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PROOF OF THE KNOP CONJECTURE

by Ivan V. LOSEV

Abstract. — In this paper we prove the Knop conjecture asserting that two
smooth affine spherical varieties with the same weight monoid are equivariantly
isomorphic. We also state and prove a uniqueness property for (not necessarily
smooth) affine spherical varieties.

Résumé. — Dans cet article nous prouvons la conjecture de Knop qui affirme
que deux variétés affines sphériques lisses avec le même monoïde des poids sont
isomorphes de manière équivariante. On énonce et prouve également une propriété
d’unicité pour des variétés affines sphériques non nécessairement lisses.

1. Introduction

Throughout the paper the base field K is algebraically closed and of
characteristic zero.

Let G be a connected reductive group, X an irreducible G-variety. Fix a
Borel subgroup B ⊂ G and a maximal torus T ⊂ B.

The algebra of regular functions K[X] has a natural structure of a G-
module. It is known that K[X] is the sum of its finite dimensional G-
submodules. By the weight monoid X+

G,X of X we mean the set of all
highest weights of the G-module K[X]. Since K[X] is an integral domain,
the product of two highest vectors is non-zero, whence again a highest
vector. It follows that X+

G,X is indeed a submonoid of the character lattice
X(T ) of T . By results of Popov [21], X+

G,X is finitely generated whenever
X is affine.

Recall X is said to be spherical iff X is normal and B has an open
orbit in X. If X is affine, then X is spherical iff K[X] is a multiplicity free

Keywords: Spherical varieties, weight monoids, systems of spherical roots, multiplicity
free Hamiltonian actions.
Math. classification: 14R20, 53D20.



1106 Ivan V. LOSEV

G-module, that is, the multiplicity of every irreducible module in K[X]
is at most 1. In this case K[X] =

⊕
λ∈X+

G,X
V (λ) and the monoid X+

G,X

is saturated, that is, X+
G,X is the intersection of a lattice with a finitely

generated cone in X(T )⊗ZQ.
Suppose X is an affine spherical variety. Let λ, µ, ν ∈ X+

G,X be such that
V (ν) ⊂ V (λ)V (µ) (the product is taken in K[X]). An element of the form
λ+µ−ν is said to be a tail of X. By the tail cone of X we mean the closure
of the cone in t(R)∗ generated by all tails. Here t(R)∗ (real form of the dual
space to Cartan subalgebra) stands for X(T ) ⊗Z R. The tail cone has a
distinguished system of generators called the system of spherical roots of
X and denoted by ΨG,X , see Section 3 for details.

Definition 1.1. — Let X1, X2 be affine spherical varieties. We say that
X1, X2 are X+-equivalent (resp., X+Ψ-equivalent) if X+

G,X1
= X+

G,X2
(resp.,

X+
G,X1

= X+
G,X2

,ΨG,X1 = ΨG,X2).

The main objective of the paper is to prove the following assertions.

Theorem 1.2. — Any two X+Ψ-equivalent affine spherical varieties are
equivariantly isomorphic.

Theorem 1.3. — Any two smooth X+-equivalent affine spherical vari-
eties are equivariantly isomorphic.

It is known that there are only finitely many systems of spherical roots
for given G. See [23] for details.

Theorem 1.3 was conjectured by F. Knop. Note that it fails if the smooth-
ness assumption is omitted. In fact, for G = SO3 the spherical varieties

X0 =
{
(x1, x2, x3) | x2

1 + x2
2 + x2

3 = 0
}
,

X1 =
{
(x1, x2, x3) | x2

1 + x2
2 + x2

3 = 1
}

are X+-equivalent but not isomorphic. In this example we have ΨG,X0 = ∅,
while ΨG,X1 consists of one element.

If G is a torus, i.e. G = T , then spherical is the same as toric. If X
is an affine toric T -variety, then there is an isomorphism of T -algebras
K[X] ∼= K[X+

T,X ]. Therefore both theorems hold. For G of type A (that
is, when all simple ideals of g are of type A) Theorem 1.3 was proved by
Camus [4]. His approach uses Luna’s classification of spherical varieties,
see [18]. We do not use his result in this paper.

We remark that for any finitely generated saturated monoid X+ ⊂ X(T )
consisting of dominant weights there is an affine spherical variety X with
X+

G,X = X+, ΨG,X = ∅, see [21] for details. However, if G is not a torus,
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PROOF OF THE KNOP CONJECTURE 1107

then a smooth affine spherical variety usually has at least one spherical
root.

Apart of being interesting in its own right, Theorem 1.3 is important for
the theory of multiplicity-free Hamiltonian actions of compact groups on
compact symplectic smooth manifolds. Let us recall all necessary defini-
tions.

Let K be a connected compact Lie group and M be a real smooth man-
ifold equipped with a symplectic form ω. An action K : M is called Hamil-
tonian if it preserves ω and is equipped with a moment map µ, that is, a
K-equivariant map µ : M → k∗ satisfying

ω(ξ∗x, v) = 〈dxµ(v), ξ〉, ∀x ∈M, ξ ∈ k, v ∈ TxM.

Here ξ∗x denotes the vector field at x corresponding to ξ. By a Hamiltonian
K-manifold we mean a symplectic manifold equipped with a Hamiltonian
action of K.

Choosing a K-invariant scalar product on k, one identifies k∗ with k and
considers µ as a map M → k. Fix a Cartan subalgebra t ⊂ k and a positive
Weyl chamber t+ ⊂ t. Define the map ψ : M → t+ by ψ(x) = Kµ(x) ∩ t+.

Recall that a compact Hamiltonian K-manifold M is called multiplicity-
free if it satisfies the following equivalent conditions:

(1) A general K-orbit in M is a coisotropic submanifold.
(2) Any fiber of ψ is a single K-orbit.
(3) The algebra C∞(M)K is commutative with respect to the Poisson

bracket induced from C∞(M).

The proof of equivalence is similar, for example, to the proof of Proposi-
tion A.1 in [24].

An important and interesting problem is to classify (in reasonable terms)
all compact multiplicity-free Hamiltonian K-manifolds. To solve this prob-
lem we need to introduce certain simple invariants associated with such a
manifold. Firstly, by the Kirwan theorem [9], ψ(M) is a convex polytope
called the moment polytope of M . This is the first invariant we need. The
second one is the stabilizer Kx for x ∈ µ−1(η), where η is a general element
of ψ(M). This stabilizer does not depend on choices of η and x so is de-
termined uniquely. It is called the principal isotropy subgroup of M . Note
that for an arbitrary action one can define a principal isotropy subgroup
only up to conjugacy but in our situation we have a "distinguished" general
point x, that lies in µ−1(C).

Conjecture 1.4 (Delzant). — Any two multiplicity-free compact
Hamiltonian K-manifolds M1,M2 with the same moment polytope and
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1108 Ivan V. LOSEV

principal isotropy subgroup are isomorphic (that is, there is aK-equivariant
symplectomorphism ϕ : M1 →M2 commuting with the moment maps).

Currently, the conjecture is proved only in some special cases: see [5], [6],
[24]. F. Knop reduced the Delzant conjecture to Theorem 1.3 (unpublished).
So this paper completes the proof of the Delzant conjecture (modulo Knop’s
reduction).

Theorem 1.2 also has some applications to symplectic geometry. Using
this theorem, one proves a certain uniqueness result for invariant Kähler
structures on a given multiplicity free compact Hamiltonian K-manifold,
Theorem 8.3.

Let us describe briefly the content of the paper. Section 2 contains con-
ventions used in the paper and the list of notation. In Section 3 we recall
the definitions and some properties of important combinatorial invariants of
spherical varieties. These invariants are the Cartan space aG,X , the weight
lattice XG,X , the valuation cone VG,X , the system of spherical roots ΨG,X ,
and the set of B-divisors DG,X equipped with certain two maps.

Section 4 contains some auxiliary results concerning affine spherical va-
rieties and weight monoids. Further, we state there two auxiliary state-
ments – Theorems 4.8, 4.9. Theorem 4.8 asserts, roughly speaking, that
affine spherical varieties X1, X2 have the same set of B-divisors provided
they are X+Ψ-equivalent or smooth and X+-equivalent. Theorem 4.9 states
that ΨG,X1 = ΨG,X2 provided X1, X2 are smooth and X+-equivalent. In
the end of Section 4 we deduce Theorems 1.2, 1.3 from Theorems 4.8, 4.9
and results of [16].

Section 5 is devoted to reduction procedures, which are based on the local
structure theorem and play a crucial role in the proofs of Theorems 4.8,
4.9. These proofs are presented in Sections 6, 7. At the end of Section 6 we
also give an algorithm recovering DG,X from X+

G,X and ΨG,X .
Finally in Section 8 we prove a uniqueness result for invariant Kähler

structures on a given compact multiplicity free Hamiltonian manifold.

Acknowledgements. — This paper was partially written during author’s
stay in Rutgers University, New Brunswick, in the beginning of 2007.
I would like to thank this institution and especially Professor F. Knop
for hospitality. I am also grateful to B. Van Steirteghem for some useful
remarks on an earlier version of this text.
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PROOF OF THE KNOP CONJECTURE 1109

2. Notation, terminology and conventions

If an algebraic group is denoted by a capital Latin letter, then we denote
its Lie algebra by the corresponding small German letter.

Recall that we fix a Borel subgroup B ⊂ G and a maximal torus T ⊂ B.
This allows us to define the root system ∆(g), the Weyl group W (g), and
the system of simple roots Π(g) of g. For simple roots and fundamental
weights of g we use the notation of [19]. Put U = Radu(B).

Note that the character groups X(T ),X(B) are naturally identified. We
recall that the character group X(H) of an algebraic group H, by definition,
consists of all algebraic group homomorphisms H → K×, where K× is the
one-dimensional torus. If H is connected, then X(H) is a lattice, so we call
it the character lattice.

Since G is reductive, there is a G-invariant symmetric form (·, ·), whose
restriction to t(Q) is positive definite. Note that (·, ·) is nondegenerate on
the Lie algebra of any reductive subgroup of G. We fix such a form and
identify g with g∗, t with t∗.

