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SPHERICAL STEIN MANIFOLDS AND THE WEYL
INVOLUTION

by Dmitri AKHIEZER (*)

Abstract. — We consider an action of a connected compact Lie group on a
Stein manifold by holomorphic transformations. We prove that the manifold is
spherical if and only if there exists an antiholomorphic involution preserving each
orbit. Moreover, for a spherical Stein manifold, we construct an antiholomorphic
involution, which is equivariant with respect to the Weyl involution of the acting
group, and show that this involution stabilizes each orbit. The construction uses
some properties of spherical subgroups invariant under certain real automorphisms
of complex reductive groups.

Résumé. — On considère une opération d’un groupe de Lie compact connexe
sur une variété de Stein par des transformations holomorphes. On démontre que
la variété est sphérique si, et seulement si, il existe une involution antiholomorphe
conservant toute orbite. De plus, pour une variété de Stein sphérique, on construit
une involution antiholomorphe et équivariante par rapport à l’involution de Weyl
du groupe opérant. On en déduit que cette involution laisse stable toute orbite.
La construction utilise quelques propriétés des sous-groupes sphériques invariantes
par certains automorphismes réels des groupes réductifs complexes.

1. Introduction

Let G be a connected reductive algebraic group over C. A normal alge-
braic G-variety X is called spherical if a Borel subgroup B ⊂ G has an open
orbit in X. For X affine this is the case if and only if the function algebra
C[X] is a multiplicity free G-module, i.e., if and only if every irreducible
G-module appears in C[X] at most once; see [11], [12].

Keywords: Reductive groups, spherical subgroups, spherical Stein manifolds, antiholo-
morphic involutions.
Math. classification: 32M05, 43A85.
(*) The author was supported by the Russian Foundation for Basic Research, Grant
07-01-00230, and by SFB/TR12 “Symmetrien und Universalität in mesoskopischen Sys-
temen” of the Deutsche Forschungsgemeinschaft.



1030 Dmitri AKHIEZER

The notion of a spherical variety has been carried over to the category
of complex spaces. Namely, let X be a normal complex space and K a
connected compact Lie group acting on X by holomorphic transformations.
Every element of the complexified Lie algebra g = k ⊗ C gives rise to a
holomorphic vector field on X. The complex K-space X is called spherical
if there exists a point x ∈ X such that the holomorphic tangent space Tx(X)
is generated by the vector fields from a Borel subalgebra b ⊂ g. Similarly
to the algebraic setting, a normal Stein K-space is spherical if and only
if the Fréchet K-module O(X) is multiplicity free, i.e., every irreducible
K-module either occurs in O(X) with multiplicity 1 or does not occur at
all. Moreover, in that case X is a K-invariant domain in a spherical affine
KC-variety; see [2].

In order to state our main results, we recall some terminology. Given a
group Γ acting on two sets X, Y and an automorphism α of Γ, we say that
a map µ : X → Y is α-equivariant if µ(γx) = α(γ)µ(x) for all x ∈ X, γ ∈ Γ.
A self-map µ : X → X is called an involution if µ2 = Id. By an involution of
a group we will always mean an involution which is a group automorphism.

In this paper we consider only non-singular Stein K-spaces. Our goal
is a characterization of spherical K-manifolds in terms of K-equivariant
antiholomorphic involutions.

Theorem 1.1. — Let X be a Stein manifold on which a connected
compact Lie group K acts by holomorphic transformations. Then X is
spherical if and only if there exists an antiholomorphic involution µ : X →
X such that

(1.1) µ(x) ∈ Kx for all x ∈ X.

According to a theorem of J. Faraut and E. G. F. Thomas, the existence
of µ with the above properties is sufficient for X to be spherical; see [5],
Theorem 3. In fact, the setting in [5] is more general, namely, the manifold
X need not be Stein and the group K is not necessarily compact. The
conclusion is that, in the presence of µ satisfying (1.1), any irreducible
unitary K-module occurs in O(X) with multiplicity 6 1. A simplified proof
in our context is found in [3]. The converse statement is known in one special
case, namely, if X is an affine variety homogeneous under the complexified
group G = KC; see [3].

