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SINGULAR COMPONENTS OF SPRINGER FIBERS
IN THE TWO-COLUMN CASE

by Lucas FRESSE

Abstract. — We consider the Springer fiber Bu corresponding to a nilpotent
endomorphism u of nilpotent order 2. As a first result, we give a description of
the elements of a given component of Bu which are fixed by the action of the
standard torus relative to some Jordan basis of u. By using this result, we establish
a necessary and sufficient condition of singularity for the components of Bu.

Résumé. — On considère la fibre de Springer Bu pour un endomorphisme nil-
potent u tel que u2 = 0. On décrit les éléments des composantes de Bu qui sont
fixés par l’action du tore standard relatif à une base de Jordan de u. À l’aide de
ce résultat, on établit une condition nécessaire et suffisante de singularité pour les
composantes de Bu.

Introduction

Let V be a C-vector space of dimension n > 0 and let u : V → V be
a nilpotent endomorphism. We denote by Bu the set of u-stable complete
flags, i.e., flags (V0 ⊂ ... ⊂ Vn = V ) such that u(Vi) ⊂ Vi for any i. The set
Bu is a projective subvariety of the variety of complete flags. The variety Bu
is called Springer fiber since it can be seen as the fiber over u of the Springer
resolution of singularities of the cone of nilpotent endomorphisms of V (see
for example [4]). The Springer fiber Bu is not irreducible in general and
the geometry of its irreducible components has been an important topic of
study for more than thirty years. Many problems remain unsolved, among
them the problem to determine the singular components of Bu.

The geometry of Bu depends on the Jordan form of u, which can be
represented by a Young diagram: let m1 > ... > mr be the sizes of the
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2430 Lucas FRESSE

Jordan blocks of u, and denote by Y = Y (u) the Young diagram of rows
of lengths m1, ...,mr. The problem to determine singular components has
a complete answer in two cases: when the diagram Y is of hook type or
has two rows, every component of Bu is nonsingular (see [1] and [6]). When
Y has two columns, singular components can arise (see [5] or [6]). In this
article we give a necessary and sufficient condition of singularity for the
components of Bu in the two-column case.

In section 1, the diagram Y is general. Following [5], we recall the classical
parameterization of the components of Bu by the standard tableaux of
shape Y . Let KT ⊂ Bu be the component corresponding to the standard
tableau T . We fix a Jordan basis of u and we denote by H ⊂ GL(V ) the
torus of diagonal automorphisms in this basis. We show that the elements
of Bu which are fixed by H are parameterized by the so-called row-standard
tableaux, i.e., row-increasing numberings of Y by 1, ..., n. Set FT ′ ∈ Bu to
be the flag corresponding to the row-standard tableau T ′.

From section 2, we suppose that the diagram Y has two columns of
lengths r > s. Let T be the tableau numbered from top to bottom by
1, ..., r in the first column and by r+1, ..., n in the second column. We show
that the flag FT belongs to every component of Bu, and that a component
KT ⊂ Bu is nonsingular if and only if FT is a nonsingular point of KT .
In section 2.2, we give some relations satisfied by the elements of KT . For
T and T ′ standard and row-standard tableaux of shape Y , in section 2.3,
we establish a necessary and sufficient condition for FT ′ to be in KT . This
question can be related to the description of orbital varieties in term of
B-orbits given by A. Melnikov (see [2]), and the result that we prove here
can be connected to [3, Theorem 3.15].

Let X (Y ) be the set of row-standard tableaux which are obtained from
T by switching two entries i < j, with i 6 r. Let #A denote the number of
elements in a set A. Our main result, proved in section 3, is the following

Theorem. — Suppose that Y = Y (u) has two columns. Let r be the
length of the first column of Y . The component KT ⊂ Bu is singular if and
only if

#{T ′ ∈ X (Y ) : FT ′ ∈ KT } > r(r − 1)/2.

Notation. — Fix some conventional notation. Let C denote the field of
complex numbers. In fact all our constructions and results hold for any
algebraically closed field. Let #A be the number of elements in the set A.
In what follows flags will be denoted by (V0 ⊂ ... ⊂ Vn) or (V0, ..., Vn) or F ,
Young diagrams will be denoted by Y, Y ′, ... standard tableaux by T, S, ...
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SINGULAR COMPONENTS OF SPRINGER FIBERS 2431

and row-standard tableaux by T ′, T ′′, ... Other pieces of notation will be
introduced in what follows.

1. The geometry of Bu and the combinatorics of Young

1.1. Young diagram Y (u)

Recall that a Young diagram is a collection of boxes displayed along
left-adjusted rows of decreasing lengths. For example

Y =

is a Young diagram with 7 boxes. Let m1 > ... > mr be the sizes of the
Jordan blocks of the endomorphism u, and let Y (u) be the Young diagram
of rows of lengths m1, ...,mr. This diagram has n = dimV boxes. The
dimension of the variety Bu depends on the diagram Y (u) as shown by the
following theorem (see [5, § II.5.5]).