If X1, X2 are G-varieties, then we write X1
∼=G X2 when X1, X2 are G-

equivariantly isomorphic. Note that if V1, V2 are G-modules, then V1
∼=G V2

iff V1, V2 are isomorphic as G-modules.
Let Q be a parabolic subgroup of G containing either B or B−. There

is a unique Levi subgroup of Q containing T , we call it the standard Levi
subgroup of Q. For Σ ⊂ Π(g) we denote by PΣ the parabolic subgroup of G
whose Lie algebra is generated by b and the root subspaces corresponding
to −α with α ∈ Σ.

A
(B)
λ = {a ∈ A | b · a = λ(b)a, ∀b ∈ B}.

A(B) = ∪λ∈X(B)A
(B)
λ .

aG,X the Cartan space of a spherical G-variety X, see
Section 3 for the definition.

DG,X the set of B-divisors of a spherical G-variety, see
Section 3 for the definition.

DG,X(α) = {D ∈ DG,X | Pα 6⊂ GD}.
DG

G,X = {D ∈ DG,X | GD = G}.
fλ a nonzero element of K(X)(B)

λ .
(f) the zero divisor of a rational function f .
(G,G) the derived subgroup of a group G

[g, g] the derived subalgebra of a Lie algebra g.
G ∗H V the homogeneous bundle over G/H with a fiber V .
Gy the stabilizer of y under an action of G.

TOME 59 (2009), FASCICULE 3



1110 Ivan V. LOSEV

K× the one-dimensional torus.
NG(H) =

{
g ∈ G | gHg−1 = H

}
.

Pic(X) the Picard group of a variety X.
Radu(G) the unipotent radical of an algebraic group G.
rankG(X) = rank XG,X .
SpanA(M) = {a1m1 + · · ·+ akmk, ai ∈ A, mi ∈M}.
Supp(γ) the support of γ ∈ SpanQ(Π(g)), that is, the set

{α ∈ Π(g) | nα 6= 0}, where γ =
∑

α∈Π(g) nαα.
V (µ) the irreducible module with highest weight µ.
XG = {x ∈ X | gx = x,∀g ∈ G}.
X(G) the character group of an algebraic group G.
XG,X the weight lattice of a spherical G-variety X, see

Section 3 for definition.
X+

G,X the weight monoid of a spherical G-variety X.
#X the cardinality of a set X.
W (g) the Weyl group of a reductive Lie algebra g.
ZG(h) ={g ∈ G | Ad(g)|h = id}
zg(h) = {ξ ∈ g | [ξ, h] = 0}.
α∨ the dual root corresponding to a root α.
〈α, v〉 the pairing of elements α, v of dual vector spaces.
∆(g) the root system of a reductive Lie algebra g.
Π(g) the system of simple roots of g associated with B.
Π(g)a

X , . . . ,Π(g)d
X the set of all simple roots of type a),. . . ,d) for a

spherical G-variety X, see Section 3 for the defini-
tion.

ΨG,X the system of spherical roots of a spherical G-variety
X, see Section 3 for the definition.

ϕD the vector in a∗G,X associated with D ∈ DG,X , see
Section 3 for the definition.

3. Combinatorial invariants of spherical varieties

In this section G is a connected reductive algebraic group and X is a
spherical G-variety.

By the weight lattice of X we mean the set

XG,X :=
{
µ ∈ X(T ) | K(X)(B)

µ 6= {0}
}
.

This is a sublattice in X(T ). Note that dim K(X)(B)
µ = 1 for any µ ∈ XG,X .

ANNALES DE L’INSTITUT FOURIER
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Define the Cartan space of X by aG,X := XG,X ⊗Z Q. This is a subspace
in t(Q)∗. Note that aG,X is equipped with a positive definite symmetric
bilinear form (the restriction of the form on t(Q)∗).

Let v be a Q-valued discrete valuation of K(X). One defines the element
ϕv ∈ a∗G,X by

〈ϕv, µ〉 = v(fµ), ∀µ ∈ XG,X .

It is known, see [10], that the restriction of the map v 7→ ϕv to the set
of all G-invariant Q-valued discrete valuations is injective. Its image is a
finitely generated cone in a∗G,X . We denote this image by VG,X and call it
the valuation cone.

Let X be, in addition, affine and T denote the tail cone of X. It is known,
see, for example [10], Lemma 5.1, that −VG,X is the dual cone of T . In turn
T is the dual cone of −VG,X .

Moreover, the valuation cone is a Weyl chamber for a (uniquely deter-
mined) group WG,X generated by reflections, see [11], Theorem 7.4. This
group is called the Weyl group of X.

Denote by ΨG,X the set of primitive elements α ∈ XG,X such that kerα ⊂
a∗G,X is a wall of VG,X and α is nonpositive on VG,X . It is clear from
construction that ΨG,X is a system of simple roots in a certain root system
with Weyl group WG,X . An element of ΨG,X is called a spherical root of
X. So if X is affine, then its tail cone is generated by ΨG,X .

By a B-divisor we mean a prime B-stable divisor. Let DG,X denote
the set of all B-divisors on X. We write ϕD instead of ϕordD

. Further,
set GD := {g ∈ G | gD = D}. Clearly, GD is a parabolic subgroup of G
containing B. For a subset D ⊂ DG,X we put GD := ∩D∈DGD.

Let α ∈ Π(g). Set

DG,X(α) := {D ∈ DG,X | Pα 6⊂ GD} ,

DG
G,X := {D ∈ DG,X | GD = G} .

Clearly, DG,X = DG
G,X t

⋃
α∈Π(g)DG,X(α).

Now we are going to recall Luna’s results ([17], see also [18], Section 2)
concerning the structure of the sets DG,X(α) and the vectors ϕD, D ∈
DG,X(α).

Proposition 3.1 ([17], Proposition 3.4, [18], Lemma 6.4.2). — For α ∈
Π(g) exactly one of the following possibilities takes place:

(a) DG,X(α) = ∅.
(b) α ∈ ΨG,X . Here DG,X(α) = {D+, D−}, ϕD+ + ϕD− = α∨|aG,X

,
〈ϕD± , α〉 = 1.

(c) 2α ∈ ΨG,X . In this case DG,X(α) = {D} and ϕD = 1
2α

∨|aG,X
.

TOME 59 (2009), FASCICULE 3



1112 Ivan V. LOSEV

(d) Qα ∩ΨG,X = ∅, DG,X(α) = {D} and ϕD = α∨|aG,X
.

We say that a root α ∈ Π(g) is of type a) (or b),c),d)) if the corresponding
possibility takes place for α. The set of all simple roots of type a),. . . , d)
is denoted by Π(g)a

X , . . . ,Π(g)d
X .

Proposition 3.2 ([18], Proposition 3.2). — Let α, β∈Π(g). IfDG,X(α)∩
DG,X(β) 6= ∅, then exactly one of the following possibilities takes place:

(1) α, β ∈ Π(g)b
X and #DG,X(α) ∩ DG,X(β) = 1.

(2) α, β ∈ Π(g)d
X , 〈α∨, β〉 = 0, α∨ − β∨|aG,X

= 0 and α + β = γ or 2γ
for some γ ∈ ΨG,X .

Conversely, if α, β ∈ Π(g) are as in (2), then DG,X(α) = DG,X(β).

The following lemma is proved analogously to Lemma 4.1.12 from [16].

Lemma 3.3. — Let X be a spherical G-variety, and α ∈ ΨG,X have one
of the following forms:

(1) α = α1, where α1 ∈ Π(g).
(2) α = 2α1, where α1 ∈ Π(g).
(3) α = k(α1 + α2), where α1, α2 are orthogonal elements of Π(g) and

k = 1 or 1
2 .

If D ∈ DG,X rDG,X(α1), then 〈ϕD, α〉 6 0.

Corollary 3.4. — Let α ∈ Π(g), D ∈ DG,X(α).

(1) If α ∈ Π(g)b
X∪Π(g)c

X , then GD = PΠ(g)rA, where A :=
{
β ∈ Π(g) |

〈β, ϕD〉 = 1
}

. In particular, if α ∈ Π(g)c
X , then A = {α}.

(2) If α ∈ Π(g)d
X , then either GD = PΠ(g)r{α} or GD = PΠ(g)r{α,β},

where β is the unique simple root such that 〈α∨, β〉 = 0, α∨ −
β∨|aG,X

= 0 and α+ β is a positive multiple of a spherical root.

Proof. — The first assertion follows from Proposition 3.2 and Lemma 3.3.
In assertion 2 one only needs to prove that β is unique. Assume the contrary,
let β, γ be such that DG,X(α) = DG,X(β) = DG,X(γ). Note that k1(α+β),
k2(α+γ), k3(β+γ) ∈ ΨG,X for some k1, k2, k3 > 0. But 〈α∨−β∨, β+γ〉 6=
0, which contradicts Proposition 3.2. �

4. Some remarks on affine spherical varieties and weight
monoids

Throughout this section X is an affine spherical variety.

ANNALES DE L’INSTITUT FOURIER



PROOF OF THE KNOP CONJECTURE 1113

The definition of the weight monoid X+
G,X given in the introduction can

be rewritten as X+
G,X =

{
λ ∈ X(T ) | K[X](B)

λ 6= {0}
}

. The following lemma
is easy. A proof can be found, for instance, in [16], Lemma 3.6.2.

Lemma 4.1. — XG,X = SpanZ(X+
G,X).

Lemma 4.2. — If X1, X2 are X+-equivalent affine spherical G-varieties,
then dimX1 = dimX2.

Proof. — Since K[X1]U ∼= K[X+
G,Xi

] ∼= K[X2]U , the claim follows easily
from results of [21]. �

The following proposition follows from the Luna slice theorem, see [13],
Corollary 2.2, for details.

Proposition 4.3. — If X is smooth, then X ∼=G G ∗H V , where H is
a reductive subgroup of G and V is an H-module.

Remark 4.4. — Note that G acts on the set of all pairs (H,V ) : g ·
(H,V ) = (H ′, V ′), where H ′ = gHg−1 and there is a linear isomorphism
ι : V → V ′ such that (ghg−1)ι(v) = ι(hv) for all h ∈ H. One easily shows,
see, for instance [16], Lemma 3.6.6, that G∗H V ∼=G G∗H′ V ′ iff (H,V ) ∼G

(H ′, V ′). So if V0 is a G-module and V0× (G∗H V ) ∼= V0× (G∗H′ V ′), then
G ∗H V ∼= G ∗H′ V ′.

The following lemma follows directly from highest weight theory.

