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ACTIONS OF MONOIDALLY EQUIVALENT COMPACT
QUANTUM GROUPS AND APPLICATIONS TO

PROBABILISTIC BOUNDARIES

by An DE RĲDT & Nikolas VANDER VENNET

Abstract. — The notion of monoidal equivalence for compact quantum groups
was recently introduced by Bichon, De Rĳdt and Vaes. In this paper we prove
that there is a natural bĳective correspondence between actions of monoidally
equivalent quantum groups on unital C∗-algebras or on von Neumann algebras.
This correspondence turns out to be very useful to obtain the behavior of Poisson
and Martin boundaries under monoidal equivalence of quantum groups. Finally,
we apply these results to identify the Poisson boundary for the duals of quantum
automorphism groups.

Résumé. — La notion de l’équivalence monoïdale pour les groupes quantiques
compacts a été introduite récemment par Bichon, De Rĳdt et Vaes. Dans cet article,
nous montrons : étant donné deux groupes quantiques compacts à équivalence
monoïdale, alors il existe une correspondance bĳective entre leurs actions. Cette
correspondance s’avère être très utile pour obtenir la relation entre les frontières de
Poisson et Martin des deux groupes quantiques compacts à équivalence monoïdale.
Finalement, nous appliquons ces résultats au calcul des frontières de Poisson des
duals associés aux groupes quantiques d’automorphismes.

Introduction

After Woronowicz had introduced the notion of a compact quantum
group as a generalization of a compact group, many research topics apply-
ing to compact groups were expanded to the general framework of compact
quantum groups. One of these topics concerns the study of (ergodic) ac-
tions of compact groups on unital C∗-algebras (an action on a C∗-algebra
is ergodic if the fixed point algebra reduces to the scalars). We refer to
the articles of Høegh-Krohn, Landstad and Størmer [12] and Wasserman

Keywords: Quantum groups, operator algebras, probability theory.
Math. classification: 20G42.



170 An DE RĲDT & Nikolas VANDER VENNET

[35, 33, 34] for a deep study of this topic. The abstract theory of ergodic ac-
tions of compact quantum groups on C∗-algebras was initiated by Boca [8]
and Landstad [17]. It turns out that the general theory of (ergodic) actions
of compact quantum groups on C∗-algebras is different from the classical
theory and in fact much richer. One major difference is that the multiplicity
of irreducible representations in an ergodic action can be strictly greater
than the dimension of the representation space, which is impossible in the
classical case, where the dimension of the representation space is actually
an upper bound of this multiplicity. In the quantum case, the upper bound
is given by the quantum dimension which is usually larger than the usual
dimension.

In [7], Bichon, the first author and Vaes introduced and developed the
notion of monoidally equivalent quantum groups. By definition, compact
quantum groups are called monoidally equivalent if their representation
categories are equivalent as monoidal categories. In their article, they were
able to describe certain ergodic actions as unitary fiber functors on the re-
presentation category. These ergodic actions are exactly the ergodic actions
of full quantum multiplicity. This provides us with a powerful categorical
tool for constructing ergodic actions. Moreover, these ergodic actions of full
quantum multiplicity provided the first examples of ergodic actions where
the multiplicity of the irreducible representations is strictly greater than
the dimension of the representation space.

In, [20], Pinzari and Roberts obtained a categorical description of all
ergodic actions of a compact quantum group. Inspired by [7], they describe
an ergodic action (not necessarily of full quantum multiplicity) of a compact
quantum group as a special kind of functor on the representation category.
When the ergodic action is of full quantum multiplicity, the corresponding
functor is just a unitary fiber functor as in [7]. This categorical description
yields a bĳective correspondence between ergodic actions of monoidally
equivalent quantum groups on unital C∗-algebras.

In this article, we obtain a bĳective correspondence between (not neces-
sarily ergodic) actions of monoidally equivalent compact quantum groups
on unital C∗-algebras. Moreover, the correspondence is of that kind that it
preserves the spectral subspaces of the actions. Restricting this to ergodic
actions, this just means that the multiplicities of the irreducible represen-
tations are preserved through this correspondence. It should be emphasized
that our approach is not categorical. The correspondence is obtained in a
concrete, constructive way.
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MONOIDAL EQUIVALENCE AND PROBABILISTIC BOUNDARIES 171

A major application of the bĳective correspondence between actions of
monoidally equivalent quantum groups is found in the study of Poisson
and Martin boundaries for discrete quantum groups. These boundaries find
their origin in the study of random walks on discrete groups. A nice sur-
vey can be found in [15]. The study of random walks of discrete quantum
groups was started by Biane, who considered duals of compact groups and
obtained a theory which was parallel to the theory of random walks on dis-
crete abelian groups. Random walks on arbitrary discrete quantum groups,
and their Poisson boundaries were introduced by Izumi in [13], whose main
motivation came from the study of infinite tensor product actions of com-
pact quantum groups. In [13], Izumi identified the Poisson boundary of the
dual of SUq(2) with the Podleś sphere [21]. Later, Neshveyev and Tuset [19],
associated a Martin boundary to a random walk on a discrete quantum
group and proved that the Martin boundary of the dual of SUq(2) is also
given by the Podleś sphere. In [14], Izumi, Nesveyev and Tuset identified the
Poisson boundary of SUq(n) but its Martin boundary remains unknown.

Very recently, Tomatsu managed to identify the Poisson boundaries of all
amenable discrete quantum groups Ĝ when its underlying compact quan-
tum group G has commutative fusion rules. This Poisson boundary appears
to be the homogeneous space of G with respect to the maximal closed quan-
tum subgroup of Kac type [24]. This covers the results of Izumi, Neshveyev
and Tuset, but is obtained in a completely different way and is also much
more general. For Martin boundaries, there are no such results.

Considering the non-amenable case, Vaes and the second author [28]
have identified the Poisson and Martin boundary of the class of universal
orthogonal quantum groups Ao(F ) with higher dimensional Podlès spheres.
When dim(F ) > 3, the dual of Ao(F ) is not amenable.

We prove in this article a very general result. We provide a systematic
method to relate Poisson and Martin boundaries for the duals of monoidally
equivalent quantum groups. The relation goes as follows. Both the Poisson
and Martin boundary of a discrete quantum group Ĝ, which is the dual of
the compact quantum group G, admit a natural action of G. If the compact
quantum groups G1 and G2 are monoidally equivalent, the boundaries of
their duals Ĝ1 and Ĝ2 are related through the bĳective correspondence we
obtained between the actions of G1 and G2. This means that if we know
the Poisson (Martin) boundary of the dual of a compact quantum group G,
we at the same time know it for the duals of all compact quantum groups
which are monoidally equivalent with G.

TOME 60 (2010), FASCICULE 1



172 An DE RĲDT & Nikolas VANDER VENNET

Combining our result with Tomatsu’s work, we give a concrete identifi-
cation of the Poisson boundary of a large class of discrete quantum groups.
This method makes it also possible to obtain more examples of identifica-
tions of Poisson boundaries of non-amenable discrete quantum groups. The
main observation is that amenability is not preserved under monoidal equi-
valence. A first class of examples of this kind are the universal orthogonal
quantum groups Ao(F ). If the dimension of F is greater than 3, then Ao(F )
is not coamenable. The quantum groups Ao(F ) and SUq(2) are monoidally
equivalent for the right q. Moreover, the Poisson boundary of SUq(2) was
identified by Izumi and also, in a different way, by Tomatsu (SUq(2) is
coamenable). The correspondence just described gives a concrete identifi-
cation of the Poisson boundary of Ao(F ). As we already saw, this result was
already obtained by Vaes and the second author by another method [28].
These were the first examples of identifications of Poisson boundaries of
non-amenable discrete quantum groups.

A second and new class of examples of the above type come from quan-
tum automorphism groups Aaut(D,ω), with D a finite dimensional C∗-
algebra. These quantum groups have the fusion rules of SO(3) and are
coamenable if and only if the dimension of the C∗-algebra is less than or
equal to 4. We prove, in that case that the maximal subgroup of Kac type
is the one-dimensional torus T. In combination with the result of Tomatsu,
this provides us with an identification of its Poisson boundary. Using the
fact that every quantum automorphism group is monoidally equivalent with
a coamenable one, we obtain also an explicit identification of the Poisson
boundary of the duals of all such quantum automorphism groups.

Because every Ao(F ) is monoidally equivalent with an SUq(2), the cor-
respondence of Martin boundaries under monoidally equivalent quantum
groups gives a direct method to identify the Martin boundary of the du-
als of the universal compact quantum groups Ao(F ). This identification
was already obtained by Vaes and the second author in [28] by a different
method using a result of [29], allowing to deduce the Martin boundary, in
the case of Ao(F ), from the Poisson boundary.

Finally, we would like to thank Stefaan Vaes for the numerous remarks
and careful reading of the manuscript.

1. Notations

Consider a subset S of a C∗-algebra. We denote by 〈S〉 the linear span
of S and by [S] the closed linear span of S. We use the notation ωη,ξ(a) =
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〈η, aξ〉 and we use inner products that are linear in the second variable.
Moreover we denote by ξ∗ : H → C : η 7→ 〈ξ, η〉 and denote by H the dual
Hilbert space of H, i.e. H := {ξ∗ | ξ ∈ H}.

The symbol ⊗ denotes tensor products of Hilbert spaces and minimal
tensor products of C∗-algebras. We use the symbol ⊗alg for algebraic ten-
sor products of *-algebras and ⊗ for the tensor product of von Neumann
algebras. We also make use of the leg numbering notation in multiple ten-
sor products: if a ∈ A ⊗ A, then a12, a13, a23 denote the obvious elements
in A⊗A⊗A, e.g. a12 = a⊗ 1.

The adjointable operators between C∗-modules or bounded operators
between Hilbert-spaces H and K are denoted by L(H,K). We also denote
L(K,K) by L(K).

Let B be a unital *-algebra. We call a linear map ω : B → C such that
ω(1) = 1 a faithful state if ω(a∗a) > 0 for all a ∈ B and ω(a∗a) = 0 if and
only if a = 0.

2. Preliminaries

Compact quantum groups

We give a quick overview of the theory of compact quantum groups which
was developed by Woronowicz in [39]. We refer to [18] for a survey of basic
results.

Definition 2.1. — A compact quantum group G is a defined by a pair
(C(G),∆), where

• C(G) is a unital C∗-algebra;
• ∆: C(G) → C(G) ⊗ C(G) is a unital *-homomorphism satisfying

the co-associativity relation

(∆⊗ id)∆ = (id⊗∆)∆;

• G satisfies the left and right cancellation property expressed by

∆(C(G))(1⊗C(G)) and ∆(C(G))(C(G)⊗1) are total in C(G)⊗C(G).

Remark 2.2. — The notation C(G) suggests the analogy with the basic
example given by continuous functions on a compact group. In the quantum
case however, there is no underlying space G and C(G) is a non-abelian
C∗-algebra.

A fundamental result in the theory of compact quantum groups is the
existence of a unique Haar state.

TOME 60 (2010), FASCICULE 1



174 An DE RĲDT & Nikolas VANDER VENNET

Theorem 2.3 (Woronowicz, [36]). — Let G be a compact quantum
group. There exists a unique state h on C(G) which satisfies (id⊗h)∆(a) =
h(a)1 = (h⊗ id)∆(a) for all a ∈ C(G). The state h is called the Haar state
of G.

Another crucial set of results in the framework of compact quantum
groups is the Peter-Weyl representation theory.

Definition 2.4. — A unitary representation U of a compact quantum
group G on a Hilbert space H is a unitary element U ∈ L(H ⊗ C(G))
satisfying

(2.1) (id⊗∆)(U) = U12U13.

Whenever U1 and U2 are unitary representations of G on the respective
Hilbert spaces H1 and H2, we define

Mor(U1, U2) := {T ∈ L(H2,H1) | U1(T ⊗ 1) = (T ⊗ 1)U2}.

The elements of Mor(U1, U2) are called intertwiners. We use the notation
End(U) := Mor(U,U). A unitary representation U is said to be irreducible
if End(U) = C1. If Mor(U1, U2) contains a unitary operator, the represen-
tations U1 and U2 are said to be unitarily equivalent.

We have the following essential result.

Theorem 2.5. — Every irreducible representation of a compact quan-
tum group is finite-dimensional. Every unitary representation is unitarily
equivalent to a direct sum of irreducibles.

Because of this theorem, we almost exclusively deal with finite-
dimensional representations. By choosing an orthonormal basis of the
Hilbert space H, a finite-dimensional unitary representation of G can be
considered as a unitary matrix (Uij) with entries in C(G) and (2.1) becomes

∆(Uij) =
∑
k

Uik ⊗ Ukj .

The product in the C∗-algebra C(G) yields a tensor product on the level
of unitary representations.

Definition 2.6. — Let U1 and U2 be unitary representations of G on
the respective Hilbert spaces H1 and H2. We define the tensor product

U1 T© U2 := U1
13U

2
23 ∈ L(H1 ⊗H2 ⊗ C(G)).

ANNALES DE L’INSTITUT FOURIER
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Notation 2.7. — Let G be a compact quantum group. We denote by
Irred(G) the set of equivalence classes of irreducible unitary representa-
tions. We choose representatives Ux on the Hilbert space Hx for every
x ∈ Irred(G). Whenever x, y ∈ Irred(G), we use x⊗y to denote the unitary
representation Ux T© Uy. The class of the trivial unitary representation is
denoted by ε. We define the natural numbers mult(z, x⊗ y) such that

x⊗ y ∼=
⊕

z∈Irred(G)

mult(z, x⊗ y) · Uz.

The collection of natural numbers mult(z, x⊗ y) are called the fusion rules
of G.