Theorem 1.1. — The variety Bu is equidimensional. Moreover, denot-
ing by n1, ..., ns the lengths of the columns of Y (u), we have

dimBu =
s∑
q=1

nq(nq − 1)
2

.

Two-column case. If u2 = 0, then the diagram Y (u) has (at most) two
columns. When Y (u) has two columns of lengths r and s, we get

dimBu = r(r − 1)
2

+ s(s− 1)
2
.

1.2. Components of Bu parameterized by standard tableaux

From now on, set for simplicity Y = Y (u).
A standard tableau of shape Y is a numbering of the boxes of Y from 1

to n such that numbers increase in each row from left to right and in
each column from top to bottom. We denote by T (Y ) the set of standard
tableaux of shape Y .

For example

T =
1 3 5
2 6 7
4

TOME 59 (2009), FASCICULE 6



2432 Lucas FRESSE

For T ∈ T (Y ), let T|i for i 6 n be the subtableau obtained by deleting boxes
with numbers i+ 1, ..., n. The shape of the subtableau T|i is a subdiagram
Y Ti ⊂ Y with i boxes. The standard tableau T can be regarded as the
maximal chain of subdiagrams ∅ = Y T0 ⊂ Y T1 ⊂ ... ⊂ Y Tn = Y .

Let F = (V0, ..., Vn) ∈ Bu be a u-stable flag. For i ∈ {0, ..., n} the restric-
tion map u|Vi : Vi → Vi is a nilpotent endomorphism. Let Yi(F ) = Y (u|Vi)
be the Young diagram representing the Jordan form of u|Vi in the sense of
section 1.1. The diagrams Y0(F ), ..., Yn(F ) form an increasing sequence of
subdiagrams of Y . We set

BTu = {F ∈ Bu : Yi(F ) = Y Ti ∀i}.

The subsets BTu , for T running over T (Y ), form a partition of Bu. Setting
KT = BTu , we have (see [5, §II.5.4–5]):

Theorem 1.2. — Let T ∈ T (Y ) be standard. The subset KT ⊂ Bu is
an irreducible component of Bu. Every component of Bu is obtained in that
way.

1.3. Elements FT ′ ∈ Bu parameterized by row-standard tableaux

In this subsection, we fix a Jordan basis of V . Since the lengths of the
rows of Y coincide with the sizes of the Jordan blocks of u, it is possible
to index the basis on the boxes of Y so that the following is true. Writing
ex the vector of the basis associated to the box x ∈ Y , we have u(ex) = 0
if x is in the first column of Y , and u(ex) = ex′ where x′ is the box just on
the left of x otherwise.

We call row-standard tableau of shape Y a numbering of the boxes of Y
from 1 to n such that numbers increase in each row from left to right. We
denote by T ′(Y ) the set of row-standard tableaux of shape Y .

For example

T ′ =
2 5 6
1 3 7
4

For T ′ ∈ T ′(Y ), the boxes 1, ..., i of the subtableau T ′ form a subset
Xi ⊂ Y . Let FT ′ = (V0, V1, ..., Vn) be the flag defined by Vi = 〈ex : x ∈ Xi〉
for every i. It is easy to see that FT ′ belongs to Bu.

Moreover, let T ∈ T (Y ) be standard and suppose that each i ∈ {1, ..., n}
belongs to the same column of T and T ′. Then we can see that the flag
FT ′ belongs to the set BTu . Hence FT ′ belongs to the component KT . In

ANNALES DE L’INSTITUT FOURIER



SINGULAR COMPONENTS OF SPRINGER FIBERS 2433

particular, considering T as a row-standard tableau, we get FT ∈ BTu , thus
FT ∈ KT .

We prove the following

Lemma 1.3. — A component K ⊂ Bu is nonsingular if and only if every
flag of the form FT ′ with T ′ ∈ T ′(Y ) which belongs to K is nonsingular.

Proof. — The implication ⇒ is immediate. To prove the other implica-
tion, suppose there is a singular F ∈ K. Let H ⊂ GL(V ) be the subgroup
of diagonal automorphisms with respect to the basis. Observe that the flags
FT ′ for T ′ running over T ′(Y ) are the elements of Bu fixed by H for its
natural action on flags. However, this action does not leave Bu invariant.
Let us construct a subtorus H ′ ⊂ H with the same fixed points and leaving
Bu invariant. To this end, we choose pairwise distinct numbers εx associ-
ated to the boxes x ∈ Y , so that εx′ = εx + 1 if x′ is the box on the left of
x. For t ∈ C∗, let ht ∈ GL(V ) be defined by ht(ex) = tεxex for any x ∈ Y .
Then H ′ = (ht)t∈C∗ is a subtorus of H. Since we have htu = t−1uht for
any t, the natural action of H ′ on flags leaves invariant the Springer fiber
Bu and all its components. As the εx’s are pairwise distinct, the flags FT ′
for T ′ row-standard are the H ′-fixed points of Bu.

