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HARMONIC MORPHISMS BETWEEN WEYL SPACES
AND TWISTORIAL MAPS II

by Eric LOUBEAU & Radu PANTILIE (*)

This paper is dedicated to the memory of James Eells.

Abstract. — We define, on smooth manifolds, the notions of almost twistorial
structure and twistorial map, thus providing a unified framework for all known
examples of twistor spaces. The condition of being a harmonic morphism naturally
appears among the geometric properties of submersive twistorial maps between low-
dimensional Weyl spaces endowed with a nonintegrable almost twistorial structure
due to Eells and Salamon. This leads to the twistorial characterisation of harmonic
morphisms between Weyl spaces of dimensions four and three. Also, we give a
thorough description of the twistorial maps with one-dimensional fibres from four-
dimensional Weyl spaces endowed with the almost twistorial structure of Eells and
Salamon.

Résumé. — Nous définissons, sur les variétés lisses, les notions de structure
presque twistorielle et d’application twistorielle, fournissant ainsi un cadre unifié
pour tous les exemples d’espace de twisteurs. La condition de morphisme har-
monique apparait naturellement dans les propriétés géométriques des applications
twistorielles submersives entre espaces de Weyl de faible dimension, équipés d’une
structure presque twistorielle non-intégrable due à Eells et Salamon. Ceci mène à
la caractérisation twistorielle des morphismes harmoniques entre espaces de Weyl
de dimension quatre et trois. De plus, nous donnons une description complète des
applications twistorielles à fibres unidimensionelles d’un espace de Weyl de dimen-
sion quatre, équipé de la structure presque twistorielle non-intégrable due à Eells
et Salamon.

Introduction

A predominant theme in the theory of harmonic maps is their rela-
tionship to holomorphicity. Right from their inception, harmonic maps
have been recognised by Eells and Sampson to include holomorphic maps
between Kähler manifolds, and a few years later, Lichnerowicz distinguished
two sub-classes of almost Hermitian manifolds for which this also holds.

Keywords: Harmonic morphism, Weyl space, twistorial map.
Math. classification: 53C43, 53C28.
(*) Gratefully acknowledges that this work was partially supported by a CNCSIS grant,
code 811, and by a PN II Idei grant, code 1193.



434 Eric LOUBEAU & Radu PANTILIE

A far harder task is to find conditions forcing harmonic maps to be holo-
morphic. The clearest situation is between two-spheres since harmonicity
then implies conformality, but, in general, additional conditions are re-
quired, on the map or on curvature.

From a Riemann surface, or a complex projective space, into a compact
irreducible Hermitian symmetric space harmonic stability ensures holomor-
phicity [4], [12].

In the broader context of compact Kähler manifolds, Siu [19] used a ∂∂-
Bochner argument to prove, under strong negativity of the target curvature,
the holomorphicity of rank four harmonic maps, from which he deduced the
biholomorphicity of compact Kähler manifolds of the same homotopy type.

Whilst these results are of great importance in understanding harmonic
maps, this scheme bears its own natural limits, if only because it requires
the presence of complex structures, with their topological consequences.

To overcome this hurdle, one can replace the codomain with an adequate
bundle admitting a natural complex structure, such that harmonicity of any
map is given by holomorphicity of its lift to this bundle.

This strategy, which could be traced to Calabi and even Weierstrass, was
put into effect by Eells and Salamon [7], who modified a well-known twistor
construction of Atiyah, Hitchin and Singer (see Example 3.6, below) to de-
fine, in our terminology, an almost twistorial structure on any oriented
four-dimensional Riemannian manifold (see Example 3.7). This yields a
bĳective correspondence between conformal harmonic maps and holomor-
phic curves (see Proposition 4.7). These ideas were extensively pursued by
Bryant [3], and Burstall and Rawnsley [5] for (even-dimensional) Riemann-
ian symmetric spaces.

The success of this strategy leads naturally to considering lifts on both
the domain and the codomain, hence removing any need of pre-existing
almost complex structures. The objective is two-fold: firstly, show that
the existence of a holomorphic lift implies harmonicity and, secondly, find
natural conditions under which harmonic maps admit holomorphic lifts.

As holomorphic maps are closed under composition, it seems that har-
monic morphisms will have an important role in this programme.

Besides, the very conformal nature of their characterization makes Weyl
geometry an ideal framework for their study, but it also turns out to provide
examples of twistor spaces in dimension two, three and four.

In the complex category, a twistor, that is, a point of the twistor space
of a (complex) manifold M , determines an immersed submanifold of M .
For example, the twistor space of an anti-self-dual complex-conformal
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HARMONIC MORPHISMS BETWEEN WEYL SPACES 435

four-dimensional manifold (M4, c) is the space of self-dual (immersed) sur-
faces of (M4, c); also, the twistor space of a three-dimensional Einstein–
Weyl space (M3, c,D) is the space of coisotropic surfaces of (M3, c) which
are totally-geodesic with respect to D (see [16]).

A complex analytic map ϕ : M → N between manifolds endowed with
twistorial structures is twistorial if it maps (some of the) twistors on M to
twistors on N (see [16]).

In this paper we extend the notions of almost twistorial structure and
twistorial map, to the smooth category. We show that, in the smooth cat-
egory, a twistor on a manifold M (endowed with a twistorial structure) is
a pair (R, J) where R is an immersed submanifold of M and J is a lin-
ear CR-structure on the normal bundle of R in M (Remark 3.2). These
submanifolds may well just be points. For example, the twistor space of
a four-dimensional anti-self-dual conformal manifold (M4, c) is formed of
pairs (x, Jx) where x ∈M and Jx is a positive orthogonal complex structure
on (TxM, cx).

On the other hand, the twistor space of a three-dimensional Einstein–
Weyl space (see Example 3.3) is formed of pairs (γ, J) where γ is a geodesic
and J is an orthogonal complex structure on the normal bundle of γ.

As in the complex category, a (smooth) map ϕ :M → N between mani-
folds endowed with twistorial structures is twistorial if it maps twistors on
M to twistors on N (Definition 4.1, Remark 4.2). It follows that twisto-
rial maps naturally generalize holomorphic maps. Examples of twistorial
maps have been previously used to obtain constructions of Einstein and
anti-self-dual manifolds (see [6], [15], [16] and the references therein).

In Section 1, we recall a few basic facts on harmonic morphisms between
Weyl spaces. Section 2 is preparatory for Sections 3 and 4, where we give the
definitions and some examples of almost twistorial structures and twistorial
maps, on smooth manifolds.