Lemma 4.5. — A simple normal subgroup G1 ⊂ G acts trivially on
X iff 〈X+

G,X , T ∩ G1〉 = 1. An element t ∈ Z(G) acts trivially on X iff
〈X+

G,X , t〉 = 1.

Definition 4.6. — A G-variety X is said to be decomposable if there
exist nontrivial connected normal subgroups G1, G2 ⊂ G and Gi-varieties
Xi, i = 1, 2, such that G is decomposed into a locally direct product of
G1, G2 (that is, G = G1G2 and G1∩G2 is finite) and X ∼=G1×G2 X1×X2.
Under these assumptions we say that the pair G1, G2 decomposes X.

Lemma 4.7. — Let G = G1G2 be a decomposition into a locally direct
product. Then the following conditions are equivalent.

(1) The pair (G1, G2) decomposes X.
(2) X+

G1×G2,X = Γ1 + Γ2, where Γi ⊂ X(T ∩Gi), i = 1, 2.

In particular, if affine spherical varieties X1, X2 are X+-equivalent, and the
pair (G1, G2) decomposes X1, then it decomposes X2.

TOME 59 (2009), FASCICULE 3



1114 Ivan V. LOSEV

Proof. — Essentially, this lemma was proved in the proof of Lemma 3.6.4
in [16]. In order to make the present paper more self-contained we present
an argument below.

Clearly, (1) ⇒ (2). Let us check the opposite implication. Set Xi :=
X//Gi. From highest weight theory one easily deduces that X+

Gi,Xi =
X+

G,X ∩ X(T ∩ Gi), i = 1, 2. Thus X+
G,X = X+

G1,X1 + X+
G2,X2 . In other

words, K[X]U = K[X1]U∩G1 ⊗ K[X2]U∩G2 . It follows from highest weight
theory that K[X] = K[X1]⊗K[X2]. �

To prove Theorems 1.2, 1.3 we need the following two theorems.

Theorem 4.8. — Let X1, X2 be affine spherical varieties. If X1, X2 are
X+Ψ-equivalent or X1, X2 are X+-equivalent and smooth, then there is a
bĳection ι : DG,X1 → DG,X2 such that ϕι(D) = ϕD, Gι(D) = GD.

Theorem 4.9. — Let X1 , X2 be smooth X+-equivalent affine spherical
varieties. Then ΨG,X1 = ΨG,X2 .

Proof of Theorems 1.2, 1.3 modulo Theorems 4.8, 4.9. — Let X1, X2

be either X+Ψ-equivalent or smooth and X+-equivalent affine spherical
varieties. Let X0

i , i = 1, 2, denote the open G-orbit of Xi. Clearly, XG,X0
i

=
XG,Xi

, VG,X0
i

= VG,Xi , DG,X0
i

= DG,Xi r DG
G,Xi

, i = 1, 2. Thanks to
Lemma 4.1, Theorems 4.8, 4.9, one can apply Theorem 1 from [16] to X0

1 ,
X0

2 and obtain that X0
1
∼=G X0

2 . It follows from [16], Proposition 3.6.5, that
X1

∼=G X2. �

In the proof of Theorems 4.8, 4.9 we may (and will) assume that The-
orems 1.2, 1.3 are already proved for all groups G′ and spherical (X+Ψ-
equivalent or smooth and X+-equivalent) G′-varieties X ′

1, X ′
2 provided one

of the following assumptions holds:

(A1) dimG′ < dimG.
(A2) G = G′ and mini=1,2(#DG

G,Xi
) > mini=1,2(#DG

G,X′
i
).

5. Reductions

Our reductions are based on the local structure theorem. First variants
of this theorem were proved independently in [3], [7]. We give here a version
due to Knop.

Theorem 5.1 ([11], Theorem 2.3 and Lemma 2.1). — Let X be an
irreducible normal G-variety, D an effective B-stable Cartier divisor on X,

ANNALES DE L’INSTITUT FOURIER
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LD the standard Levi subgroup of GD. Then there exists a closed LD-
subvariety Σ ⊂ X0 := X r D such that the morphism Radu(GD) × Σ →
X0, [g, s] 7→ gs, is a GD-equivariant isomorphism. Here Radu(GD) acts by
left translations on itself and trivially on Σ, while LD acts by conjugations
on Radu(GD) and initially on Σ.

A subvariety Σ satisfying the claim of the previous theorem is said to be
a section of X associated with D.

Remark 5.2. — Being the quotient for the action Radu(GD) : X0, the
LD-variety Σ depends only on the support of D. If D =

∑k
i=1 aiDi, ai ∈ N,

we denote the LD-variety Σ by X(D1, . . . , Dk) or X({D1, . . . , Dk}). Note
also that Σ is smooth (spherical) provided X is.

Till the end of this subsection X is an affine spherical variety.
Here is the first version of our reduction procedure.

Proposition 5.3. — Choose a subset D ⊂ DG,X and let M be the
standard Levi subgroup of GD. Suppose there is a Cartier divisor of the
form

∑
D∈D aDD, aD > 0, (which is the case, for instance, when X is

smooth). Then
(1) X(D) is an affine M -variety.
(2) The map ι : DM,X(D) → DG,X , D 7→ Radu(GD)×D, is an injection

with image DG,X rD. Furthermore, ϕD = ϕι(D), Gι(D) ∩M = MD

for any D ∈ DM,X(D).
(3) XM,X(D) = XG,X ,ΨM,X(D) = ΨG,X ∩ SpanQ(∆(m)).
(4) X+

M,X(D) = {χ ∈ XG,X | 〈ϕD, χ〉 > 0, ∀D ∈ DG,X rD} .

Proof. — To prove assertion 1 note that, being a complement to a Cartier
divisor in an affine variety, X0 is affine. Being isomorphic to a closed sub-
variety of X0, the variety Σ is affine. Assertions 2, 3 follow from [16],
Lemma 3.5.5. Assertion 4 follows from assertion 2 and [16], Lemma 3.6.2.

�

In the second version of our reduction procedure we do not need to know
ϕD, D 6∈ D, GD.

Proposition 5.4. — In the above notation suppose (fµ) =
∑

D∈D aDD

for some positive aD. Then GD = BGµ, X+
Gµ,X(D) = X+

G,X + Zµ and the
image of DGµ,X(D) in DG,X (see assertion 2 of Proposition 5.3) coincides
with {D ∈ DG,X | 〈µ, ϕD〉 = 0}.

Proof. — An element g ∈ K(X) lies in K[X r (f)] iff g = g1/f
n for

some n ∈ N, g1 ∈ K[X]. Clearly, g ∈ K[X0](B) iff g1 ∈ K[X](B). The
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equality for X+
Gµ,X(D) stems now from the natural isomorphism K[X0]U ∼=

K[X(D)]U∩Gµ . The description of DGµ,X(D) is clear. �

Under the assumptions of the previous proposition, we put X(µ) :=
X(D). Note that X(µ) 6= X iff fµ is not invertible in K[X] iff µ ∈ X+

G,X r
−X+

G,X .

Corollary 5.5. — Let µ ∈ X+
G,X be such that X+

G,X + Zµ = XG,X

(such µ always exists). Then Π(g)a
X = {α ∈ Π(g) | 〈α∨, µ〉 = 0}.

Proof. — Any f∈K[X(µ)](B∩Gµ) is invertible. ThusDG(µ),X(µ) = ∅. From
Proposition 5.4 it follows that GDG,X

= BGµ. But GDG,X
= PΠ(g)a

X
. �

The following statement stems directly from Propositions 5.3, 5.4.

Corollary 5.6. — Let X1, X2 be affine spherical G-varieties.
(1) If X1, X2 are X+-equivalent (resp., X+Ψ-equivalent), then for any

µ ∈ X+
G,Xr−X+

G,X theGµ-varietiesX1(µ),X2(µ) are X+-equivalent
(resp., X+Ψ-equivalent).

(2) Suppose X1, X2 are smooth and X+-equivalent, D1 ∈ DG,X1 , D2 ∈
DG,X2 are such that GD1 = GD2 and {ϕD, D ∈ DG,X1 r {D1}} =
{ϕD, D ∈ DG,X2 r {D2}}. ThenX1(D1),X2(D2) are X+-equivalent
(as M -varieties, where M is the standard Levi subgroup in GD).

Remark 5.7. — Let X,Y be smooth spherical varieties and ϕ : X → Y

be a smooth surjective morphism with irreducible fibers. Then ϕ induces
an embedding ϕ∗ : DG,Y ↪→ DG,X , D 7→ ϕ−1(D). Note that GD = Gϕ∗(D).

In general, it is difficult to understand the structure of X(D) as a homo-
geneous vector bundle. However, there is a special case when the description
is easy.

Lemma 5.8. — Let Q− be a parabolic subgroup of G containing B−, M
the standard Levi subgroup of G. Suppose X = G∗H V , where H ⊂M . De-
note by π the natural homomorphism X = G∗H V → G/Q−, [g, v] 7→ gQ−,

and set D := π∗(DG,G/Q−). Then GD = BM and X(D) ∼=M Radu(q−) ×
M ∗H V .

Proof. — Note that X(D) ∼=M π−1(eQ−) ∼=M Q−∗H V ∼=M Q−∗M (M ∗H

V ) ∼=M Radu(Q−) × M ∗H V . The exponential mapping defines an M -
equivariant isomorphism Radu(q−) → Radu(Q−). �

6. Correspondence between B-divisors

The goal of this section is to prove Theorem 4.8. We assume that G is
not a torus. Throughout the section X is an affine spherical variety and the
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action G : X is assumed to be locally effective, that is, its kernel is finite. We
write a,X+,X,Ψ,D,Πa, . . . ,Πd instead of aG,X ,X

+
G,X ,XG,X ,ΨG,X ,DG,X ,

Π(g)a
X , . . . ,Π(g)d

X .
Let us briefly describe the scheme of proof. The key idea in the proof is to

use Proposition 5.4. This proposition allows to recover (partially) elements
of DG,Xi

satisfying 〈ϕD, µ〉 = 0 for some µ ∈ X+
G,Xi

r−X+
G,Xi

. This moti-
vates us to define a certain subset of hidden elements of DG,Xi

(Definition
6.2), those that can not be recovered by using Proposition 5.4. Then we
study some properties of hidden divisors, Lemma 6.3, Propositions 6.4, 6.6.
The former proposition deals with the case when all divisors in DG,Xi(α)
are hidden for some i. Proposition 6.6 describes the set of hidden divisors
for smooth Xi. In the proof of Theorem 4.8 we first construct a certain
bĳection between the sets of nonhidden divisors. Its existence is deduced
essentially from Proposition 5.4. Then we show (and this is the most com-
plicated and technical part of the proof) that this bĳection can be extended
in the required way to the whole sets of divisors.

