Lv and V are connected, N(e) ∩ (l∗×O) has exactly
the same number of irreducible components as the zero-set of Hi|S .

The restrictions of Hi with n+2 6 i 6 n+m to S are algebraically inde-
pendent, otherwise N(e) would have a component of dimension (dim ge −
rk g) + 1. Identifying S with l∗v we may consider them as lv-invariant el-
ements of S(lv). One readily computes that lv ∼= (slm)ê, where ê is a
nilpotent element defined by the partition (2, 1m−2). Clearly deg(Hi|S) =
degHi − 2 = n−1 for i > n. Therefore we get m−1 = ind lv polynomials of
degrees 1, 2, . . . ,m−1. The sum of degrees is equal to (dim lv + ind lv)/2.
There is no consequential difference between centralisers in glm and slm.
Therefore, according to Theorem 5.4, the codimension of (l∗v)sing is grater
than 2. Thus all conditions of Lemma 7.6 are satisfied. Hence Hi|S generate
S(lv)lv and N(e) ∩ S is isomorphic to the null-cone N(ê) associated with
the nilpotent element ê ∈ glm.

If m = 0, then N(e) is irreducible. For m = 1 there are two irreducible
components, since Hn+1|P = ξ2,0

1 ξ1,n−1
2 . Arguing by induction on m, the

may assume that N(ê) has m−1 components. Then N(e) has m−1+2 =
m+1 components. �

Proposition 7.8. — Suppose that e ∈ gln+m is defined by the par-
tition (n,m) with n > m. Then N(e) has min(n − m,m) + 1 irreducible
components.

Proof. — Again we replace g∗e be the zero set P ⊂ g∗e of the linear ge-
invariants. Suppose first that m 6 n−m. Set xi := ξ2,m−i

1 and yi := ξ1,n−i
2

for 1 6 i 6 m. Then N(e) is defined by the polynomials fq =
∑

i+j=q xiyj
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with 2 6 q 6 m + 1. Each irreducible components is given by a partition
m = a + b, where a, b > 0. It is a linear subspace defined by x1 = · · · =
xa = 0, y1 = · · · = yb = 0. Hence there are exactly m+ 1 components.

Consider now the second case, there n−m < m. Set k := n−m. Retain
the notation for xi and yi. Set in addition zi := ξ2,m−i

2 . Then the restrictions
of non-linear symmetric invariants Hi to P are given by the polynomials

fq =
∑

i+j=q

xiyj with 2 6 q 6 k + 1;

and
fp =

∑
i+j=p

xiyj +
∑

i+j=p−k

zizj with k + 2 6 p 6 m+ 1.

For example, here

fk+2 = x1yk+1 + · · ·xk+1y1 + z2
1

and
fk+3 = x1yk+2 + · · ·xk+2y1 + 2z1z2.

Note that variables zj appear in these equations only for j 6 m − k. The
first equations, fq, give rise to k+ 1 irreducible components, each of which
is a linear subspace. Take one of these components, defined by x1 = · · · =
xa = 0, y1 = · · · = yb = 0 with a+ b = k and let Pa,b be the intersection of
this linear subspace with N(e). We are going to show that Pa,b is irreducible
and that these components do not coincide for distinct partitions k = a+b.

Let P ◦
a,b be a subset of Pa,b, where z1 6= 0. Then P ◦

a,b is irreducible,
because it is defined by the equations

xa+1yb+1 = −z2
1

and
zj = fk+1+j(x, y, z2, . . . , zj−1)/z1 for 2 6 j 6 m−k.

Note that dimP ◦
a,b = dim ge − (m + n) − dim N(e). On the complement

Pa,b r P ◦
a,b we have z1 = 0 and equations fq = 0 and fp = 0 reduce to the

following

x1 = · · · = xa = y1 = · · · = yb = 0,(7.1)

xa+1yb+1 = 0, xa+1yb+2 + xa+2yb+1 = 0,

fp =
∑

i+j=p

xiyj + (z2zp−k−2 + · · ·+ zp−k−2z2) = 0 for k + 4 6 p 6 m+ 1.