In the first part [11] of this work, we introduced the notion of harmonic
morphism between (complex-)Weyl spaces and we continued the study (ini-
tiated in [16]) of the relations between harmonic morphisms and twistorial
maps. As all of the known examples of complex analytic almost twisto-
rial structures have smooth versions, all of the main results of [11] have
‘real’ versions. But not all smooth almost twistorial structures come from
complex analytic almost twistorial structures. The first example of such an
almost twistorial structure is the almost twistorial structure of Eells and
Salamon, mentioned above. We introduce similar almost twistorial struc-
tures (Examples 3.5 and 5.2) with respect to which a map (between Weyl
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436 Eric LOUBEAU & Radu PANTILIE

spaces of dimensions four and three) is twistorial if and only if it is a har-
monic morphism (Theorem 5.4(i)); this implies that there exists a bĳective
correspondence between one-dimensional foliations on (M4, c,D), which are
locally defined by harmonic morphisms, and certain almost CR-structures
on the bundle of positive orthogonal complex structures on (M4, c).

In Section 5, we also give the necessary and sufficient conditions for a map
with one-dimensional fibres from a four-dimensional Weyl space endowed
with the almost twistorial structure of Eells and Salamon to be twisto-
rial (Theorem 5.6). It follows that, all such twistorial maps are harmonic
morphisms. Also, a generalized monopole equation (Definition 4.4(1)) is
naturally involved.

1. Harmonic morphisms

In this section all manifolds and maps are assumed smooth.
Let Mm be a manifold of dimension m. If m is even then we denote

by L the line bundle associated to the frame bundle of Mm through the
morphism of Lie groups ρm : GL(m,R)→ (0,∞), ρm(a) = |det a|1/m,

(
a ∈

GL(m,R)
)
; obviously, L is oriented. If m is odd then we denote by L the

line bundle associated to the frame bundle of Mm through the morphism
of Lie groups ρm : GL(m,R) → R∗, ρm(a) = (det a)1/m,

(
a ∈ GL(m,R)

)
;

obviously, L∗⊗TM is an oriented vector bundle. We say that L is the line
bundle of Mm (cf. [6]).

Similar considerations apply to any vector bundle.
Let ϕ : M → N be a submersion and let H be a distribution on M ,

complementary to the fibres of ϕ. Let LH and LN be the line bundles
of H and N , respectively. As L 2n

H =
(
Λn(H )

)2 and L 2n
N =

(
Λn(TN)

)2,
where n = dimN , the differential of ϕ induces a bundle map Λ from L 2

H

to L 2
N . If n is odd then we also have a bundle map λ from LH to LN ;

obviously, Λ = λ2. Furthermore, if n is odd, dϕ and λ induce a bundle map
from L∗H ⊗H to L∗N ⊗ TN , which will also be denoted by dϕ; note that,
dϕ : L ∗H ⊗H → L ∗N ⊗ TN is orientation preserving, on each fibre.

Let c be a conformal structure on M ; that is, c is a section of L2 ⊗(
�2T ∗M

)
which is ‘positive-definite’; that is, for any positive section s2 of

L2 we have c = s2 ⊗ gs, where gs is a Riemannian metric on M ; then gs
is a representative of c. Therefore, c corresponds to a Riemannian metric
on the vector bundle L∗⊗TM (see [6]). Obviously, c also corresponds to a
reduction of the frame bundle of M to CO(m,R), where m = dimM ; the
total space of the reduction corresponding to c is formed of the conformal
frames on (M, c).
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HARMONIC MORPHISMS BETWEEN WEYL SPACES 437

If dimM is odd then local sections of L correspond to oriented local
representatives of c; that is, (local) representatives of c, on some oriented
open set of M . Let H be a distribution on M . Then c induces a conformal
structure c|H on H and, it follows that, we have an isomorphism, which
depends of c, between L2 and L 2

H .

Definition 1.1 (cf. [2]). — Let (M, cM ) and (N, cN ) be conformal man-
ifolds. A map ϕ : (M, cM ) → (N, cN ) is horizontally weakly conformal if
at each point x ∈M , either dϕx = 0 or dϕx|(ker dϕx)⊥ is a conformal linear
isomorphism from

(
(ker dϕx)⊥, (cM )x|(ker dϕx)⊥

)
onto
(
Tϕ(x)N, (cN )ϕ(x)

)
.

Let (M, c) be a conformal manifold. A connection D onM is conformal if
Dc = 0; equivalently, D is the covariant derivation of a principal connection
on the bundle of conformal frames on (M, c). If D is torsion-free then it is
called a Weyl connection and (M, c,D) is a Weyl space.

Definition 1.2 (cf. [2]). — (i) Let (M, c,D) be a Weyl space. A har-
monic function, on (M, c,D), is a function f , (locally) defined on M , such
that tracec(Ddf) = 0.

(ii) A map ϕ : (M, cM , DM ) → (N, cN , DN ) between Weyl spaces is a
harmonic map if tracec(Ddϕ) = 0, where D is the connection on ϕ∗(TN)⊗
T ∗M induced by DM , DN and ϕ.

(iii) A map ϕ : (M, cM , DM ) → (N, cN , DN ) between Weyl spaces
is a harmonic morphism if for any harmonic function f : V → R, on
(N, cN , DN ), with V an open set of N such that ϕ−1(V ) is nonempty,
f ◦ ϕ : ϕ−1(V )→ R is a harmonic function, on (M, cM , DM ).

Obviously, any harmonic function is a harmonic map and a harmonic
morphism, if R is endowed with its conformal structure and canonical con-
nection.

The following result is basic for the theory of harmonic morphisms (see
[11], [2]).

Theorem 1.3. — A map between Weyl spaces is a harmonic morphism
if and only if it is a harmonic map which is horizontally weakly conformal.

2. Complex distributions
Unless otherwise stated, all manifolds and maps are assumed smooth.

Definition 2.1. — A complex distribution on a manifold M is a com-
plex subbundle F of TCM such that dim(Fx ∩F x), (x ∈M), is constant.
If F ∩F is the zero bundle then F is an almost CR-structure on M , and
(M,F ) an almost CR-manifold.
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438 Eric LOUBEAU & Radu PANTILIE

Example 2.2. — 1) Let F be an almost f -structure on a manifold M ;
that is, F is a section of End(TM) such that F 3 + F = 0 [21]. We denote
by T 0M , T 1,0M , T 0,1M the eigendistributions of FC ∈ Γ

(
End(TCM)

)
corresponding to the eigenvalues 0, i, −i, respectively. Then T 0M ⊕T 0,1M

is a complex distribution on M and T 0,1M is an almost CR-structure on
M . We say that T 0M ⊕ T 0,1M is the complex distribution associated to
F ; similarly, T 0,1M is the almost CR-structure associated to F .