Lemma 6.1. — Suppose X is a spherical G-variety and the action G : X
is locally effective. If Πa ∪

⋃
α∈Ψ Supp(α) = Π(g), then

⋃
α∈Ψ Supp(α) =

Π(g).

Proof. — Assume the contrary. It follows from Corollary 5.5 that Π(g1) 6⊂
Πa for any simple ideal g1 ⊂ g. Therefore there is β ∈ Πa such that
β 6∈ Supp(α) for any α ∈ Ψ but β is adjacent to Supp(α) for some α ∈ Ψ.
It follows that 〈β∨, α〉 6= 0. Contradiction with Lemma 3.5.8 from [16]. �

The following notion plays a central role in the proof.

Definition 6.2. — An element D ∈ D is said to be hidden if any
noninvertible function from K[X](B) is zero on D, equivalently, 〈ϕD, µ〉 > 0
for any µ ∈ X+ r−X+.

The set of all hidden elements of D is denoted by D∅(= D∅G,X). Set

D∅ := D rD∅. Let us establish some properties of D∅ and D∅.

Lemma 6.3. — DG ⊂ D∅.

Proof. — Let D ∈ DG ∩ D∅. Since G is not a torus and (G,G) acts
nontrivially on X, it follows from [16], Lemma 3.5.7, that D 6= {D}. Let
λ ∈ X be such that 〈λ, ϕD′〉 > 0 for any D′ ∈ D r {D}. Let us check
that ordD(fλ) > 0. Assume the contrary. Choose a function g ∈ K[X](B)

that is zero on some D′ ∈ D r {D}. One can find positive m,n such that
fngm ∈ K[X](B) and ordD(fngm) = 0. Thence fngm is invertible, which
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contradicts ordD′(f) > 0, ordD′(g) > 0. Therefore K[X](B) = K[XrD](B).
From highest weight theory it follows that K[X] = K[X r D], which is
nonsense. �

Proposition 6.4. — Let α, α1, α2 be as in Lemma 3.3. If D(α1) ⊂ D∅,
then D = D(α1) and ϕD1 = ϕD2 for any D1, D2 ∈ D(α1) (the last condition
is essential only if α = α1).

Proof. — Consider the case α = α1. Let D1, D2 be different elements of
D(α1). Note that ordDi

(fα) = 1, i = 1, 2. By Lemma 3.3, ordD(fα) 6 0 for
D ∈ D rD(α1). Choose λ ∈ X+ r−X+. Set m := mini=1,2〈ϕDi

, λ〉. Since
D(α1) ⊂ D∅, we have m > 0. Put f := fλ/f

m
α . Clearly, ordD(f) > 0 for

any D ∈ D and ordDi(f) = 0 for some i. It follows that f is an invertible
element of K[X](B). Therefore 〈ϕD, α〉 = 〈ϕD, λ〉 = 0 for D 6∈ D(α1) and
〈ϕD1 , λ〉 = 〈ϕD2 , λ〉. This implies the claim.

The proof in the remaining two cases is analogous (except for α = α1+α2

or 2α1 one has to consider f = f2
λ/f

m
α instead of fλ/f

m
α ). �

Lemma 6.5. — In the notation of Proposition 6.4, Ψ = {α}, Π(g) =
Supp(α).

Proof. — Consider the case α = k(α1 + α2), k = 1 or 1
2 (the other

two cases are analogous, even easier). Let β ∈ Π(g) r Supp(α) be such
that D(β) 6= ∅. Corollary 3.4 implies D(β) 6= D(α1), contradiction with
Proposition 6.4. So Π(g)rSupp(α) ⊂ Πa. By Lemma 6.1, Π(g) = Supp(α).
So [g, g] ∼= sl2× sl2. Since (αi, α1 +α2) > 0 for i = 1, 2, we see that Ψ does
not contain multiples of α1, α2. Therefore Ψ = {α}. �

Proposition 6.6. — Suppose X ∼=G G ∗H V , D∅,D∅ 6= ∅. Then D∅

consists of one element, say D, and there exist a simple ideal g1 ⊂ g, g1
∼=

sln, and i ∈ {1, n− 1} such that
(1) The simple root αi of g1 is the unique simple root of g positive on

X+ r−X+.
(2) GD = PΠ(g)r{αi}.
(3) H is G-conjugate to a subgroup in GD.

Proof. — We may assume that G = Z(G)◦ ×G1 × · · · ×Gk, where Gi is
a simple simply connected group. Let Hi, i = 1, k, denote the projection of
H to Gi and ρi denote the natural projection G ∗H V � Gi/Hi.

Step 1. Since both D∅,D∅ are nonempty, we see that no multiple of
any element in D∅ is principal (otherwise, there is a noninvertible B-
semiinvariant function nonvanishing on a hidden divisor). So Pic(X) is
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infinite. Note that Pic(X) ∼= Pic(G/H) ∼= X(H)/p(X(G)) (the last iso-
morphism is due to Popov [20]), where p is the restriction of characters.
It follows that hH ∩ [g, g] 6= {0}. In particular, for some i ∈ {1, . . . , k}
the group Hi is not semisimple whence Hi 6= Gi. To be definite, suppose
H1 6= G1.

Step 2. Let Y be an affine spherical G-variety of positive dimension,
ϕ : X → Y a smooth G-morphism and D ∈ D∅. If Y 6∼= G/G0 with (G,G) ⊂
G0, then D ∈ ϕ∗(D∅G,Y ). Indeed, if ϕ(D) = Y , then ordD(ϕ∗(f)) = 0 for
any f ∈ K[Y ](B). By the assumption on Y , there is a noninvertible element
in K[Y ](B). Thus ϕ(D) is a divisor. To see that D ∈ ϕ∗(D∅G,Y ) note that
ord

ϕ(D)
(f) = ordD(ϕ∗(f)). We also remark that GD = G

ϕ(D)
.

Applying this observation to ρi : X � Gi/Hi we get that either D∅ =
ρ∗i (D

∅
G,Gi/Hi

) or Hi = Gi. It follows that Gi = Hi for any i > 1 and
D∅G1,G1/H1

6= ∅.
Step 3. Let us check that g1

∼= sln and H1 is conjugate to a subgroup in
ZG1(π1), where π1 is the fundamental weight of sln corresponding to the
simple root α1.

By step 1, hH1
1 6= {0}. Put L1 = ZG1(h

H1
1 ). Let us check now that

rankG1(G1/L1) = 1. Assume the contrary. Let G1/L1 be symmetric. By
results of Vust [22], ϕD, D ∈ DG,G1/L1 , is the half of a simple coroot of
the symmetric space G1/L1. In particular, for any D ∈ DG,G1/L1 there
exists a noninvertible (=nonconstant) function f ∈ K[G1/L1](B) such that
ordD(f) = 0, so D ∈ D∅G,G1/L1

.
So G1/L1 is not symmetric. We deduce from the classification of [14] that

the pair (g1, l1) is either (so2n+1, gln) or (sp2n, sp2n−2 × K). However, in
both these cases l

NG1 (l1)
1 = 0. Applying step 2 to the projection G1/H1 →

G1/NG1(l1), we get D∅G,G1/H1
= ∅. This contradicts step 2.

So rankG1(G1/L1) = 1. It follows from the classification in [14] that g1 =
sln, l1 ∼G zg1(π1). We note that X+

G,G1/L1
= Z>0(π1 +πn−1),#DG,G1/L1 =

2, the stabilizers of elements of #DG,G1/L1 are PΠ(g)r{αi}, i = 1, n − 1,
and the classes of two elements of ρ∗1(DG,G1/L1) in Pic(X) are opposite. By
step 2, #D∅ 6 2.

Note that, by the above, any Levi subgroup of G1 containing H1 is con-
jugate to L1. Therefore dim hH1

1 = 1. Since Hi = Gi for any i > 1, it follows
that rank Pic(X) = 1.

Step 4. Let us check that #D∅ = 1. For D ∈ D we denote by [D] the
class of D in F := Pic(X)/Tor(Pic(X)). The group F is generated by [D]
for any D ∈ DG,G1/L1 . The equality #D∅ = 1 will follow if we check that
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for any D ∈ D∅, D′ ∈ D, D 6= D′ there is a positive integer n such that
[D′] = −n[D]. Assume the contrary. Then there is f ∈ K(X)(B) such that
(f) = D′−nD, n > 0. If n = 0, then f is a noninvertible element of K[X](B)

and f is nonzero on D. So let n > 0. There is a function g ∈ K[X](B) such
that ordD(g) = kn, k ∈ N. It remains to note that fkg ∈ K[X](B), fkg is
noninvertible and ordD(fkg) = 0, contradiction.

Without loss of generality, assume that D∅ ⊂ D(α1).

Step 5. If µ ∈ X+ is such that 〈α∨1 , µ〉 = 0, then 〈ϕD, µ〉 = 0. Indeed,
since 〈α∨1 , µ〉 = 0, we see that fµ ∈ K[X](Pα1 ). To prove the claim note that
Pα1D = X whence fµ is nonzero on D.

Step 6. From step 5 it follows that 〈α∨1 ,X+ r −X+〉 > 0. To prove the
proposition it remains to check that there is no other simple root with
this property. Assume the contrary, let α ∈ Π(g) r {α1} be such that
〈α∨,X+ r−X+〉 > 0. Since π1 +πn−1 ∈ X+, we see that α = αn−1 whence
n > 2. Let D1 denote the unique element in ρ∗1(DG,G1/L1(αn−1)).

Suppose that there is D2 ∈ D rD(αn−1) r {D}. Then, by step 4, there
exists µ ∈ X+ such that (fµ) = nD + D2, n > 0. In particular, fµ ∈
K[X](Pαn−1 ) whence 〈α∨n−1, µ〉 = 0.