Equations (7.1) are very similar to the original fp’s and fq’s. Using in-
duction on k − m and the previous case, where n − m > m, one can
say that they define three irreducible components Pa+2,b(ē), Pa+1,b+1(ē),
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Pa,b+2(ē) of the null-cone associated with a nilpotent element ē with Jor-
dan blocks (n + 2,m). One thing, which we should keep in mind, is that
for ē variables z2, . . . zm−k−1 are used instead of z1, . . . , zm−k−2. Since
dim N(e) = dim N(ē), the complement Pa,b r P ◦

a,b is an irreducible sub-
set of dimension dim N(e) − 1. In particular, it could not be a component
of N(e) and we have proved that Pa,b is an irreducible component.

Suppose that a′ + b′ = k and a′ 6= a. Then either a′ > a or b′ > b.
Anyway, if Pa′,b′ = Pa,b, then xa+1yb+1 is zero on Pa,b. Hence z1 is also
zero on it. A contradiction, since we know that z1 6= 0 defines a non-empty
open subset P ◦

a,b ⊂ Pa,b. �

There should be a combinatorial formula for the number of components.
Unfortunately, we do not have enough information even to make a conjec-
ture. Apart from two cases considered in this section, little is known. If the
partition is rectangular, i.e., all Jordan blocks are of the same size, then ge

is a Takiff Lie algebra and the null-cone is irreducible, see [12, Appendix].
A direct calculation shows that the number of irreducible components for
the partition (3, 2, 1) is 4.

8. Further results on the null-cone

Suppose that g ⊂ gl(V) is either sp(V) or so(V) and e ∈ g is such that
i′ = i for all i (in terms of Lemma 1.1). Here we prove that each irreducible
component of N(e) has dimension dim ge−rk g. Similar result was obtained
in [15, Section 5] for all nilpotent elements in g̃ = gl(V). Our proof uses the
same strategy.

For m ∈ {1, . . . , k}, partition the set {1, . . . ,m} into pairs (j,m− j+1).
If m is odd, then there will be a “singular pair” in the middle consisting of
the singleton {(m+1)/2}. Let Vm denote the subspace of g̃e spanned by all
ξj,s
i with i + j = m + 1 and set V :=

⊕
m>1 Vm. Using the basis {(ξj,s

i )∗}
of g̃∗e dual to the basis {ξj,s

i }, we shall regard the dual spaces V ∗
i and V ∗

as subspaces of g̃∗e.
Since i′ = i for all i, the restriction of the g-invariant form on V to each

Vi is non-degenerate. Hence the partition into pairs (j,m − j + 1) can be
pushed down to ge. Each Vm is preserved by σ, where σ is an involution of g̃

with g = g̃σ. Let g̃ = g⊕g̃1 be the corresponding symmetric decomposition.
Let us identify g∗e with the annihilator of g̃1,e in g̃∗e. Then the expressions
V ∗

g,m := V ∗
m∩g∗e make sense and V ∗

g,m = (V ∗
m)σ, similarly set V ∗

g := V ∗∩g∗.
Note also that

ḡ := g ∩ gl
(
V[1]⊕ · · ·⊕V[k−1]

)
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is a semisimple subalgebra of g, either so
(
V[1]⊕ · · ·⊕V[k−1]

)
or

sp
(
V[1]⊕ · · ·⊕V[k−1]

)
, depending on g. Likewise gk := g ∩ gl(Vk) is ei-

ther so(Vk) or sp(Vk).
Set n := dim V. Let ∆i ∈ F[g̃]̃g (with 1 6 i 6 n) be the coefficients

of the characteristic polynomial. Unlike Section 6, here we consider ∆i as
elements of S(g̃). Set Fi := ∆2i|g∗ for all i in the range 1 6 i 6 rk g. Note
that all ∆i with odd i are zero on g∗. As was proved in [15, Theorem 4.2
and Lemma 4.5], the polynomials eFi are algebraically independent and in
the symplectic case they generate S(ge)ge . Let NF (e) ⊂ g∗e be the zero set
of the polynomials eFi.

