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FOLIATIONS WITH DEGENERATE
GAUSS MAPS ON P4

by Thiago FASSARELLA (*)

Abstract. — We obtain a classification of codimension one holomorphic foli-
ations on P4 with degenerate Gauss maps.

Résumé. — Nous obtenons une classification des feuilletages holomorphes de
codimension 1 dans P4 dont l’application de Gauss est dégénérée.

1. Introduction

Varieties with degenerate Gauss maps in complex projective spaces and
their differential–geometric properties has already been considered by Segre
in [25, 26]. That study was renewed by Griffiths–Harris in [14] and concepts
like the second fundamental form which can be seen as the differential of
the Gauss map are discussed in modern language. It presents a growing
literature. See [2, 13, 15] for example.

In the current paper we study varieties with degenerate Gauss maps
when are posed in a family, more precisely, we deal with codimension one
holomorphic foliations on the complex projective space Pn which every
leaf has degenerate Gauss map. It happens when the global Gauss map
associated to a foliations F on Pn is degenerate. In this case we shall say
F is degenerate.

It is not difficult to see that every curve with degenerate Gauss map
is a line and then any degenerate foliation on P2 is a pencil of lines. A

Keywords: Gauss Map, Degenerate, Holomorphic Foliations.
Math. classification: 37F75, 32M25, 34M45.
(*) My warmest thanks to Prof. Jorge Vitório Pereira for his substantial help in the
elaboration of this paper. I thank also to IMPA where a great part of this paper was
written.



456 Thiago FASSARELLA

surface in P3 with degenerate Gauss map is either a plane, a cone, or the
tangential surface of a curve. According to Cerveau-Lins Neto [4] there are
two non-exclusive possibilities for a degenerate foliation on P3:

(1) F has a rational first integral;
(2) F is a linear pull-back of some foliation on P2.

Moreover, if F is not a linear pull-back of some foliation on P2, then the
rational first integral can be given explicitly and the leaves of F are cones
over a fixed curve. If F is a linear pull-back of some foliation on P2, then
the leaves are cones over the leaves of such foliation on P2.

Such classification of degenerate foliations on P3 was used by Cerveau–
Lins Neto in order to understand the irreducible components of the space
F(n, d) of codimension one holomorphic foliations on Pn with fixed degree
d = 2. Their analysis relies on one hand in the study of degenerate foliations
on P3 and on the other hand in the Dulac’s classification of the foliations
with degree 2 on P2 which has a Morse type singularity. This shows that
a relevant role in the understanding of the irreducible components of the
space of codimension one holomorphic foliations is played by the analysis
of the foliations with degenerate Gauss maps.

In this work we will obtain a similar classification as in P3, but consid-
erably more complicate, of the foliations with degenerate Gauss maps on
P4. We will see that, in contrast with lower dimension, there are examples
in P4 which neither have rational first integral nor are linear pull-back of
some foliation on P2. The examples that arise in our classification are sepa-
rated in three classes according to whether the leaves of F are cones, joins
or bands. Some of these examples have an interesting structure which are
different from the previously known, due to the fact that the degenerate
foliation is completely determined by the foliation defined by the fibers of
the Gauss map.

The paper is organized as the following: In §2 we recall the basic defini-
tion of codimension q holomorphic foliations on Pn and their Gauss maps.
In §3 we show the linearity of the fibers of the Gauss map. In §4 we recall
some basic property concerning foliations by k-planes. In §5 we prove the
Theorem 5.2 which relates the focal points of the foliation determined by
the fibers of the Gauss map with the focal points of a leaf of F and use this
to give a shorter proof of the classification of degenerate foliations on P3. In
§6 we give the examples of degenerate foliations on P4 - which possibility
do not have rational first integral - that will arise in our classification and
prove the Theorem 6.11, our main result.
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DEGENERATE FOLIATIONS 457

2. Basic Definitions

A codimension q singular holomorphic foliation on Pn, from now on, just
codimension q foliation F on Pn is determined by a line bundle L and an
element ω ∈ H0(Pn,ΩqPn ⊗ L) satisfying

(i) codim(Sing(ω)) > 2 where Sing(ω) = {x ∈ Pn |ω(x) = 0};
(ii) ω is integrable.