The curve {htF : t ∈ C∗} admits a limit at the infinity and this limit is
necessarily a fixed point of H ′, hence it is some FT ′ with T ′ ∈ T ′(Y ). Since
F is singular, the point htF is singular for any t, and finally FT ′ is also a
singular point of the component. �

2. Fixed points of the components in the 2-column case

From now on, we suppose that the diagram Y = Y (u) has two columns
of lengths r and s, with r > s. As in section 1.3 we fix a Jordan basis
indexed on the boxes of Y . For convenience we write e1, ..., er the vectors
of the basis associated to the boxes of the first column of Y from top to
bottom, and er+1, ..., en the vectors associated to the boxes of the second
column. Thus we have u(ei) = 0 for i 6 r and u(ei) = ei−r for i > r + 1.

2.1. Property of the flag FT associated to the tableau T

Let T be the tableau of shape Y numbered from top to bottom by 1, ..., r
in the first column and by r + 1, ..., n in the second column:

TOME 59 (2009), FASCICULE 6



2434 Lucas FRESSE

T = s n

r

1 r+1...
...

...

Thus for every i, the i-th subspace of the flag FT is generated by the vectors
e1, ..., ei of the basis. The flag FT satisfies the following properties.

Proposition 2.1.
a) The flag FT belongs to every irreducible component of Bu.
b) A component K ⊂ Bu is nonsingular if and only if FT is a nonsin-

gular point of K.

Proof. — Let Z(u) ⊂ GL(V ) be the centralizer of I + u. The natural
action of Z(u) on flags leaves Bu invariant. Moreover, the group Z(u) is
connected, since it is an open subset of the vector subspace of End(V )
formed by the endomorphisms which commute with u. Hence Z(u) leaves
each component of Bu invariant. Applying Lemma 1.3, and using the ob-
servation made just before Lemma 1.3 that a component always contains
some FT ′ , it is sufficient to prove that the flag FT belongs to the closure
of the Z(u)-orbit of FT ′ for any T ′ ∈ T ′(Y ). We reason by induction on
the first entry which has not the same place in T ′ and T . If T ′ = T , then
there is nothing to prove. Suppose T ′ 6= T , and take i ∈ {1, ..., n} minimal
which has not the same place in T and T ′. Write FT ′ = (V0, ..., Vn). We
have thus Vi−1 = 〈e1, ..., ei−1〉 and Vi = 〈e1, ..., ei−1, ej〉 for some j > i. For
t ∈ C let wt ∈ GL(V ) be the automorphism such that wt(ej) = ej + tei
and wt(ek) = ek for 1 6 k 6 n with k /∈ {j − r, j, j + r}, and
– wt(ej−r) = ej−r + tei−r if i > r + 1,
– wt(ej−r) = ej−r if i 6 r and j > r + 1,
– wt(ej+r) = ej+r + tei+r if j + r 6 n.

We have wt ∈ Z(u). Moreover, the curve {wtFT ′ : t ∈ C} admits a limit
at the infinity which is the flag F

T̃ ′
associated to some tableau T̃ ′ ∈ T ′(Y )

such that the entries 1, ..., i have the same place in T and T̃ ′. By induction,
we have FT ∈ Z(u).F

T̃ ′
. Since F

T̃ ′
∈ Z(u).FT ′ , we get FT ∈ Z(u).FT ′ . The

proof is complete. �

2.2. Some relations satisfied by F ∈ KT

Let F = (V0, ..., Vn) ∈ Bu. Let 0 6 i < j 6 n. The subspaces Vi and Vj
are both invariant by u, hence the quotient map u|Vj/Vi : Vj/Vi → Vj/Vi can
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be considered, and it is still a nilpotent map. First, we show the following
formula.

Lemma 2.2. — We have: rank u|Vj/Vi = dim (Vi + u(Vj))− i.

Proof. — By applying the rank formula for the map Vj → Vj/Vi, x 7→
u(x), we get:

rank u|Vj/Vi = j − dim u−1(Vi) ∩ Vj .
The map u−1(Vi) ∩ Vj → Vi ∩ u(Vj), x 7→ u(x) is surjective and its kernel
is Vj ∩ keru, hence

dim u−1(Vi) ∩ Vj = dimVj ∩ keru+ dimVi ∩ u(Vj).

On one hand, we have dimVi ∩ u(Vj) = i + dim u(Vj) − dim (Vi + u(Vj)).
On the other hand, the rank formula gives dimVj ∩ keru = j − dim u(Vj).
The lemma follows. �

Let T be standard. We associate to T a row-standard tableau T ∗. Let
a1 < ... < ar (resp. b1 < ... < bs) be the entries of the first (resp. second)
column of T . We renumerate the entries of the first column from a∗1 to a∗r :

– Set a∗1 = b1 − 1.
– If a∗1, ..., a∗p−1 have been constructed for p ∈ {1, ..., s}, then let a∗p be

the maximal element among the a ∈ {a1, ..., ar} \ {a∗1, ..., a∗p−1} such that
a < bp.