Theorem 8.1. — Suppose that g and e ∈ g satisfy the assumptions of
this section. Then there exists a linear subspace Wg =

⊕
m>1Wg,m in V ∗

g

of dimension rk g such that Wg,m ⊂ V ∗
g,m for all m and Wg ∩NF (e) = {0}.

Proof. — We argue by induction on k. If k = 1, then e is a regular
nilpotent element, all eFi are linear functions and they form a basis of ge.
Hence NF (e) = {0} and there is nothing to prove. Assume that k > 1 and
for all k′ < k the statement is true.

Regard the dual spaces ḡ∗ and g∗k as subspaces of g∗. Note that e = ek + ē
where ek and ē are the restrictions of e to V[k] and V[1]⊕ · · ·⊕V[k−1],
respectively. Clearly, ek is a regular nilpotent element in gk and ē ∈ ḡ is
a nilpotent element with Jordan blocks of sizes d1 + 1, . . . , dk−1 + 1. Note
that V ∗

g,m ⊂ (ḡē)∗ for m < k.
The restriction of eFi (with 1 6 2i 6 n−dk−1) to (ḡē)∗ can be obtained

as follows: first restrict ∆2i to the dual of gl
(
V[1]⊕ · · ·⊕V[k−1]

)
, getting

again a coefficient of the characteristic polynomial, then restrict it further to
ḡ and apply the ēF -construction. Hence by the inductive hypothesis there is
a subspace W ḡ =

⊕k−1
m=1 Wg,m with Wg,m ⊂ V ∗

g,m such that dimW ḡ = rk ḡ

and W ḡ ∩NF (ē) = {0}.
Consider the remaining invariants. For 0 6 q 6 dk+1 set ϕ̂n−q :=

e∆n−q|V ∗ . By [15, Lemma 5.1], each ϕ̂n−q is an element of S(Vk). Let
X ⊂ V ∗

k be the zero locus of the ϕ̂` with n > ` > n−dk−1. Note that

NF (e) ∩ (W ḡ ⊕ V ∗
g,k) = (NF (ē) ∩W ḡ)× (X ∩ g∗) = X ∩ g∗.

Thereby it remains to show that the intersection X ∩ g∗ has no irreducible
components of dimension bigger than dimVg,k − rk g + rk ḡ.

The description of X in terms of tuples s̄ := (s1, . . . , sk) with si ∈ Z>0

is given in [15, Lemma 5.2]. Denote by Xs̄ the subspace of V ∗
k consisting

of all γ ∈ V ∗
k such that ξi,di−t

k−i+1(γ) = 0 for 0 6 t < si. The variety X is a
union of linear subspaces X =

⋃
|s̄|=dk+1 Xs̄, where |s̄| := s1+s2+ · · ·+sk.
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In particular, all irreducible components of X have dimension equal to
dimVk − (dk + 1). Then restricted to g∗ not all of the linear equations
ξi,di−t
k−i+1 = 0 stay independent, ξi,di−t

k−i+1 becomes proportional to ξk−1+1,di−t
i

and if k is even, then ξ`,t
` with 2` = k and even t vanishes on g∗ completely.