By definition ω is integrable if and only if for every point p ∈ Pn\Sing(ω)
there exist a neighborhood V ⊂ Pn of p and 1-forms α1,...,αq ∈ Ω1(V ) such
that

ω|V = α1 ∧ . . . ∧ αq and dαi ∧ ω|V = 0 ∀ i = 1, . . . , q.

The singular set of F , for short Sing(F), is by definition equal to Sing(ω).
The integrability condition (ii) determines in an analytic neighborhood of
every regular point p, i.e. p ∈ Pn \ Sing(F) a holomorphic fibration with
relative tangent sheaf coinciding with the subsheaf of TPn determined by
the kernel of ω. Analytic continuation of the fibers of this fibration describes
the leaves of F .

For a codimension one foliation F on Pn (i.e. q = 1) the integrability (ii)
is equivalent to

ω ∧ dω = 0.

The Gauss map of a codimension q foliation F on Pn is the rational map

GF : Pn 99K G(n− q, n)
p 7→ TpF

where TpF is the projective tangent space of the leaf of F through p and
G(n− q, n) is the Grassmannian of (n− q)-planes in Pn. In this paper we
will focus on the Gauss map of codimension one foliations. Codimension q
foliations, 2 6 q 6 n− 1, will appear only in the definition of foliations by
k-planes in §4.

The Gauss map for codimension one foliations was also considered in [22]
to give upper bounds for the dimension of certain resonance varieties and
in [12] for the study of the degree of polar transformations.

TOME 60 (2010), FASCICULE 2



458 Thiago FASSARELLA

3. Linearity of the Fibers of the Gauss Map

The Gauss map of a codimension one foliation F on Pn is the rational
map

GF : Pn 99K P̌n

p 7→ TpF .

The degree of a codimension one foliation F on Pn, for short deg(F), is
geometrically defined as the number of tangencies of F with a generic line
` ⊂ Pn. If ι : `→ Pn is the inclusion of such a line then the degree of F is the
degree of the zero divisor of the twisted 1-form ι∗ω ∈ H0(`,Ω1

` ⊗L|`). Thus
the degree of F is nothing more than deg(L) − 2. It follows from Euler’s
sequence that a 1-form ω ∈ H0(Pn,Ω1(deg(F) + 2)) can be interpreted as
a homogeneous 1-form on Cn+1, still denoted by ω,

ω =
n∑
i=0

Aidxi

with the coefficients Ai being homogeneous polynomial of degree deg(F)+1
and satisfying Euler’s relation iRω = 0, where iR stands for the interior
product with the radial (or Euler’s) vector field R =

∑n
i=0 xi

∂
∂xi

.
If we interpret [dx0 : . . . : dxn] as projective coordinates of P̌n, then the

Gauss map of the corresponding F can be written as

GF (p) = [A0(p) : . . . : An(p)].

If p is a regular point of F and M is a germ of leaf of F through p, i.e.
a germ of codimension one complex variety in which is invariant by F , we
consider the Gauss map associated to M

GM : M −→ P̌n

p 7→ TpM.

It is clear that GF restricted to M coincides with GM . The following lemma
relates their ranks. We leave the proof to the reader.

Lemma 3.1. — Let F be a codimension one foliation on Pn and M be
a germ of leaf of F through a regular point p. Then

rank(dGF (p)) = rank(dGM (p)) + 1.

Suppose F has degenerate Gauss map, i.e. the differential dGF (p) has
constant rank k for some 1 6 k < n outside a proper algebraic subset
S ⊂ Pn. In this case we shall say GF has rank k. By the Implicit Function
Theorem there is a regular holomorphic foliation G on Pn \ S so that each

ANNALES DE L’INSTITUT FOURIER
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leaf of G has dimension n− k and GF is constant on each leaf. Such folia-
tion G extend to a codimension k foliation on Pn in which we still denote
by G. We shall refer to G as the foliation determined by the fibers of GF .
The following proposition shows that the leaves of G are linear spaces.