The set Irred(G) is equipped with a natural involution x 7→ x such that
Ux is the unique (up to unitary equivalence) irreducible unitary represen-
tation satisfying

Mor(x⊗ x, ε) 6= {0} 6= Mor(x⊗ x, ε).

The unitary representation Ux is called the contragredient of Ux.
For every x ∈ Irred(G), we take non-zero elements tx ∈ Mor(x ⊗ x, ε)

and sx ∈ Mor(x⊗ x, ε) satisfying (t∗x ⊗ 1)(1⊗ sx) = 1. Write the antilinear
map

(2.2) jx : Hx −→ Hx : ξ 7−→ (ξ∗ ⊗ 1)tx

and define Qx := j∗xjx. We normalize tx in such a way that Tr(Qx) =
Tr(Q−1

x ). This uniquely determines Qx and fixes tx, sx up to a number of
modulus 1. Note that t∗xtx = Tr(Qx).

Definition 2.8. — For x ∈ Irred(G), the value Tr(Qx) is called the
quantum dimension of x and denoted by dimq(x). Note that dimq(x) >
dim(x), with equality holding if and only if Qx = 1.

The irreducible representations of G and the Haar state h are connected
by the orthogonality relations.

(id⊗h)(Ux(ξη∗ ⊗ 1)(Uy)∗) = δx,y1
dimq(x)

〈η,Qxξ〉,

(id⊗h)((Ux)∗(ξη∗ ⊗ 1)Uy) = δx,y1
dimq(x)

〈η,Q−1
x ξ〉

(2.3)

for ξ ∈ Hx and η ∈ Hy.

Notation 2.9. — Let G = (C(G),∆) be a compact quantum group. We
denote by C(G) the set of coefficients of finite dimensional representations

TOME 60 (2010), FASCICULE 1



176 An DE RĲDT & Nikolas VANDER VENNET

of G. Hence,

C(G) = 〈(ωξ,η ⊗ id)(Ux) | x ∈ Irred(G), ξ, η ∈ Hx〉

Then, C(G) is a unital dense *-subalgebra of C(G). Restricting ∆ to C(G),
C(G) becomes a Hopf *-algebra.
Also, for x ∈ Irred(G), denote by

C(G)x = 〈(ωξ,η ⊗ id)(Ux) | ξ, η ∈ Hx〉

Note that ∆: C(G)x → C(G)x ⊗ C(G)x and that C(G)∗x = C(G)x.

Definition 2.10. — The reduced C∗-algebra Cr(G) is defined as the
norm closure of C(G) in the GNS-representation with respect to h. The
universal C∗-algebra Cu(G) is defined as the enveloping C∗-algebra of C(G).
The von Neumann algebra L∞(G) is defined as the von Neumann algebra
generated by Cr(G). Note that if G is the dual of a discrete group Γ, we
have Cr(G) = C∗r (Γ) and Cu(G) = C∗(Γ) and L∞(G) = L(Γ).

Remark 2.11. — Given an arbitrary compact quantum group G, we
have surjective homomorphisms Cu(G)→ C(G)→ Cr(G), but most of the
time we are only interested in Cr(G) and Cu(G). So, given the underlying
Hopf*-algebra, there exists different C∗-versions. From this point of view,
we only consider two quantum groups different if the underlying Hopf*-
algebras are different.

Definition 2.12. — A compact quantum group G is said to be coa-
menable if the homomorphism Cu(G)→ Cr(G) is an isomorphism.

Proposition 2.13. — The Haar state h is a KMS-state on both Cr(G)
and Cu(G) and the modular group is determined by

(2.4) (id⊗σht )(Ux) = (Qitx ⊗ 1)Ux(Qitx ⊗ 1)

for every x ∈ Irred(G).

Discrete quantum groups and duality

Following Van Daele ([30]), a discrete quantum group is a multiplier Hopf
*-algebra whose underlying *-algebra is a direct sum of matrix algebras.
The dual of a compact quantum group is such a discrete quantum group
and is defined as follows.

ANNALES DE L’INSTITUT FOURIER
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Definition 2.14. — Let G be a compact quantum group. We define
the dual (discrete) quantum group Ĝ as follows.

c0(Ĝ) =
⊕

x∈Irred(G)

L(Hx), `∞(Ĝ) =
∏

x∈Irred(G)

L(Hx).

We denote the minimal central projections of `∞(Ĝ) by px, x ∈ Irred(G).
We have a natural unitary V ∈ M(c0(Ĝ)⊗ C(G)) given by

(2.5) V =
⊕

x∈Irred(G)

Ux.

This unitary V implements the duality between G and Ĝ. We have a natural
comultiplication

∆̂ : `∞(Ĝ) −→ `∞(Ĝ)⊗`∞(Ĝ) : (∆̂⊗ id)(V) = V13V23.

One can deduce from this the following equivalent way to define the
coproduct structure on `∞(Ĝ).

∆̂(a)S = Sa for all a ∈ `∞(Ĝ) and S ∈ Mor(y ⊗ z, x).

The notation introduced above is aimed to suggest the basic example where
G is the dual of a discrete group Γ, given by C(G) = C∗(Γ) and ∆(λx) =
λx ⊗ λx for all x ∈ Γ. The map x 7→ λx yields an identification of Γ and
Irred(G) and then, `∞(Ĝ) = `∞(Γ).

The discrete quantum group `∞(Ĝ) comes equipped with a natural mod-
ular structure.

Notation 2.15. — We have canonically defined states ϕx and ψx on
L(Hx) related to (2.3) as follows.

ψx(A)1 = 1
dimq(x)

t∗x(A⊗ 1)tx = Tr(QxA)
Tr(Qx)

1

= (id⊗h)(Ux(A⊗ 1)(Ux)∗) and(2.6)

ϕx(A)1 = 1
dimq(x)

t∗x(1⊗A)tx = Tr(Q−1
x A)

Tr(Q−1
x )

1

= (id⊗h)((Ux)∗(A⊗ 1)Ux),

for all A ∈ L(Hx).

Remark 2.16. — The states ϕx and ψx are significant, since they provide
a formula for the invariant weights on `∞(Ĝ). The left invariant weight is
given by

∑
x∈Irred(G) dimq(x)2ψx, and the right invariant weight is given by∑

x∈Irred(G) dimq(x)2ϕx.
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178 An DE RĲDT & Nikolas VANDER VENNET

Definition 2.17. — A discrete quantum group Ĝ is amenable if there
exists a left invariant mean on `∞(Ĝ), i.e. a state m ∈ `∞(Ĝ)∗ s.t.

m((ω ⊗ id)∆̂(x)) = m(x)ω(1)

for all ω ∈ `∞(Ĝ)∗ and x ∈ `∞(Ĝ).

Remark 2.18. — It was proven [23] that Ĝ is amenable if and only if G
is coamenable.

Examples: the universal orthogonal compact quantum groups

We consider a class of compact quantum groups which was introduced
by Wang and Van Daele in [31]. These compact quantum groups can in
general not be obtained as deformations of classical objects.

Definition 2.19. — Let F ∈ GL(n,C) satisfying FF = ±1. We define
the compact quantum group G = Ao(F ) as follows.

• Cu(G) is the universal C∗-algebra with generators (Uij) and rela-
tions making U = (Uij) a unitary element of Mn(C) ⊗ C(G) and
U = FUF−1, where (U)ij = (Uij)∗.
• ∆(Uij) =

∑
k Uik ⊗ Ukj .

In these examples, the unitary matrix U is a representation, called the
fundamental representation. The definition of G = Ao(F ) makes sense
without the requirement FF = ±1, but the fundamental representation is
irreducible if and only if FF ∈ R1. We then normalize such that FF = ±1.

Remark 2.20. — It is easy to classify the quantum groups Ao(F ). For
F1, F2 ∈ GL(n,C) with FiF i = ±1, we write F1 ∼ F2 if there exists a
unitary matrix v such that F1 = vF2v

t, where vt is the transpose of v.
Then, Ao(F1) ∼= Ao(F2) if and only if F1 ∼ F2. It follows that the Ao(F )
are classified up to isomorphism by n, the sign of FF and the eigenvalue
list of F ∗F (see e.g. Section 5 of [7] where an explicit fundamental domain
for the relation ∼ is described).

If F ∈ GL(2,C), we get up to equivalence, the matrices

(2.7) Fq =
(

0 |q|1/2

−(sgn q)|q|−1/2 0

)
for q ∈ [−1, 1], q 6= 0, with corresponding quantum groups Ao(Fq) ∼=
SUq(2), see [37]. In this case the quantum dimension of the fundamental
representation equals Tr(F ∗q Fq) = |q + 1/q|.

ANNALES DE L’INSTITUT FOURIER
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The following result has been proven by Banica [1]. It tells us that the
compact quantum groups Ao(F ) have the same fusion rules as the group
SU(2).

Theorem 2.21. — Let F ∈ GL(n,C) and FF = ±1. Let G = Ao(F ).
Then Irred(G) can be identified with N in such a way that

x⊗ y ∼= |x− y| ⊕ (|x− y|+ 2)⊕ · · · ⊕ (x+ y),

for all x, y ∈ N.

Further on, we will introduce another class of compact quantum groups
that we need in this article, namely quantum automorphism groups, but
therefore we need the notion of an action.

3. Actions of quantum groups

Actions and spectral subspaces

Definition 3.1. — Let B be a unital C∗-algebra and G be a compact
quantum group. A (right) action of G on B is a unital *-homomorphism
δ : B → B ⊗ C(G) satisfying

(δ ⊗ id)δ = (id⊗∆)δ and [δ(B)(1⊗ C(G))] = B ⊗ C(G).

The action δ is said to be ergodic if the fixed point algebra Bδ := {x ∈ B |
δ(x) = x⊗ 1} equals C1. In that case, B admits a unique invariant state ω
given by ω(b)1 = (id⊗h)δ(b).

Definition 3.2. — Let δ : B → B ⊗C(G) be an action of the compact
quantum group G on the unital C∗-algebra B. For every x ∈ Irred(G), we
define the spectral subspace associated with x by

Kx =
{
X ∈ Hx ⊗B | (id⊗δ)(X) = X12U

x
13
}
.

Defining Hom(Hx, B) = {S : Hx → B | S linear and δ(Sξ) = (S ⊗
id)(Ux(ξ ⊗ 1))}, we have Kx

∼= Hom(Hx, B), associating to every X ∈ Kx

the operator SX : Hx → B : ξ 7→ X(ξ ⊗ 1).

Remark 3.3. — For each x ∈ Irred(G), Kx is a bimodule over the fixed
point algebra Bδ in a natural way. Indeed, for a ∈ Bδ and X ∈ Kx,
a • X := (1 ⊗ a)X and X • a = X(1 ⊗ a) turns Kx into a Bδ-bimodule.
Moreover, one can check easily that

(3.1) 〈·, ·〉 : Kx ×Kx −→ Bδ : 〈X,Y 〉 = XY ∗.

TOME 60 (2010), FASCICULE 1
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gives an inner product, turning Kx in a left Hilbert C∗-module over the
fixed point algebra. We refer to [16] for the theory of Hilbert C*-modules.

We can also turn Kx in a right Hilbert C∗-module. Denote by E : B →
Bδ : x 7→ (id⊗h)δ the conditional expectation onto the fixed point algebra.
For X,Y ∈ Kx, one can check, using the fact that (E⊗ id)δ(x) = E(x)⊗1,
that for each state ω on Bδ, (id⊗ωE)(X∗Y ) is an intertwiner for Ux and
hence scalar. This means that we can define

(3.2) 〈·, ·〉∼ : Kx ×Kx −→ Bδ by 1⊗ 〈X,Y 〉∼ := (id⊗E)(X∗Y ),

which makes Kx a right Hilbert C∗-module over Bδ.
In the case where δ is ergodic with invariant state ω, Kx can be turned in

a Hilbert space because Bδ = C, with scalar product defined by 〈X,Y 〉l1 =
Y X∗ and 〈X,Y 〉r1 = (id⊗ω)(X∗Y ). Remark that we switched orders in
the first scalar product to have conjugate linearity in the first variable.

Definition 3.4. — We define B as the subspace of B generated by the
spectral subspaces, i.e.

B := 〈X(ξ ⊗ 1) | x ∈ Irred(G), X ∈ Kx, ξ ∈ Hx〉.

Also, we define

Bx := 〈X(ξ ⊗ 1) | X ∈ Kx, ξ ∈ Hx〉.

Note that δ : Bx → Bx ⊗alg C(G)x and that B∗x = Bx.

Observe that B is a dense unital *-subalgebra of B and that the restric-
tion δ : B → B ⊗alg C(G) defines an action of the Hopf *-algebra (C(G),∆)
on B.

Remark 3.5. — If δ is ergodic, Bx is finite dimensional and its dimension
is of the form dimHx ·mult(δ, x), where mult(δ, x) is called the multiplicity
of x in δ. Note that as a vector space Bx ' Hx⊗Kx, so mult(δ, x) = dimKx.

Suppose now that δ : B → B ⊗ C(G) is an ergodic action. Let x ∈
Irred(G). Take t ∈ Mor(x ⊗ x, ε), normalized in such a way that t∗t =
dimq(x). Define the antilinear map

(3.3) Rx : Kx −→ Kx : Rx(v) = (t∗ ⊗ 1)(1⊗ v∗).

Since t is fixed up to a number of modulus one, Lx := R∗xRx is a well
defined positive element of L(Kx).

Definition 3.6. — We put multq(x) :=
√

Tr(Lx) Tr(Lx) and we call
multq(x) the quantum multiplicity of x in δ.
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Remark 3.7. — It can be proven, for example in [7], that multq(x) 6
dimq(x) for all x ∈ Irred(G). If equality holds for all x ∈ Ĝ, we say that δ
is of full quantum multiplicity.