2) Let M be endowed with a complex distribution F and let N ⊆M be
a submanifold. Suppose that dim(TC

xN ∩Fx) and dim(TC
xN ∩Fx ∩F x),

(x ∈ N), are constant. Then TCN ∩ F is a complex distribution on N
which we call the complex distribution induced by F on N .

In particular, if N is a real hypersurface in the complex manifoldM then
TCN ∩ T 0,1M is an almost CR-structure on N .

Next, we define the notion of holomorphic map between manifolds en-
dowed with complex distributions.

Definition 2.3. — Let FM and FN be complex distributions on M
and N , respectively. A map ϕ : (M,FM ) → (N,FN ) is holomorphic if
dϕ(FM ) ⊆ FN .

A map ϕ : (M,FM ) → (N,FN ) between manifolds endowed with f -
structures is holomorphic if ϕ : (M,FM )→ (N,FN ) is holomorphic where
FM and FN are the complex distributions, on M and N , associated to
FM and FN , respectively.

Let F be an almost f -structure onM and J an almost complex structure
on N . Then, a map ϕ : (M,F ) → (N, J) is holomorphic if and only if
dϕ ◦ F = J ◦ dϕ.

Definition 2.4. — Let M be a manifold. A subbundle E of TCM is
integrable if for any sections X, Y of E we have that [X,Y ] is a section
of E.

A CR-structure is an integrable almost CR-structure; a CR-manifold is
a manifold endowed with a CR-structure.

An almost f -structure is integrable if its associated complex distribution
is integrable; an f -structure is an integrable almost f -structure.

Note that a complex distribution FM onM is integrable if and only if for
any point x ∈M , there exists a holomorphic submersion ϕ : (U,FM |U )→
(N,FN ), from some open neighbourhood U of x, onto some CR-manifold
(N,FN ), such that ker dϕ =

(
FM ∩ FM

)
|U . If U = M and ϕ has
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HARMONIC MORPHISMS BETWEEN WEYL SPACES 439

connected fibres then FM is called simple; then, obviously, up to a CR-
diffeomorphism, ϕ is unique; we call it the holomorphic submersion corre-
sponding to FM .

Let E be a complex vector bundle over M endowed with a
complex linear connection ∇ (that is, ∇ is a complex-linear map Γ(E) →
Γ
(
HomC (TCM,E)

)
such that ∇(sf) = (∇s)f + s ⊗

C
df for any section

s of E and any complex-valued function f on M ; equivalently, we have
∇C = ∇⊕∇, with respect to the decomposition EC = E ⊕ E).

Let π : Grk(E) → M be the bundle of complex vector subspaces of
complex dimension k of E; we shall denote by H

(
⊆ T (Grk(E))

)
the

connection induced by ∇ on Grk(E). Note that, as Grk(E) is a bundle
whose typical fibre is a complex manifold and its structural group a com-
plex Lie group acting holomorphically on the fibre, we have (ker dπ)C =
(ker dπ)1,0 ⊕ (ker dπ)0,1.

The following result, which we do not imagine to be new, will be useful
later on. We omit the proof.

Proposition 2.5. — Let p be a section of Grk(E) (equivalently, p is
a complex vector subbundle of complex rank k of E). Let X ∈ TC

x0
M for

some x0 ∈M ; denote by p0 = p(x0).
(a) The following assertions are equivalent:

(i) (dp)C (X) ∈H C
p0

.
(ii) ∇C

Xs ∈ pC0 for any section s of pC .
(b) The following assertions are equivalent:

(iii) (dp)C (X) ∈H C
p0
⊕ (ker dπ)0,1

p0
.

(iv) ∇Xs ∈ p0 for any section s of p.

Note that, if X is real (that is, X ∈ TM) then the assertions (i),. . . ,(iv),
of Proposition 2.5, are equivalent.

3. Almost twistorial structures

In this section, we define, in the smooth category, the notion of (almost)
twistorial structure.

Definition 3.1 (cf. [17], [16]). — An almost twistorial structure, on
a manifold M , is a quadruple τ = (P,M, π,F ) where π : P → M is
a locally trivial fibre space and F is a complex distribution on P which
induces almost complex structures on each fibre of π; if F is induced by an
almost f -structure F then, also, (P,M, π, F ) is called an almost twistorial
structure.

TOME 60 (2010), FASCICULE 2



440 Eric LOUBEAU & Radu PANTILIE

The almost twistorial structure τ = (P,M, π,F ) is integrable if F is in-
tegrable. A twistorial structure is an integrable almost twistorial structure;
the leaf space of F ∩F is called the twistor space of τ .

A twistorial structure τ = (P,M, π,F ) is called simple if F is simple; if
τ is simple with ϕ : (P,F )→ Z the corresponding holomorphic submersion
then dϕ(F ) is a CR-structure on Z.

Remark 3.2. — Let τ = (P,M, π,F ) be a twistorial structure and let
Z be its twistor space. Each z ∈ Z determines a pair (Rz, Jz) where Rz
is an immersed submanifold of M and Jz is a linear CR-structure on the
normal bundle of Rz.

Indeed, let Rz = ϕ−1(z), where ϕ : P → Z is the (continuous) projection
whose fibres are the leaves of F ∩F . Then π|Rz : Rz →M is an immersion.
Also, let (ker dπ)0,1 = F ∩ (ker dπ)C . Then the restriction to Rz of the
quotient of F through TRz ⊕ (ker dπ)0,1 defines a linear CR-structure Jz
on the normal bundle (π|Rz )∗(TM)/TRz of Rz in M .

If (M,J) is a complex manifold then, obviously, (M,M, IdM , J) is a
twistorial structure whose twistor space is (M,J).

Also, the CR manifolds constructed in [10] and [18] can be easily seen to
be natural examples of twistor spaces.

Next, we formulate the examples of almost twistorial structures with
which we shall work.

Example 3.3 ([9], [17]). — Let (M3, c,D) be a three-dimensional Weyl
space. Let π : P → M be the bundle of nonzero skew-adjoint f -structures
on (M3, c). Obviously, P is also the bundle of nonzero skew-adjoint f -
structures on the oriented Riemannian bundle (L∗ ⊗ TM, c). Therefore, P
is isomorphic to the sphere bundle of (L∗⊗TM, c). In particular, the typical
fibre and the structural group of P are CP 1 and PGL(2,C ), respectively.

We could also define P as follows: firstly, note that, there exists a unique
oriented Riemannian structure, on the vector bundle E of skew-adjoint
endomorphisms on (M, c), with respect to which [A,B] = A × B, for any
A,B ∈ E; then P is the sphere bundle of E.