Proposition 3.2. — Let F be a codimension one foliation on Pn, n > 2.
If GF has rank k, 1 6 k < n, then a generic fiber of GF is a union of open
subsets of linear spaces of dimension n− k.

Proof. — Let M be the germ of a leaf of F . By Lemma 3.1, the generic
fiber of GF and GM has the same dimension. To conclude the proposition
one has just to invoke the classical results on the Gauss map GM (cf. [26]
and [14] for a local approach). �

4. Foliations by k-Planes

A foliation by k-planes G on Pn, 1 6 k 6 n − 1, by definition is a
codimension (n − k) foliation on Pn which every leaf is contained in a
linear space of dimension k. The algebraic closure B′ ⊂ G(k, n) of the
set of invariant k-planes by G defines a subvariety of dimension n − k.
Reciprocally, a subvariety B′ ⊂ G(k, n) which for a generic point p ∈ Pn
there is exactly one element of B′ passing through p, defines a foliation by
k-planes G on Pn. We shall say G is determined by B′.

We consider the variety

Λ′ = {(p, L) ∈ Pn ×B′ | p ∈ L}.

together with the natural projections g′ : Λ′ −→ B′ and f ′ : Λ′ −→ Pn.
Then we have the following diagram

Λ := B ×B′ Λ′

f

((

g

��

φ∗
// Λ′

g′

��

f ′
// Pn

B
φ

// B′

where φ is a resolution of B′ and f = f ′ ◦ φ∗. Notice that Λ is a vector
bundle over the nonsingular variety B, in particular it is a smooth variety.

We denote by RG the divisor of ramification points of f . We can write

RG = HG + VG

TOME 60 (2010), FASCICULE 2



460 Thiago FASSARELLA

where g||HG| has rank n−k in a dense open subset and g||VG| is not dominant
(where | | denotes the support of the divisor). Notice that the irreducible
components of the support of HG can be seen as horizontal components
(and VG as vertical components) with respect to the k-planes fibers of g.
Since f is a parameterization of the leaves of G outside f(|RG |), it follows
f(|RG |) = Sing(G).

Definition 4.1. — If E is an irreducible component of the support of
HG , then f(E) is called fundamental component of G. The union of all
fundamental components is called fundamental set of G and it is denoted
by ∆G .

fE

Λ Pn

f(E)

Figure 4.1. Fundamental component.

If L ∈ B, we still denote by L ⊂ Pn the respective k-plane interpreted
as subset of Pn. If L is an invariant k-plane by G such that g−1(L) is not
contained in the support of VG , then the restriction of HG to g−1(L) defines
a hypersurface in g−1(L) which we denote by ∆∗G(L). Notice that

f |g−1(L) : g−1(L) −→ L

is an isomorphism. Thus the direct image f∗(∆∗G(L)) is a divisor in L ⊂ Pn
which we denote by ∆G(L). We shall refer to ∆G(L) as the focal points of
G in L. We will proof in §5.1 that ∆G(L) has degree n− k. That result can
also be found in [8], it is a classical known fact about congruences.

The subvariety B′ ⊂ G(k, n) which defines a foliation by k-planes is
classically known as congruence of k-planes on Pn of order one. The con-
gruence of lines on Pn (i.e. k = 1) was already considered by Kummer in
[17] where a classification was obtained when n = 3. We state this classifi-
cation in §4.2 and use it to obtain a shorter proof of Cerveau–Lins Neto’s
classification of degenerate foliations on P3. The congruence of lines on P4

was studied by Marletta in [18, 19] and also by De Poi in [8, 10, 11] seeking
to complete Marletta’s classification. We will not use such classification for
the study of degenerate foliations on P4 in §6, just some general results.

ANNALES DE L’INSTITUT FOURIER
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4.1. Foliations by Lines

Now, let us recall some known facts (see [8] for example) about foliations
by lines (i.e. k = 1) that will be useful later.

Lemma 4.2. — Let G be a foliation by lines on Pn. If G has an isolated
singularity p, then it is the radial foliation from p, that is, the foliation
determined by the lines passing through p.

Proof. — Let E be an irreducible component of the support of RG such
that p ∈ f(E). Since p is isolated we conclude that f(E) = {p}.