Summing up, each component of X∩g∗ has dimension greater than or equal
to dimVg,k−r, where r = (dk +1)/2 if dk is odd, r = dk/2 if dk is even and
k is odd and finally if both dk and k are even, then r = (dk + 1)/2. In any
case, r = rk g − rk ḡ. Therefore we can find a subspace Wg,k ⊂ V ∗

g,k such
that X ∩Wg,k = 0 and dimWg,k = rk g− dimW ḡ. The required subspace
Wg is equal to W ḡ ⊕Wg,k. �

Each component of NF (e) is a conical Zariski closed subset of g∗e and we
found a subspace Wg ⊂ g∗e of dimension rk g such that NF (e) ∩Wg = {0}.
Hence

Corollary 8.2. — All irreducible components of NF (e) have codimen-
sion rk g in g∗e and eF 1, . . . ,

eF rk g is a regular sequence in S(ge).

Clearly N(e) is a subset of NF (e) and each irreducible component of
N(e) has dimension grater or equal than dim ge − rk g. Therefore we get
the following.

Corollary 8.3. — All irreducible components of the null-cone N(e) ⊂
g∗e have codimension rk g in g∗e.

Let X ⊂ Ad
F be a Zariski closed set and let x = (x1, . . . , xd) be a point

of X. Let I denote the defining ideal of X in the coordinate algebra A =
F[X1, . . . , Xd] of Ad

F. Each nonzero f ∈ A can be expressed as a polynomial
in X1−x1, . . . , Xd−xd, say f = fk +fk+1 + · · · , where fi is a homogeneous
polynomial of degree i in X1−x1, . . . , Xd−xd and fk 6= 0. We set inx(f) :=
fk and denote by inx(I) the linear span of all inx(f) with f ∈ Ir{0}. This
is an ideal of A and the affine scheme TCx(X) := Spec A/ inx(I) is called
the tangent cone to X at x.

If g is of type D, then n = 2q and Fp = P 2, where P is the Pfaffian. Set
Hi := eFi for all i in types B, C and for 2i < n in type D; and in type
D set in addition Hq := eP . In exactly the same way as in [15, Subsection
5.4], one can obtain another corollary.

Corollary 8.4. — Let N be the nilpotent cone of g and Fi as above.
Suppose that g and a nilpotent element e ∈ g satisfies the assumptions of
this section. Set r = dim ge. Then

TCe(N(g)) ∼= Adim g−r
F × Spec S(ge)/(H1, . . . ,Hrk g)

as affine schemes.

TOME 59 (2009), FASCICULE 3



932 Oksana YAKIMOVA

Question 8.5. — Suppose that g = so(V) and i′ = i for a nilpotent
element e ∈ g. Is it true that H1, . . . ,Hrk g generate the whole algebra of
symmetric ge-invariants? The first step is to show that generic fibres of the
morphism g∗e → Spec(F[H1, . . . ,Hrk g]) are connected. Then the subalgebra
F[H1, . . . ,Hrk g] will be algebraically closed in S(ge), see Theorem A.1 in
the Appendix. Since it has the right transcendence degree, ind ge, it will be
shown that at least S(ge)ge ⊂ Quot F[H1, . . . ,Hrk g].

Related, but a slightly different question, is whether S(ge)ge is free for the
nilpotent elements considered above (in the orthogonal case, the symplec-
tic case is covered by [15]). According to Kac’s generalisation of Popov’s
conjecture, see footnote 1 on page 192 in [9], it should be.

Appendix A. When generic fibres of a morphism
are connected

Let k be an algebraically closed field of characteristic zero. Suppose that
we have a dominant morphism ϕ : X → Y of irreducible affine varieties.
Regard k[Y ] as a subalgebra of k[X] and k(Y ) is a subfield of k(X). Let us
say that k[Y ] is algebraically closed in k[X], if each element of k[X], which
is algebraic over k(Y ), lies in k(Y ). The following theorem is probably very
well known. The proof given below is due to E.B. Vinberg, who explained
it to his students at the Moscow University some twenty years ago.

Theorem A.1. — Generic fibres of ϕ are connected if and only if k[Y ]
is algebraically closed in k[X].

Proof. — Suppose first that k[Y ] is algebraically closed in k[X]. The
algebra k[Y ] is finitely generated by the assumptions on Y . Let us choose
a finite set of generators and let K ⊂ k be a subfield generated by their
coefficients. Then ϕ is defined over K.