Terminology 3.8. — An action δ : B → B ⊗ C(G) of G on B is said to
be universal if B is the universal enveloping C∗-algebra of B. It is said to
be reduced if the conditional expectation (id⊗h)δ of B on the fixed point
algebra Bδ is faithful.

Remark 3.9. — From remark 2.11, we saw that a compact quantum
group (C(G),∆) has many C∗-versions, while the underlying Hopf*-algebra
is the same. The same remark applies to actions. We have that Bu → B →
Br for an action δ : B → B⊗C(G). So again, we only consider two actions
to be different if the underlying Hopf *-algebra actions are different. We
make extensively use of this fact.

Actions on von Neumann algebras are defined as follows.

Definition 3.10. — A right action of a compact (resp. discrete) quan-
tum group G (resp. Ĝ) on a von Neumann algebra N is an injective normal
unital *-homomorphism

δ : N −→ N⊗L∞(G) resp. δ : N −→ N⊗`∞(Ĝ)

satisfying (δ ⊗ id)δ = (id⊗∆)δ, resp. (δ ⊗ id)δ = (id⊗∆̂)δ.

Remark 3.11. — In the case of an action of a compact quantum group
on a von Neumann algebra, we do not require the density condition like
for C∗-algebraic actions. The reason is that this is automatically fulfilled
for von Neumann algebras. This is a quite deep result and we refer to [26],
theorem 2.6 for a proof. This implies that the spectral subalgebra as defined
in 3.4 remains (weakly) dense in N .

Remark 3.12. — Because every action δ : B → B ⊗C(G) has a unitary
implementation, it can be extended to a von Neumann algebraic action.

Quantum subgroups and homogeneous spaces

Definition 3.13 (Tomatsu, [24]). — Let (G,∆G) and (H,∆H) be com-
pact quantum groups. We call H a closed (algebraic) quantum subgroup of
G whenever there is given a surjective *-homomorphism rH : C(G)→ C(H)
satisfying ∆H ◦ rH = (rH ⊗ rH)∆G.
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Remark 3.14 (Tomatsu, [24]). — In general, a quantum subgroup is a
quotient of C(G). It is clear that a quantum subgroup is always an alge-
braic quantum subgroup. When the quantum group G is co-amenable, any
algebraic quantum subgroup is naturally regarded as a quantum subgroup.

Definition 3.15. — Let (G,∆G) be a compact quantum group with
quantum subgroup (H,∆H). Define the Hopf*-algebra action γH : C(G) →
C(H)⊗algC(G) : x 7→(rH⊗id)∆G(x). Define the homogeneous space C(HrG)
as the fixed point subalgebra of C(G) under γH.

Remark 3.16. — The restriction of the comultiplication to C(H r G)
gives a Hopf*-action

(3.4) ∆HrG : C(H r G) −→ C(H r G)⊗alg C(G).

Since the action γH is invariant under the Haar measure of G, we can
extend it to Cr(G) and L∞(G) and hence define Cr(HrG) and L∞(HrG).
By universality, γH is also extendable to Cu(G), which gives us Cu(Hr G).

The restriction of the comultiplication to Cr(H r G), respectively
Cu(H r G), or L∞(H r G) gives again an action as in formula (3.4).

Lemma 3.17. — The restriction of rH to the quotient C(H r G) is the
map a 7→ εG(a)1.

Proof. — For a ∈ C(H r G),

∆H(rH(a)) = (rH ⊗ rH)∆G(a) = 1⊗ rH(a),

We now apply (id⊗εH) to both sides of the equation and use the fact that
εHrH = εG ([24]). Then

rH(a) = (id⊗εH)∆H(rH(a)) = εG(a)1,

which ends the proof. �

In the last chapter, we will need a special kind of subgroup.

Definition 3.18. — Consider a compact quantum group (G,∆G). We
call a quantum subgroup (H,∆H) of Kac type maximal, if for any quantum
subgroup K of Kac type, L∞(H r G) ⊂ L∞(K r G).

Every compact quantum group has a unique maximal quantum subgroup
of Kac type (see [22]). We call it the canonical Kac subgroup of the quantum
group.
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Invariant subalgebras

A more general notion is that of an invariant subalgebra.

Definition 3.19. — Consider a compact quantum group G with co-
multiplication ∆. A right invariant subalgebra of G is a unital C∗-algebra
B ⊂ C(G) such that ∆(B) ⊂ B ⊗ C(G).

We can define an ergodic action δ of G on B by just restricting ∆ to B.
We get the following easy proposition.

Proposition 3.20. — Consider a compact quantum group G and a
right invariant subalgebra B of C(G). Denote the action of G on B by δ.
For all x ∈ Irred(G), mult(δ, x) 6 dim(x) and equality in all x is only
reached when B = C(G).

Proof. — Let x ∈ Irred(G). From the definition of a spectral subspace,
we get

Kx =
{
X ∈ Hx ⊗B | (id⊗∆)(X) = X12U

x
13
}
.

It is clear that

Kx ⊂ Kx :=
{
X ∈ Hx ⊗ C(G) | (id⊗∆)(X) = X12U

x
13
}

with Kx the spectral subspace of the comultiplication ∆. Now Kx
∼= Hx

where the bĳection is given by Hx → Kx : ξ 7→ (ξ∗ ⊗ 1)Ux. Then

mult(δ, x) = dim(Kx) 6 dim(Hx) = dim(x).

Equality for all x ∈ Irred(G) means that Kx = Kx, so Bx = C(G)x and
hence B = C(G). �

Quantum automorphism groups

In this section we consider a class of universal quantum groups, namely
the quantum automorphism groups as studied by Wang in [32] and Banica
in [6, 4]. We only consider C∗-algebras with a special kind of states.

Definition 3.21. — Let (D,ω) be a finite dimensional C∗-algebra of
dimension > 4 with a state. Denote by µ : D ⊗D → D the multiplication.
Take δ > 0. If for the inner product implemented by ω, µµ∗ = δ21, we call
ω a δ-form.
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If D is a matrix-algebra, every state is of the form Tr(F ·) and a δ-form
with δ2 = Tr(F−1). This can easily be checked by writing out µµ∗ in terms
of the orthonormal basis (eijF−

1
2 )i,j=1,...,n of D.

We can now give the definition of a quantum automorphism group:

Definition 3.22 ([4]). — Let (D,ω) be an finite-dimensional C∗-algebra
with a δ-form. We define the compact quantum group G = Aaut(D,ω) as
follows. G is defined by an action α : D → D ⊗ Cu(G) with the following
properties:

• Cu(G) is defined as the universal C∗-algebra generated by

{(ω ⊗ id)α(a) | ω ∈ D∗, a ∈ D} .

• Whenever β : D → D ⊗ Cu(G1) is an action of a compact quan-
tum group G1, there exists a unique *-homomorphism π : Cu(G)→
Cu(G1) satisfying β = (id⊗π)α.

Remark 3.23. — Let n = dim(D). In this article, we consider only the
cases where n > 4. In the cases n = 1, 2, 3, we just get the permutation
group Sn.

Representation Theory

In [6], Banica has determined the irreducible representations and their
fusion rules for all quantum automorphism groups.

If B and ω are as above, the fusion rules of Aaut(D,ω) are those of
SO(3). This means that the irreducible representations are labeled by N.
We choose Ui ∈ L(Hi)⊗C(Aaut(D,ω)) the representative of the irreducible
representation with label i in such a way that U0 is the trivial representation
ε and that U = U0 ⊕ U1 ∈ L(D) ⊗ C(Aaut(D,ω)) is the fundamental
representation. The fusion rules are given by:

Ui ⊗ Uj = U|i−j| + U|i−j|+1 + · · ·+ Ui+j .

4. Monoidal equivalence

General theory

The notion of monoidal equivalence was introduced in [7]. In this section,
we give an overview of the results we will need.
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Definition 4.1 (Def. 3.1 in [7]). — Two compact quantum groups G1 =
(C(G1),∆1) and G2 = (C(G2),∆2) are said to be monoidally equivalent
if there exists a bĳection ϕ : Irred(G1) → Irred(G2) satisfying ϕ(ε) = ε,
together with linear isomorphisms

ϕ : Mor(x1 ⊗ · · · ⊗ xr, y1 ⊗ · · · ⊗ yk)
−→ Mor(ϕ(x1)⊗ · · · ⊗ ϕ(xr), ϕ(y1)⊗ · · · ⊗ ϕ(yk))

satisfying the following conditions:

ϕ(1) = 1, ϕ(S ⊗ T ) = ϕ(S)⊗ ϕ(T ),
ϕ(S∗) = ϕ(S)∗, ϕ(ST ) = ϕ(S)ϕ(T )

whenever the formulas make sense. In the first formula, we consider 1 ∈
Mor(x, x) = Mor(x⊗ ε, x) = Mor(ε⊗ x, x). Such a collection of maps ϕ is
called a monoidal equivalence between G1 and G2.

By Theorem 3.9 and Proposition 3.13 of [7], we have the following fun-
damental result.

Theorem 4.2. — Let ϕ be a monoidal equivalence between compact
quantum groups G1 and G2.

• There exists, up to *-isomorphism, a unique unital *-algebra B
equipped with a faithful state ω and unitary elements
Xx ∈ B(Hx,Hϕ(x))⊗ B for all x ∈ Irred(G1), satisfying

1. Xy
13X

z
23(S ⊗ 1) = (ϕ(S)⊗ 1)Xx for all S ∈ Mor(y ⊗ z, x),

2. the matrix coefficients of the Xx form a linear basis of B,
3. (id⊗ω)(Xx) = 0 if x 6= ε.

• There exist unique commuting ergodic actions δ1 : B → B⊗algC(G1)
and δ2 : B → C(G2)⊗alg B satisfying

(id⊗δ1)(Xx) = Xx
12U

x
13 and (id⊗δ2)(Xx) = U

ϕ(x)
12 Xx

13

for all x ∈ Irred(G).
• The state ω is invariant under δ1 and δ2. Denoting by Br the C∗-

algebra generated by B in the GNS-representation associated with
ω and denoting by Bu the universal enveloping C∗-algebra of B, the
actions δ1, δ2 admit unique extensions to actions on Br and Bu.

This algebra B is called the link algebra of G1 and G2 under the monoidal
equivalence ϕ.

Note that in the case G = G1 = G2 and ϕ the identity map, we have
B = C(G) and Xx = Ux for every x ∈ Irred(G). The following unitary
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operator generalizes (2.5).

(4.1) X :=
⊕

x∈Irred(G)

Xx where X ∈
∏

x∈Irred(G)

(
L(Hx,Hϕ(x))⊗B

)
.

Proposition 4.3. — The invariant state ω is a KMS state on Br and
Bu and its modular group is determined by

(4.2) (id⊗σωt )(Xx) = (Qitϕ(x) ⊗ 1)Xx(Qitx ⊗ 1)

for every x ∈ Irred(G1).

Remark 4.4. — Define Bx :=
〈
(ωξ,η ⊗ id)(Xx) | ξ ∈ Hϕ(x), η ∈ Hx

〉
. Then,

as a vector space
B =

⊕
x∈Irred(G)

Bx.

Moreover, the Bx are exactly the spaces Bx in definition 3.4 coming from
the spectral subspaces of δ1 and δ2, while B is exactly the dense *-algebra
given in Definition 3.4.

The orthogonality relations (2.3) generalize and take the following form.

(id⊗ω)(Xx(ξ1η
∗
1 ⊗ 1)(Xy)∗) = δx,y1

dimq(x)
〈η1, Qxξ1〉,

(id⊗ω)((Xx)∗((ξ2η
∗
2 ⊗ 1)Xy) = δx,y1

dimq(x)
〈η2, Q

−1
ϕ(x)ξ2〉,

(4.3)

for ξ1 ∈ Hx, η1 ∈ Hy, ξ2 ∈ Hϕ(x) and η2 ∈ Hϕ(y).

Concrete examples

In this section, we investigate in a closer way monoidal equivalence for
specific quantum groups, namely the universal quantum groups Ao(F ) and
the quantum automorphism groups. The case of the quantum groups Ao(F )
was already studied in detail in [7]. If G1 = Ao(F1) and G2 = Ao(F2), the
following theorem gives a concrete expression of their link algebra.

Theorem 4.5 (Thms. 5.3 and 5.4 in [7]). — Let F1 ∈ Mn1(C) and
F2 ∈Mn2(C) such that F1F 1 = ±1 and F2F 2 = ±1.

• The compact quantum groups Ao(F1) and Ao(F2) are monoidally
equivalent iff F1F 1 and F2F 2 have the same sign and Tr(F ∗1 F1) =
Tr(F ∗2 F2).
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• Assume that Ao(F1) and Ao(F2) are monoidally equivalent. Denote
by Cu(Ao(F1, F2)) the universal unital C∗-algebra generated by the
coefficients of Y ∈ Mn2,n1(C) ⊗ Cu(Ao(F1, F2)) with relations Y
unitary and

Y = (F2 ⊗ 1)Y (F−1
1 ⊗ 1).

Then, Cu(Ao(F1, F2)) 6= 0 and there exists a unique pair of com-
muting universal ergodic actions, α1 of Ao(F1) and α2 of Ao(F2),
such that

(id⊗α1)(Y ) = Y12(U1)13 and (id⊗α2)(Y ) = (U2)12Y13.

Here, Ui denotes the fundamental representation of Ao(Fi).
• (Cu(Ao(F1, F2)), α1, α2) is isomorphic with the C∗-algebra Bu and

the actions thereon given by theorem 4.2.