It remains to consider the case when D = {D} ∪ D(αn−1). Suppose
D(αn−1) = {D1}. Recall that F ∼= Z, [D] + [D1] = 0. It follows that (f)
is proportional to D + D1 for any f ∈ K(X)(B). Therefore D1 ∈ D∅,
contradiction.

Suppose #D(αn−1) = 2. Let D2 be the unique element in D(αn−1) r
{D1}. By Proposition 3.1, αn−1 ∈ Ψ and 〈ϕDi

, αn−1〉 = 1, i = 1, 2. By
Lemma 3.3, 〈ϕD, αn−1〉 6 0. It follows that [D1] + [D2] = m[D] for some
nonnegative m. Contradiction with step 4. �

Proof of Theorem 4.8. — Below in the proof we write X+,X, a,Πa in-
stead of X+

G,Xi
,XG,Xi , aG,Xi , Π(g)a

Xi
(recall that Π(g)a

X1
= Π(g)a

X2
in virtue

of Corollary 5.5), Di,D∅i ,D
∅
i ,Ψi,Πb

i , . . . ,Π
d
i instead of DG,Xi

, etc.
Assume the contrary: there is no bĳection ι : D1 → D2 with the desired

properties. Thanks to the assumptions made in the end of Section 4 and
Corollary 5.6, the theorem holds for X1(µ), X2(µ) for any µ ∈ X+ r−X+,
see Corollary 5.6.

It follows from Lemma 4.5 that both actions G : X1, G : X2 are locally ef-
fective. We may also assume that Z(G)◦ acts on X1, X2 effectively. Thanks
to Lemma 4.7 both X1, X2 are indecomposable.

Step 1. Here we construct a bĳection ι : D∅1 → D∅2 such that ϕD =
ϕι(D). By our assumptions, for any µ ∈ X+ r −X+ there is a bĳection
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ιµ : DGµ,X1(µ) → DGµ,X2(µ) such that ϕD = ϕιµ(D), GD∩Gµ = Gιµ(D)∩Gµ.
By Proposition 5.4, there is a natural embedding DGµ,Xi(µ) ↪→ Di with
image {D ∈ Di | 〈µ, ϕD〉 = 0}. In the sequel we identify DGµ,Xi(µ) with
this image. Since DGµ,Xi(µ) = {D ∈ Di | fµ |D 6= 0}, we have

(6.1) DGλ,Xi(λ) ∩ DGµ,Xi(µ) = DGλ+µ,Xi(λ+µ),∀λ, µ ∈ X+ r−X+.

By definition,

(6.2) D∅i =
⋃

µ∈X+r−X+

DGµ,Xi(µ).

We remark that ιλ, ιµ, in general, do not coincide on DGλ+µ,X1(λ+µ).
Indeed, any G-equivariant automorphism ψ of X1 induces a bĳection D1 →
D1, D 7→ ψ(D). This bĳection can be nontrivial (take SL2 for G and G/T

for X1).
Let µ1, . . . , µk ∈ X+ be the minimal set of generators of X+ modulo

X+∩−X+, i.e. {µ1, . . . , µk} = X+rX++X+. For a subset I ⊂ {1, 2, . . . , k}
put µI :=

∑
j∈I µj ,MI := GµI

,DI
i := DGµI

,Xi(µI), D
I

i := ∪J)IDJ
i , DI

i :=

DI
i rDI

i , i = 1, 2. For I 6= ∅ set ιI := ιµI
. It follows from (6.1) that DI

j =

∩i∈ID{i}j whence DI
j ∩ DJ

j = DI∪J
j , j = 1, 2. Note that ιI(DJ

1 ) = DJ
2 for

any J ⊃ I because DJ
j =

{
D ∈ DI

j | 〈ϕD,
∑

i∈J µi〉 = 0
}

and ϕιI(D) = ϕD.
Thus the map

ι : D∅1 → D∅2, ι|DI
1

= ιI ,

is a well-defined bĳection such that ϕι(D) = ϕD. Clearly, ι−1 coincides with
ι−1
I on DI

2.

Step 2. Choose α1 ∈ Π(g) r Πa. Suppose Di(α1) ⊂ D∅i . Let us check
that α1 ∈ Πd

i and GD = PΠ(g)r{α1}. To be definite, put i = 1. Assume the
contrary. Then one of the following cases takes place.

Case 1. α1 ∈ Πb
1. Let D+

1 , D
−
1 denote different elements of D1(α1). By

Proposition 6.4, D1 = D1(α1) and ϕD+
1

= ϕD−
1

. By Lemma 6.5, [g, g] = sl2.
If Ψ1 = Ψ2, then α1 ∈ Ψ2. Applying Proposition 6.4 again, we see that
ϕD+

2
= ϕD−

2
for D+

2 , D
−
2 ∈ D2. Set ι(D±

1 ) = D±
2 .

Now suppose X1, X2 are smooth. Let H ⊂ G,V be such that X1
∼=G

G ∗H V . Let π denote the natural projection X1 � G/H. By Proposition
4.2.4 from [16], the pull-back map π∗ : DG,G/H → D1 is a bĳection. Take
fλ ∈ K[X1]

(B)
λ . The divisor of fλ is a pull-back of a divisor on G/H whence

fλ is constant on fibers of the vector bundle π : X1 → G/H. This means
that fλ ∈ π∗K[G/H]. Therefore V = {0} and X1 = G/H. By Theorem
2 from [16], NG(H) is not connected, whence H = T1 × T0, where T1
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is a maximal torus of SL2, and T0 ⊂ Z(G)◦. By our assumptions X1 is
indecomposable. Thus g = sl2. Now it is easy to check that X1

∼=G X2.
Case 2. α1 ∈ Πc

1. By Proposition 6.4, it is enough to check that α1 ∈ Πc
2.

Similarly to the previous case, one can check thatG = SL2, X1 = G/NG(T ).
Then it is easy to see that X1

∼=G X2.
Case 3. α1 ∈ Πd

1 and there is α2 ∈ Π(g) r {α1} such that D1(α1) =
D1(α2). Again we only need to consider the case when X1, X2 are smooth.
Analogously to case 1, [g, g] ∼= sl2×sl2, X1 = G/H. From D1(α1) = D1(α2)
one can deduce that h contains the diagonally embedded subalgebra sl2 ⊂
[g, g]. Again, since X1 is indecomposable, we see that g = sl2 × sl2. Then
we easily check that X1

∼=G X2.

Step 3. Let D ∈ D∅1 ∩ D1(α). In this step we show that
(1) If α ∈ Πd

1, then ι(D) ∈ D2(α) and α ∈ Πd
2.

(2) If α ∈ Πc
1, then ι(D) ∈ D2(α) and α ∈ Πc

2.
(3) If α ∈ Πb

1, then either ι(D) ∈ D2(α) and α ∈ Πb
2 or α ∈ Πd

2 and
D2(α) ∩ D∅2 = ∅.

Let I ⊂ {1, . . . , k} be such that D ∈ DI
1.

Case 1. Suppose α ∈ Πd
1. Since GD ∩MI = Gι(D) ∩MI , the inclusion

ι(D) ∈ D2(α) will follow if we check that α ∈ ∆(mI). Assume the con-
trary. Then fµI

is not Pα-semiinvariant. It follows that (fµI
) contains a

Pα-unstable prime divisor. But D is the only such divisor. Since D ∈ DI ,
we have ordD(fµI

) = 0. Contradiction. The inclusion α ∈ Πd
2 is easily

deduced from Proposition 3.1 and the equality ϕι(D) = ϕD = α∨|a.
Case 2. Suppose α ∈ Πc

1. Then ϕι(D) = ϕD = α∨/2|a. If α ∈ Πd
2, then

D2(α) ⊂ D∅2 because ϕD′ = 2ϕι(D) for D′ ∈ D2(α). This contradicts the
previous case (recall that X1, X2 have equal rights). Therefore α ∈ Πb

2∪Πc
2.

By Corollary 3.4, ι(D) ∈ D2(α). If α ∈ Πb
2, then there is D′ ∈ D2(α) r

{ι(D)} such that ϕD′ = ϕD. Therefore D′ ∈ DI
2 and ι−1(D′) ∈ DI

1. Again,
by Corollary 3.4, ι−1(D′) ∈ D1(α). Contradiction with α ∈ Πc

1.
Case 3. Suppose α ∈ Πb

1. If D2(α) ∩ D∅2 6= ∅, then, thanks to cases 1,2,
α ∈ Πb

2. If D2(α) ⊂ D∅2, then, by step 2, α ∈ Πd
2, q.e.d.

From case 2 it follows that Πc
1 = Πc

2.

Step 4. Suppose Πb
1 = Πb

2,Π
d
1 = Πd

2. Let us construct a bĳection ι : D1 →
D2 extending the bĳection D∅1 → D∅2 constructed above and such that
Gι(D) = GD, ϕι(D) = ϕD for any D ∈ D1. By step 3, for any α ∈ Π(g), D ∈
D∅1 ∩ D1(α) we have ι(D) ∈ D2(α). It follows that GD = Gι(D).

Now choose D ∈ D∅1. Thanks to steps 2, 3, exactly one of the following
possibilities holds:
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(1) α ∈ Πb
1 and D∅i ∩Di(α) 6= ∅ for any α ∈ Π(g) such that D ∈ D1(α)

and any i = 1, 2.
(2) There is a unique root α ∈ Π(g) such that D ∈ D1(α). This root is

in Πd
1 = Πd

2. Let D′ be the unique element of D2(α). Then GD =
GD′ = PΠ(g)r{α}, D

′ ∈ D∅2.

In case 2 put ι(D) := D′. In case 1 set A := {α ∈ Π(g) | D ∈ D1(α)}. For
α ∈ A let Dα denote the unique element in D1(α)∩D∅1. Clearly, ϕD 6= ϕDα

for any α ∈ A. Further, 〈α, ϕDβ
〉 = 〈α, β∨ − ϕD〉 < 0 whenever α, β

are different elements of A. By step 3, ι(Dα) ∈ D2(α). For α ∈ A let D′
α

denote the unique element in D2(α)r{ι(Dα)}. Note that 〈ϕD′
α
, β〉 = 〈α∨−

ϕDα
, β〉 = 1 for any α, β ∈ A. Applying Proposition 3.2 and Corollary 3.4,

we see that D′
α = D′

β for any α, β ∈ A. Put ι(D) := D′
α, α ∈ A.