We recall the definition of a Weyl involution in Section 2. Let θ be a
Weyl involution of K. The crucial role in our considerations is played by θ-
equivariant antiholomorphic involutions of Stein manifolds acted on by K.

ANNALES DE L’INSTITUT FOURIER



SPHERICAL STEIN MANIFOLDS AND THE WEYL INVOLUTION 1031

Theorem 1.2. — Let K be a connected compact Lie group, θ : K → K

a Weyl involution, and X a Stein manifold on which K acts by holomorphic
transformations. Assume that X is spherical with respect to K. Then there
exists a θ-equivariant antiholomorphic involution µ : X → X. Any such
involution µ has property (1.1) for all x ∈ X.

Together with the aforementioned result of [5], this theorem implies The-
orem 1.1. Moreover, the second assertion of Theorem 1.2 follows from the
first one. Namely, a holomorphically separable complex K-manifold X with
a θ-equivariant antiholomorphic involution µ : X → X is multiplicity free
if and only if (1.1) is fulfilled for all points of X; see [3], Theorem 4.1. The
first assertion of Theorem 1.2 is proved in Section 5.

In the paper [1] of E. B. Vinberg and the author, the Weyl involution
appears as a tool bringing the notion of weak symmetry into the theory of
spherical varieties. If X is homogeneous under G = KC then Theorem 1.2
is a consequence of Theorem 5.11 in [1]. At this stage, the proof relies upon
the classification of reductive spherical subgroups in simple groups given
by Krämer’s list. In the general case, X embeds as a K-invariant domain
into the space of a vector bundle G×H V , where H is a reductive spherical
subgroup in G and V is a spherical H-module (see Section 5). Therefore we
need an elementary version of Theorem 1.2 for a K-module X = V , which
we will then apply to the fiber. As long as K is connected, this result
does not require sphericity of the KC-module V . Moreover, Theorem 3.1
shows that there exists a θ-equivariant involution µ : V → V , which is in
fact antilinear, and that such a µ is essentially unique if V is irreducible.
However, in order to accomplish the proof of Theorem 1.2, one must be able
to apply Theorem 3.1 to possibly disconnected groups acting on the fiber V .
Our argument is based on Theorem 4.3. Here is its simplified version, which
might be of independent interest.

Let G/H be a spherical homogeneous space, σ : G → G an involution
defining a split real form of G, and U a Lie subgroup of G containing
H, such that H C U and U/H is compact. If σ(H) = H then σ(U) = U

and the action of σ on the (abelian) group U/H is the inversion.
It is interesting to compare this statement with Proposition 5.2 in [1] (see
also Corollary 4.4). Throughout the paper, we denote by NG(H) the nor-
malizer of a subgroup H in a group G, by G◦ the connected component of
the neutral element e in a topological group G, and by X(G) the character
group of an algebraic group G.

Acknowledgments. — The author would like to thank Michel Brion for
valuable remarks on the first version of this paper.
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1032 Dmitri AKHIEZER

2. Preliminaries

Let G be a connected reductive algebraic group over C. Recall that an
involutive regular automorphism θ : G → G is called a Weyl involution if
there exists a maximal torus T ⊂ G such that θ(t) = t−1 for all t ∈ T . It
is known that such an involution exists and that any two Weyl involutions
of G are conjugate by an inner automorphism; see e.g. [6], Ch. IX, §5.
From the point of view of the representation theory, the main property
of a Weyl involution is the following one. Let V be a rational G-module,
% : G → GL(V ) the corresponding representation, and V θ the G-module
given by the representation g 7→ %(θ(g)) in the same vector space V . Then
V θ is isomorphic to the dual G-module V ∗.