Remark 4.6. — It is also true that any compact quantum group which
is monoidally equivalent with Ao(F ) where F ∈ GL(n,C) and FF = ±1 is
itself of the form of Ao(F1) where F1 ∈ GL(n1,C) and F1F1 = ±1. Even
more holds, Banica [1] showed that any quantum group with fusion rules
of SU(2) is of the form Ao(F ) where F ∈ GL(n,C) and FF = ±1.

Next, we obtain a concrete expression of the link algebra in the case
that G1 = Aaut(D1, ω1) and G2 = Aaut(D2, ω2). We prove the following
theorem.

Theorem 4.7. — Let D1 and D2 be finite dimensional C∗-algebras and
ω1 and ω2 respectively a δ1-form and a δ2-form on D1, respectively D2.

• The compact quantum groups

G1 = Aaut(D1, ω1) and G2 = Aaut(D2, ω2)

are monoidally equivalent if and only if δ1 = δ2.
• Suppose that Aaut(D1, ω1) and Aaut(D2, ω2) are monoidally

equivalent. Denote by Cu(Aaut((D1, ω1), (D2, ω2))) the universal
C∗-algebra generated by the matrix elements of a unital
*-homomorphism

γ : D1 −→ D2 ⊗ Cu(Aaut((D1, ω1), (D2, ω2)))

with relations (ω2 ⊗ id)γ(x) = ω1(x)1 for all x ∈ D1.
Then Cu(Aaut((D1, ω1), (D2, ω2))) 6= 0 and there exists a unique

pair of commuting ergodic actions of full quantum multiplicity α1
of Aaut(D1, ω1) and α2 of Aaut(D2, ω2), such that

(id⊗α1)γ = (γ ⊗ id)β1 and (id⊗α2)γ = (β2 ⊗ id)γ,
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where β1 : D1 → D1 ⊗ Cu(Aaut(D1, ω1)) and β2 : D2 → D2 ⊗
Cu(Aaut(D2, ω2)) are the actions of the quantum automorphism
groups.
• (Cu(Aaut((D1, ω1), (D2, ω2))), α1, α2) is isomorphic with the C∗-

algebra Bu and the actions thereon given by proposition 4.2.

Proof. — Denote by µ1, µ2 and η1, η2 the multiplication and unital map
of respectively D1 and D2. The proof of the first point goes as follows.
First suppose that δ1 = δ2. Take now U , respectively V the fundamen-
tal representation of Aaut(D1, ω1), respectively Aaut(D2, ω2) corresponding
to the actions of this quantum groups. Consider the graded C∗-algebras
(Mor(Um, Un))n,m and (Mor(V m, V n))n,m. We know from [6] that there is
an isomorphism π : (Mor(Un, Um))n,m → (Mor(V n, V m))n,m which satis-
fies π(µ1) = µ2 and π(η1) = η2 We now can work analogously to the case
of Ao(F ) that was covered in [7].

We now set Irred(G1) = N and Pn ∈ Mor(Un, Un) the unique projection
for which PnT = 0 for all r < n and all T ∈ Mor(Ur, Un). We define Un as
the restriction of Un to the image of Pn and identify

Mor(n1 ⊗ · · · ⊗ nr,m1 ⊗ · · · ⊗mk)

= (Pm1 ⊗ · · · ⊗ Pmk) Mor(Un1+···+nr , Um1+···+mk)(Pn1 ⊗ · · · ⊗ Pnr ).

Define now Hψ(n) := π(Pn)Dn
1 and define for S ∈ Mor(n1 ⊗ · · · ⊗ nr,

m1⊗· · ·⊗mk), ψ(S) by the restriction of π to Mor(n1⊗· · ·⊗nr,m1⊗· · ·⊗
mk). Then ψ is a unitary fiber functor which gives a monoidal equivalence
between G1 and G2.

Conversely, suppose that Aaut(D1, ω1) ∼
mon

Aaut(D2, ω2). Denote by u1,
respectively v1 the irreducible representation with label 1 of Aaut(D1, ω1)
and Aaut(D2, ω2). Then dimq(u1)1 = ω1µ1µ

∗
1ω
∗
1 = δ2

11 and because monoi-
dal equivalence preserves the quantum dimension, δ1 and δ2 must be equal.
This proves the first part of the theorem.

For the proof of the other parts of the theorem, we first make the follow-
ing observation. Consider two finite dimensional C∗-algebras (D1, ω1) and
(D2, ω2) with δ-forms and their quantum automorphism groups
Aaut(D1, ω1) := G1 and Aaut(D2, ω2) := G2. Denote now by Hi

1 = Di 	 C
and U1

i ∈ L(Hi
1) ⊗ C(Gi) for i = 1, 2 the representative of the irreducible

representation with label 1. Denote by θi ∈ Mor((U1
i ), (U1

i )2) and γi ∈
Mor(U0

i , (U1
i )2) the obvious "components" of the multiplication. From the

construction in the first part of the theorem, it follows that there is a
monoidal equivalence ϕ between G1 and G2 which sends θ1 and γ1, to θ2
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and γ2. If we further below talk about the monoidal equivalence between
Aaut(D1, ω1) and Aaut(D2, ω2), we will always mean this one.

We first remark that if Cu(Aaut((D1, ω1), (D2, ω2))) 6= 0, the actions are
given by universality. Indeed,

(γ ⊗ id)β1 : D1 −→ D2 ⊗ Cu(Aaut((D1, ω1), (D2, ω2)))⊗ Cu(Aaut(D1, ω1))

is a *-homomorphism which satisfies

(ω2 ⊗ id⊗ id)(γ ⊗ id)β1(x) = ω1(x)1

for x ∈ D1. So by universality, there exists a *-homomorphism

α1 : Cu(Aaut((D1, ω1), (D2, ω2)))
−→ Cu(Aaut((D1, ω1), (D2, ω2)))⊗ Cu(Aaut(D1, ω1))

satisfying (id⊗α1)γ = (γ ⊗ id)β1. Because β1 is an action and the coef-
ficients of γ generate Cu(Aaut((D1, ω1), (D2, ω2)), it follows that α1 is an
action. We define α2 in an analogous way.

Consider now the C∗-algebra Bu we get from the monoidal equivalence.
Denote by θi, γi the components of the multiplication of Di, i = 1, 2. As
we said above, we may suppose that the monoidal equivalence sends θ1 and
γ1 respectively to θ2 and γ2. Denote by Ui the irreducible representation
of Aaut(Di, ωi) with label 1. Because every irreducible representation is
contained in a tensor power of the one with label 1, the matrix coefficients of
X1 ∈ L(D1	C, D2	C)⊗Bu generate Bu as a C∗-algebra. By identification,
X1 provides us with a linear map

Γ: D1 	 C −→ (D2 	 C)⊗Bu

which we can easily extend to D1 by setting Γ(1) = 1. Because

X1(θ1 ⊗ 1) = (θ2 ⊗ 1)X1
13X

1
23 and (γ1 ⊗ 1) = (γ2 ⊗ 1)X1

13X
1
23,

Γ is multiplicative, obviously unital and ω1(x)1 = (ω2 ⊗ id)Γ(x). It also
preserves the involution because X23(γ∗1 ⊗ 1) = X∗13(γ∗2 ⊗ 1) and γ1 and γ2
implement the involution on respectively D1 and D2. By universality there
exists now a unital *-homomorphism

ρ : Cu(Aaut((D1, ω1), (D2, ω2))) −→ Bu

such that Γ = (id⊗ρ)γ. It is now left to show that ρ is an isomorphism.
Because γ satisfies the equation (ω2 ⊗ id)γ(x) = ω1(x)1, we can look at

the restriction of γ given by

γ : D1 	 C −→ (D2 	 C)⊗ Cu(Aaut((D1, ω1), (D2, ω2))).
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Denote by Y ∈ L ((D1 	 C), (D2 	 C))⊗ Cu (Aaut((D1, ω1), (D2, ω2))) the
element corresponding to this restricted *-homomorphism. This element
satisfies the equations

Y (θ1 ⊗ 1) = (θ2 ⊗ 1)Y13Y23 and γ1 ⊗ 1 = (γ2 ⊗ 1)Y13Y23

because γ is a unital homomorphism. Remark that Y is unitary because
γ also preserves the involution. Because the multiplication and the unital
map generate all the intertwiners of Aaut(Di, ωi), i = 1, 2, and so is also
true for θi and γi, it holds that

Y ⊗n(Pn ⊗ 1) = (Qn ⊗ 1)Y ⊗n

where Pn and Qn are the unique projections in respectively Mor(Un1 , Un1 )
and Mor(Un2 , Un2 ) on the irreducible representation with label n. Defining
σ such that (id⊗σ)(Xn) = Y ⊗n(Pn ⊗ 1), gives a unital *-homomorphism
with σρ = ρσ = id. �

Remark 4.8. — We can also prove that every compact quantum group G
which is monoidally equivalent to a quantum automorphism group
Aaut(D,ω) is isomorphic to another quantum automorphism group
Aaut(D1, ω1). It is to our best knowledge not clear if every compact quan-
tum group with the fusion rules of SO(3) is a quantum automorphism
group.

5. The Poisson boundary of a discrete quantum group

We give a brief survey of Izumi’s theory of Poisson boundaries for discrete
quantum groups.

Fix a discrete quantum group Ĝ.

Notation 5.1. — For every normal state φ ∈ `∞(Ĝ)∗, we define the
convolution operator

Pφ : `∞(Ĝ) −→ `∞(Ĝ) : Pφ(a) = (id⊗φ)∆̂(a).

We are only interested in special states φ ∈ `∞(Ĝ), motivated by the
following straightforward proposition. For every probability measure µ on
Irred(G), we set

ψµ =
∑

x∈Irred(G)

µ(x)ψx and Pµ := Pψµ .
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Recall that the states ψx are defined in notation 2.15. Note that we have a
convolution product µ ∗ ν on the measures on Irred(G), such that ψµ∗ν =
(ψµ ⊗ ψν)∆̂.

Proposition 5.2. — Let φ be a normal state on `∞(Ĝ). Then the fol-
lowing conditions are equivalent.

• φ has the form ψµ from some probability measure µ on Irred(G).
• The Markov operator Pφ preserves the center of `∞(Ĝ).
• φ is invariant under the adjoint action of G on `∞(Ĝ)

αG : `∞(Ĝ) −→ `∞(Ĝ)⊗L∞(G) : a 7−→ V(a⊗ 1)V∗.

Definition 5.3 ([13], Section 2.5). — Let µ be a probability measure
on Irred(G). Set

H∞(Ĝ, µ) =
{
a ∈ `∞(Ĝ) | Pµ(a) = a

}
.

Equipped with the product defined by

(5.1) a · b := w∗- lim
n−→∞

1
n

n∑
k=1

P kµ (ab),

and the involution, norm and σ-weak topology inherited from `∞(Ĝ), the
space H∞(Ĝ, µ) becomes a von Neumann algebra that we call the Poisson
boundary of Ĝ with respect to µ.

Terminology 5.4. — A probability measure µ on Irred(G) is called ge-
nerating if there exists, for every x∈ Irred(G), an n>1 such that µ∗n(x) 6=0.

Remark 5.5. — The restriction of the co-unit ε̂ yields a state on
H∞(Ĝ, µ), called the harmonic state. This state is faithful when µ is gen-
erating. In what follows, we always assume that µ is generating.

Definition 5.6. — Let µ be a generating measure on Irred(G). The
Poisson boundary H∞(Ĝ, µ) comes equipped with two natural actions, one
of G and one of Ĝ:

αG : H∞(Ĝ, µ) −→ H∞(Ĝ, µ)⊗L∞(G) : αG(a) = V(a⊗ 1)V∗,

αĜ : H∞(Ĝ, µ) −→ `∞(Ĝ)⊗H∞(Ĝ, µ) : αĜ(a) = ∆̂(a).

Note that αG is the restriction of the adjoint action of G on `∞(Ĝ), while
αĜ is nothing else than the restriction of the comultiplication. The maps
αG and αĜ are well defined because of the following equivariance formulae:

(5.2) (id⊗Pµ)(∆̂(a)) = ∆̂(Pµ(a)) and (Pµ ⊗ id)(αG(a)) = αG(Pµ(a)).
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Remark 5.7. — With the product defined by formula (5.1), the map-
pings αG and αĜ are multiplicative. This follows from the equivariance
formulae (5.2). Hence αG and αĜ are actions on H∞(Ĝ, µ). Because

(ε̂⊗ id)αG(a) = (ε̂⊗ id)(V(a⊗ 1)V∗) = ε̂(a)1,

we see that ε̂ is an invariant state for the action

αG : H∞(Ĝ, µ) −→ H∞(Ĝ, µ)⊗ L∞(G).

Remark 5.8. — When Ĝ is a discrete group, the action αG is the trivial
action on `∞(Ĝ). In general, the fixed point algebra of αG is precisely
the algebra of central harmonic elements Z(`∞(Ĝ))∩H∞(Ĝ, µ). Since the
Markov operator Pµ preserves the center Z(`∞(Ĝ)), the commutative von
Neumann algebra Z(`∞(Ĝ))∩H∞(Ĝ, µ) with state ε̂, is exactly the Poisson
boundary for the random walk on Irred(G) with transition probabilities
p(x, y) and n-step transition probabilities pn(x, y) given by

(5.3) pxp(x, y) = pxPµ(py), pxpn(x, y) = pxP
n
µ (py).

Note that pn(e, y) = µ∗n(y) = ψ∗nµ (py).
So, the action αG is ergodic if and only if there are no non-trivial central

harmonic elements.

6. The Martin boundary of a discrete quantum group

The Martin boundary and the Martin compactification of a discrete
quantum group have been defined by Neshveyev and Tuset in [19]. Fix
a discrete quantum group Ĝ and a probability measure µ on Irred(G). We
have an associated Markov operator Pµ and a classical random walk on
Irred(G) with n-step transition probabilities given by (5.3).