– For p > s, set a∗p = Min {a1, ..., ar} \ {a∗1, ..., a∗p−1}.
Then let T ∗ be the tableau numbered from top to bottom by a∗1, ..., a∗r

in the first column, and b1, ..., bs in the second column.
For example

T =
1 3
2 5
4
6

T ∗ =
2 3
4 5
1
6

As observed in section 1.3, since the content of the columns of T and T ∗
coincides, the flag FT∗ associated to T ∗ belongs to the component KT .

Let 0 6 i < j 6 n. Set

sTj/i = #{p : 1 6 p 6 s and i < a∗p < bp 6 j}.

We prove the following

Lemma 2.3. — Let 0 6 i < j 6 n. The set

{F = (V0, ..., Vn) ∈ KT : rank u|Vj/Vi = sTj/i}

is a nonempty open subset of KT .

TOME 59 (2009), FASCICULE 6
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Proof. — Recall that Z(u) ⊂ GL(V ) denotes the subgroup of elements
which commute with u. Observe that rank u|Vj/Vi = sTj/i for any F in the
Z(u)-orbit of the flag FT∗ . Thus, to prove the lemma, it is sufficient to
prove that the Z(u)-orbit of the flag FT∗ is an open subset of KT . Let
Z(T ∗) ⊂ Z(u) be the subgroup of elements which fix the flag FT∗ . It is
sufficient to prove that dimZ(T ∗) = dimZ(u)− dimKT .

Recall we have fixed a Jordan basis (e1, ..., en) with ei = u(ei+r) for
i = 1, ..., s. Any g ∈ Z(u) is thus determined by the images ges+1, ..., ger,
which lie in keru, and by ger+1, ..., gen. Then we see that dimZ(u) =
(r− s)r+ s(r+ s) = r2 + s2. By Theorem 1.1 we have dimKT = dimBu =
r(r − 1)/2 + s(s− 1)/2. Thus, we have to prove

(∗) dimZ(T ∗) = r(r + 1)
2

+ s(s+ 1)
2
.

We reason by induction on n, with immediate initialization for n = 1.
Observe that Z(T ∗) has the same dimension as the vector space of endo-
morphisms of V commuting with u and leaving stable each subspace in the
flag FT∗ . Then, using the definition of the flag FT ′ associated to a tableau
T ′, it is straightforward to establish the formula

dimZ(T ∗) = #{(p, q) : 1 6 p, q 6 r, s < q, a∗p 6 a∗q}
+ #{(p, q) : 1 6 p 6 r, 1 6 q 6 s, a∗p < bq}
+ #{(p, q) : 1 6 p 6 q 6 s, a∗p 6 a∗q}.

We distinguish two cases.
A) Suppose that 1 = a∗p for some p 6 s. Let T [ be the tableau obtained

from T ∗ by removing the row containing (1, bp), this tableau is row-standard
up to moving i 7→ i − 1 if i < bp and i 7→ i − 2 if i > bp. By the above
formula, we get dimZ(T ∗) = dimZ(T [) + r + s. By induction hypothesis,
dimZ(T [) = r(r − 1)/2 + s(s− 1)/2. Thus (∗) follows.

B) Suppose that 1 = a∗p for p > s. Let T [ be the tableau obtained from
T ∗ by removing 1, this tableau is row-standard up to moving i 7→ i−1, ∀i =
2, ..., n. Likewise, the above formula implies dimZ(T ∗) = dimZ(T [) + r.
By induction hypothesis, we have dimZ(T [) = r(r − 1)/2 + s(s + 1)/2.
Again (∗) follows. �

We get now the following

Proposition 2.4. — Let F = (V0, ..., Vn) ∈ Bu. If F ∈ KT , then
a) rank u|Vj/Vi 6 sTj/i for any 0 6 i < j 6 n.
b) dim(Vi + u(Vj)) 6 sTj/i + i for any 0 6 i < j 6 n.

ANNALES DE L’INSTITUT FOURIER
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Proof. — By Lemma 2.2, a) and b) are equivalent. By Lemma 2.2 and
Lemma 2.3, the set {F ∈ KT : dim(Vi + u(Vj)) = sTj/i + i} is a nonempty
open subset of KT . Claim (b) follows from the lower semicontinuity of the
map F 7→ dim(Vi + u(Vj)). �

2.3. A necessary and sufficient condition for FT ′ ∈ KT

In this section, we characterize the row-standard tableaux T ′ such that
the flag FT ′ belongs to the component KT .

Let T ′ ∈ T ′(Y ) be row-standard. Let a′1, ..., a′r (resp. b′1, ..., b′s) be the
entries from top to bottom in its first (resp. second) column. For 0 6 i <
j 6 n, set

sj/i(T ′) = #{p : 1 6 p 6 s and i < a′p < b′p 6 j}.