The bundle P is also isomorphic with the bundle of oriented two-
dimensional subspaces onM3. Therefore, there exists a bĳective correspon-
dence between one-dimensional foliations on M3, with oriented orthogonal
complement, and almost f -structures on (M3, c). Furthermore, under this
bĳection, conformal one-dimensional foliations correspond to (integrable)
f -structures.
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Let k be a section of L∗. We define a conformal connection ∇ on (M, c)
by ∇XY = DXY + 1

2 kX × Y for any vector fields X and Y on M . We say
that ∇ is the connection associated to D and k.

Let H ⊆ TP be the connection induced by ∇ on P . We denote by
H 0, H 1,0 the subbundles of H C such that, at each p ∈ P , the sub-
spaces H 0

p , H
1,0
p ⊆ H C

p are the horizontal lifts of the eigenspaces of
pC ∈ End(TC

π(p)M) corresponding to the eigenvalues 0, i, respectively.
We define the almost f -structure F on P with respect to which T 0P =

H 0 and T 1,0P = (ker dπ)1,0 ⊕H 1,0. Then τ = (P,M, π,F) is an almost
twistorial structure on M which is integrable if and only if (M3, c,D) is
Einstein–Weyl (see [13])

Remark 3.4. — Let (M3, c) be a three-dimensional conformal manifold.
Let π : P → M be the bundle of nonzero skew-adjoint f -structures on
(M3, c).

Let D be a Weyl connection on (M3, c) and let ∇ be a conformal con-
nection on (M3, c). The following assertions are equivalent:

(i) ∇ and D induce, by applying the construction of Example 3.3 (with
H the connection on P induced by∇ andD, respectively), the same almost
f -structure on P .

(ii) ∇ and D are projectively equivalent.
(iii) There exists a section k of L∗ such that ∇ is the connection

associated to D and k.

Example 3.5 (cf. [7]). — Under the same hypotheses as in Example 3.3,
we define the almost f -structure F ′ on P with respect to which we have
T 0P = H 0 and T 1,0P = (ker dπ)0,1 ⊕H 1,0. Then τ ′ = (P,M, π,F ′) is
a nonintegrable (that is, always not integrable) almost twistorial structure
on M .

Example 3.6 ([1]). — Let (M4, c,D) be a four-dimensional oriented
Weyl space. Let π : P → M be the bundle of positive orthogonal complex
structures on (M4, c). Obviously, P is also the bundle of positive orthogo-
nal complex structures on the oriented Riemannian bundle (L∗ ⊗ TM, c).
Let E be the adjoint bundle of (L∗ ⊗ TM, c) and let ∗c be the involution
of E induced by the Hodge star-operator of (L∗ ⊗ TM, c), under the iso-
morphism E = Λ2(L⊗ T ∗M). Then E = E+ ⊕E− where E± is the vector
bundle, of rank three, formed of the eigenvectors of ∗c corresponding to
the eigenvalue ±1. There exists a unique oriented Riemannian structure
< ·, · > on E± with respect to which AB = − < A,B > IdTM ±A×B for
any A,B ∈ E±. It follows that P is the sphere bundle of E+.
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442 Eric LOUBEAU & Radu PANTILIE

Similarly to Example 3.3, there exists a bĳective correspondence between
two-dimensional distributions F on M4, with oriented orthogonal comple-
ments, and pairs (J,K) of almost Hermitian structures on (M4, c), with J
positive and K negative, such that J |F⊥ = K|F⊥ .

Let H ⊆ TP be the connection induced by D on P . We denote by H 1,0

the subbundle of H C such that, at each p ∈ P , the subspace H 1,0
p ⊆H C

p

is the horizontal lift of the eigenspace of pC ∈ End(TC
π(p)M) corresponding

to the eigenvalue i. We define the almost complex structure J on P with
respect to which T 1,0P = (ker dπ)1,0⊕H 1,0. Then (P,M, π,J ) is an almost
twistorial structure on M which is integrable if and only if (M4, c) is anti-
self-dual.

Example 3.7 ([7]). — Let (M4, c,D) be a four-dimensional oriented
Weyl space. With the same notations as in Example 3.6, let J ′ be the al-
most complex structure on P with respect to which T 1,0P = (ker dπ)0,1 ⊕
H 1,0. Then τ ′ = (P,M, π,J ′) is a nonintegrable almost twistorial struc-
ture on M .

4. Twistorial maps

We start this section with the definition of twistorial maps (cf. [17], [16]).

Definition 4.1. — Let τM = (PM ,M, πM ,FM ) and τN =
(PN , N, πN ,FN ) be almost twistorial structures and let ϕ : M → N be a
map. Suppose that there exist a locally trivial fibre subspace πM,ϕ : PM,ϕ →
M of πM : PM →M and a map Φ : PM,ϕ → PN with the properties:

1) FM induces a complex distribution FM,ϕ on PM,ϕ and almost
complex structures on each fibre of πM,ϕ such that dπM (FMp ) =
dπM,ϕ(FM,ϕp ), for any p ∈ PM,ϕ.

2) ϕ ◦ πM,ϕ = πN ◦ Φ.
Then ϕ : (M, τM ) → (N, τN ) is a twistorial map (with respect to Φ)

if the map Φ : (PM,ϕ,FM,ϕ) → (PN ,FN ) is holomorphic. If FM,ϕ and
FN are simple complex distributions, with (PM,ϕ,FM,ϕ) → ZM,ϕ and
(PN ,FN )→ ZN , respectively, the corresponding holomorphic submersions
onto CR-manifolds, then Φ induces a holomorphic map Zϕ : ZM,ϕ → ZN
which is called the twistorial representation of ϕ.

Remark 4.2. — With the same notations as in Definition 4.1, we have
that τM,ϕ = (PM,ϕ,M, πM,ϕ,FM,ϕ) is an almost twistorial structure on
M . Obviously, τM,ϕ is integrable if τM is integrable. Then from (1) it fol-
lows that the twistor space ZM,ϕ of τM,ϕ is a topological subspace of the
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twistor space ZM of τM . Moreover, for any z ∈ ZM,ϕ the pair (Rz, Jz) of
Remark 3.2 applied to τM,ϕ is equal to the pair determined by z as a point
of ZM . Furthermore, as Φ is holomorphic, we have that ϕ(Rz) ⊆ RZϕ(z)
and the map between the normal bundles of Rz and RZϕ(z), induced by
the differential of ϕ, intertwines Jz and JZϕ(z) (here, we have identified Rz
with πM,ϕ(Rz) and, similarly, for RZϕ(z)).