Let Gθ ⊂ G be the fixed point subgroup of θ. This is a symmetric al-
gebraic subgroup of G, which is always reductive. One can find a Cartan
involution τ commuting with θ or, equivalently, a maximal compact sub-
group K ⊂ G stable under θ. Any two maximal compact subgroups with
this property are conjugate by an element of Gθ. Moreover, one can arrange
that such a subgroup contains the maximal compact subgroup Tc ⊂ T ;
see [6], Ch. VI, A8 or Lemma 2.2 below. Thus, for any choice of K sat-
isfying θ(K) = K there is an element a ∈ Gθ such that K contains the
compact torus aTca

−1. Since σ = τθ preserves this torus and acts on it as
the inversion, the fixed point subgroup of σ is a split real form of G.

In what follows, we will keep the above notation. Namely, we will con-
sider three involutive automorphisms of G. These are a Weyl involution θ,
a Cartan involution τ commuting with θ and the product σ = θτ = τθ.
The fixed point subgroups K = Gτ and Gσ are a compact real form and,
respectively, a split real form of G. We remark that the notion of a Weyl
involution can also be defined for connected compact Lie groups. The defi-
nition is similar and its meaning for the representation theory is similar as
well. Note that the restriction θ|K is a Weyl involution of K.

For the convenience of the reader we recall the proof of two simple facts
about Lie groups with finitely many connected components which we will
need in the sequel.

Lemma 2.1. — Let π : G1 → G2 be an epimorphism of Lie groups. If
Ker π has finitely many connected components and K2 ⊂ G2 is a compact
subgroup then there exists a compact subgroup K1 ⊂ G1 such that K2 =
π(K1).

Proof. — Without loss of generality assume that G2 = K2. Then G1 has
finitely many connected components. We have K◦

2 = π(G◦
1). By a theorem

ANNALES DE L’INSTITUT FOURIER



SPHERICAL STEIN MANIFOLDS AND THE WEYL INVOLUTION 1033

of D. Montgomery there exists a compact subgroup L ⊂ G◦
1 such that

π(L) = K◦
2 ; see [9], Cor. 2. Let K1 be a maximal compact subgroup of G1

such that L ⊂ K1. Then G1 = K1 · G◦
1 by a theorem of G. D. Mostow;

see [10]. Hence K2 = π(G1) = π(K1) ·K◦
2 = π(K1). �

Lemma 2.2. — Let G1 ⊂ G2 be two Lie groups with finitely many con-
nected components, G1 a closed subgroup of G2, and ∆ a finite group of
automorphisms of G2, which leaves invariant both G1 and a maximal com-
pact subgroup K1 ⊂ G1. Then there exists a maximal compact subgroup
K2 ⊂ G2, containing K1 and invariant under each automorphism from ∆.

Proof. — Consider the semidirect product G̃2 = G2 o ∆, where G2 is
normal in G̃2, with the given action of ∆ on G2 as an automorphism group.
We identify ∆ with the corresponding subgroup in G̃2. The semidirect
products G̃1 := G1 o ∆ and K̃1 := K1 o ∆ are subgroups of G̃2.

Given a Lie group G with finitely many connected components, a max-
imal compact subgroup K ⊂ G is characterized by the two properties
(see [10]):

(i) K has non-empty intersection with every connected component
of G;

(ii) K ∩G◦ is a maximal compact subgroup in G◦.
It follows from this criterion that K̃1 is a maximal compact subgroup of

G̃1. Let K̃2 be a maximal compact subgroup of G̃2 containing K̃1. Since K̃2

has non-empty intersection with all connected components of G̃2 including
those which are contained in G2 (and are therefore connected components
of G2) and, also, (G̃2)◦ = G◦

2, we see from the above criterion that K2 :=
K̃2 ∩ G2 is a maximal compact subgroup of G2. Because K1 ⊂ K̃1 ⊂ K̃2,
we have K1 ⊂ K2. Furthermore, ∆ ⊂ K̃1 ⊂ K̃2. Thus, if k ∈ K2, δ ∈ ∆
then δkδ−1 ∈ K̃2. Since δG2δ

−1 = G2, we also have δkδ−1 ∈ G2, showing
that K2 is δ-invariant. �

3. Antilinear θ-equivariant involutions of K-modules

For a complex vector space V let V denote the conjugate vector space. By
definition, V coincides with V as a real vector space, whereas the multipli-
cation by complex numbers on V is given by (c, v) 7→ c̄v (c ∈ C, v ∈ V ). Let
ι : V → V denote the identity map of real vector spaces, which is antilinear
with respect to the complex structures on V and V . If % : K → GL(V ) is a
representation of a group K then there is a natural representation of K in
V which we denote by %̄. We have ι(%(k)v) = %̄(k)ι(v) for all k ∈ K, v ∈ V .