Then, writing FT ′ = (V0, ..., Vn), we have rank u|Vj/Vi = sj/i(T ′). By
Proposition 2.4, we have

FT ′ ∈ KT ⇒ sj/i(T ′) 6 sTj/i for any 0 6 i < j 6 n.

The following theorem shows that this implication is in fact an equivalence.

Theorem 2.5. — Let T ′ ∈ T ′(Y ) be row-standard. The following con-
ditions are equivalent.

a) FT ′ ∈ KT .
b) sj/i(T ′) 6 sTj/i for any 0 6 i < j 6 n.

Proof of Theorem 2.5. — It remains to prove that claim b) implies a).
First, we introduce some notation and convention. For i in the first column
of T ′, we denote by ωT ′(i) its right neighbor entry, and put ωT ′(i) =∞ if i
has no entry on its right in T ′. We set k <∞ for any integer k, so that the
set {1, ..., n,∞} is totally ordered. Recall that Z(u) ⊂ GL(V ) denotes the
subgroup of elements which commute with u. The natural action of Z(u)
on flags leaves Bu and its components invariant.

We know that the flag FT ′ belongs to the component KT when the
columns of T and T ′ have the same entries. Now, let i ∈ {1, ..., n} be
the minimal entry which lies in different columns in T and T ′, and reason
by induction on i. Since si/0(T ′) 6 sTi/0, the number i belongs to the first
column of T ′ and to the second column of T . Thus T ′ contains strictly
more entries > i in its second column than T . Since sn/i(T ′) 6 sTn/i, there
is j > i in the second column of T ′ whose entry on its left is some j′ 6 i.
Take j minimal.

TOME 59 (2009), FASCICULE 6
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We distinguish two cases:
A) Suppose that there is i′ ∈ {i + 1, ..., j} in the first column of T ′

such that ωT ′(i) < ωT ′(i′). Take i′ minimal, and let T̃ ′ denote the tableau
obtained by switching i and i′ in T ′. This tableau is row-standard: indeed,
by minimality of j we always have j 6 ωT ′(i), hence i′ 6 ωT ′(i).

B) Suppose that ωT ′(i′) 6 ωT ′(i) for any i′ ∈ {i + 1, ..., j} in the first
column of T ′. Then let T̃ ′ denote the tableau obtained by switching i and j
in T ′. Let us prove that this tableau is row-standard. Assume the contrary:
ωT ′(i) 6 j. Set l = ωT ′(i). By the hypothesis every i′ ∈ {i, ..., l} in the
first column of T ′ has a right neighbor entry among i, ..., l. By definition of
j, every i′ ∈ {i, ..., l} in the second column of T ′ has a left neighbor entry
among i, ..., l. Thus l−i+1 is even and sj/i(T ′) = (l−i+1)/2. On the other
hand, since i is in the second column of T , we have sTj/i < (l− i+ 1)/2. We
get sj/i(T ′) > sTj/i, which contradicts the hypothesis. Hence j < ωT ′(i),
and the tableau T̃ ′ is row-standard.

In both cases, we have defined T̃ ′ row-standard.

Claim. — The flag FT ′ lies to the closure of the Z(u)-orbit of the flag
F
T̃ ′

.

Proof of the claim. — Recall that we have fixed a Jordan basis of u. We
renumber the vectors of the basis from e′1 to e′n so that e′1, ..., e′l generate
the l-th subspace of FT ′ . For t ∈ C we define an automorphism φt : V → V .
As above we distinguish two cases: Suppose we are in case A above. For
k ∈ {1, ..., n} different from i′ and ωT ′(i′), we set φt e′k = e′k. Next, set
φt e
′
i′ = e′i′ + te′i. If ωT ′(i′) <∞, then set in addition φt e′ωT ′ (i′) = e′ωT ′ (i′) +

te′ωT ′ (i)
. Suppose we are in case B above. For k ∈ {1, ..., n} different from

j, set φt e′k = e′k. In addition set φt e′j = e′j + te′i. In both cases φt ∈ Z(u),
and the flag FT ′ is the limit at the infinity of the curve {φt FT̃ ′ : t ∈ C}.
The claim follows. �

By the claim, it is sufficient to prove that the flag F
T̃ ′

belongs to KT , and
by induction hypothesis, it is sufficient to prove that we have sb/a(T̃ ′) 6
sTb/a for any 0 6 a < b 6 n. As above, we distinguish two cases.

A) Suppose we are in the case A above. Then T̃ ′ is the tableau obtained
by switching i and i′ in the tableau T ′. By the minimality of j, we have j 6
ωT ′(i), hence i < i′ < ωT ′(i) < ωT ′(i′). We have to show that sb/a(T̃ ′) 6

sTb/a. If sb/a(T̃ ′) = sb/a(T ′), then it is immediate. We have sb/a(T̃ ′) =
sb/a(T ′) unless we are in the following subcase (A.1).

A.1) We suppose that i 6 a < i′ < ωT ′(i) 6 b < ωT ′(i′).