If τM is simple then τM,ϕ is also simple and ZM,ϕ is a submanifold of
ZM . Moreover, if we denote by CM and CM,ϕ the CR-structures of ZM and
ZM,ϕ, respectively, then CM,ϕ = CM ∩ TCZM,ϕ.

Let (M,JM ) and (N, JN ) be complex manifolds and let τM =
(M,M, IdM, JM ) and τN = (N,N, IdN , JN ) be the corresponding twisto-
rial structures. Then it is obvious that a map ϕ : (M, τM ) → (N, τN ) is
twistorial (with respect to ϕ) if and only if ϕ : (M,JM ) → (N, JN ) is
holomorphic.

Example 4.3 ([9], [6]). — Let (M4, cM ) be a four-dimensional oriented
conformal manifold and let (N3, cN , D

N ) be a three-dimensional Weyl
space. Let τM = (PM ,M, πM ,J ) be the almost twistorial structure of
Example 3.6, associated to (M4, cM ), and let τN = (PN , N, πN ,F) be the
almost twistorial structure of Example 3.3, associated to (N3, cN , D

N ).
Let ϕ :M4 → N3 be a submersion. Let V = ker dϕ and H = V ⊥. Then

the orientation of M4 corresponds to an isomorphism, which depends of
cM , between V and the line bundle of H . Therefore (V ∗ ⊗H , c|H ) is an
oriented Riemannian vector bundle. We define Φ : PM → PN by

Φ(p) = 1
|| dϕ(V ∗⊗p(V ))|| dϕ(V ∗ ⊗ p(V )),

where {V } is any basis of VπM (p) and {V ∗} its dual basis, (p ∈ PM ).
Let IH be the V -valued two-form on H defined by IH (X,Y ) =

−V [X,Y ], for any sectionsX and Y of H . Then ∗H IH is a horizontal one-
form on M4, where ∗H is the Hodge star-operator of (V ∗ ⊗H , c|H ). De-
note by D+ the Weyl connection on (M4, cM ) defined by D+ = D+∗H IH
where D is the Weyl connection of (M4, cM ,V ) (see [11]).

The following assertions are equivalent:
(i) ϕ : (M4, τM )→ (N3, τN ) is twistorial (with respect to Φ).
(ii) ϕ : (M4, cM )→ (N3, cN ) is horizontally-conformal and ϕ∗(DN ) =

H D+ as partial connections on H , over H .

Let ϕ : (M4, cM ) → N3 be a submersion from a four-dimensional ori-
ented conformal manifold to a three-dimensional manifold. Let L be the
line bundle of N3. As the orientation ofM4 corresponds to an isomorphism
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between V and ϕ∗(L), the pull-back by ϕ of any section of L∗ is a (vertical)
one-form on M4. Similarly, if E is a vector bundle over N3, the pull-back
by ϕ of any section of L∗ ⊗ E is a ϕ∗(E)-valued one-form on M4.

Next, we recall the following definitions (see [16] and the references
therein).

Definition 4.4. — Let P be a principal bundle on N3 endowed with a
(principal) connection Γ and let A be a section of L∗ ⊗AdP .

1) Let N3 be endowed with a conformal structure cN and a Weyl con-
nection DN . The pair (A,Γ) is called a monopole on (N3, cN , D

N ) if

R = ∗
N

(DN ⊗∇)(A)

where R is the curvature form of Γ and ∇ is (the covariant derivation of)
the connection induced by Γ on AdP .

2) Let (M4, cM ) be a four-dimensional oriented conformal manifold and
let ϕ :M4 → N3 be a submersion. The connection Γ̃ on ϕ∗(P ) defined by

Γ̃ = ϕ∗(Γ) + ϕ∗(A)

is called the pull-back by ϕ of (A,Γ).

Next, we prove the following (cf. [16] and the references therein):

Proposition 4.5. — Let (M4, cM ) be a four-dimensional oriented con-
formal manifold and let (N3, cN , D

N ) be a three-dimensional Weyl space;
denote by τM and τN the almost twistorial structures of Examples 3.6 and
3.3, associated to (M4, cM ) and (N3, cN , D

N ), respectively.
Let P be a principal bundle over N3 endowed with a connection Γ and let
A be a nowhere zero section of L∗⊗AdP . Also, let ϕ : (M4, cM )→ (N3, cN )
be a surjective horizontally conformal submersion with connected fibres.

Then any two of the following assertions imply the third:
(i) ϕ : (M4, τM )→ (N3, τN ) is twistorial.
(ii) (A,Γ) is a monopole on (N3, cN , D

N ).
(iii) Γ̃ is anti-self-dual.

Proof. — Let R̃ be the curvature form of Γ̃. A straightforward calculation
shows that, up to an anti-self-dual term, the following equality holds

(4.1) R̃ = ϕ∗(R) + ϕ∗
(
(DN ⊗∇

)
(A)
)

+
(
ϕ∗(DN )−H D+

)
∧ ϕ∗(A)

where we have used the isomorphism Λ2(T ∗M) = Λ2(ϕ∗(T ∗N)
)
⊕(

ϕ∗(TN)⊗ V ∗
)
, induced by cM . The proof follows. �
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Remark 4.6. — The fact that (4.1) holds, up to an anti-self-dual term,
does not require ϕ be horizontally conformal; moreover, this relation char-
acterizes H D+ among the partial connections on V , over H .

It follows that a submersion from a four-dimensional oriented conformal
manifold to a three-dimensional Weyl space is twistorial, as in Example 4.3,
if and only if it pulls-back any (local) monopole to an anti-self-dual con-
nection; the ‘only if’ part is essentially due to [16] whilst the ‘if’ part is an
immediate consequence of Proposition 4.5 (see also [16] and the references
therein).

We end this section with the following result which follows quickly from
Proposition 2.5.

Proposition 4.7 (cf. [7]). — Let (Mm, c,D) be a Weyl space,m = 3, 4,
and let k be a section of the dual of the line bundle ofMm; ifm = 4 assume
M4 oriented and k = 0. Let τ ′M be the almost twistorial structure on Mm
given by Examples 3.5 or 3.7 according to m = 3 or m = 4, respectively.

Let N2 be an oriented surface in Mm. Let τN = (N,N, IdN , J) where J
is the positive Hermitian structure of (N2, c|N ).

The following assertions are equivalent:
(i) (N2, τN )→ (Mm, τ ′M ) is twistorial (with respect to pN ).
(ii) N2 is a minimal surface in (Mm, c,D) and k|N = 0.

5. Harmonic morphisms and twistorial maps between
Weyl spaces of dimensions four and three

We start this section by introducing a natural generalization of the almost
twistorial structure of Example 3.5.