TOME 59 (2009), FASCICULE 3



1034 Dmitri AKHIEZER

Theorem 3.1. — Let K be a connected compact Lie group, θ : K → K

a Weyl involution, and % : K → GL(V ) a complex representation of K.
Then there exists an antilinear mapping µ : V → V , such that µ2 = Id and

µ(%(k)v) = %(θ(k))µ(v)

for all k ∈ K, v ∈ V . If % is irreducible and µ′ : V → V is another mapping
with the above properties then µ′ = cµ for some c ∈ C, |c| = 1.

Proof. — A K-invariant positive Hermitian form on V gives rise to an
isomorphism of K-modules V ' V ∗. Let V θ be the K-module defined by
the representation k 7→ %(θ(k)) in V . Then, by the main property of a Weyl
involution, the K-modules V θ and V are also isomorphic. Thus we have an
isomorphism of complex vector spaces A : V → V such that

A (%(k)v) = %̄(θ(k))Av

for all k ∈ K, v ∈ V . Define the map µ : V → V by µ = ι−1 · A. Then µ is
antilinear and µ(%(k)v) = %(θ(k))µ(v).

Note that it is enough to prove the theorem for irreducible represen-
tations. Indeed, if V is the direct sum of irreducible K-modules Vj and
µj : Vj → Vj has the required property for each j then µ can be defined as
the direct sum of µj . We assume now that V is an irreducible K-module.
Let T ⊂ K be a maximal torus on which θ acts as the inversion and let
v ∈ V be a weight vector, such that the corresponding weight λ : T → C∗

has multiplicity one. For the map µ constructed above and for any t ∈ T

we have

%(t)−1µ(v) = %(θ(t))µ(v) = µ(%(t)v) = µ(λ(t)v) = λ(t)µ(v)

or, equivalently,

%(t)µ(v) = λ(t)µ(v).

Therefore µ(v) = av, where a ∈ C∗. Applying µ again we get µ2(v) =
|a|2v. Since V is an irreducible K-module and µ2 is a (complex linear)
intertwining operator, it follows by Schur’s Lemma that µ2 = |a|2 · Id.
Replacing µ by |a|−1µ we obtain the mapping with all required properties.
Finally, assume µ′ and µ are two such mappings. Then µ(v) = av and
µ′(v) = a′v as above. Because both µ2 and µ′

2 are the identity maps, it
follows that |a| = |a′| = 1. Since µµ′ is a (complex linear) intertwining
operator and µµ′(v) = a(a′)−1v, we have µµ′ = a(a′)−1 · Id. Multiplying
this equality by µ on the left, we get µ′ = cµ, where c = a′a−1, |c| = 1. �

ANNALES DE L’INSTITUT FOURIER
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4. Involution σ and spherical subgroups

Let H ⊂ G be an algebraic subgroup, φ ∈ X(H), and Lφ the homoge-
neous line bundle over G/H associated with the character φ. Recall that
Lφ = G×H C, where the action of H on G× C is given by

(g, z) h7→ (gh−1, φ(h)z) (g ∈ G, h ∈ H, z ∈ C).

The space of regular sections Γ(G/H, Lφ) is a G-module. Namely, the el-
ements of Γ(G/H, Lφ) are identified with the regular functions on G sat-
isfying the equation f(gh) = φ(h)−1f(g), where g ∈ G, h ∈ H. Under
this identification, G acts in Γ(G/H, Lφ) by left translations. We write
(g · f)(x) = f(g−1x) for g, x ∈ G and f ∈ Γ(G/H, Lφ).

Let N = NG(H) and assume that

(4.1) φ(uhu−1) = φ(h) for h ∈ H, u ∈ N.