In this proof we say that a point y ∈ Y is generic if the corresponding
map y : K[Y ] → k is a monomorphism. Informally speaking, being generic
means that the coordinates of y are very transcendental elements of k with
respect to the subfield K. These generic y’s form a dense, not necessary
open, subset. Since the points u ∈ Y such that ϕ−1(u) is connected form a
closed subset, is suffices to prove that ϕ−1(y) is connected for each generic y.

Suppose y is generic in the above sense. Then

k[ϕ−1(y)] = K[X]⊗K[Y ] k = K[Y ]−1K[X]⊗K(Y ) k,
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where K[Y ] is embedded into k by y and the last equality holds because
all elements of K[Y ] are invertible.

Note that a K(Y )-algebra K[Y ]−1K[X] contains no zero-divisors. (In-
deed, if pq = 0 in K[Y ]−1K[X], then multiplying p and q by suitable invert-
ible elements of K[Y ], we may assume that p, q ∈ K[X]. Hence either p or q
is zero.) This property might not be preserved by the field extension K ⊂ k.
Nevertheless, there are no nilpotent elements in k[ϕ−1(y)]. In other words,
a generic fibre is reduced. If the fibre over y is not connected, then over
some Galois extension K(Y ) ⊂ L, the algebra A := K[Y ]−1K[X] ⊗K(Y ) L

decomposes into a direct sum of indecomposable ideals

A = A1 ⊕ · · · ⊕Am with m > 1.

Let Γ be the Galois group of the extension K(Y ) ⊂ L. Then K[Y ]−1K[X] =
AΓ. Since this algebra contains no zero-divisors, it could not be a direct
sum of two non-trivial ideals. On the other hand, each Γ-orbit in the set
of ideals Ai gives rise to an ideal of AΓ. Therefore Γ acts transitively on
the set {Ai | i = 1, . . . ,m}. Let ∆ ⊂ Γ be the normaliser of A1. Note that
|Γ/∆| = m, hence ∆ is a proper subgroup.

Choose a subset {γ2, . . . , γm} ⊂ Γ such that Ai = γi · A1. If a ∈ AΓ,
then a = (a1, γ2 · a1, . . . , γm · a1), where a1 ∈ A∆

1 . Thus K[Y ]−1K[X] ∼=
A∆

1 . The field L is embedded into A1 and into any of the other ideals.
Threfore L∆ is embedded into A∆

1 . We get a non-trivial extension of K(Y ),
which is contained in K[Y ]−1K[X], i.e., K(Y ) ⊂ L∆ ⊂ K[Y ]−1K[X]. This
means that neither K[Y ] nor k[Y ] is algebraically closed in K[X] or k[X],
respectively. A contradiction!

Now suppose that there exists f ∈ k[X], which is algebraic over k(Y ),
but is not an element of k(Y ). Then there is an open subset U ⊂ Y such
that f takes a finite number of values, more than one, on each fibre ϕ−1(y)
with y ∈ U . These values correspond to distinct connected components of
ϕ−1(y). �

Remark A.2. — Generic fibres of ϕ are irreducible if and only if the
field k(Y ) is algebraically closed in the field k(X), see e.g. [20, Chapter 2,
Section 6.1]. In case X and Y are normal, connectedness of generic fibres
implies irreducibility, see [1, Proposition 4]. In general, this is not true.

Here is an example taken form [1] of a dominant morphism with con-
nected but reducible generic fibres.

Example A.3. — Let X ⊂ A3
k be the irreducible hypersurface defined by

the equation x2 = y2z. Consider the morphism from X to Y = k given by
(x, y, z) 7→ z. For any c 6= 0, the fibre over c ∈ k consists of two intersecting
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lines. Hence it is connected and reducible. The set of intersection points
(0, 0, z) coincides with the singular locus of X. Evidently, X is not normal.
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