ANNALES DE L’INSTITUT FOURIER
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Then sb/a(T̃ ′) = sb/a(T ′) + 1, hence it is sufficient to prove sb/a(T ′) <
sTb/a. As ωT ′(i) 6 b and as i is in the second column of T , we have sb/i(T ′) <
sb/i−1(T ′) 6 sTb/i−1 = sTb/i. Moreover we have sa/i(T ′) 6 sTa/i by hypothesis.
As a < j and by minimality of j, the entry on the left of any l ∈ {i+1, ..., a}
in the second column of T ′ also belongs to {i+1, ..., a}. As a < i′ < ωT ′(i) 6
b, the entry on the right of any l ∈ {i + 1, ..., a} in the first column of T ′
also belongs to {i+ 1, ..., b}. Thus sb/i(T ′) = sb/a(T ′) + (a− i− sa/i(T ′)),
so that sb/a(T ′) = sb/i(T ′) + sa/i(T ′)− (a− i) < sTb/i + sTa/i − (a− i). We
have sTb/i 6 s

T
b/a + (a− i− sTa/i), since a− i− sTa/i is the number of rows of

the subtableau of T ∗ of entries i+ 1, ..., a. The desired inequality follows.
B) Suppose we are in the case B above. Then T̃ ′ is the tableau obtained

by switching i and j in the tableau T ′. Let j′ denote the entry on the left of
j in T ′. As already observed, we have j < ωT ′(i). Moreover j′ < i. We have
to show that sb/a(T̃ ′) 6 sTb/a. If sb/a(T̃ ′) = sb/a(T ′), then it is immediate.
We have sb/a(T̃ ′) = sb/a(T ′) unless we are in one of the following subcases.

B.1) We suppose that j′ < i 6 a < j < ωT ′(i) 6 b.
The proof is exactly the same as in the subcase (A.1) with j instead of i′.
B.2) We suppose that a < j′ < i 6 b < j < ωT ′(i).
Then sb/a(T̃ ′) = sb/a(T ′) + 1, hence it is sufficient to prove sb/a(T ′) <
sTb/a. By minimality of j, for any l ∈ {a+1, ..., i−1} in the first column of T ′,
we have ωT ′(l) /∈ {i, ..., b}. It follows sb/a(T ′) = sb/i−1(T ′) + si−1/a(T ′) 6
sTb/i−1 + sTi−1/a. Let i∗ be the entry on the left of i in the tableau T ∗. If
i∗ ∈ {a+1, ..., i−1}, then we have sTb/a > sTb/i−1 +sTi−1/a+1 and the desired
inequality ensues. Suppose now that i∗ 6 a. By definition of T ∗, for any
l ∈ {a + 1, ..., i − 1} in the first column of T ∗, we have l < ωT∗(l) < i.
Hence sTi−1/a is equal to the number of elements l ∈ {a + 1, ..., i − 1} in
the first column of T . The entry j′ belongs to {a+ 1, ..., i− 1} and to the
first column of T ′. As ωT ′(j′) = j > i, the number si−1/a(T ′) is strictly
lower that the number of elements l ∈ {a+ 1, ..., i− 1} in the first column
of T ′. Moreover, by minimality of i, every l ∈ {a + 1, ..., i − 1} is in the
same column in T and T ′. Thus si−1/a(T ′) < sTi−1/a. Therefore we get
sb/a(T ′) < sTb/i−1 + sTi−1/a 6 sTb/a. This completes the proof. �

3. Characterization of singular components

3.1. Statement of the result

The diagram Y = Y (u) is always supposed to have two columns of length
r > s. Let T be the tableau introduced in section 2.1. We define X (Y ) as
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the set of row-standard tableaux which are obtained from T by switching
two entries i, j ∈ {1, ..., n} such that i 6 r and i < j. For example, if
r = 4 and s = 2, then the elements of X (Y ) are the tableaux:

2 5
1 6
3
4

3 5
2 6
1
4

4 5
2 6
3
1

1 5
3 6
2
4

1 5
4 6
3
2

1 5
2 6
4
3

1 2
5 6
3
4

1 3
2 6
5
4

1 4
2 6
3
5

1 5
2 3
6
4

1 5
2 4
3
6

Observe that X (Y ) is exactly the set of tableaux which are obtained from
T by switching two entries i, j such that i 6 r and i < j < i+ r.

Our main result is the following

Theorem 3.1. — Suppose Y = Y (u) has two columns. Let r be the
length of the first column of Y . Let T ∈ T (Y ) be standard. The component
KT ⊂ Bu is singular if and only if we have

#{T ′ ∈ X (Y ) : FT ′ ∈ KT } > r(r − 1)/2.

Remark. — It will follow from Lemma 3.2: if the component KT ⊂ Bu
is nonsingular, then we have actually the equality #{T ′ ∈ X (Y ) : FT ′ ∈
KT } = r(r − 1)/2.