Since X(H) is a discrete group, this is automatic for u ∈ HN◦. Thus the
orbit of φ under N acting by conjugation is finite. This will be used in the
proof of Theorem 4.3. It follows from (4.1) that Ker φ is normal in N . Also,
Γ(G/H, Lφ) has a structure of an N -module with the action given by

f 7→ fu, fu(g) = f(gu), u ∈ N.

Indeed, if f is a section of Lφ then

fu(gh) = f(ghu) = f(gu · u−1hu) = φ(u−1hu)−1f(gu) = φ(h)−1fu(g),

where the last equality follows from (4.1). This shows that fu is also a
section of Lφ. We refer to this action as the right action of N in Γ(G/H, Lφ).

Recall that an algebraic subgroup H ⊂ G is called spherical if the homo-
geneous space G/H is a spherical variety. In what follows, we are mainly
interested in spherical subgroups H ⊂ G. Though this fact is not used in
the proofs below, it is good to remember that for H spherical the group
N/H is diagonalizable and, in particular, abelian; see [4].

Theorem 4.1. — Let H ⊂ G be a spherical subgroup, such that σ(H) =
aHa−1 for some a ∈ G. Let φ ∈ X(H) be a character satisfying (4.1). As-
sume in addition that

(4.2) φ(a−1σ(h)a) = φ(h)

for all h ∈ H. Then any irreducible G-submodule V ⊂ Γ(G/H, Lφ) is
invariant under the right action of N . Moreover, N acts on V by

fu = φ
V
(u)−1 · f (f ∈ V, u ∈ N),

TOME 59 (2009), FASCICULE 3



1036 Dmitri AKHIEZER

where the character φ
V
∈ X(N) satisfies

(4.3) φ
V
(u) = φ

V
(σ(aua−1))

(this makes sense because σ(N) = aNa−1).

Proof. — Fix a section f ∈ Γ(G/H, Lφ) and put

F (g) = f(σ(g)a).

Clearly, F is a regular function on G, and

F (gh) = f(σ(g)σ(h)a) = f(σ(g)a · a−1σ(h)a)

= φ(a−1σ(h)a)−1 · f(σ(g)a) = φ(h)−1F (g)

in view of (4.2). Therefore F ∈ Γ(G/H, Lφ), and so we obtain the antilinear
map

η : Γ(G/H, Lφ) → Γ(G/H, Lφ), η(f)(g) = f(σ(g)a).

For k ∈ K we have

η(k · f)(g) = (k · f)(σ(g)a) = f(k−1σ(g)a) = f(σ(θ(k)−1g)a)

= η(f)(θ(k)−1g) = [θ(k) · η(f)](g)

because θ and σ coincide on K. Therefore η(V ) is a K-submodule and
hence a G-submodule in Γ(G/H, Lφ). Moreover, the mapping η : V → η(V )
gives rise to a K-equivariant antilinear bĳective map V → η(V )θ, where
the K-module η(V )θ is obtained from η(V ) by changing the corresponding
representation k 7→ %(k) to k 7→ %(θ(k)) (k ∈ K). As in Section 3, let V

denote the complex conjugate space of V with the natural representation
of K. As we have seen in the proof of Theorem 3.1, there is an isomor-
phism of K-modules V ' V ∗. On the other hand, the above K-equivariant
antilinear bĳective map V → η(V )θ yields an isomorphism of K-modules
V ' η(V )θ. Furthermore, since θ is a Weyl involution, we also have the
isomorphism η(V )θ ' η(V )∗. Combining these isomorphisms, we conclude
that V ∗ ' η(V )∗ and V ' η(V ). But H is a spherical subgroup in G, and
so each irreducible G-submodule in Γ(G/H, Lφ) has multiplicity one. Thus
η(V ) = V .

The action of G commutes with the right action of N on Γ(G/H, Lφ).
Since Γ(G/H, Lφ) is multiplicity free, V is invariant under the action of N .
By Schur’s Lemma N acts on V via multiplication by a character. We
denote the latter one by φ

V
(u)−1, u ∈ N . In other words, for f ∈ V we

have
f(gu) = φ

V
(u)−1f(g).