Example 5.1. — Let (M3, c) be a three-dimensional conformal manifold
endowed with two Weyl connections D′ and D′′. Let k be a section of L∗
and let ∇ be the connection associated to D′′ and k.

Let π : P → M be the bundle of nonzero skew-adjoint f -structures on
(M3, c). We denote by H 0 the subbundle of TCP such that, at each p ∈ P ,
the subspace H 0

p ⊆ TC
p P is the horizontal lift, with respect to D′, of the

eigenspace of pC ∈ End(TC
π(p)M) corresponding to the eigenvalue 0. Also,

we denote by H 1,0 the subbundle of TCP such that, at each p ∈ P , the
subspace H 1,0

p ⊆ TC
p P is the horizontal lift, with respect to ∇, of the

eigenspace of pC ∈ End(TC
π(p)M) corresponding to the eigenvalue i.
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We define the almost f -structure F ′′ on P with respect to which T 0P =
H 0 and T 1,0P = (ker dπ)0,1⊕H 1,0. Then τ ′′ = (P,M, π,F ′′) is a noninte-
grable almost twistorial structure on M (the nonintegrability of τ ′′ follows
easily from the proof of the integrability result presented in [14]).

We shall also need the following.

Example 5.2. — Let (M4, c,D) be a four-dimensional oriented Weyl
space. Let π : P →M be the bundle of positive orthogonal complex struc-
tures on (M4, c).

Let ϕ :M4 → N3 be a submersion; denote by V = ker dϕ and H = V ⊥.
For any p ∈ P let l′p and l′′p be the lines in TC

π(p)M spanned by V − i p(V )
and X− i p(X), respectively, for any V ∈ Vπ(p) and X ∈ p(Vπ(p))⊥∩Hπ(p).

We define the almost CR-structure C ′ϕ on P which, at each p ∈ P , is the
direct sum of (ker dπp)0,1 and the horizontal lift, with respect to D, of l′p.

Similarly, we define the almost CR-structure C ′′ϕ on P which, at each
p ∈ P , is the direct sum of (ker dπp)0,1 and the horizontal lift, with respect
to D, of l′′p .

Then τ ′ϕ = (P,M, π,C ′ϕ) and τ ′′ϕ = (P,M, π,C ′′ϕ ) are nonintegrable al-
most twistorial structures onM4 (the nonintegrability of τ ′ϕ and τ ′′ϕ follows
easily from the proof of the integrability result presented in [14]).

Remark 5.3. — Let (N3, cN ) be a three-dimensional conformal mani-
fold. At least locally, we may assume that (L∗⊗TN, c) is the adjoint bundle
of a rank two complex vector bundle E with group SU(2). Furthermore, un-
der this identification, PN is isomorphic to PE. As SO(3,R) = SU(2)/Z2 =
PSU(2), any connection on (L∗ ⊗ TN, c) corresponds to a connection on
the PSU(2)-bundle PN . Also, (L∗ ⊗ TN, c) is the adjoint bundle of the
PSU(2)-bundle PN .

Similarly, if (M4, cM ) is a four-dimensional oriented conformal manifold
then the bundle PM of positive orthogonal complex structures on (M4, cM )
is a PSU(2)-bundle.

Furthermore, a submersion ϕ : (M4, cM ) → (N3, cN ) is horizontally
conformal if and only if Φ : PM → PN is a morphism of PSU(2)-bundles
(in general, Φ is a morphism of SL(3,R)-bundles). Also, note that, if ϕ is
horizontally conformal then PM = ϕ∗(PN ) as PSU(2)-bundles.

The following result shows the importance of the almost twistorial struc-
tures of Example 5.2.

Theorem 5.4. — Let (M4, cM , D
M ) be a four-dimensional oriented

Weyl space and let PM be the bundle of positive orthogonal complex struc-
tures on (M4, cM ).
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Let (N3, cN , D
N ) be a three-dimensional Weyl space and let k be a sec-

tion of the dual of the line bundle of N3; denote by ∇ the connection
associated to DN and k. Let τ ′N be the almost twistorial structure of Ex-
ample 3.5, associated to (N3, cN , D

N , k).
Let ϕ :M4 → N3 be a submersion; denote by V = ker dϕ and H = V ⊥.

Let τ ′ϕ and τ ′′ϕ be the almost twistorial structures of Example 5.2, associated
to (M4, cM , D

M ) and ϕ.
(i) The following assertions are equivalent:

(i1) ϕ : (M4, τ ′ϕ)→ (N3, τ ′N ) is twistorial.
(i2) ϕ : (M4, cM , D

M )→ (N3, cN , D
N ) is a harmonic morphism.

(ii) The following assertions are equivalent:
(ii1) ϕ : (M4, τ ′′ϕ)→ (N3, τ ′N ) is twistorial.
(ii2) ϕ : (M4, cM )→ (N3, cN ) is horizontally conformal, V (DM−D) =

1
2 k and ϕ∗(DN ) = H DM+ 1

2 ∗H I
H as partial connections, over H , where

D is the Weyl connection of (M4, cM ,V ).
(ii3) ϕ : (M4, cM )→ (N3, cN ) is horizontally conformal and the partial

connections on PM , over H , induced by DM and ϕ∗(∇) are equal.

Proof. — (i) By Remark 5.3, if (i1) holds then ϕ : (M4, cM )→ (N3, cN )
is horizontally conformal.

Let τ ′ϕ = (PM ,M, πM ,C ′ϕ) and let τ ′N = (PN , N, πN ,F ′). By associating
to each orthogonal complex structure on (M4, cM ) its eigenspace corre-
sponding to −i, we identify πM : PM → M with the bundle of self-dual
spaces on (M4, cM ).

Similarly, by associating to each skew-adjoint f -structure on (N3, cN )
the sum of its eigenspaces corresponding to 0 and −i, we identify πN :
PN → N with the bundle of (complex) two-dimensional degenerate spaces
on (N3, cN ).

Under these identifications the natural lift Φ : PM → PN of ϕ is given
by Φ(p) = dϕ(p), for any p ∈ PM .

Let q be a local section of PN , over some open set V ⊆ N , and let p
be the local section of PM , over ϕ−1(V ), such that Φ ◦ p = q ◦ ϕ. At least
locally, we may assume that p is generated by Y = U + iX and Z, with U
vertical, and X and Z basic. Thus, q is generated by dϕ(X) and dϕ(Z).