If E is contained in the support of VG , then f(E) ⊂ Sing(G) contains at
least one line f(g−1(L)). Since f|g−1(L) is an isomorphism, p would not be
an isolated singularity.

Therefore we may assume that E is contained in the support of HG . It
follows that B′ ⊂ σ, where B′ ⊂ G(1, n) denote the closure of the family
of invariant lines by G and σ ⊂ G(1, n) denote the family of lines passing
through p. Since

dim(B′) = dim(σ) = n− 1,
the result follows. �

Lemma 4.3. — Let G be a foliation by lines on Pn. Let us write

HG =
∑

m(E)·E,

where E is an irreducible hypersurface in Λ. We claim that

m(E) > n− dimf(E)− 1.

Proof. — We take q ∈ E a smooth point such that p = f(q) is a smooth
point of f(E). Up to a local biholomorphism we may assume that f can be
written locally as

f = (a1, ..., adE , xnadE+1, ..., xnan)

where ai ∈ Oq, for all i = 1, ..., n, xn ∈ Oq is the local equation of E and
dE = dimf(E). It follows

detJf = xn−dE−1
n ·Q,

where Q ∈ Oq. Since such biholomorphism induces an isomorphism in the
local rings, this concludes the lemma. �

Definition 4.4. — Let G be a foliation by lines on Pn and E ⊂ Λ an
irreducible component of the support of HG .

TOME 60 (2010), FASCICULE 2
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(1) If g−1(L) ∩ E is a set of single point for generic L ∈ B, we may
consider the rational map

φE := f ◦ τE ◦ f−1 : Pn 99K f(E),

where τE : Λ −→ E is the natural projection along the lines
g−1(L) ⊂ Λ. We shall refer to φE as the projection along the lines
of G.

(2) The fibers of the restriction f|E : E −→ f(E) define a foliation ηE
on E of dimension n− dE − 1. We shall refer to ηE as the foliation
defined by f on E.

Proposition 4.5. — Let G be a foliation by lines on Pn, n = 3, 4. If E
is an irreducible component of the support of HG such that dimf(E) > 1,
then

kerdf(x) ⊂ TxE,

for a generic point x ∈ E.

Proof. — Notice that if TxE does not contain kerdf(x), then

TxΛ = TxE + kerdf(x).

Therefore df(x)(TxΛ) ⊂ Tf(x)f(E), i.e. the line f(g−1(g(x))) is tangent to
f(E) in f(x). If dimf(E) = 1, then the closure B′ ⊂ G(1, n) of invariant
lines by G is a family of tangent lines to a curve. But this family does not
fill up the space. If dimf(E) = 2, then B′ is the family of tangent lines
to a surface. But it cannot define a foliation by lines according to [11],
Proposition 1.3. �

We need introduce more notations:

Notation 4.6. —
(1) If F ⊂ Pn is a linear space, then F∨ denote its dual, i.e. the pro-

jective space associated to the set of hyperplanes in F .
(2) If E ⊂ F is a linear subspace, then E∗F denote the set of hyperplanes

π ∈ F∨ containing E. If F = Pn we just denote E∗.

4.2. Foliations by Lines on P3

The foliation by lines were considered by Kummer in [17], where a classifi-
cation in P3 was obtained. Alternative proofs of the Kummer’s classification
has been given by many other authors (cf. [6, 9, 23]).

We state such classification here:

ANNALES DE L’INSTITUT FOURIER
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Theorem 4.7. — (Kummer, [17]). Let G be a foliation by lines on P3.
We have one of the following possibilities:

(1) The foliation G is determined by the family of lines passing through
a point p ∈ P3.

(2) The foliation G is determined by the family of secant lines to a
twisted cubic.

(3) There is a line L and a non-constant morphism ψ : L∗ −→ L such
that G is determined by the family of lines

∪π∈L∗ψ(π)∗π .

(4) There is a line L and a rational curve C such that for generic π ∈ L∗,
then (π ∩ C) \L is a set of a single point and G is determined by
the family of lines which intersect L and C.