Definition 6.1. — The probability measure µ on Irred(G) is said to
be transient if

∑∞
n=0 pn(x, y) <∞ for all x, y ∈ Irred(G).

We suppose throughout that µ is a generating measure and that µ is
transient.

Denote by cc(Ĝ) ⊂ c0(Ĝ) the algebraic direct sum of the algebras L(Hx).
We define, for a ∈ cc(Ĝ),

Gµ(a) =
∞∑
n=0

Pnµ (a).

Observe that usually Gµ(a) is unbounded, but it makes sense in the mul-
tiplier algebra of cc(Ĝ), i.e. Gµ(a)px ∈ L(Hx) makes sense for every x ∈
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Irred(G) because µ is transient. Moreover, Gµ(pε) is strictly positive and
central. This allows to define the Martin kernel as follows.

Whenever µ is a measure on Irred(G), we use the notation µ to denote
the measure given by µ(x) = µ(x).

Definition 6.2 (Defs. 3.1 and 3.2 in [19]). — Define

Kµ : cc(Ĝ) −→ `∞(Ĝ) : Kµ(a) = Gµ(a)Gµ(pε)−1.

Define the Martin compactification Ãµ as the C∗-subalgebra of `∞(Ĝ) gen-
erated by Kµ(cc(Ĝ)) and c0(Ĝ). Define the Martin boundary Aµ as the
quotient Ãµ/c0(Ĝ).

By Theorem 3.5 in [19], the adjoint action αG and the comultiplication
∆̂ define, by restriction

(6.1) αG : Ãµ −→ Ãµ ⊗ C(G) and αĜ : Ãµ −→ M(c0(Ĝ)⊗ Ãµ).

By passing to the quotient, we get the following actions on the Martin
boundary.

(6.2) γG : Aµ −→ Aµ ⊗ C(G) and γĜ : Aµ −→ M(c0(Ĝ)⊗Aµ).

Remark 6.3. — The actions αG and γG are reduced.

7. The correspondence between the actions of monoidally
equivalent quantum groups

In this section, we prove that there is a bĳective correspondence between
actions of monoidally equivalent compact quantum groups. Moreover, this
correspondence preserves the spectral properties of the actions.

7.1. Construction of the bĳective correspondence

Notation 7.1. — Consider two compact quantum groups G1 and G2
and a *-algebra B on which there exist two commuting actions δ1 : B →
C(G1) ⊗alg B and δ2 : B → B ⊗alg C(G2). Given an action α : D → D ⊗alg
C(G1), we define

D �α
alg B := {a ∈ D ⊗alg B | (α⊗ id)(a) = (id⊗δ1)(a)} .

When we consider everything on the von Neumann algebraic level, we de-
note in the same way

D �α B := {a ∈ D⊗B | (α⊗ id)(a) = (id⊗δ1)(a)} .

TOME 60 (2010), FASCICULE 1



194 An DE RĲDT & Nikolas VANDER VENNET

Also, if D is a C∗-algebra with reduced action α on it, then we denote
D �α

red B as the norm closure of D �α
alg B in D �α B.

Lemma 7.2. — The restriction of id⊗δ2 to D �α
alg B gives an action of

G2 on D �α
alg B. We denote this action by id �δ2.

Proof. — From the following easy calculation, one can see that D�α1
alg B

is invariant under the action id⊗δ2.

(α⊗ id⊗ id)(id⊗δ2)(a) = (id⊗ id⊗δ2)(α⊗ id)(a)
= (id⊗ id⊗δ2)(id⊗δ1)(a)
= (id⊗δ1 ⊗ id)(id⊗δ2)(a)

The last step is valid because δ1 and δ2 commute. Hence id �δ2 is a well
defined action of G2 on D �α

alg B. �

Consider two monoidally equivalent compact quantum groups G1 and
G2 and a C∗-algebra D1. Suppose we have an action α1 : D1 → D1 ⊗
C(G1). As we stated in remark 2.11 and remark 3.9 , the underlying Hopf*-
algebra action carries all the relevant information. This means that we
can work with this underlying Hopf *-algebra action α1 : D1 → D1 ⊗alg
C(G1). Consider a monoidal equivalence ϕ : G2 → G1. Note that we have
exchanged the roles of G1 and G2. This will turn out to be more convenient
in what follows. From theorem 4.2, we get a link algebra B, unitaries Xx ∈
L(Hx,Hϕ(x))⊗alg B and two commuting ergodic actions

δ1 : B −→ C(G1)⊗alg B and δ2 : B −→ B ⊗alg C(G2)

given by

(7.1) (id⊗δ1)(Xx) = U
ϕ(x)
12 Xx

13 and (id⊗δ2)(Xx) = Xx
12U

x
13.

The following theorem enables us to construct an action of G2 with the
same spectral structure as α1.

Theorem 7.3. — The action α2 := id �δ2 of G2 on D2 := D1 �α1
alg B

has the following properties:
• a 7→ a ⊗ 1 is a *-isomorphism between the fixed point algebras of
α1 and α2.
• The map Tx : Kϕ(x) → Kx : v 7→ v12X

x
13 is a bimodular isomor-

phism between the spectral subspaces of α1 and α2. Moreover, T is
a unitary element of L(Kϕ(x),Kx) for the inner products 〈·, ·〉l and
〈·, ·〉r defined by formulae (3.1) and (3.2).
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• The set (Tx)x∈Irred(G2) respects the monoidal structure in the sense
that for x, y, z ∈ Irred(G2) and V ∈ Mor(x⊗ y, z)

Tx(X)13Ty(Y )23(V ⊗ 1) = Tz (X13Y23(ϕ(V )⊗ 1))

for all X ∈ Kϕ(x), Y ∈ Kϕ(y).
• Suppose that α1 is an ergodic action. Then the action α2 as defined

above is also an ergodic action. Moreover for all x ∈ Irred(G2),
multq(x) = multq(ϕ(x)).

Proof. — Suppose that α2(a) = a ⊗ 1 for a ∈ D2. This means that
(id⊗δ2)(a) = a ⊗ 1. By ergodicity of δ2 there exists a b ∈ D1 such that
a = b⊗ 1. But because (α1 ⊗ id)(a) = (id⊗δ1)(a), it follows that b ∈ Dα1

1 .
So the map Dα1

1 → D
α2
2 : b 7→ b⊗ 1 is a *-isomorphism.

We now prove that the spectral subspaces of α1 and α2 are isomor-
phic as Dα1

1 -bimodules. Denote by Kϕ(x) and Kx the spectral subspaces of
respectively α1 and α2 for the representation ϕ(x), respectively x. From
remark 3.3, we know that the spectral subspaces have a natural bimodule
structure over the fixed point algebra. We claim that the map

T : Kϕ(x) −→ Kx : v 7−→ v12X
x
13

is the bimodule isomorphism we are looking for. If v ∈ Kϕ(x), then

(id⊗α1 ⊗ id)T (v) = v12U
ϕ(x)
13 Xx

14 = (id⊗ id⊗δ1)T (v)

by definition 3.2 of the spectral subspace Kϕ(x) and the properties of Xx,
so T (v) ∈ Hx ⊗D2. Moreover, it is obvious that

(id⊗α2)T (v) = (id⊗ id⊗δ2)T (v) = v12X
x
13U

x
14,

which means T (v) ∈ Kx. TheDα1
1 -bilinearity of T is clear. Consider now the

spectral subspaces Kx and Kϕ(x) as equipped with the left inner product
as in (3.1). We show that T is a unitary element of L(Kϕ(x),Kx) for this
inner product and obtain in this way that T actually gives an isomorphism
between Kϕ(x) and Kx. Consider the map S : Kx → Hϕ(x) ⊗D1 ⊗B : w 7→
w(Xx

13)∗. If w ∈ Kx, then

(id⊗ id⊗δ2)S(w) = (id⊗α2)(w)(id⊗ id⊗δ2)(Xx
13)∗

= (w ⊗ 1)Ux14(Ux14)∗(Xx
13)∗ = S(w)⊗ 1.

So, by ergodicity of δ2, we may conclude that S(w) ∈ Hϕ(x) ⊗D1 ⊗ C.
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Because w has its second leg in D2, we get that

(id⊗α1 ⊗ id)S(w) = (id⊗ id⊗δ1)(w)(Xx
14)∗

= (id⊗ id⊗δ1)(w(Xx
13)∗)Uϕ(x)

13

= (id⊗ id⊗δ1)(S(w))Uϕ(x)
13 .

But we just proved that the third leg of S(w) is scalar, so the last ex-
pression is nothing else than (S(w) ⊗ 1)Uϕ(x)

13 . Thus, by the definition of
Kϕ(x), we get that S : Kx → Kϕ(x) ⊗ C.

For every v ∈ Kϕ(x) and w ∈ Kx, we have that

〈T (v), w〉l = T (v)w∗ = v12X
x
13w

∗ = v12S(w)∗ = 〈v, S(w)〉l.

So, S is actually the adjoint T ∗ of T in the sense of Hilbert C∗-modules.
Moreover, it is trivial that T ∗T = 1 = TT ∗. Hence T ∈ L(Kϕ(x),Kx) is
unitary for 〈·, ·〉l.

Next, we show that T is also a unitary element of L(Kϕ(x),Kx) for
the right Hilbert C*-module structure given by (3.2). From proposition 3.5
of [16], it suffices to show that T is isometric and surjective. The surjectivity
follows from above. We use the orthogonality relations (2.3) and (4.3) for
Ux and Xx to prove that T is indeed an isometry.

First notice that the conditional expectation E2 : D2 → Dα2
2 is nothing

else than the map a 7→ (id⊗ω)(a)⊗ 1, where ω is the invariant state for δ1
and δ2. Indeed, for a ∈ D2,

E2(a) = (id⊗h2)α2(a) = (id⊗ id⊗h2)(id⊗δ2)(a) = (id⊗ω)(a)⊗ 1.

Consider now v ∈ Kϕ(x). On the one hand, we have that

1⊗ 〈T (v), T (v)〉r = (id⊗E2)((Xx
13)∗v∗12v12X

x
13)

= (id⊗ id⊗ω)((Xx
13)∗v∗12v12X

x
13)⊗ 1

= 1
dimq(x)

(1⊗ (Tr⊗ id)((Q−1
ϕ(x) ⊗ 1)v∗v)⊗ 1)

because of the orthogonality relations for Xx.
On the other hand

1⊗ 〈v, v〉r = (id⊗E1)(v∗v) = (id⊗ id⊗h1)(id⊗α1)(v∗v)
= (id⊗ id⊗h1)((Ux13)∗v∗12v12U

x
13)

= 1
dimq(x)

(1⊗ (Tr⊗ id)((Q−1
ϕ(x) ⊗ 1)v∗v)),
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where in the last step we used the orthogonality relations for Ux. Consid-
ering the map Dα1

1 → D
α2
2 : a 7→ a⊗ 1, the calculations above show that T

is indeed isometric and hence unitary.
We now show that (Tx)x∈Irred(G2) preserves the monoidal structure. Take

v ∈ Kϕ(x), w ∈ Kϕ(y) and V ∈ Mor(x⊗ y, z). We calculate that

Tx(v)13Ty(w)23(V ⊗ 1) = v13X
x
14w23X

y
24(V ⊗ 1)

= v13w23(ϕ(V )⊗ 1)Xz
13 = Tz(v13w23(ϕ(V )⊗ 1)),

which proves the statement.
Finally, we prove the fourth part of the theorem. Recall the operators

from formula (3.3).

Rϕ(x) : v 7−→ (ϕ(t)∗ ⊗ 1)(1⊗ v∗) and Lϕ(x) = R∗ϕ(x)Rϕ(x)

with v ∈ Kϕ(x) and

Rx : w 7−→ (t∗ ⊗ 1)(1⊗ w∗) and Lx = R∗xRx

with w ∈ Kx. Then

〈v, Lϕ(x)w〉1 = 〈Rϕ(x)v,Rϕ(x)w〉1
= 〈(ϕ(t)∗ ⊗ 1)(1⊗ v∗), (ϕ(t)∗ ⊗ 1)(1⊗ w∗)〉
= (ϕ(t)∗ ⊗ 1)(1⊗ w∗v)(ϕ(t)⊗ 1)

where v, w ∈ Kϕ(x). Remember the isomorphism Tx : Kϕ(x) → Kx : v 7→
v12X

x
13. Then:

〈v12X
x
13, Lxw12X

x
13〉1 = 〈Rxv12X

x
13, Rxw12X

x
13〉1

= (t∗ ⊗ 1)(1⊗ (w12X
x
13)∗(v12X

x
13))(t⊗ 1)

= (t∗ ⊗ 1⊗ 1)((Xx
24)∗w∗23v23X

x
24)(t⊗ 1⊗ 1)

= (ϕ(t)∗ ⊗ 1⊗ 1)(Xx
14w

∗
23v23(Xx

14)∗)(ϕ(t)⊗ 1⊗ 1)
= (ϕ(t)∗ ⊗ 1⊗ 1)(w∗23v23)(ϕ(t)⊗ 1⊗ 1)
= (ϕ(t)∗ ⊗ 1)(1⊗ w∗v)(ϕ(t)⊗ 1)⊗ 1.