We shall assume that, for some x0 ∈ ϕ−1(V ), we have dq(dϕ(Xx0)) hori-
zontal, with respect to the connection induced by ∇ on PN . Then Proposi-
tion 2.5, the fundamental equation (see [11]) and a straightforward calcula-
tion show that dp(Y x0) ∈ (C ′ϕ)

p(x0) if and only if cM
(
tracecM (D̃dϕ), Z

)
=

0, where D̃ is the connection induced by DM and DN on ϕ∗(TN)⊗ T ∗M .
This proves that (i2)=⇒(i1).
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To prove the converse, assume that (i1) holds. Then there exists a unique
A ∈ (C ′ϕ)

p(x0) such that dΦ(A) = dq(dϕ(Xx0)). From the fact that
dπM
(
(C′ϕ)

p(x0)

)
is the line spanned by Y x0 , it follows quickly that dπM (A)=

−Y x0 . Together with dΦ(A) = dΦ(dp(−Y x0)) this gives A = dp(−Y x0).
Hence, dp(Y x0) ∈ (C ′ϕ)

p(x0) and, therefore, cM
(
tracecM (D̃dϕ), Z

)
= 0.

(ii) By Remark 5.3, if (ii1) holds then ϕ : (M4, cM ) → (N3, cN ) is hori-
zontally conformal.

Similarly to above, let p be a basic local section of PM ; that is, there
exists a local section q of PN such that Φ ◦ p = q ◦ ϕ. At least locally, we
may assume that p is generated by Y = U + iX and Z, with U vertical,
and X and Z basic. Thus, q is generated by dϕ(X) and dϕ(Z).

To prove (ii1) ⇐⇒ (ii2), we shall assume that p is horizontal, at some
point x0 ∈M , with respect to the connection induced by DM on PM (this
could be done as follows: firstly, define p over some hypersurface, containing
x0 and transversal to the fibres of ϕ, such that p is horizontal at x0; then,
extend p, to an open neighbourhood of x0, so that to be basic); in particular,
dp(Zx0) ∈ (C ′′ϕ )

p(x0).
Assertion (ii1) is equivalent to the fact that, for any such p, we have

dq(dϕ(Xx0)) contained in the eigenbundle of F ′ corresponding to the eigen-
value i. By using Proposition 2.5, it quickly follows that (ii1)⇐⇒ (ii2).

Let h be an oriented representative of cN and let g be a representative
of cM such that ϕ : (M4, g) → (N3, h) is a Riemannian submersion. Let
αM and αN be the Lee forms of DM and DN with respect to g and h,
respectively.

The equivalence (ii2)⇐⇒ (ii3) follows from the fact that any two of the
following assertions imply the third:

(a) dp(Hx0) is horizontal, with respect to the connection induced by
DM on PM .

(b) q is horizontal at ϕ(x0), with respect to the connection induced by
∇ on PN .

(c) At x0 we have αM |V = 1
2 k and αN = αM |H + 1

2 ∗H I
H , where

we have identified k and αN with their pull-backs by ϕ and, in the first
equality, we have used the isomorphism between V and the pull-back by ϕ
of the line bundle of N3 induced by ϕ and the orientation of M4.

The proof is complete. �

Remark 5.5. — Let (M4, c,D) be a four-dimensional oriented Weyl
space and P the bundle of positive orthogonal complex structures on (M4, c).
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With the same notations as in Example 5.2, by Theorem 5.4(i), the rela-
tion ϕ←→ C ′ϕ induces a bĳective correspondence between one-dimensional
foliations on (M4, c,D), which are locally defined by harmonic morphisms,
and certain almost CR-structures on P .

Next, we prove the following.

Theorem 5.6. — Let (M4, cM , D
M ) be a four-dimensional oriented

Weyl space and let τ ′M be the almost twistorial structure of Example 3.7,
associated to (M4, cM , D

M ).
Let (N3, cN ) be a three-dimensional conformal manifold endowed with

two Weyl connections D′ and D′′. Let k be a section of the dual of the line
bundle of N3 and let τ ′′N be the almost twistorial structure of Example 5.1,
associated to (N3, cN , D

′, D′′, k).
Let ϕ :M4 → N3 be a submersion. The following assertions are equiva-

lent:
(i) ϕ : (M4, τ ′M )→ (N3, τ ′′N ) is twistorial.
(ii) ϕ : (M4, cM )→ (N3, cN ) is horizontally conformal and the connec-

tion induced by DM on the bundle of positive orthogonal complex struc-
tures on (M4, cM ) is the pull-back by ϕ of (A,∇), where A = (D′′−D′)]cN
and ∇ is the connection associated to D′′ and k.

(iii) The following assertions hold:
(iii1) ϕ : (M4, cM , D

M )→ (N3, cN , D
′) is a harmonic morphism;

(iii2) ϕ : (M4, τM ) → (N3, τN ) is twistorial, where τM and τN are
the almost twistorial structures of Examples 3.6 and 3.3, associated to
(M4, cM ) and (N3, cN , 2D′′ −D′), respectively.

(iii3) V (DM − D) = 1
2 k where V = ker dϕ and D is the Weyl

connection of (M4, cM ,V ).

Proof. — From Theorem 5.4, it follows that assertion (i) holds if and
only if ϕ : (M4, cM , D

M )→ (N3, cN , D
′) is a harmonic morphism, V (DM−

D) = 1
2 k and ϕ∗(DN ) = H DM+ 1

2 ∗H I
H as partial connections, over H .

Together with the fundamental equation, this quickly gives (i)⇐⇒ (iii).
Let τ ′M = (PM ,M, πM ,J ′). From Theorem 5.4, it follows that assertion

(i) holds if and only if ϕ : (M4, cM ) → (N3, cN ) is horizontally confor-
mal, the partial connections on PM , over H , induced by DM and ϕ∗(∇)
are equal, and we have H (DM − D) = D′ − D′′ + 1

2 ∗H I
H , as partial

connections, over H .

TOME 60 (2010), FASCICULE 2



450 Eric LOUBEAU & Radu PANTILIE

Let (X1, . . . , X4) be a positive conformal local frame on (M4, cM ) such
that X1 is vertical and X2, X3, X4 are basic. Let g be the local representa-
tive of cM induced by (X1, . . . , X4). Let αM and α be the Lee forms, with re-
spect to g, ofDM andD, respectively. Denote by Γijk, (i, j, k = 1, . . . , 4), the
Christoffel symbols of DM with respect to (X1, . . . , X4). Then a straight-
forward calculation gives the following relations:

Γ1
21 + Γ3

41 =
(
αM − α− 1

2 ∗H I
H
)
(X2),

Γ1
31 − Γ2

41 =
(
αM − α− 1

2 ∗H I
H
)
(X3),

Γ1
41 + Γ2

31 =
(
αM − α− 1

2 ∗H I
H
)
(X4).