4.3. Foliations by Planes on P4

The classification of the family of k-planes in Pn which a generic (n−k−
2)-plane meets only one k-plane of the family was obtained by Z.Ran in [23].
In particular, he gave a classification of the foliation by planes (i.e. k = 2)
on P4 which we state here. This classification will be useful later.

Theorem 4.8. — (Ran, [23]). Let G be a foliation by planes on P4. We
have one of the following possibilities:

(1) The foliation G is determined by the family of planes which contains
a line.

(2) There is a plane Σ and a morphism ψ : Σ∗ −→ G(1, 4) such that
the line ψ(π) is contained in π for all hyperplane π ∈ Σ∗ and G is
determined by the family of planes

∪π∈Σ∗ ∪L∈(ψ(π))∗π L.

(3) There is a cubic irreducible surface S and a family of dimension two
of conics (distinct of double lines) in S such that G is determined
by the family of planes containing such conics.

5. Degenerate Foliations

Given a codimension one foliation F on Pn one can naturally associate
to it the Gauss map GF . When GF has rank n − k, 1 6 k < n, it follows
from Proposition 3.2 that its fibers define a foliation G by k-planes on Pn.

TOME 60 (2010), FASCICULE 2
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Definition 5.1. — A codimension one foliation on Pn is called degen-
erate if it has degenerate Gauss map. The rank of F is defined as the rank
of GF .

5.1. Focal Points

Let F be a codimension one foliation of rank n − k, 1 6 k < n. Let
p ∈ Pn be a regular point of F , U ⊂ Pn a small neighbourhood of p in
which does not intersect Sing(F) and M ⊂ U a codimension one complex
variety which is invariant by F . We consider

M0 := ∪p∈MLp,

where Lp is the invariant k-plane by G passing through p. We shall refer to
M0 as the saturation of M by G. To obtain a definition of the focal points
for M0 we take the maps fM0 and gM0 defined in the following diagram

ΛM0

fM0 :=f◦i1

&&

gM0 :=g◦i1
��

i1

// Λ

g

��

f
// Pn

BM0 i2

// B

where ΛM0 = f−1(M0), BM0 = g(ΛM0) and i1, i2 are natural inclusions.
We denote by RM0 the divisor of ramification points of fM0 . We can

write
RM0 = HM0 + VM0

where (gM0)||HM0 | has rank n−k−1 in a dense open subset and (gM0)||VM0 |
is not dominant.

If L is an invariant k-plane by G is not contained in Sing(G), that is,
g−1
M0

(L) is not contained in the support of RM0 , then the restriction of HM0

to g−1
M0

(L) defines a divisor in g−1
M0

(L) which we denote by ∆∗M0
(L). Notice

that
fM0 |g−1

M0
(L) : g−1

M0
(L) −→ L

is an isomorphism. Then the direct image

(fM0)∗(∆∗M0
(L))

is a divisor in L ⊂ Pn which we denote by ∆M0(L). We shall refer to
∆M0(L) as the focal points of M0 in L.

ANNALES DE L’INSTITUT FOURIER
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The following theorem relates the focal points of G and the focal points
of M0. In order to prove it, we use the same idea as in [13, §2.2.4] to look
at the focal points.

Theorem 5.2. — With notations as above, if L ⊂ Pn is an invariant
k-plane not contained in Sing(G), then we have the following statements:

(1) ∆M0(L) is a divisor in L of degree n− k − 1;
(2) ∆G(L) is a divisor in L of degree n− k;
(3) ∆M0(L) 6 ∆G(L).

Proof. — Since f |g−1(L) : g−1(L) −→ L is an isomorphism we can sup-
pose that

f∗∆G(L) = V(FG(L)) and f∗∆M0(L) = V(FM0(L)),

where FG(L), FM0(L) are homogeneous polynomials in k + 1 variables.
A local parameterization ψ : Dn−k −→ B of a neighbourhood of L can

be explicitly written as ψ(s) = P(span{α0(s), ..., αk(s)}), where α0, ..., αk :
Dn−k −→ Cn+1 are holomorphic functions. Composing f with the following
local parameterization

λ : Dn−k × Pk −→ Λ
(s, t) 7→ ([t0α0(s) + ...+ tkαk(s)], ψ(s)), t = (t0 : ... : tk),

we may assume that f can be explicitly written as

f : Dn−k × Pk −→ Pn

(s, t) 7→ [t0α0(s) + ...+ tkαk(s)], t = (t0 : ... : tk).