Since 〈ϕD, γ〉 6 0 for any γ ∈ Πb
1rA, we see that ι : D1 → D2 is injective.

As already checked, GD ⊂ Gι(D) for any D ∈ D∅1. Finally, by the symmetry
between X1, X2, we obtain that GD = Gι(D) and ι : D1 → D2 is surjective.

Step 5. We may assume thatX1, X2 are smooth and there is α ∈ Πd
1∩Πb

2.
In this case, according to case 3 of step 3, D1(α) ⊂ D∅1.

Since Πb
2 6= ∅, it follows from step 2 that D∅1,D

∅
2 6= ∅. Therefore X1 sat-

isfies conditions (1)-(3) of Proposition 6.6. Let g1 be as in Proposition 6.6.
Note that α is the unique simple root of g such that 〈α∨,X+ r−X+〉 > 0.
Suppose D∅2 6= ∅. It follows that X2 satisfies conditions (1)-(3) for the same
simple ideal g1. So we have GD1 = GD2 for Di ∈ D∅i , i = 1, 2. It follows
from Corollary 5.6 and the assumptions made in the end of Section 4 that
X1(D1) ∼=M X2(D2), where M is the standard Levi subgroup of GDi . Sup-
pose that X1

∼=G G ∗H1 V1, X2
∼=G G ∗H2 V2. We may assume that Hi ⊂

M, i = 1, 2. Lemma 5.8 implies Xi(Di) ∼=M Radu(q−)×M ∗Hi Vi, i = 1, 2,
where q− := b− + m. By Remark 4.4, X1

∼=G X2.
So it remains to consider the situation when D∅2 = ∅. If β ∈ Πd

1 rΠd
2, β 6=

α, then, by step 3, D1(β) ∈ D∅1, which is impossible. Analogously, Πd
2 ⊂ Πd

1.
So Πb

1 = Πb
2 r {α} and Πd

1 = Πd
2 t {α}. Note also that D1(β) ⊂ D∅1 for any

β ∈ Π(g), β 6= α.
Let D1 denote the unique element of D1(α), D+

2 , D
−
2 denote different

elements of D2(α) and D±
1 := ι−1(D±

2 ). Then ϕD1 = ϕD+
1

+ ϕD−
1

. Put
D′1 := D1 r

{
D1, D

+
1 , D

−
1

}
,D′2 := D2 r

{
D+

2 , D
−
2

}
. Let us check that

GD′1 = GD′2 . Indeed, choose β ∈ Π(g). Suppose there is D′ ∈ D2(β)∩D′2. By
step 3, ι−1(D′) ∈ D1(β). Further, ι−1(D′) 6= D,D±

1 . Therefore GD′1 ⊂ GD′2 .
The opposite inclusion is proved in the same way.
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Let M denote the standard Levi subgroup of GD′
i
. Since ϕD1 = ϕD+

1
+

ϕD−
1

, we have

X+
M,Xi(D′i)

=
{
λ ∈ XG,X | 〈λ, ϕD±

j
〉 > 0

}
, j = 1, 2.

But #DM,X1(D′1) 6= #DM,X2(D′2). The assumptions made in the end of
Section 4 yield D′i = ∅.

Since Πb
2 6= ∅ and #D2 = 2, we see that Π(g) = Πa ∪Πb

2. By Lemma 6.1,
[g, g] ∼= sl2. However, in this case Proposition 6.6 implies #D1(α) = 2.
Contradiction with α ∈ Πd

1. �

Let us present an algorithm recovering the set DG,X with the maps D 7→
ϕD, D 7→ GD from X+

G,X ,ΨG,X .

Algorithm 6.7. — Put X+ := X+
G,X , X := XG,X , a := aG,X , Ψ :=

ΨG,X , Πa := Π(g)a
X , . . . ,Π

d := Π(g)d
X . We only need to determine the

set D′(G,X+,Ψ) := DG
G,X ∪α∈Πb DG,X(α) and the maps D 7→ ϕD for

D ∈ D′(G,X+,Ψ). Then for D ∈ D′ we recover GD from ϕD by using
Corollary 3.4.

Step 1. Compute {µ1, . . . , µk} := X+r(X+∪X+). For I ⊂ {1, . . . , k} put
M I := ZG(

∑
i∈I µi), ΠI =

{
α ∈ Π(g) | 〈α∨,

∑
i∈I µi〉 = 0

}
, X+I := X+ +∑

i∈I Zµi, ΨI :=
{
α ∈ Ψ | Supp(α) ⊂ ΠI

}
. Put DI := D′(M I ,X+I ,ΨI),

DI
:= ∪J)IDJ , DI := DI r DI

. Note that D′(G,X+,Ψ) = tI⊂{1,2...,k}DI

and D{1,...,k} = ∅.
Step 2I. Here we compute the set DI together with the map D 7→ ϕD.

Suppose we have already computed the set DI
together with the map D 7→

ϕD. Note that DI ⊂ D∅
MI ,X(

∑
i∈I

µi)
.

Case 1. ΠI = Πa.
Case 1a: X+I = −X+I . In this case DI = ∅.
Case 1b: rank(X+I ∩−X+I) 6 rank X−2. Using the argument of the

proof of Lemma 6.3, one can show that DI = ∅.
Case 1c: rank(X+I ∩ −X+I) = rankX − 1. Let i be such that the

image of µi generates X+I/(X+I ∩−X+I). Then DI = {D} and ϕD

is given by 〈ϕD, µj〉 = δij , 〈ϕD,X
+I ∩ −X+I〉 = 0.

Case 2. ΠI = {α} t Πa, α ∈ Πb, 〈α, ϕD〉 6 0 for any D ∈ DI
. Then

DI = {D1, D2} and ϕDi = 1
2α

∨|a.
Case 3. Otherwise, let Σ denote the set of all α ∈ ΠI ∩ Πb r ∪J)IΠJ

such that there is only one divisor D ∈ DI
with 〈α, ϕD〉 = 1 and put

ϕα = α∨ − ϕD. Let ϕ1, . . . , ϕl be all different values of ϕα. Then DI :=
{D1, . . . , Dl} with ϕDi = ϕi, i = 1, l.
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Note that in the algorithm one does not need to know the whole set
ΨG,X but only the subset consisting of all roots α of one of the three forms
indicated in Lemma 3.3.

7. Equality of the systems of spherical roots

The goal of this section is to prove Theorem 4.9. The proof will be given
at the end of the section. It is rather close in spirit to that of Theorem 4.8.
It is based on Proposition 5.3 and Theorem 4.8 and uses the notion of a
hidden spherical root, see Definition 7.1. We shall see that this proof is
much easier than that of Theorem 4.8.

Let X be a spherical G-variety. We suppose that G is not a torus and
the action G : X is locally effective. a, X, X+, etc. have the same meaning
as in the previous section.

Definition 7.1. — An element γ ∈ Ψ is called hidden if the following
two conditions are satisfied.

(1) For any D ∈ D there is α ∈ Supp(γ) such that D ∈ D(α).
(2) γ is not of any of the types (1)–(3) indicated in Lemma 3.3.

By Ψ0 we denote the subset of Ψ consisting of all nonhidden roots.

The terminology is justified by step 1 of the proof of Theorem 4.9 below.

Proposition 7.2. — Suppose Ψ 6= Ψ0. If #Ψ = 1, then [g, g] is simple
and Supp(γ) = Π(g) for γ ∈ Ψ. If #Ψ > 1, then (Π(g),Ψ,Πa) is one of the
triples listed below:

(1) Π(g) = Cn, n > 2, Ψ =
{
kα1, α1 + αn + 2

∑n−1
i=2 αi

}
for k=1 or 2,

Πa := {α3, . . . , αn}.
(2) Π(g) = G2,Ψ = {α2, α1 + α2} ,Πa = ∅.
(3) Π(g) = Cn ×A1, n > 2,Ψ =

{
α1 + α′1, α1 + αn + 2

∑n−1
i=2 αi

}
(here α1, . . . , αn, resp. α′1, are simple roots in Cn, resp. A1),
Πa = {α3, . . . , αn}.

(4) Π(g) = B4,Ψ = {α2 + 2α3 + 3α4, α1 + α2 + α3 + α4},
Πa = {α2, α3}.

In all cases the second root is hidden.

Proof. — Choose γ ∈ Ψ r Ψ0. Inspecting Table 1 from [23], we see that
Supp(γ) is connected. Recall that 〈α∨, a〉 = 0 for any α ∈ Πa ([16], Lemma
3.5.8). In particular, if β ∈ Ψ and α ∈ Πa, then either α ∈ Supp(β) or α is
not adjacent to Supp(β).

TOME 59 (2009), FASCICULE 3



1126 Ivan V. LOSEV

Step 1. Let α ∈ Πc. We claim that α ∈ Supp γ. Indeed, by Corollary 3.4,
GD = PΠ(g)r{α} for D ∈ D(α). Further, any simple root adjacent to α is
not of type a) and 〈α∨, γ〉 6 0.

Step 2. Let α ∈ Πb. Let D1, D2 be different elements of D(α). If β is
adjacent to α, then β 6∈ Πa. Let α 6∈ Supp(γ). Note that 〈α∨, γ〉 6 0. Then,
thanks to Corollary 3.4, there are α1, α2 ∈ Πb∩Supp(γ) such that α1 6= α2,
Di ∈ D(α) ∩ D(αi), i = 1, 2.

Step 3. Let α ∈ Πd. If α 6∈ Supp(γ), then, by Corollary 3.4, there
is (uniquely determined) α′ ∈ Πd ∩ Supp(γ) such that D(α) = D(α′),
〈α∨ − α′∨, a〉 = 0 and k(α + α′) ∈ Ψ for k = 1 or 1

2 . Again, β 6∈ Πa

whenever β is adjacent to α or α′. Since 〈α∨, γ〉 6 0, we have 〈α′∨, γ〉 6 0.

Step 4. If #Ψ = 1, then, by the previous steps, Supp(γ) ∪ Πa = Π(g).
Applying Lemma 6.1, we see that Supp(γ) = Π(g). Till the end of the proof
we suppose that #Ψ > 1. Exactly one of following possibilities takes place:

(A) Πa ∪Πd = Π(g) = Supp(γ).
(B) There are two adjacent roots α1, α2 ∈ Supp(γ) r Πa such that

〈α1∨, γ〉 6 0 and either α1 ∈ Πb ∪ Πc or α1 ∈ Πd and there is
β ∈ Πd such that D(β) = D(α1).