In this calculation, we have used that Xx
13X

x
23(t ⊗ 1) = ϕ(t) ⊗ 1. This

follows from the fact that t ∈ Mor(x ⊗ x, ε). Again considering the map
Dα1

1 → D
α2
2 : a 7→ a⊗1, we get that Tx intertwines Lx and Lϕ(x). It follows

trivially from the definition 3.6 of quantum multiplicity that both quantum
multiplicities are the same. This completes the proof of the theorem. �

Remark 7.4. — It seems that the statement of the theorem cannot im-
mediately be formulated on the C∗-algebraic level. If we define D2 = {a ∈
D1 ⊗B | (α1 ⊗ id)(a) = id⊗δ1)(a)}, as we did before for the algebraic and

TOME 60 (2010), FASCICULE 1



198 An DE RĲDT & Nikolas VANDER VENNET

the von Neumann algebraic case, it is not clear that α2 = id⊗δ2 goes into
D2 ⊗ C(G2).

However, for von Neumann algebras, there is no problem. Suppose that
α1 : D1 → D1⊗L∞(G) is a von Neumann algebraic action and take the
notations as before, where we now take the von Neumann algebraic link-
algebra B = (B, ω)′′. Here it does hold that (id⊗δ2)(D1 �α1 B) ⊂ D1 �α1

B⊗L∞(G2), as we only need to check that (id⊗ id⊗µ)(id⊗δ2)(a) ∈ D1�α1

B for all a ∈ D1 �α1 B and µ ∈ (L∞(G2))∗. For C∗-algebras, this argument
is not valid.

Claim. — The algebra D2 := D1 �α1
alg B as defined in theorem 7.3 is

precisely the spectral subalgebra of (D1 �α1 B, id �δ2).

Proof. — Denote by D̃2 the spectral subalgebra of (D1 �α1 B, id �δ2). It
is clear that D1 �α1

alg B ⊂ D̃2.
On the other hand,

D̃2 = 〈(id⊗h)((id �δ2)(a)(1⊗b)) | a ∈ D1�α1B, b ∈ C(G2)x, x ∈ Irred(G)〉.

Because the elements of D̃2 of course sit in D1 �α1 B, it is sufficient to
prove that D̃2 ⊂ D1 ⊗alg B.

If a ∈ D1 �α1 B, b ∈ C(G2)x and x ∈ Irred(G2), then (id⊗h)((id �δ2)(a)
(1⊗ b)) belongs to the strongly closed linear span of

{(id⊗ id⊗h)((a⊗ δ2(d))(1⊗ 1⊗ b)) | a ∈ D1, d ∈ B, b ∈ C(G2)x}
⊂ D1 ⊗alg Bx.

Since Bx is finite dimensional, D1 ⊗alg Bx is already strongly closed in
D1⊗B. Hence c := (id⊗h)((id �δ2)(a)(1 ⊗ b)) ∈ D1 ⊗alg Bx for all a ∈
D1 �α1 B and b ∈ C(G2)x. On the other hand, (α1 ⊗ id)(c) = (id⊗δ1)(c),
which implies that c ∈ (D1)x⊗alg Bx ⊂ D1⊗alg B. This ends the proof. �

We can start from the comultiplication on G1 and apply the above con-
struction. It is not surprising that we end up with the link algebra and the
action δ2.

Proposition 7.5. — Consider two monoidally equivalent compact
quantum groups G1 and G2. Then there exists a *-isomorphism between
C(G1) �∆1

alg B and the link algebra B. Moreover, this *-isomorphism inter-
twines the action id �δ2 with the action δ2.

Proof. — We claim that δ1 : B → C(G1) �∆1
alg B is the desired *-isomor-

phism. From the definition of δ1, it follows that δ1 : B → C(G1)⊗alg B is an
injective *-homomorphism. The image of δ1 is contained in C(G1) �∆1

alg B
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because δ1 is an action. Moreover, if a ∈ C(G1) �∆1
alg B and ε1 is the co-unit

on C(G1), then

δ1((ε1 ⊗ id)(a)) = (ε1 ⊗ id⊗ id)(∆1 ⊗ id)(a) = a

which means that δ1(B) = C(G1) �∆1
alg B. So δ1 is also surjective.

Because δ1 and δ2 commute, it is clear that this *-isomorphism inter-
twines the actions δ2 and id �δ2. �

Now we consider the inverse monoidal equivalence ϕ−1 : G1 → G2. Ac-
cording to theorem 4.2, we obtain the link algebra B̃ generated by the
coefficients of unitary elements Y x ∈ L(Hϕ(x),Hx)⊗alg B̃ and two commu-
ting ergodic actions

γ2 : B̃ −→ C(G2)⊗alg B̃ and γ1 : B̃ −→ B̃ ⊗alg C(G1)

with

(7.2) (id⊗γ2)(Y x) = Ux12Y
x

13 and (id⊗γ1)(Y x) = Y x12U
ϕ(x)
13 .

Denote by ω̃ the invariant state on B̃. Then we get the following proposition.

Proposition 7.6. — Consider two monoidally equivalent compact
quantum groups G1 and G2. Then we obtain a *-isomorphism π : C(G2)→
B̃�γ1

alg B. This *-isomorphism intertwines the comultiplication ∆2 with the
action id �δ2.

Proof. — We define the linear map π : C(G2)→ B̃ ⊗ B where

(id⊗π)(Ux) = Y x12X
x
13.

Because

(id⊗γ1 ⊗ id)(Y x12X
x
13) = Y x12U

ϕ(x)
13 Xx

14 = (id⊗ id⊗δ1)(Y x12X
x
13),

the image of π lies in B̃ �γ1
alg B.

Consider x, y, z ∈ Irred(G2) and take T ∈ Mor(x⊗ y, z). The multiplica-
tivity of π follows from the following calculation:

(id⊗π)(Ux13U
y
23(T ⊗ 1)) = (id⊗π)((T ⊗ 1)Uz) = (T ⊗ 1⊗ 1)(Y z12X

z
13)

= Y x13Y
y

23(ϕ(T )⊗ 1⊗ 1)Xz
13

= Y x13Y
y

23X
x
14X

y
24(T ⊗ 1⊗ 1)

= (id⊗π)(Ux)134(id⊗π)(Uy)234(T ⊗ 1⊗ 1).

Take now tx ∈ Mor(x⊗ x, ε). Because

Ux13U
x
23(tx ⊗ 1) = tx ⊗ 1,

it follows that
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(id⊗ id⊗π)(Ux13
∗(tx ⊗ 1)) = (id⊗ id⊗π)

(
Ux23(tx ⊗ 1)

)
= Y x23X

x
24(tx ⊗ 1⊗ 1)

= Y x23X
x
14
∗(ϕ(tx)⊗ 1⊗ 1)

= Xx
14
∗Y x13

∗(tx ⊗ 1⊗ 1).

This proves that π also passes trough the involution, so it is a *-homo-
morphism. We now show that this map is the desired *-isomorphism.

First we prove the injectivity. It is easy to show that (ω̃⊗ω)π = h, with h
the Haar measure of C(G2). Suppose now that for an a ∈ C(G2), π(a) = 0.
Then also π(a∗a) = 0, which means that also h(a∗a) = 0. But h is faithful
on C(G2), so a = 0.

To prove the surjectivity of π, we have to take a closer look at the ele-
ments of B̃ �γ1

alg B. From definition 3.4, we get that

B =
⊕

x∈Irred(G1)

Bx and B̃ =
⊕

x∈Irred(G1)

B̃x

where δ1(Bx) ⊆ C(G1)x ⊗alg Bx and γ1(B̃x) ⊆ B̃x ⊗alg C(G1)x. Suppose
b ∈ B̃ �γ1

alg B. We claim that b ∈
⊕

x∈Irred(G1) B̃x ⊗alg Bx. First notice that

B̃ ⊗alg B =
⊕

x,y∈Irred(G1)

B̃x ⊗alg By.

So b =
∑
bxy with bxy ∈ B̃x ⊗alg By. Since δ1(By) ⊆ C(G1)x ⊗alg By and

γ1(B̃x) ⊆ B̃x ⊗alg C(G1)x, it follows that bxy = 0 if x 6= y.
So we only need to prove that π(C(G2)x) = B̃x �γ1

alg Bx,
Therefore, remember the formulas (id⊗γ1)(Y x) = Y x12U

ϕ(x)
13 and

(id⊗δ1)(Xx) = U
ϕ(x)
12 Xx

13 where Y x ∈ L(Hϕ(x),Hx) ⊗alg B̃x and Xx ∈
L(Hx,Hϕ(x))⊗alg Bx.

We know that a basis of Bx (resp. B̃x) is given respectively by ele-
ments of the form (ω

ẽkx ,elx
⊗ id)(Xx) and (ω

elx ,ẽkx
⊗ id)(Y x) with ẽkx ,

kx ∈ {1, . . . ,dim(ϕ(x))} an orthonormal basis in Hϕ(x) and elx , lx ∈
{1, . . . ,dim(x)} an orthonormal basis in Hx. Denote (ω

ẽkx ,elx
⊗ id)(Xx) :=

bkx,lx and (ω
elx ,ẽkx

⊗ id)(Y x) := b̃lx,kx . We also have a basis for C(G2)x
given by (ωekx ,elx ⊗ id)(Ux), again with ekx , kx ∈ {1, . . . ,dim(x)} an or-
thonormal basis in Hx. Denote by (ωekx ,elx ⊗ id)(Ux) := ukx,lx . In the
following, we drop the subscript x. With these notations, we get that
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γ1(b̃kl) =
dim(ϕ(x))∑

p=1
b̃kp ⊗ upl and δ1(bij) =

dim(ϕ(x))∑
q=1

uiq ⊗ xqj

and

π(ukj) =
dim(ϕ(x))∑

l=1
b̃kl ⊗ blj .

An arbitrary element of Bx ⊗alg B̃x has the form

a =
∑
klij

λkjli b̃kl ⊗ bij .

We get that
(γ1 ⊗ id)(a) =

∑
klijp

λkjli b̃kp ⊗ upl ⊗ bij

equals
(id⊗δ1)(a) =

∑
klijq

λkjli b̃kl ⊗ uiq ⊗ bqj .

From this equality, we immediately see that λkjli = 0 if l 6= i. We have also
that λkjll = λkjpp for all k, l, j, p. Indeed, the above equality provides us with
the following equalities:∑

lq

λkjll b̃kl ⊗ ulq ⊗ bqj =
∑
lp

λkjll b̃kp ⊗ upl ⊗ blj

for every k, j. This can only happen when λkjll = λkj for every l ∈ {1, . . . ,
dim(Hϕ(x))}. So a ∈ B̃x �γ1

alg Bx has the form

a =
∑
kj

λkj

dim(ϕ(x))∑
l=1

b̃kl ⊗ blj


which is a linear combination of the π(ukj). This proves the surjectivity
of π.

Moreover

(id⊗π ⊗ id)(id⊗∆2)(Ux) = (id⊗π ⊗ id)(Ux12U
x
13)

= Y x12X
x
13U

x
14 = (id⊗(id⊗δ2)π)(Ux),

so the action id �δ2 indeed corresponds to the comultiplication on G2. �

A combination of the two previous propositions now enables us to prove
the reversibility of our construction.
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Proposition 7.7. — Consider two monoidally equivalent compact
quantum groups G1 and G2 and suppose also that α1 : D1 → D1 ⊗ C(G1)
is an action. Then D1 and (D1 �α1

alg B) �α2
alg B̃ are *-isomorphic. Moreover,

this *-isomorphism intertwines the actions

α1 and α′1 = (id⊗ id⊗γ1) |(D1�α1
algB)�α2

algB̃
.

Proof. — In exactly the same way as in proposition 7.6, we can prove
that C(G1) is *-isomorphic to B �δ2

alg B̃. In this case, the *-isomorphism is
given by π : C(G1) → B �δ2

alg B̃ where (id⊗π)(Uϕ(x)) = Xx
12Y

x
13. Also in

the same way, we can prove that π intertwines the actions δ1 ⊗ id |B�δ2
algB̃

and ∆1. From this, we get that (D1 �α1
alg B) �α2

alg B̃ is isomorphic to

D′′1 := {a ∈ D1 ⊗alg C(G1) | (α1 ⊗ id)(a) = (id⊗∆1)(a)} .

From the calculation

(id⊗π ⊗ id)(id⊗∆1)(Uϕ(x)) = (id⊗π ⊗ id)(Uϕ(x)
12 U

ϕ(x)
13 ) = Xx

12Y
x

13U
ϕ(x)
14

= (id⊗ id⊗γ1)(id⊗π)(Uϕ(x)),

it follows that (id⊗ id⊗γ1) |(D1�α1
algB)�α2

algB̃
is equivalent with id⊗∆1 |D′′1

under the *-isomorphism id⊗π.
In the same way as in proposition 7.5, we see that α1 : D1 → D′′1 is a *-

isomorphism. It is obvious that this *-isomorphism intertwines the actions
id⊗∆1 |D′′1 and α1. Thus we get that

(7.3) (id⊗π) ◦ α1 : D1 −→ (D1 �α1
alg B) �α2

alg B̃

is a *-isomorphism and that it intertwines

α1 and α′1 = (id⊗ id⊗γ1) |(D1�α1
algB)�α2

algB̃
.

This concludes the proof. �

Remark 7.8. — Theorem 7.3 and proposition 7.7 show that the assign-
ment D1 → D1 �α1

alg B and α1 → id �δ2 yields a bĳective correspondence
between actions of G1 and actions of G2 (up to conjugacy).

7.2. Special cases

The case where D1 is a homogeneous space

Suppose we are given two monoidally equivalent compact quantum
groups G1 and G2 with monoidal equivalence ϕ : G2 → G1. Denote by δ1
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and δ2 again the ergodic actions of full quantum multiplicity on the corre-
sponding link-algebra B as in formula (7.1). Consider a quantum subgroup
H1 of G1 and the corresponding action

∆H1rG1 : C(H1 r G1) −→ C(H1 r G1)⊗ C(G1)

on the homogeneous space.
To a homogeneous space of a compact quantum group, naturally there

corresponds a homogeneous space of the link algebra.