Example. — Let T be the tableau

T =
1 3
2 5
4
6

After computation using Theorem 2.5, we obtain #{T ′ ∈ X (Y ) : FT ′ ∈
KT } = 10 > r(r − 1)/2 = 6. Therefore, the component associated to T is
singular. This singular component had already been pointed out by Vargas
[6]. Here are other examples of standard tableaux whose corresponding
components are singular:

1 3
2 5
4 7
6

1 2
3 4
5 6
7

1 3
2 5
4 7
6 8

1 2
3 4
5 6
7 8

1 4
2 6
3
5
7

1 3
2 5
4
6
7

etc.

3.2. Proof of Theorem 3.1

By Theorem 1.1 we have

dimKT = dimBu = r(r − 1)
2

+ s(s− 1)
2
.
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By Proposition 2.1, the flag FT belongs to the component KT and, to study
the singularity of KT , it is sufficient to study the singularity of the element
FT in KT . To do this, we compute the tangent space of KT at FT . Let us
denote it by D. It is sufficient to establish the following

Lemma 3.2. — We have

dimD = #{T ′ ∈ X (Y ) : FT ′ ∈ KT }+ s(s− 1)
2
.

Let us prove the lemma. Recall that we have fixed a Jordan basis param-
eterized by the boxes of Y (see section 1.3). As in the beginning of section 2,
we denote by e1, ..., er the vectors of the basis associated to the boxes of
the first column of Y and er+1, ..., en the vectors associated to the boxes
of the second column, so that we have u(ei) = 0 for i 6 r and u(ei) = ei−r
for i > r + 1. Let B be the variety of complete flags F = (V0 ⊂ ... ⊂ Vn)
and let Ω ⊂ B be the open subvariety formed by the flags F such that
Vi 6⊂ Vi−1 + 〈ei+1, ..., en〉 for any i. For any F ∈ Ω and any pair (i, j) such
that 1 6 i < j 6 n, there are unique scalars φi,j(F ) such that the vectors

fi(F ) = ei +
n∑

j=i+1
φi,j(F ).ej for i ∈ {1, ..., n}

form a basis adapted to F (i.e., Vi = 〈f1(F ), ..., fi(F )〉 for any i). The
maps F 7→ φi,j(F ) are algebraic and they identify Ω to a vector space,
whose dual space is Ω∗ =

⊕
(i<j) C.φi,j where the sum is taken over the

pairs (i, j) such that 1 6 i < j 6 n. Let (εi,j) be the dual basis of Ω.
The tangent space D is a vector subspace of Ω. Let D⊥ = {φ ∈ Ω∗ :
φ(ε) = 0 ∀ε ∈ D}. To prove Lemma 3.2, we use the following

Lemma 3.3. — Let i, j be such that 1 6 i < j 6 n.
a) Assume i > r. Then εi,j + εi−r,j−r ∈ D.
b) Assume j > i+ r. Then φi,j ∈ D⊥.

Assume now that i 6 r and j < i + r. Let T ′ be the tableau obtained
from T by switching i and j. The tableau T ′ is row-standard and belongs
to X (Y ).

c) If FT ′ ∈ KT , then we have εi,j ∈ D.
d) Suppose that FT ′ /∈ KT . Then we have φi,j−φi+r,j+r ∈ D⊥ if j 6 s,

and φi,j ∈ D⊥ if j > s.

Proof of Lemma 3.2. — We have dimD+dimD⊥ = dim Ω = n(n−1)/2.
Claims a) and c) of Lemma 3.3 imply dimD > #{T ′ ∈ X (Y ) : FT ′ ∈
KT }+ s(s− 1)/2. Claims b) and d) of Lemma 3.3 imply dimD⊥ > n(n−

TOME 59 (2009), FASCICULE 6



2442 Lucas FRESSE

1)/2−#{T ′ ∈ X (Y ) : FT ′ ∈ KT }− s(s− 1)/2. Thus these two inequalities
are in fact two equalities and Lemma 3.2 follows. �

It remains to prove Lemma 3.3. Recall from the proof of Proposition 2.1
that the group Z(u) acts on Bu and leaves the component KT (and any
other component) invariant.

Proof of Lemma 3.3.a). — For t ∈ C, let wt ∈ GL(V ) be the auto-
morphism defined by wt : ei 7→ ei + tej and wt : ei−r 7→ ei−r + tej−r, and
wt : ek 7→ ek if k /∈ {i, i−r}. We have wt ∈ Z(u), hence wt leaves KT invari-
ant. For any t ∈ C we have thus wt.FT ∈ K

T . Observe that this flag belongs
to Ω and can be written t.(εi,j + εi−r,j−r). Thus εi,j + εi−r,j−r ∈ D. �

Proof of Lemma 3.3.b). — Let F ∈ Ω ∩ KT . Set for simplicity fk =
fk(F ) and φk,l = φk,l(F ). We have u(fi) ∈ 〈f1, ..., fi−1〉. Thus the family
(f1, ..., fi−1, u(fi)) has rank i − 1. Consider the matrix of this family in
the basis (e1, ..., en). We express the minor of this matrix relative to the
subbasis (e1, ..., ei−1, ej−r) (the symbol “∗” equals φk,l for some pair
k < l):

1 (0) ∗
. . .