Step 5. Let us consider possibility (B). Inspecting Table 1 in [23], we
see that only the following three cases are possible:

(BC) Supp(γ) = Cn, n > 2, γ = α1 + αn + 2
∑n−1

i=2 αi, α
1 = α1, α

2 = α2.
(BG) Supp(γ) = G2, γ = α1 + α2, α

1 = α2, α
2 = α1.

If Πb 6⊂ Supp(γ), then, according to step 2, #Πb ∩ Supp(γ) > 2. Note
also that 〈β, γ〉 6 0 for any β ∈ Πb. Now we check case by case that
Πb ⊂ Supp(γ).

Consider case (BG). Since 〈α1∨, γ〉 < 0, 〈β∨, γ〉 = 0 for any β ∈ Π(g) r
Supp(γ), we get α1 ∈ Πb. Thus Π(g) = Supp(γ) ∪ Πa. By Lemma 6.1,
Π(g) = G2. So we get possibility 2 of the proposition.

Consider case (BC). Note that Supp(γ) r {α1, α2} ⊂ Πa, 〈α∨1 , γ〉 = 0.
Suppose α1 ∈ Πb ∪ Πc. Since 〈α2, γ〉 > 0, we get from step 3 that Πd ⊂
Supp(γ). So Π(g) r Supp(γ) ⊂ Πa. By Lemma 6.1, Π(g) = Supp(γ) and
we get possibility 1 of the proposition.

Now suppose α1 ∈ Πd. Let β be a (unique, see Corollary 3.4) element of
Πd r Supp(γ) such that D(β) = D(α1). Since 〈α∨1 , γ〉 = 0, we see that β is
not adjacent to Supp(γ). For k = 1 or 1

2 we get γ1 := k(α1 + β) ∈ Ψ. Since
α2 ∈ Πd, we have k = 1. By step 3, Πd r Supp(γ) = {β}. It follows that
Supp(γ) ∪ Supp(γ1) ∪ Πa = Π(g) whence Π(g) = Supp(γ) ∪ {β}. We get
possibility 2 of the proposition.
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Step 6. It remains to consider case (A). Choose γ1 ∈ Ψ r {γ}. Recall
that Ψ ⊂ Πa⊥. Therefore #Πd > 2. Inspecting Table 1 from [23], we see
that one of the following possibilities takes place:

(AA) Π(g) = An, n > 2, γ = α1 + . . .+ αn,Πd = {α1, αn}.
(AB) Π(g) = Bn, n > 2, γ = α1 + . . .+ αn,Πd = {α1, αn}.
(AC) Π(g) = Cn, n > 2, γ = α1 + αn + 2

∑n−1
i=2 αi,Πd = {α1, α2}.

(AG) Π(g) = G2, γ = α1 + α2.

Inspecting Table 1 from [23] again and taking into account that (γ, γ1) 6
0 and 〈γ1, α

∨〉 = 0 for any α ∈ Πa, we get possibility 4 of the proposition.
�

Proof of Theorem 4.9. — It follows from Theorem 4.8 that the type of a
root α ∈ Π(g) is the same for X1 and X2. We put Πa := Π(g)a

Xi
, . . . ,Πd :=

Π(g)d
Xi

, a := aG,Xi
, X+ := X+

G,Xi
, Ψi := ΨG,Xi , i = 1, 2. We also identify

DG,X1 , DG,X2 and write D instead of DG,Xi
.

Suppose Ψ1 6= Ψ2. Again, we impose the assumptions in the end of
Section 4. In particular, it follows from Corollary 5.6 and Theorem 4.8 that
ΨM,X1(D) = ΨM,X2(D) for any D ∈ D, where M denotes the standard
Levi subgroup of GD. So we may assume that DG = ∅. As in the proof
of Theorem 4.8 we may also assume that both actions G : X1, G : X2 are
locally effective and both G-varieties X1, X2 are indecomposable.

Step 1. Let us show that Ψ0
1 = Ψ0

2. It is enough to check that Ψ0
1 ⊂ Ψ0

2.
Let α ∈ Ψ0

1. If α has one of the forms indicated in Lemma 3.3, then the
inclusion α ∈ Ψ2 follows from Theorem 4.8, Propositions 3.1, 3.2.

Now let D ∈ D and M be the standard Levi subgroup of GD. Suppose
Suppα ⊂ Π(m). By Proposition 5.3, α ∈ ΨM,X1(D) = ΨM,X2(D) ⊂ Ψ2.

Step 2. So we may assume that Ψ1 6= Ψ0
1 whence Ψ1 is one of the systems

described in Proposition 7.2. Let us check that Ψ2 = Ψ0
1. Otherwise Ψ0

2 6=
Ψ2 and Ψ2 is also one of the systems from Proposition 7.2. If #Ψ0

1 6= ∅, then
we get Ψ1 = Ψ2 because all systems Π(g) in the list of Proposition 7.2 are
distinct. So #Ψi = 1 and Supp(γi) = Π(g) for the unique element γi ∈ Ψi.
Using Table 1 from [23] and the equality Π(g)a

X1
= Π(g)a

X2
, we get γ1 = γ2.

Step 3. Let us check that X2
∼=G G ∗H V , where (G,G) ⊂ H. Assume

the contrary, let (G,G) 6⊂ H or, equivalently, H̃ := NG(H)◦ 6= G. Let H0

denote the stabilizer of a point from the open H-orbit in V . Then H0 ⊂ H̃.
It is clear that ΨG,G/H0 = Ψ2. Applying Proposition 3.4.3 from [16] to the
pair H0 ⊂ H̃, we see that Ψ

G,G/H̃
= ∅ or Ψ

G,G/H̃
= ΨG,G/H0 . However,

a
G,G/H̃

is generated by Ψ
G,G/H̃

(it follows, for example, from [16], Lemma
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3.1.4) and a
G,G/H̃

contains a dominant weight. On the contrary, SpanQ(Ψ0
1)

does not contain a dominant weight.
Step 4. Suppose #Ψ1 = 1. Then Ψ2 = ∅. It is known, see, for exam-

ple, [10], Corollary 6.2, that Hv contains a maximal unipotent subgroup of
G for any v ∈ V . One easily deduces from this that V as a (G,G)-module
is the tautological SLn- or Sp2n-module. It follows that a ∩ [g, g] ⊂ Qπ1.
But, according to Table 1 from [23], Ψ1 6⊂ Qπ1, contradiction.

Suppose #Ψ1 = 2. Note that (Π(h),Π(h)a
V ) = (Π(g),Π(g)a

V ) and so the
l.h.s. is one of the four pairs listed in Proposition 7.2. Since DG = ∅, we get
DH◦

H◦,V = ∅. The classification of spherical modules, see, for example, [15],
shows that there are no pairs (H◦, V ), where V is a spherical H◦-module
with Π(h),Π(h)a

V listed in Proposition 7.2 and DH◦

H◦,V = ∅. The set Π(h)a
V

is determined from Leahy’s tables as follows: this is the set of all simple
roots annihilated by all highest weights in K[V ]. �

8. Invariant Kähler structures

In this section K is a compact connected Lie group, G is the com-
plexification of K, and M is a multiplicity free compact Hamiltonian K-
manifold (see Introduction) with symplectic form ω and moment map µ.
Put ω̃ = ω + µ. This is an equivariantly closed form on M called the equi-
variant symplectic form. We say that ω̃ is an equivariant Kähler form if
ω is Kähler. We denote by [ω̃] the class of ω̃ in the second equivariant
cohomology group H2

K(M,R).
As above, we fix a Borel subgroup B ⊂ G and a maximal torus T ⊂ B.

We may assume that TK := T ∩K is a maximal torus in K. The choice of
B and T defines the Weyl chamber t+ ⊂ k∗. Define the invariant moment
map ψ : M → t+ as in Introduction.

Definition 8.1. — We say that a complex structure I on M is com-
patible (with K,ω) if I is K-invariant, and ω is a Kähler form with respect
to I.

Proposition 8.2 ([25], Proposition 5.2). — Let I be a compatible com-
plex structure on M . Then the K-action on M extends to a unique action
G : M by holomorphic automorphisms. Moreover, M is a spherical (alge-
braic) projective G-variety.

This proposition allows one to define the valuation cone of (M, I), which
we denote by V(M, I). The objective of this section is to prove the following
uniqueness result.
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Theorem 8.3. — Let I1, I2 be two compatible complex structures on
M . Suppose V(M, I1) = V(M, I2). Then there is a K-equivariant diffeo-
morphism ϕ : M →M preserving [ω̃] and such that ϕ∗(I2) = I1.

The restriction V(M, I1) = V(M, I2) is essential, see [25], Remark 4.4.
To prove the theorem we need to recall some more or less standard facts.
Let X be a smooth projective G-variety. Denote by PicG(X) the equivari-

ant Picard group of X. Choose L ∈ PicG(X). Suppose that L is very ample
(as a usual line bundle). To L one can assign an equivariant Kähler form
ω̃L as follows. Let V denote the G-module H0(X,L)∗ and ι : X ↪→ P(V ) be
the embedding induced by L. Choose a K-invariant hermitian form (·, ·)
on V . Let ωFS denote the corresponding Fubini-Study form on P(V ) and
µFS be the corresponding moment map:

〈µFS(x), ξ〉 =
(ξv, v)

2πi(v, v)
,

where v denotes a nonzero vector on the line x. Put ωL := ι∗(ωFS), µL :=
µFS ◦ ι, ω̃L := ωL + µL. By ψL we denote the invariant moment map
associated with µL. Note that ω̃L does not depend (up to a K-equivariant
diffeomorphism) from the choice of (·, ·)

We have a unique homomorphism PicG(X)⊗Z R → H2
K(X,R) mapping

a very ample G-bundle L to the class [ω̃L].

Lemma 8.4. — Suppose X is spherical. Then the homomorphism
PicG(X)⊗Z R → H2

K(X,R) is an isomorphism.

Proof. — For χ ∈ X(G) let Cχ denote the trivial bundle on X on which
G acts by χ. Note that ω̃L⊗Cχ

= ω̃L + iχ. So we have a commutative
diagram, where the top sequence is exact

0 X(G)⊗Z R PicG(X)⊗Z R Pic(X)⊗Z R 0

0 (k/[k, k])∗ H2
K(X,R) H2(X,R) 0

- - - -

- - - -
? ? ?