Definition 7.9. — We define the homogeneous space BH1 by

BH1 := {a ∈ B | (rH1 ⊗ id)δ1(a) = 1⊗ a}.

Note that δ2 is an action on BH1 because δ1 and δ2 commute.

Proposition 7.10. — There is a *-isomorphism between C(H1r
G1) �

∆H1rG1
alg B and BH1 . Moreover, this *-isomorphism intertwines the ac-

tion id �δ2 with the restriction of δ2 to BH1 .

Proof. — We prove, as in proposition 7.5, that

δ1 : BH1 −→ C(H1 r G1) �
∆H1rG1
alg B

is a *-isomorphism. Because

(rH1 ⊗ id)(∆H1rG1 ⊗ id)δ1(a) = (rH1 ⊗ id)(id⊗δ1)δ1(a)
= (id⊗δ1)(1⊗ a) = 1⊗ δ1(a),

we get that δ1(BH1) ⊆ C(H1 r G1) �
∆H1rG1
alg B. The injectivity of δ1 is clear.

The surjectivity follows from the fact that for a ∈ C(H1 r G1) �
∆H1rG1
alg B,

δ1(ε⊗ id)(a) = (ε⊗ id⊗ id)(id⊗δ1)(a)(7.4)
= (ε⊗ id⊗ id)(∆H1rG1 ⊗ id)(a) = a

and

(rH1 ⊗ id)δ1(ε⊗ id)(a) = (rH1 ⊗ id)(a) = (ε⊗ id)(a),

where in the last step we used lemma 3.17. Because δ1 and δ2 commute, δ1
intertwines id �δ2 with the restriction of δ2 to BH1 . This ends the proof. �
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The case where α1 is the adjoint action αG1

We now look at the special case where we are dealing with the adjoint
action, introduced in section 5:

αG1 : `∞(Ĝ1) −→ `∞(Ĝ1)⊗L∞(G1) : αG1(a) = V1(a⊗ 1)V∗1.

We get the following proposition:

Proposition 7.11. — The mapping

(7.5) ρ : `∞(Ĝ2) −→ `∞(Ĝ1) �αG1 B : ρ(b) = X(b⊗ 1)X∗

is a *-isomorphism. Moreover, this *-isomorphism intertwines the action
id �δ2 with the adjoint action αG2 on `∞(Ĝ2). We also have that

ρ : L(Hx) −→ L(Hϕ(x)) �
αG1
alg B

is a *-isomorphism.

Proof. — The following calculation

(id⊗δ1)(X(b⊗ 1)X∗) = (V1)12X13(b⊗ 1⊗ 1)X∗13(V1)∗12

= (αG1 ⊗ id)(X(b⊗ 1)X∗)

shows that ρ : `∞(Ĝ2)→ `∞(Ĝ1) �αG1 B is an injective *-homomorphism.
For every a ∈ `∞(Ĝ1) �αG1 B, we have that

(id⊗δ1)(X∗aX) = X∗13(V1)∗12(id⊗δ1)(a)(V1)12X13

= X∗13(V1)∗12(αG1 ⊗ id)(a)(V1)12X13 = (X∗aX)13.

Because δ1 is ergodic, it follows that X∗aX = y⊗ 1 with y ∈ `∞(Ĝ2). From
this; we get that for every a ∈ `∞(Ĝ1) �αG1 B there exists an y ∈ `∞(Ĝ2)
such that a = X(y⊗ 1)X∗. This proves the surjectivity of ρ. Note that ρ−1

is given by ρ−1(a) = (id⊗ω)(X∗aX) for every a ∈ `∞(Ĝ1) �αG1 B.
We prove now that (id �δ2) ◦ ρ = (ρ ⊗ id) ◦ αG2 . This follows from the

following calculation

(id �δ2)(ρ(b)) = (id⊗δ2)(X(b⊗ 1)X∗)
= X12(V2)13(b⊗ 1⊗ 1)(V2)∗13X∗12 = (ρ⊗ id)(αG2(b)).

It is also immediately clear that ρ sends L(Hx) to L(Hϕ(x)) �
αG1
alg B and

that ρ−1 sends L(Hϕ(x)) �
αG1
alg B to L(Hx). This completes the proof. �

Remark 7.12. — This result suggest strongly that Poisson and Martin
boundaries of G2 are related to the bĳective construction obtained in this
section. In the next two sections, we show that this is indeed the case.
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We conclude this section with an important remark about minimal ac-
tions of compact quantum groups and their applications to subfactors
[3], [5]. An action is minimal if M ∩ (Mα)′ = C1 and if a faithfulness
condition hold. By this, we mean that the irreducible representations con-
tained in α must generate Irred(G). Suppose we start with a minimal action
α on a von Neumann algebra M . It follows from theorem 7.3 that the faith-
fulness condition holds also for id �δ2. Again, from theorem 7.3, it follows
that (M �α B)id �δ2 = Mα ⊗ 1. Using the fact that α is minimal and that
δ1 is ergodic, we get that id �δ2 on M �α B is again a minimal action.
This means that the construction of above preserves minimality of actions.
By theorem 7.2 of [27], one might think that it is easier to construct min-
imal actions of compact quantum groups that are of Kac type. This is
not the case. Indeed, the argument just given and theorem 4.5 show that
constructing minimal actions of Ao(n) is the same problem as for SUq(2).

8. Poisson boundaries of monoidally equivalent quantum
groups

In this section we prove that the Poisson boundaries of two monoidally
equivalent quantum groups correspond with each other through the con-
struction of Theorem 7.3. Recall that, because of remark 7.4, we may do
all computations immediately on the von Neumann algebraic level.

Consider two monoidally equivalent compact quantum groups G1 and G2
where the monoidal equivalence is given by ϕ : G2 → G1 with corresponding
link algebra B and commuting actions δ1 and δ2.

Notation 8.1. — From now on, we write respectively

V1 :=
⊕

x∈Irred(G1)

Uϕ(x) and V2 :=
⊕

x∈Irred(G2)

Ux,

where {Uϕ(x) | x ∈ Irred(G1)} and {Ux | x ∈ Irred(G2)} denote the set
of irreducible representations of respectively G1 and G2. We also denote
by B = (B, ω)′′ the von Neumann algebraic link algebra of the monoidal
equivalence and by X :=

⊕
x∈Irred(G2) X

x. We denote the states ϕ1
µ and ψ1

µ,
respectively ϕ2

µ and ψ2
µ on `∞(Ĝ1), respectively `∞(Ĝ2).

Let µ be a generating probability measure on Irred(G1). Consider the
Poisson boundary H∞(Ĝ1, µ) of G1 with adjoint action

αG1 : H∞(Ĝ1, µ) −→ H∞(Ĝ1, µ)⊗L∞(G1) : αG1(a) = V1(a⊗ 1)(V1)∗

We get the following theorem:
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Theorem 8.2. — Consider two monoidally equivalent compact quan-
tum groups G1 and G2 and let µ be a generating probability measure on
Irred(G1). Then the following

ρ : H∞(Ĝ2, µ) −→ H∞(Ĝ1, µ) �αG1 B : ρ(b) = X(b⊗ 1)X∗

is a *-isomorphism. Moreover, this *-isomorphism intertwines the action
id �δ2 with the adjoint action αG2 .

Proof. — In the next proposition, we prove that (Pµ,1⊗ id)◦ρ = ρ◦Pµ,2.
Now, because ρ : `∞(Ĝ2)→ `∞(Ĝ1)�αG1 B is a *-isomorphism and because
of the definition of the product on H∞(Ĝ1, µ) and H∞(Ĝ2, µ), we get that
ρ : H∞(Ĝ2, µ)→ H∞(Ĝ1, µ) �αG1 B is a *-isomorphism. �

Proposition 8.3. — Let µ be a probability measure on Irred(G1). We
have that

(8.1) (Pµ,1 ⊗ id)(ρ(b)) = ρ(Pµ,2(b))

for every b ∈ `∞(Ĝ2).

Proof. — Let b ∈ `∞(Ĝ2).We claim that for x, y ∈ Irred(G1),

(px ⊗ py ⊗ 1)(∆̂1 ⊗ id)(ρ(b)) = Xx
13X

y
23(∆̂2(b)⊗ 1)

)
(Xy

23)∗(Xx
13)∗.

Take now z ∈ Irred(G1) and ϕ(T ) ∈ Mor(x⊗ y, z). Then

(px ⊗ py ⊗ 1)(∆̂1 ⊗ id)(ρ(b))(ϕ(T )⊗ 1)
= (ϕ(T )⊗ 1)(ρ(b))

= (ϕ(T )⊗ 1)
(
Xz(b⊗ 1)(Xz)∗

)
(8.2)

= Xx
13X

y
23(T ⊗ 1)(b⊗ 1)(Xz)∗

= Xx
13X

y
23(∆̂2 ⊗ id)(b)(T ⊗ 1)(Xz)∗

= Xx
13X

y
23(∆̂2(b)⊗ 1)

)
(Xy

23)∗(Xx
13)∗(ϕ(T )⊗ 1)

where (8.2) is valid because

(T ⊗ 1)(Xz)∗ = (Xy
23)∗(Xx

13)∗(ϕ(T )⊗ 1).

Then, we get that

(px ⊗ 1)(Py,1 ⊗ id)(ρ(b)) = Xx(id⊗ψ1
y ⊗ id)(Xy

23(∆̂2(b)⊗ 1)(Xy
23)∗)(Xx)∗.

We prove that

(8.3) (ψ1
y ⊗ id)((Xy)(d⊗ 1)(Xy)∗) = ψ2

y(d)1

for every d ∈ `∞(Ĝ2).
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If this last equality (8.3) is valid, then we get

(px ⊗ 1)(Py,1 ⊗ id)(ρ(b)) = Xx((px ⊗ 1)(Py,2(b)⊗ 1))(Xx)∗(8.4)
= (px ⊗ 1)ρ(Py,2(b)).

This means that (Py,1 ⊗ id)(ρ(b)) = ρ(Pµ,2(b)) for every y ∈ Irred(G) and
(8.1) is true.

The only thing left to prove is formula (8.3). Using the definition of ψ1
y

(2.6), we get

(8.5) (ψ1
y ⊗ id)((Xy)(d⊗ 1)(Xy)∗)

= (η ⊗ h1 ⊗ id)(Uϕ(y)
12 Xy

13(d⊗ 1⊗ 1)(Xy
13)∗(Uϕ(y)

12 )∗)

with η any normal state on `∞(Ĝ1). Then

(8.5) = (η ⊗ h1 ⊗ id)((id⊗δ1)(Xy(d⊗ 1)(Xy)∗))

= (η ⊗ ω)(Xy(d⊗ 1)(Xy)∗)).1 = ψ2
y(d)1

where in the last step, we used the orthogonality relations (4.3). This proves
equality (8.3) and the proof is complete. �

9. Applications to Tomatsu’s work on Poisson boundaries

The fundamental result obtained in the last section combined with re-
cent work of Tomatsu on Poisson boundaries makes it possible to identify
the Poisson boundary of a large class of quantum groups. This will be
the content of this section. First, it provides us with an identification of
the Poisson boundary of all duals of compact quantum groups that are
monoidally equivalent with a q-deformation of a compact Lie group. More-
over, it will enable us to give concrete identifications of Poisson boundaries
of some classes of non-amenable discrete quantum groups. Observe that
monoidal equivalence does not preserve coamenability. We study in detail
the Poisson boundary of the duals of the quantum automorphism groups
Aaut(D,ω). When dim(D) > 5, these are actually non-amenable.

9.1. Tomatsu’s work on Poisson boundaries

In [24], Tomatsu has proven that the Poisson boundary of the dual of
a coamenable compact quantum group with commutative fusion rules can
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be identified with the homogeneous space coming from its canonical Kac
subgroup (see definition 3.18).

The main result is the following.

Theorem 9.1 (Theorem 4.8 in [24]). — Let G be a coamenable compact
quantum group with commutative fusion rules and H its canonical Kac
subgroup. Let µ be a generating measure on Irred(G). The Izumi operator

Φ: L∞(H r G) −→ H∞(Ĝ, µ) : a 7−→ (id⊗h)(V∗(1⊗ a)V)

is a *-isomorphism and intertwines the adjoint action αG with the action
∆HrG as defined in remark 3.16.

Remark 9.2. — The mapping Φ is the Izumi operator, introduced in [13].

This gives us immediately the Poisson boundary of a whole class of quan-
tum groups. Moreover, for q-deformations of classical Lie-groups, Tomatsu
proves that the canonical Kac subgroup is just the maximal torus.

9.2. Identification of a large class of Poisson boundaries

Using the previous section, we obtain the Poisson boundary of every
compact quantum group with commutative fusion rules which is monoidally
equivalent to a coamenable one. Moreover, we obtain a concrete description
of the Poisson boundary as a homogeneous space of the link algebra.

So, consider a compact quantum group (G1,∆1) which is coamenable
and has commutative fusion rules. Let (G2,∆2) be monoidally equivalent
with (G1,∆1) with monoidal equivalence given by ϕ : G2 → G1. Again, we
have the link algebra B and the two commuting actions δ1 and δ2 as before.
Denote by H1 the canonical Kac group of G1 and by rH1 : C(G1)→ C(H1)
the corresponding restriction map.

Tomatsu’s result combined with theorem 8.2 and proposition 7.10 gives
us the following theorem:

Theorem 9.3. — Consider a coamenable compact quantum group G1
with commutative fusion rules. Let G2 be a compact quantum group that is
monoidally equivalent to G1. Denote by B the von Neumann algebraic link
algebra associated to the monoidal equivalence. Let H1 be the canonical
Kac subgroup of G1. Consider a generating measure µ on Irred(G1). Then
(H∞(Ĝ2, µ), αG2) is isomorphic to (BH1 , δ2). The isomorphism is given by
the following generalized Izumi operator

(9.1) Θ: BH1 → H∞(Ĝ2, µ) : a 7−→ (id⊗ω)(X∗(1⊗ a)X).
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This *-isomorphism intertwines the adjoint action αG2 and the action δ2.