Since L is not contained in Sing(G) one can suppose that
(1) f is an isomorphism in (s, e0) (where e0 = (1 : 0 : ... : 0)), for all

s ∈ Dn−k and we take Σ := f(Dn−k × {e0}) transversal section to
G;

(2) f(Dn−k−1 × {sn−k} × {e0}) is invariant by F|Σ for all sn−k ∈ D.
Therefore, it follows from the above property (2) that the restrictions

fsn−k : Dn−k−1 × Pk −→ Pn

(s, t) 7→ f(s, t), s = (s, sn−k),

are local parametrizations of the leaves of F . Then by definition, f∗∆G(L)
is given by the ramification points of f and f∗∆M0(L) is given by the
ramification points of fsn−k .

TOME 60 (2010), FASCICULE 2
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Let us denote

V := span

{
α0(s), ..., αk(s),

k∑
i=0

ti
∂αi
∂s1

(s), ...,
k∑
i=0

ti
∂αi
∂sn−k

(s)

}
.

We notice that Im df(s,t) = PV . Hence property (1) above implies that f is
an isomorphism in (s, t) if and only if the equality in the following equation
is hold

V ⊂ span
{
α0(s), ..., αk(s), ∂α0

∂s1
(s), ..., ∂α0

∂sn−k
(s)
}

= Cn+1.

If we denote
∂αi
∂s

(s) :=
(
∂αi
∂s1

(s), ..., ∂αi
∂sn−k

(s)
)
, i = 0, ..., k,

then, there exists matrix Ai(s) ∈ M((n − k); C), i = 0, ..., k, (A0(s) =
Idn−k) such that

∂αi
∂s

(s) = Ai(s)
∂α0

∂s
(s) mod span{α0(s), ..., αk(s)}.

Therefore f is an isomorphism in (s, t) if and only if

det(t0A0(s) + ...+ tkAk(s)) = 0.

This implies that FG(L) = det(t0A0(s)+...+tkAk(s)) and hence is a homo-
geneous polynomial in t0, ..., tk of degree n− k. This proves the statement
(2) of the theorem.

On the other hand, from the hypothesis that the tangent space of F is
constant along the leaves of G we obtain

span
{
α0(s), ..., αk(s),

∑k
i=0 ti

∂αi
∂s1

(s), ...,
∑k
i=0 ti

∂αi
∂sn−k−1

(s)
}
⊂

span
{
α0(s), ..., αk(s), ∂α0

∂s1
(s), ..., ∂α0

∂sn−k−1
(s)
}
.

We have equality if and only if fsn−1 is an immersion in (s, t). There-
fore there exists matrix Ai(s) ∈ M((n − k − 1); C), i = 0, ..., k, (A0(s) =
Idn−k−1) such that

∂αi
∂s

(s) = Ai
∂α0

∂s
(s) mod span{α0(s), ..., αk(s)}.

Hence fsn−1 is not a immersion in (s, t) if and only if

det(t0A0(s) + ...+ tkAk(s)) = 0.

This implies that FM0(L) = det(t0A0(s) + ... + tkA1(s)) and hence is a
homogeneous polynomial in t0, ..., tk of degree n − k − 1. This concludes
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the proof of the statement (1). Since

t0A0(s) + ...+ tkAk(s) =
(

t0A0(s) + ...+ tkAk(s) 0(n−k−1)×1
an−k1(s) . . . an−kn−k−1(s) an−kn−k(s)

)
.

for some holomorphic functions aij : Dn−1 −→ C, therefore FM0(L) divides
FG(L). This concludes the proof of the theorem. �

Remark 5.3. —
(a) The statement (1) of the Theorem 5.2 is a known fact about va-

rieties with degenerate Gauss maps (see [13, Proposition 2.2.4] for
example).