As was noted in the proof of Proposition 5.2 in [25], there is an action of
C× on X with finitely many fixed points. The Bialynicki-Birula decomposi-
tion of X induced by this action (see [1]) consists of affine spaces. It follows
that H1(X,R) = {0} and the right vertical arrow is an isomorphism. Since
H1(X,R) = {0}, we see that the the bottom sequence is exact. Note that
the left vertical arrow is an isomorphism. Since the top sequence is exact,
we see that the middle vertical arrow is an isomorphism. �
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Lemma 8.5. — Let X be a smooth projective G-variety. Then the fol-
lowing assertions hold.

(1) The subset H2
K(X,R)+ ⊂ H2

K(X,R) consisting of all classes of equi-
variant Kähler forms is open.

(2) The moment polytope for an equivariant Kähler form ω̃ depends
only on [ω̃] and this dependence is continuous.

Proof. — By definition, ω is Kähler iff ωx(iv, v) > 0 for all x ∈ X,
v ∈ TxX whence assertion 1. To prove the first claim of assertion 2 one
uses Moser’s trick exactly as in the proof of Proposition 5.2 in [25]. The
second claim stems from the formula 〈µ(x), [ξ, η]〉 = ωx(ξ∗, η∗). �

Proposition 8.6. — Let X be a smooth projective spherical G-variety
and L a very ample G-bundle. We consider X as a Hamiltonian K-manifold
with respect to the equivariant form ω̃L. Then the following assertions hold:

(1) 2πi imψL is a rational polytope and
(2πi imψL) ∩ t∗(Q) =

⋃
d∈N

{
λ/d | H0(X,L⊗d)(B)

λ 6= {0}
}

.
(2) Let σ be a rational B-semiinvariant section of L of weight µ. Then

2πi imψL = µ+{λ ∈ aG,X(R) | 〈λ, ϕD〉 > − ordD(σ),∀D ∈ DG,X} .
(3) Let K0 denote the principal isotropy subgroup for the Hamilton-

ian action K : X (see Introduction). The group X(TK/(TK ∩K0))
coincides with XG,X .

Proof. — The first assertion is due to Brion [2]. Assertion 2 easily follows
from the first one. The third assertion seems to be known but we failed to
find its proof in the literature. So we give a proof here.

Below we put ω := ωL, µ := µL.

Step 1. Put V = H0(X,L)∗ and let (·, ·) be the hermitian form on V

used to define ω̃L. Put K̃ := K×Z, where Z is a one-dimensional compact
torus, and let Z act on V by scalar multiplications. Denote by X̃ the affine
cone over X. The map Φ: V → k̃∗ given by 〈Φ(v), ξ〉 = 1

2i (ξv, v) is a
moment map for the action K̃ : V . Note that µ−1(t+) is just the set of lines
in Φ−1(t+×z)∩X̃. Let K̃0 denote the stabilizer of a point v ∈ Φ−1(t+×z)∩X̃
in general position. It is easy to see that the restriction of the projection
K̃ → K to K̃0 is injective and its image coincides with K0. So it is enough
to prove that

(8.1) X(T̃K/(T̃K ∩ K̃0)) = X
G̃,X̃

,

where T̃K := TK × Z, G̃ := G× C×.
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Step 2. Let t0+ denote the interior of the smallest face of t+ containing
i imψL. Put Ỹ := Φ−1(t0+×z). Replacing K with a covering we may assume
that K is the direct product of a torus and a simply connected semisimple
group. It follows now from results of [8] (see especially Theorem 4.9, The-
orem 6.11, and the proof of Theorem 6.17) that there is a T̃K-equivariant
embedding Ỹ → X̃//U := Spec(C[X̃]U ) with dense image. To check (8.1)
note that X

G̃,X̃
= X(T̃ /T̃0), where T̃ := T × C× and T̃0 is the kernel for

the action T̃ : X̃//U (i.e. the kernel of the corresponding homomorphism
T̃ → Aut(X̃//U)). �

Let us generalize assertion 2 of Proposition 8.6 to the case of an arbi-
trary equivariant Kähler form ω̃. Let ψ denote the invariant moment map
corresponding to ω̃.

Consider the embedding XG,X → X(T ) × ZDG,X given by λ ↪→ (λ,∑
D∈DG,X

〈ϕD, λ〉D). Define the homomorphism χ : PicG(X) → X(T ) ×
ZDG,X/XG,X by χ(L) = (λ,

∑
D∈DG,X

ordD(σ)D), where σ is a B-semi-
invariant rational section of L and and λ is the weight of σ. Extend χ to a
linear map χ : H2

K(X,R) → t(R)⊕RDG,X/aG,X(R). For v ∈ H2
K(X,R) put

P (χ, v) = χ0(v) + {λ ∈ aG,X(R) | 〈λ, ϕD〉 > −χD(v), ∀D ∈ DG,X} ,

where (χ0,
∑

D∈DG,X
χDD) is a lifting of χ. It follows from assertion 2 of

Proposition 8.6 and Lemma 8.5 that 2πi imψ = P (χ, [ω̃]).

Proof of Theorem 8.3. — Let Xj denote the manifold M with the com-
plex structure Ij , j = 1, 2. By assertion 3 of Proposition 8.6, XG,X1 =
XG,X2 . In the sequel we write X instead of XG,Xj

and a instead of aG,Xj
.

Put Dj := DG,Xj
. Let χj denote the map H2

K(M,R) : → (t(R)⊕RDj )/a(R)
defined above, and χj = χj

0 +
∑

D∈DG,X
χi

DD : H2
K(M,R) → t(R)⊕RDj be

a rational lifting of χj .
Step 1. Let us reduce the proof to the case when [ω̃] is rational. By the

above,

2πi imψ = P (χi, [ω̃]) := χi
0([ω̃])

+
{
λ ∈ a(R) | 〈ϕD, λ〉 > −χi

D([ω̃]), ∀D ∈ Di

}
, i = 1, 2.

Note that the projections of χ1
0([ω̃]), χ2

0([ω̃]) to t(R)/a(R) coincide. Thus,
possibly after modifying χ1, we may assume that χ1

0(v) = χ2
0(v) for any

v ∈ V ′, where V ′ is a rational subspace V ′ ⊂ H2
K(M,R) such that [ω̃] ∈

V ′(R).
The following lemma implies that there is a sequence ω̃k ∈ PicG(X)⊗Z Q

such that P 1(χ1, [ω̃k]) = P 2(χ2, [ω̃k]) and [ω̃k] → [ω̃].
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Lemma 8.7. — Let V, a be finite dimensional vector spaces over Q,
ϕ1

i , ϕ
2
j ∈ a∗, χ1

i , χ
2
j ∈ V ∗, where i = 1, k1, j = 1, k2. Suppose there

is v ∈ V (R) such that the polytopes P l(v) ⊂ a(R), l = 1, 2, given by

P l(v) :=
{
λ ∈ a(R) | 〈ϕl

i, λ〉 > −χl
i(v), i = 1, ki

}
.

coincide and have dimension dim a(R). Then for any neighborhood O of v
in V (R) there is v′ ∈ O ∩ V such that P 1(v′) = P 2(v′).

Proof of Lemma 8.7. — Let m be the number of facets of P l(v). We may
assume that the facets are defined by the equations 〈ϕl

i, λ〉 = χl
i(v), i =

1,m. After rescaling ϕ1
i , χ

1
i , i 6 l, we get ϕ1

i = ϕ2
i , χ1

i = χ2
i for any

i 6 m. Let P (v′), v′ ∈ V (R), denote the polytope given by the inequalities
〈ϕl

i, λ〉 > −χl
i(v

′), i = 1,m. If the hyperplane
{
λ | 〈ϕl

j , λ〉 = χl
j(v

′)
}

does
not intersect P (v′) for v′ = v, then the same holds for any v′ from a cer-
tain neighborhood of v. Now suppose the hyperplane

{
λ | 〈ϕl

j , λ〉 = χl
j(v)

}
meets P l(v) at a face Γ. Let I denote the subset of {1, . . . , l} consisting of
all i such that 〈ϕl

i, ·〉−χl
i(v) is a facet of P l(v) containing Γ. Then there are

positive rational numbers ai, i ∈ I, such that ϕl
j =

∑
i∈I aiϕ

l
i. It follows

that χl
j(v) =

∑
i∈I aiχ

l
i(v). This equation defines a subspace V l

j ⊂ V . Let
V0 denotes the intersection of all subspaces V l

j . Since v ∈ V0, we see that
V0 is nonzero. It follows that P l(v′) = P (v′), l = 1, 2, for any v′ from a
certain neighborhood of v in V0. �

Suppose we have constructed diffeomorphisms ϕk : M → M such that
ϕ∗k(I2) = I1, ϕk([ω̃k]) = [ω̃k]. Note that ψkl := ϕ−1

k ◦ ϕl is a G-equivariant
(polynomial) automorphism of X1. By the definition of ψkl,

(8.2) ψ∗kl([ω̃l]) = ϕ∗−1
k ([ω̃l]).

By [12], the group AutG(X1) is algebraic. Clearly, AutG(X1)◦ acts trivially
on H2

K(M,R). So replacing the sequence ϕk with a subsequence, we may
assume that the isomorphism ψ∗kl is the identity on H2

K(M,R) for all k, l.
Since [ω̃k] → [ω̃], it follows from (8.2) that ϕ∗k([ω̃]) = [ω̃].

Step 2. Multiplying ω̃ by a sufficiently large integer m, we may assume
that ω̃ = ω̃Li for a very ample line G-bundle Li. Let X̃i denote the affine
cone over Xi corresponding to Li. Set G̃ := G × K×. The variety X̃i has
a natural structure of a (spherical) G̃-variety. By assertion 1 of Propo-
sition 8.6, X+

G̃,X̃i

is generated by integral points in the moment polytope.
From [11] it follows that V

G̃,X̃1
= V

G̃,X̃2
. Applying Theorem 1.2, we see that

X̃1
∼=G̃ X̃2. Therefore there is a G-equivariant isomorphism ϕ : X1 → X2

such that ϕ∗(L2) = L1. �
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