ANNALES DE L’INSTITUT FOURIER
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Replacing g by σ(g)a, we get

f(σ(g)au) = φ
V
(u)−1f(σ(g)a) = φ

V
(u)−1 · η(f)(g).

On the other hand, let u′ = σ(aua−1). Then

f(σ(g)au) = f(σ(g)aua−1a) = f(σ(gu′)a) = η(f)(gu′)

= φ
V
(u′)−1 · η(f)(g),

where in the last equality we used that η(f) ∈ V . Together with the previ-
ous computation, this proves (4.3). �

Corollary 4.2. — Let H ⊂ G be a spherical subgroup, such that
σ(H) = aHa−1 for some a ∈ G. Assume that φ ∈ X(H) satisfies (4.1)
and (4.2) and let U ⊂ N be a Lie subgroup with compact image in N/Ker φ.
Then for any u ∈ U the right action of σ(aua−1) on Γ(G/H, Lφ) coincides
with that of u−1.

Proof. — Applying Lemma 2.1 to the epimorphism N → N/Ker φ, we
can write any u ∈ U as u = ch, where h ∈ H, φ(h) = 1, and c is contained
in a compact subgroup of N . Let V ⊂ Γ(G/H, Lφ) be an irreducible G-
submodule. Since φ

V
|H = φ by the definition of φ

V
, we have φ

V
(u) = φ

V
(c)

and, therefore, |φ
V
(u)| = 1. By Theorem 4.1, it follows from (4.3) that

φ
V
(u−1) = φ

V
(σ(aua−1)).

This is true for any irreducible G-submodule V ⊂ Γ(G/H, Lφ), showing
that u−1 and σ(aua−1) induce the same linear transform of Γ(G/H, Lφ).

�

Theorem 4.3. — Let H ⊂ G be a spherical subgroup, such that σ(H) =
aHa−1 for some a ∈ G. Let U ⊂ N be a Lie subgroup with compact image
in N/H. Then

σ(aua−1) ≡ u−1 (mod H)

for all u ∈ U . In particular, if H ⊂ U then U is stable under the mapping
u 7→ σ(aua−1) and the induced automorphism of U/H is the inversion.

Proof. — By Chevalley’s theorem there exist a rational representation
ρ : G → GL(V ) and a vector v ∈ V , such that

H = {g ∈ G | ρ(g)v ∈ C · v}.

Let φ ∈ X(H) denote the corresponding character, i.e., ρ(h)v = φ(h) · v for
h ∈ H. For u ∈ N define φu ∈ X(H) by

φu(h) = φ(uhu−1), (h ∈ H).

TOME 59 (2009), FASCICULE 3



1038 Dmitri AKHIEZER

Since the family {φu}u∈N is finite, we can find u1, u2, . . . , uk ∈ N with
the property that for every u ∈ N there exists exactly one ui, i ∈ [1, k],
such that φu = φui . Write φi instead of φui , define the vectors vi ∈ V by
vi = ρ(ui)v, and consider the tensor product of representations ρ̃ : G →
GL(Ṽ ), where Ṽ = V ⊗ . . . ⊗ V (k times). For the decomposable vector
ṽ = v1 ⊗ . . .⊗ vk ∈ Ṽ we have

H =
{
g ∈ G | ρ̃(g)ṽ ∈ C · ṽ

}
,

and the corresponding character of H is the product

φ̃ =
k∏

i=1

φi,

which is invariant under N , i.e., φ̃(uhu−1) = φ̃(h) for all h ∈ H, u ∈ N .
Therefore, replacing the representation ρ : G → GL(V ) and the vector v∈V

by ρ̃ : G → GL(Ṽ ) and, respectively, ṽ ∈ Ṽ we may assume that φ satis-
fies (4.1).