Proof. — By Tomatsu, Φ: L∞(H1 r G1) → H∞(Ĝ1, µ) is a *-isomor-
phism. Because Φ intertwines the actions ∆H1rG1 and αG1 ,

Φ⊗ id : L∞(H1 r G1) �∆H1rG1 B −→ H∞(Ĝ1, µ) �αG1 B

is also a *-isomorphism. Combining this with Theorem 8.2, it follows that
L∞(H1rG1)�∆H1rG1B and H∞(Ĝ2, µ) are *-isomorphic through ρ−1◦(Φ⊗
id). It follows from proposition 7.10 that δ1 : BH1 → L∞(H1rG1)�∆H1rG1B

is a *-isomorphism. Hence

ρ−1 ◦ (Φ⊗ id) ◦ δ1 : BH1 −→ H∞(Ĝ2, µ)

is a *-isomorphism.
Now we just need to prove that ρ−1 ◦ (Φ ⊗ id) ◦ δ1 = Θ, which follows

from the next obvious calculation.

ρ−1(Φ⊗ id)δ1(a) = (id⊗ω)(X∗(id⊗h1 ⊗ id)((V1)∗12(δ1(a))23(V1)12)X)
= (id⊗ω)(id⊗h1 ⊗ id)(id⊗δ1)(X∗(1⊗ a)X)

= (id⊗ω)
(
((id⊗ω)(X∗(1⊗ a)X))⊗ 1

)
= Θ(a)

for all a ∈ BH1 .
Moreover, Θ intertwines αG2 and δ2 because for all a ∈ BH1 ,

(Θ⊗ id)δ2(a) = (id⊗ω ⊗ id)(X∗12δ2(a)23X12)
= (id⊗ω ⊗ id)((V2)13(id⊗δ2)(X∗(1⊗ a)X)(V2)∗13)
= V2((id⊗ω)(X∗(1⊗ a)X)⊗ 1)(V2)∗ = αG2(Θ(a)).

This completes the proof. �

Now we have enough material to identify the Poisson boundary of some
classes of discrete quantum groups which are not amenable. A first im-
portant class of quantum groups that satisfy this are the duals of Ao(F ).
If dim(F ) > 3, then Ao(F ) is not coamenable. The Poisson boundary of
their dual was already obtained in a different way (but also using monoidal
equivalence) by Vaes and the second author in [28]. In fact, they started by
constructing a generalized Izumi operator as in formula (9.1) for the specific
case of Ao(F ). They proved that this Izumi operator is multiplicative on
L∞(Ao(F, Fq))T by using the monoidal equivalence of Ao(F ) and SUq(2).
Hence, they reduced the identification problem to a purely SUq(2)-problem.
However, as every Ao(F ) is monoidally equivalent to some SUq(2), we can
identify the Poisson boundary of Âo(F ) also using theorem 9.3, which is
much more general.
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Another, new class of examples will come from quantum automorphism
groups Aaut(D,ω), which we explore in the next section.

9.3. Examples: Quantum automorphism groups.

In this section we identify the Poisson boundary for ̂Aaut(D,ω) with D

a C∗-algebra of finite dimension > 4 and ω a δ-state on D. To do this, we
make use of the previous section.

From theorem 4.7, it follows that every quantum automorphism group of
this type is monoidally equivalent with one of the formAaut(M2(C),Tr(·F )),
where Tr(F−1) = δ2. Because of the quantum Kesten result (see [3]), it
follows that Aaut(M2(C),Tr(·F )) is coamenable. Moreover, it has the fusion
rules of SO(3) and those are commutative. Hence, we can apply theorem 9.1
of Tomatsu. We now prove that the canonical Kac subgroup is just the one-
dimensional torus T.

The canonical Kac subgroup of Aaut(M2(C),Tr(·P ))

Denote by G the compact quantum group Aaut(M2(C),Tr(·P )) and by H
its canonical Kac subgroup. Observe that we can take P a diagonal matrix.
We consider only non-trivial P here. If P equals the identity matrix, we just
get the compact group SO(3) which is already Kac. Hence ŜO(3) has trivial
Poisson boundary. Denote by π : C(G) → C(H) the canonical projection
map. We denote by U the fundamental irreducible representation with label
1 and by Q the matrix corresponding to U as defined in 2.2, normalized
such that Tr(Q) = Tr(Q−1). The eigenvalues of Q are of the form 1, q, q−1.

Now V := (id⊗π)(U) is a representation of H and because H is Kac,
V = (id⊗π)(U) must be unitary. The matrix F =

√
QT , unitarizes U , what

in this case means (F ⊗ 1)U(F−1 ⊗ 1) = U . We claim that V breaks up in
3 one-dimensional representations. As every representation of H appears in
a repeated tensor power of V , it follows that all irreducible representations
of H have dimension one.

Proof of claim. — As F ∗F has 3 different eigenvalues, it suffices to prove
that F ∗F and V commute. It holds that V = FV F−1, so

V F = FV and F ∗V ∗ = V
∗
F ∗.

As V is unitary, it follows that V FF ∗V ∗ = FF ∗, which means that F ∗F ∈
End(V ).
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Since all irreducible representations of H have dimension 1, we conclude
that H is the dual of a discrete group Γ. Denote by ug the irreducible
representation of H corresponding to g ∈ Γ. Since V ∼= V , there are two
cases possible. The first is that there exist g, h ∈ Γ such that

V ∼= ug ⊕ uh ⊕ ug−1 .

Observe that Γ is generated by g and h. We claim that Γ is abelian. Since
U is a subrepresentation of U⊗2, V is a subrepresentation of V ⊗2. But

V ⊗2 = ug2 ⊕ uh2 ⊕ ug−2 ⊕ 2ue ⊕ uhg ⊕ ugh ⊕ uhg−1 ⊕ ug−1h,

implying that h ∈ {g2, h2, g−2, e, hg, gh, hg−1, g−1h}. Any of these possi-
bilities for h imply that the group generated by g and h is abelian.

The second case is that V = ua ⊕ ub ⊕ uc with a2 = b2 = c2 = e. It is
easy to show that in this case, Γ is the Klein group, which is abelian too.

As Γ is commutative, H is just a commutative compact group. Hence
the maximal quantum subgroup of Kac type of G is the maximal compact
subgroup of G.

Suppose χ : C(G) → C is a character and α : M2(C) → M2(C) ⊗ C(G)
the canonical action of G on M2(C) coming from U . Now (id⊗χ)α is an
automorphism of M2(C), and hence implemented by a unitary matrix A.
Moreover, as Tr(·P ) is invariant under (id⊗χ)α,

Tr(PAxA∗) = Tr(Px) for all x ∈M2(C).

Hence A is a diagonal matrix. But then Ad(A) = Ad(diag(z, z̄)) for some
z ∈ T.

On the other hand, T acts on M2(C) by Ad(diag(z, z̄)). This action
δ is Tr(·P )-invariant, so because of the universality of G, there exists a
morphism of quantum groups π : C(G)→ C(T) such that (id⊗π)α = δ.

We may conclude that the maximal Kac subgroup of G is the one-
dimensional torus T. �

The Poisson boundary of Aaut(D,ω)

Theorem 4.7 gives a nice description of the link algebra of two monoidally
equivalent quantum automorphism groups Aaut(D1, ω1) and Aaut(D2, ω2).
Together with theorem 9.3 we obtain the following result:

Theorem 9.4. — Consider Aaut(D,ω) with D a C∗-algebra of finite
dimension strictly bigger than 4 and ϕ a δ-state on D. Take F ∈ M2(C)
such that Tr(F−1) = δ2. Then the Poisson boundary of ̂Aaut(D,ω) is given
by L∞(Aaut((D,ω), (M2(C),Tr(·F ))))T.
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The 4-dimensional case was considered above, except for the case
Aaut(C4). But this compact quantum group is coamenable by the quantum
Kesten result and moreover Kac, so ̂Aaut(C4) has trivial Poisson bound-
ary. This completes the identification of Poisson boundaries of the duals of
quantum automorphism groups.

10. The Martin boundary of monoidally equivalent
quantum groups

We prove that the Martin boundaries of the duals of two monoidally
equivalent compact quantum groups are related to each other through the
construction of theorem 7.3.

So, again, we start from a monoidal equivalence ϕ : G2 → G1 with link
algebra B and commuting actions δ1 and δ2.

Theorem 10.1. — Consider two monoidally equivalent compact quan-
tum groups G1 and G2 and let µ be a generating probability measure on
Irred(G1). Suppose Aµ,1 is the Martin boundary of the discrete quantum
group Ĝ1. Then

ρ : Ãµ,2 −→ Ãµ,1 �
αG1
red B : b 7−→ X(b⊗ 1)X∗

are also *-isomorphisms. This *-isomorphism intertwines the action id �δ2
with the action αG2 . Moreover, we have that ρ : c0(Ĝ2) → c0(Ĝ1) �

αG1
red B

is a *-isomorphism, by which

ρ : Aµ,2 −→ Aµ,1 �
πG1
red B : b 7−→ X(b⊗ 1)X∗

is also a *-isomorphism which intertwines the action id �δ2 with the ac-
tion πG2 .

Proof. — Recall that

ρ : L(Hx) −→ L(Hϕ(x)) �
αG1
alg B

is a *-isomorphism. So it follows that

ρ : cc(Ĝ2) −→ cc(Ĝ1) �
αG1
alg B and ρ : c0(Ĝ2) −→ c0(Ĝ1) �

αG1
red B

is also a *-isomorphism. Proposition 8.3 gives us that

(Pµ,1 ⊗ id)(ρ(b)) = ρ(Pµ,2(b)) and thus (Gµ,1 ⊗ id)(ρ(b)) = ρ(Gµ,2(b))
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for every b ∈ cc(G2). Because Gµ(pε) ∈ M(cc(Irred(G))) for every µ ∈
Irred(G), we get

ρ(Kµ,2(b)) = X(Gµ,2(pε)−1Gµ,2(b)⊗ 1)X∗

= (Gµ,1(pε)−1 ⊗ 1)ρ(Gµ,2(b)) = (Kµ,1 ⊗ id)(ρ(b)).

This fact, combined with the fact that ρ : `∞(Ĝ2) → `∞(Ĝ1) �αG1 B is a
*-isomorphism, gives that

ρ : Ãµ,2 −→ Ãµ,1 �
αG1
red B

is an injective *-homomorphism.
The only thing left to prove is that ρ is surjective. We consider the inverse

monoidal equivalence ϕ−1 : G1 → G2. So, in the same way as above, we get
that

ρ̃ : Ãµ,1 −→ Ãµ,2 �
αG2
red B̃ : ρ̃(b) = Y(b⊗ 1)Y∗,

is an injective *-homomorphism. But we have that

Λ: (ρ̃⊗ id) ◦ ρ : Ãµ,2 −→ (Ãµ,2 �
αG2
red B̃) �

αG1
red B : Λ(b)
= Y12X13(b⊗ 1⊗ 1)X∗13Y∗12

is just the natural *-isomorphism from proposition 7.7 for the monoidal
equivalence ϕ−1 : G1 → G2. Indeed, Λ = (id⊗π)αG2 with

π : L∞(G2) −→ B̃ �γ1 B given by (id⊗π)(V2) = Y12X13.

So, ρ : Ãµ,2 → Ãµ,1 �
αG1
red B is also surjective and thus a *-isomorphism.

In proposition 7.11, we showed that ρ intertwines the action id �δ2 with
the action αG2 . We have also shown that ρ : c0(Ĝ2) → c0(Ĝ1) �

αG1
red B is a

*-isomorphism, such that

ρ : Aµ,2 −→ Aµ,1 �
αG1
red B,

is a *-isomorphism which intertwines the actions id �δ2 and πG2 . This com-
pletes the proof of the theorem.

Examples: The universal orthogonal quantum groups Ao(F )

Given an Ao(F ), there exists a q ∈] − 1, 1[ {0} such that Ao(F ) ∼
mon

SUq(2). In [19], Neshveyev and Tuset identified the Martin boundary of
S̃Uq(2) (0 < |q| < 1), under the restriction that the measure µ has finite
first moment, with the Podlès sphere C(T r SUq(2)). By theorem 10.1, we
get that Aµ,2 ∼= C(T r SUq(2)) �

πG1
red B. But C(T r SUq(2)) is a quotient
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space of L∞(G1), so in exactly the same way as in theorem 9.3, we show
that

C(T r SUq(2)) �
πG1
red B ∼= BT

r

where BT
r is the norm-closure of BT ⊆ BT and B the link algebra. Theo-

rem 4.5 says that B ∼= C(Ao(F, Fq)). Combining these facts, we obtain the
following theorem:

Theorem 10.2. — Let G = Ao(F ). Then there exists q ∈] − 1, 1[\{0}
such that G ∼

mon
SUq(2). Take µ a generating measure on Irred(G) that is

transient and has finite first moment:∑
x∈N

xµ(x) <∞.

Then the Martin boundary Aµ of G is *-isomorphic with (C(Ao(F, Fq)))T
r .

Moreover, this *-isomorphism intertwines the action δ2 with the action πG2 .

�

Remark 10.3. — The above identification was already obtained by Vaes
and the second author in [28] by using another method supporting on
techniques from [29] which allow, in the case of Ao(F ), to deduce the Martin
boundary from the Poisson boundary. The result by which we obtain the
identification here is more direct and much more general.
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