...
(∗) 1 ∗
∗ · · · ∗ φi,j

= φi,j − P

where P is a polynomial on the φk,l with only terms of degree > 2. By
hypothesis this minor is equal to zero, thus we get: φi,j = P , hence the
equation φi,j = 0 is satisfied in the tangent space D. �

Proof of Lemma 3.3.c). — For t ∈ C∗, let wt ∈ GL(V ) be the automor-
phism defined by wt : ej 7→ ej + t−1ei and wt : ek 7→ ek for k /∈ {j, j + r}
and in addition wt : ej+r 7→ ej+r + t−1ei+r in case j 6 s. Since wt belongs
to the group Z(u), it leaves KT invariant. Hence for every t ∈ C∗ we have
wt.FT ′ ∈ KT . Observe that this flag belongs to Ω and can be written t.εi,j .
Thus εi,j ∈ D. �

Proof of Lemma 3.3.d). — We suppose that the flag FT ′ does not belong
to the component KT . By Theorem 2.5, there are 0 6 a < b 6 n such that
sb/a(T ′) > sTb/a. Observe that sb/a(T ′) 6 sb/a(T ) + 1, and that sb/a(T ) 6

sTb/a since the flag FT belongs to the component. Thus sb/a(T ′) = sb/a(T )+1
and sTb/a = sb/a(T ) = Max(0, b − a − r). By Proposition 2.4, we get that
each flag F = (V0, ..., Vn) ∈ KT satisfies the inequality

dim(Va + u(Vb)) 6 Max(a, b− r).

ANNALES DE L’INSTITUT FOURIER



SINGULAR COMPONENTS OF SPRINGER FIBERS 2443

Let F ∈ Ω and set for simplicity fk = fk(F ) and φk,l = φk,l(F ). We
distinguish two cases.

A) First case: j 6 r.
Observe that, for having sb/a(T ′) > sb/a(T ), it is necessary to have:

i 6 a < j 6 i+ r 6 b < j + r.

Set i′ = i+ r and j′ = j+ r. In the case a > b− r we consider the matrix of
the family (f1, ..., fi−1, fi+1, ..., fa, fi, u(fi′)) in the basis (e1, ..., en). In the
case a < b − r we consider the matrix of the family (u(fr+1), ..., u(fi′−1),
u(fi′+1), ..., u(fb), fi, u(fi′)) in the basis (e1, ..., en). Set c = Max(a, b− r).
In both cases we express the minor of the matrix relatively to the subbasis
(e1, ..., ei−1, ei+1, ..., ec, ei, ej) (the symbol “∗” equals φk,l for some pair k <
l) (if j′ > n, then set φi′,j′ = 0 by convention):

1 (0) ∗ ∗
. . .

...
...

(∗) 1 ∗ ∗
∗ · · · ∗ 1 1
∗ · · · ∗ φi,j φi′,j′

= φi,j − φi′,j′ − P

where P is a polynomial on the φk,l with only terms of degree > 2. This
minor is equal to zero, hence we get φi,j−φi′,j′ = P . Therefore the equation
φi,j = φi′,j′ is satisfied in the tangent space D.

B) Second case: j > r + 1.
Observe that, for having sb/a(T ′) > sb/a(T ), it is necessary to have:

a < j − r < i 6 b < j < i+ r or j − r < i 6 a < j < i+ r 6 b.

Set i′ = i+ r and j′ = j − r. Set c = Max(a, b− r).
First, suppose that a < j − r < i 6 b < j < i+ r. In the case a > b− r

consider the matrix of the family (f1, ..., fa, u(fi)) in the basis (e1, ..., en). In
the case a < b−r consider the matrix of the family (u(fr+1), ..., u(fb), u(fi))
in the basis (e1, ..., en).

Next, suppose that j − r < i 6 a < j < i+ r 6 b. In the case a > b− r
consider the matrix of the family (f1, ..., fa, fi) in the basis (e1, ..., en). In
the case a < b− r consider the matrix of the family (u(fr+1), ..., u(fb), fi)
in the basis (e1, ..., en).

We express the minor of the considered matrix, relative to some subbasis.
For a < j − r < i 6 b < j < i + r, we choose the subbasis (e1, ..., ec, ej′).
For j − r < i 6 a < j < i+ r 6 b, we choose the subbasis (e1, ..., ec, ej). In
both cases, the minor has the following expression (the symbol “∗” equals
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φk,l for some pair k < l):

1 (0) ∗
. . .

...
(∗) 1 ∗
∗ · · · ∗ φi,j

= φi,j − P

where P is a polynomial on the φk,l with only terms of degree > 2. This
minor is equal to zero, hence we get φi,j = P . Therefore the equation
φi,j = 0 holds in the tangent space D. Our proof is now complete. �
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