We now want to change the triple V, v and ρ without changing H, so that
φ also satisfies (4.2). In the notation of Section 3, let V denote the complex
conjugate vector space. We have the antilinear map ι : V → V and the
antiholomorphic representation ρ̄ : G → GL(V̄ ) such that ι(ρ(g)) = ρ̄(g)ι
for g ∈ G. Define a representation of G in the tensor product V ⊗ V as
g 7→ ρ(g) on the first factor and g 7→ ρ̄(a−1σ(g)a) on the second one. Note
that this representation is rational. Moreover, it is easily seen that H is the
stabilizer of the line C · v ⊗ ι(v) and the corresponding character is given
by

φ̂(h) = φ(h) · φ(a−1σ(h)a), h ∈ H.

Since σ(a)a ∈ N and φu = φ for u ∈ N , we see that φ̂ satisfies (4.2).
We just proved that there exists an equivariant embedding j : G/H →

P(V ) with j∗O(−1) = Lφ. Thus the sections of the dual bundle (Lφ)∗ = Lϕ,
where ϕ = φ−1, separate points of G/H. It follows that the kernel of the
right action of N in Γ(G/H, Lϕ) is exactly H. If U ⊂ N is a Lie subgroup
with compact image in N/H, then by Lemma 2.1 there exists a possibly
larger Lie subgroup of N with compact image in N/Ker ϕ, which is mapped
onto UH/H. We denote this larger subgroup again by U . Let u ∈ U .
Then, by Corollary 4.2, u−1 and σ(aua−1) induce the same transform of
Γ(G/H, Lϕ). Therefore σ(aua−1) ≡ u−1 modulo H. �

As a corollary, we get another proof of Proposition 5.2 in [1].
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Corollary 4.4 (see [1], Proposition 5.2). — Let H ⊂ G be a reductive
spherical subgroup invariant under a Weyl involution θ. Then θ acts as the
inversion on the abelian group N/H.

Proof. — Take ∆ = {e, θ} in Lemma 2.2 and apply the assertion of the
lemma to each of the three inclusions {e} ⊂ H ⊂ N ⊂ G, moving from
the left to the right. Then we get θ-stable maximal compact subgroups in
H, N and G together with similar inclusions. In other words, there is a
θ-stable maximal compact subgroup K ⊂ G, such that K ∩H and K ∩N

are maximal compact subgroups in H and, respectively, in N . Let τ be
the Cartan involution of G with Gτ = K. Clearly, θτ = τθ. Since τ fixes
pointwise the maximal compact subgroups K∩H and K∩N of the reductive
groups H and N , it follows that τ(H) = H and τ(N) = N . Thus τ acts on
N/H. Note that N/H is a reductive algebraic group and (K∩N)/(K∩H) is
a maximal compact subgroup of N/H. By Theorem 4.3 the product σ = τθ

and therefore also θ acts as the inversion on (K∩N)/(K∩H), showing that
the latter group is abelian. (Of course, it follows that N/H is abelian, but
this fact is known in a more general setting; see [4]). Since θ is an algebraic
automorphism, θ acts as the inversion on the whole group N/H. �

5. Proof of Theorem 1.2

First of all, we reduce the statement to the algebraic case. Namely, by
Theorem 2 in [2], X can be embedded as a K-invariant domain into an
affine spherical KC-variety which we denote by XC. Moreover, if G = KC

and i : X ↪→ XC is the embedding then G · i(X) = XC. Hence XC is
non-singular. Assuming that the theorem is proved for XC, we get a θ-
equivariant antiholomorphic involution µ : XC → XC. Since the variety
XC is spherical, its Fréchet algebra O(X) is a multiplicity free K−module.
Thus, by Theorem 4.1 in [3], we have µ(x) ∈ Kx for all x ∈ XC. It follows
that µ(i(X)) = i(X), and so the required involution of X is obtained from µ

by restriction.
From now on we assume that X is a smooth affine spherical variety

of G. Since C[X]G = C, a well-known application of Luna’s Slice Theorem
displays X as a vector bundle. Namely, X = G×HV , where H is a reductive
subgroup of G and V is an H-module; see [8], Cor. 2, p. 98. Moreover, since
X is a spherical variety, it follows that H is a reductive spherical subgroup
in G and V is a spherical H-module; see [7], Corollary 2.2.