(b) In the case k = 1, the statement (2) of the Theorem 5.2 is a known
fact about congruence of lines (see [8, Theorem 5] for example).

5.2. Degenerate Foliations on P3

The classification of degenerate foliations on P3 plays a key role in the
study of the irreducible components of the space of holomorphic foliations
of degree two on Pn (cf. [4]). We give a shorter proof of such classification by
using the classification of the foliations by lines on P3. The proof contains
some main ideas for the classification on P4.

Theorem 5.4 (Cerveau–Lins Neto, [4]). — . Let F be a degenerate
foliation on P3. We have one of the following possibilities:

(1) F has a rational first integral;
(2) F is a linear pull-back of some foliation on P2.

Proof. — If F has rank one, then the leaves of F are open subsets of
linear spaces (fibers of GF ). In this case it is easy to see that F is a pencil
of hyperplanes. Hence it has a rational first integral.

If F has rank two, we consider the foliation by lines G determined by the
fibers of GF . If G has an isolated singularity p, it follows from Lemma 4.2
that G is determined by the family of lines passing through p. Therefore,
F is a linear pull-back of some foliation on P2. In fact, let ψ : P3 99K P2 be
the linear projection from p. By hypothesis ψ has fibers which are tangent
to F , thus it follows from [5, Lemma 2.2] (applied to ψ|(P3\{p})) that there
exist a foliation η on P2 such that F = ψ∗(η). So we are in the case (2) of
the statement. From now on we will assume that G does not have isolated
singularities.

Let E be an irreducible component of |HG | and M0 be the saturation of
a germ of leaf of F by G.
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On the one hand, the Proposition 4.5 implies that (see Definition 4.4
for ηE)

TpηE = ker(df(p)), for all p ∈ E.
On the other hand, since M∗0 := f−1(M0) is invariant by f∗F one has

TpFE = Tp(M∗0 ∩ E).

By definition of ∆∗M0
(L) follows

TpηE = TpFE if and only if p ∈ |∆∗M0
(L)| ∩ E.

Therefore |∆∗M0
(L)|∩E is not empty for a saturationM0 of a germ of generic

leaf of F if and only if FE = ηE . Theorem 5.2 implies that |∆∗M0
(L)| ∩ E

is not empty for some E, finally one can conclude that FE = ηE for some
irreducible component E of the support of HG .

It follows from Theorem 5.2 that ∆G(L) is a set in L of two points
counting multiplicity, so one have three possibilities:

(a) HG = 2E;
(b) HG = E;
(c) HG = E1 + E2.

We suppose first HG = 2E. By the classification of the foliations by lines
on P3 we can assume that f(E) is a line and G is the foliation in the case
(3) of the Theorem 4.7. We consider the projection along the lines of G

φE : P3 99K f(E).

The above remark implies that FE = ηE , in particular φE is a rational first
integral of F . But the fibers of φE are planes containing f(E), i.e. F is a
pencil of planes containing f(E). Hence it has a rational first integral.

Let now HG = E. It follows from Theorem 4.7 that f(E) is a twisted
cubic and G is determined by its secants lines, i.e. G is the foliation of the
case (2) of the Theorem 4.7. Since a generic line g−1(L) intersect E in
two points and FE = ηE we obtain that |∆∗M0

(L)| is a set of two points.
However, this contradicts the fact that a leaf of F has only one focal point.
Therefore this case cannot happen.

It remains to consider the case in whichHG = E1+E2. We first prove that
f(E1) 6= f(E2). In fact, suppose by contradiction that C := f(E1) = f(E2).
The cone Fp, p ∈ C, determined by the invariant lines by G passing
through p is irreducible because C is an irreducible curve. Let Ni be
an irreducible component of f |Ei

−1(p), i = 1, 2. Then the images by f ,
f(g−1(g(Ni))), i = 1, 2, are distinct irreducible cones determined by in-
variant lines by G passing through p. This contradicts the fact that Fp is
irreducible.
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We may assume that f(E1) 6= f(E2). By classification of the foliation by
lines on P3 we can suppose that f(E1) is a line and G is the foliation of the
case (4) of the Theorem 4.7. We have that either FE1 = ηE1 or FE2 = ηE2 .
In the both cases, the projection along the lines of G

φEi : P3 99K f(Ei), i = 1 or 2,

is a rational first integral of F . So that is the case (1) of the statement. It
is possible to see that in the first case, the leaves of F are cones over f(E2)
and in the second case, F is a pencil of planes containing f(E1). �

6. Degenerate Foliations on P4

If F is a foliation of rank at most two on Pn, then we have the following
possibilities (cf. [4]):

(1) F has a rational first integral;
(2) F is a linear pull-back of some foliation on P2.