Thus, we have proved that (i) holds if and only if ϕ : (M4, cM ) →
(N3, cN ) is horizontally conformal, the partial connections on PM , over
H , induced by DM and ϕ∗(∇) are equal, and the following relations hold:

Γ1
21 + Γ3

41 = (D′ −D′′)(X2),

Γ1
31 − Γ2

41 = (D′ −D′′)(X3),

Γ1
41 + Γ2

31 = (D′ −D′′)(X4).

It follows that (i)⇐⇒ (ii). �

Remark 5.7. — 1) Let (M4, cM , D
M ) be a four-dimensional oriented

Weyl space. Let τ ′M be the almost twistorial structure of Example 3.7, as-
sociated to (M4, cM , D

M ); denote by PM the bundle of positive orthogonal
complex structures on (M4, cM ).

Let ϕ : M4 → N3 be a submersion onto a three-dimensional manifold.
Let PN be the bundle of oriented lines on N3. Then, similarly to Exam-
ple 4.3, there can be defined a bundle map Φ : PM → PN .

Suppose that there exists an almost twistorial structure τ on N3 such
that ϕ : (M4, τ ′M ) → (N3, τ) is a twistorial map, with respect to Φ. Then
there exist a section k of the dual of the line bundle of N3, a confor-
mal structure cN on N3 and Weyl connections D′ and D′′ on (N3, cN )
such that τ is the almost twistorial structure of Example 5.1, associated to
(N3, cN , D

′, D′′, k).
A similar comment applies to the twistorial maps of Example 4.3.
2) Let (M4, cM ) be an oriented four-dimensional conformal manifold and

let (N3, cN , D) be a three-dimensional Weyl space. Denote by τM and τN
the almost twistorial structures, of Examples 3.6 and 3.3, associated to
(M4, cM ) and (N3, cN , D), respectively. Let ϕ : (M4, τM )→ (N3, τN ) be a
twistorial map (see [16] and [6] for examples of such maps).
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Let D′ be a Weyl connection on (N3, cN ) and k a section of the dual of
the line bundle of N3; denote by D′′ = 1

2 (D +D′).
From Theorem 5.6, it follows that there exists a unique Weyl connection
DM on (M4, cM ) such that ϕ : (M4, τ ′M ) → (N3, τ ′′N ) is twistorial, where
τ ′M and τ ′′N are the almost twistorial structures of Examples 3.7 and 5.1,
associated to (M4, cM , D

M ) and (N3, cN , D
′, D′′, k), respectively.

3) Let (M4, cM ) be a four-dimensional oriented conformal manifold and
L the line bundle of M4. Denote by P± the bundles of positive/negative
orthogonal complex structures on (M4, cM ). As P± are, locally, the projec-
tivisations of the bundles of positive/negative spinors on (L∗ ⊗ TM, cM ),
any conformal connection on (M4, cM ) corresponds to a pair (Γ+,Γ−),
where Γ± are connections on P±.

Let ϕ : (M4, cM ) → (N3, cN ) be a horizontally conformal submersion
onto a three-dimensional conformal manifold. Endow (N3, cN ) with two
Weyl connections D′ and D′′ and let k be a section of the dual of the line
bundle of N3. Let Γ+ be the connection on P+ which is the pull-back by
ϕ of (A,∇), where A = (D′′ −D′)]cN and ∇ is the connection associated
to D′′ and k.

Let Γ− be a connection on P− and suppose that the connection DM cor-
responding to (Γ+,Γ−) is torsion-free. Then, obviously, DM is a Weyl con-
nection on (M4, cM ). Moreover, by Theorem 5.6, the map ϕ : (M4, τ ′M )→
(N3, τ ′′N ) is twistorial, where τ ′M and τ ′′N are the almost twistorial structures
of Examples 3.7 and 5.1, associated to (M4, cM , D

M ) and (N3, cN , D
′, D′′, k),

respectively.
4) With the same notations as in Theorem 5.6, it can be proved that

(A,∇) is a monopole on (N3, cN , 2D′′ −D′) if and only if D′ = D′′ and ∇
is flat (cf. [8]; see [11] for details about the resulting maps).

The following result is an immediate consequence of Theorem 5.6; note
that, the equivalence (ii)⇐⇒ (iii) appears in [11].

Corollary 5.8. — Let (M4, cM , D
M ) be a four-dimensional oriented

Weyl space and τ ′M the almost twistorial structure of Example 3.7, associ-
ated to (M4, cM , D

M ).
Let (N3, cN , D

N ) be a three-dimensional Weyl space and k a section of
the dual of the line bundle of N3. Let τ ′N be the almost twistorial structure
of Example 3.5, associated to (N3, cN , D

N , k).
Let ϕ :M4 → N3 be a submersion. The following assertions are equiva-

lent:
(i) ϕ : (M4, τ ′M )→ (N3, τ ′N ) is twistorial.
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(ii) ϕ : (M4, cM )→ (N3, cN ) is horizontally conformal and the connec-
tion induced by DM on the bundle of positive orthogonal complex struc-
tures on (M4, cM ) is the pull-back by ϕ of ∇, where ∇ is the connection
associated to DN and k.

(iii) The following assertions hold:
(iii1) ϕ : (M4, cM , D

M )→ (N3, cN , D
N ) is a harmonic morphism;

(iii2) ϕ : (M4, τM ) → (N3, τN ) is twistorial, where τM and τN are
the almost twistorial structures of Examples 3.6 and 3.3, associated to
(M4, cM ) and (N3, cN , D

N ), respectively.
(iii3) V (DM − D) = 1

2 k where V = ker dϕ and D is the Weyl
connection of (M4, cM ,V ).

Example 5.9. — 1) Let ϕ : (M4, g)→ (N3, h) be a harmonic morphism
given by the Gibbons-Hawking or the Beltrami fields construction (see
[15]). Then ϕ satisfies (ii) and (iii) of Corollary 5.8, with DM and DN the
Levi-Civita connections of g and h, respectively, and a suitable choice of k
([11], [16]). Hence, ϕ satisfies assertion (i) of Corollary 5.8 (and, also, (i) of
Theorem 5.6).

2) Let ϕ : (M4, g)→ (N3, h) be a harmonic morphism of Killing type be-
tween Riemannian manifolds of dimensions four and three. Then ϕ satisfies
(iii1), (iii2) of Theorem 5.6, with DM and D′ the Levi-Civita connections
of g and h, respectively, and a suitable choice of D′′ [16]; also, ϕ satisfies
(iii3), with k = 0. Hence, ϕ satisfies assertion (i) of Theorem 5.6.
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