It suffices to prove our theorem for some maximal compact subgroup
K ⊂ G and for some Weyl involution θ of G satisfying θ(K) = K. Let L
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be a maximal compact subgroup of H contained in K. According to [1],
Prop. 5.14, we can find a Weyl involution θ of G so that K and L are
θ-invariant and θ induces a Weyl involution of K and L◦. Then, of course,
θ(H) = H and θ|H◦ is a Weyl involution of H◦. Moreover, if τ : G → G is
the Cartan involution with Gτ = K then τθ = θτ . We will use our standard
notation σ = τθ.

By Theorem 3.1 there exists an antilinear involution ν : V → V , such
that ν(lv) = θ(l)ν(v) for v ∈ V and l ∈ L◦. Since L◦ is a maximal compact
subgroup of the connected reductive group H◦, it follows that ν(hv) =
σ(h) ν(v) for h ∈ H◦, v ∈ V . Indeed, if v is fixed then this equality holds
for all h ∈ L◦. But L◦ is a maximal totally real submanifold in H◦, and so
the above equality holds also on H◦. We claim that in fact

(∗) ν(hv) = σ(h) ν(v) for all v ∈ V, h ∈ H.

Proof of (∗). — Take a vector v0 ∈ V such that the orbit Gv0 is open in
X. Then the orbit Hv0 is open in V . Let U = Gv0 = Hv0 be the isotropy
subgroup at v0. Put v1 = ν(v0). Then ν(hv0) = σ(h)v1 for h ∈ H◦, hence
ν(H◦v0) = H◦v1. But the open orbit Hv0 ⊂ V is connected. Thus H◦ acts
on this orbit transitively, i.e., Hv0 = H◦v0. Since the orbit H◦v1 is also
open, we have H◦v0 = H◦v1 by the uniqueness of an open orbit. Therefore
v1 = av0, where a ∈ H◦.

Since U ⊂ H, the intersection U ∩H◦ has finite index in U . Thus G/(U ∩
H◦) is a spherical variety together with G/U . The equality v1 = av0 shows
that the isotropy subgroup of v1 in H◦ is a(U∩H◦)a−1. On the other hand,
ν is σ-equivariant with respect to the connected group H◦. From this it
follows that a(U ∩H◦)a−1 = σ(U ∩H◦). We now apply Theorem 4.3 to the
pair U ∩H◦ ⊂ G and to the subgroup U normalizing U ∩H◦. The quotient
U/(U ∩H◦) is finite, and so we obtain σ(U) = aUa−1.

Since H◦ acts transitively on Hv0, we have H = H◦ · U . For any h ∈ H

write h = h′u with h′ ∈ H◦, u ∈ U . Then

ν(hv0) = ν(h′uv0) = ν(h′v0) = σ(h′)v1

and, on the other hand,

σ(h)v1 = σ(h′)σ(u)v1 = σ(h′)au′a−1v1 = σ(h′)v1,

where σ(u) = au′a−1 and u′ ∈ U . These computations show that ν(hv0) =
σ(h)v1 for any h ∈ H. Replacing h by hh′ where h′ ∈ H◦, we get ν(hh′v0) =
σ(hh′)v1 = σ(h)σ(h′)v1 = σ(h)ν(h′v0). Hence ν(hv) = σ(h)ν(v) where
v = h′v0 is any vector from the open orbit in V . Since the open orbit is
dense, this completes the proof of (∗).
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Consider the antiholomorphic involution µ̃ of G× V , defined by

µ̃(g, v) = (σ(g), ν(v)).

For h ∈ H let th(g, v) = (gh−1, hv). By definition, X is the geometric
quotient with respect to this action of H on G×V . It follows from (∗) that
µ̃ · th = tσ(h) · µ̃, so that µ̃ gives rise to a self-map µ : X → X. Clearly, µ is
an antiholomorphic involution of X.

Now, θ and σ coincide on K by our choice of the Cartan involution. Since
µ̃ is θ-equivariant with respect to the left action of K on the first factor of
G×V , it follows that µ is θ-equivariant with respect to the K-action on X.
Finally, as we already noted in the introduction, (1.1) is a consequence of
Theorem 4.1 in [3]. �
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