In fact, if Σ is a generic linear space of dimension three, then F|Σ has
also rank at most two. It follows form Theorem 5.4 that either F|Σ has a
rational first integral or F|Σ is a linear pull-back of some foliation on P2.
The result follows from [4, Lemma 2 and Lemma 3]. Therefore, to obtain
a similar classification as in Theorem 5.4 of degenerate foliations on P4, it
remains to consider foliations of rank three.

Let F be a foliation of rank three on P4. In this case, the fibers of the
Gauss map define a foliation by lines G on P4. Let p ∈ Pn be a regular
point of F , U ⊂ Pn be a small neighbourhood of p in which does not
intersect Sing(F) and M ⊂ U a codimension one complex variety which is
invariant by F . It follows from Lemma 3.1 that M is a hypersurface in P4

with degenerate Gauss map of rank two.
By classification of hypersurfaces in P4 of rank two (see [2] for a local

approach and also [21, 24] for projective varieties) one obtains the following
possibilities:

(1) M0 is a cone;
(2) M0 is the join of two curves;
(3) M0 is an union of planes (but not osculating) containing the tangent

lines to a curve C, i.e. M0 is a band over C;
(4) There exists a curve C and a surface S such that M0 is an union of

tangent lines to S intersecting C;
(5) There exists two surfaces S1,S2 such that M0 is an union of their

common tangent lines (possibly S1 = S2).
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If M0 is in the cases (4) or (5) for a generic point p ∈ P4, then the
invariant lines by G are tangents to a surface contained in the fundamental
set of G. But, it follows from [11, Proposition 1.3] that it cannot define a
foliation by lines on P4. Therefore a generic leaf of F is either a cone, a
join or a band.

6.1. The Examples

In this section we will give the examples of degenerate foliations on P4

that possibility does not have rational first integral. Such examples are
separated in three classes according the generic leaf of the foliation: cones,
joins and bands. In first example the leaves are cones, in second example
the leaves are joins and for the rest the leaves are bands. The examples 6.4,
6.7 and 6.8 are different from the previously known because the degenerate
foliation is completely determined by the foliation by lines defined by the
fibers of the Gauss map.

6.1.1. Cones

Example 6.1. — Let ψ : P4 99K P3 be a linear projection with center
at p ∈ P4. The fibers of ψ define a foliation by lines G passing through p.
Let F be the pull-back by ψ of some foliation on P3, that is, F = ψ∗(η). It
is easy to see that the leaves of G are contained in the fibers of GF . Hence F
is a degenerate foliation on P4. If η is not degenerate, then G coincides with
the foliation determined by the fibers of GF and F has rank three.

Since ψ is a rational map, we notice that F has a rational first integral
if and only if η has a rational first integral. The leaves of F are cones over
the leaves of the foliation η on P3.

6.1.2. Joins

Example 6.2. — Let G be a foliation by lines on P4 determined by the
family of lines which intersect an irreducible surface S and an irreducible
curve C (distinct of a line). Foliations by lines on P4 with the above property
were classified in [19, 8]. In general if S is not a plane then C is a planar
curve (cf. [19, p.396] or [9, Lemma 2]).

It follows from Lemma 4.3 that

HG = E1 + 2E2 , S = f(E1) and C = f(E2).
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We can consider the projection along the lines of G (see Definition 4.4)

φE1 : P4 99K S.

Given some foliation η on S, we define

F := φ∗E1
(η).

The leaves of F are joins J(C,N), that is, an union of lines which inter-
sect C and N where N is a leaf of η. Thanks to Terracini’s Lemma (see
[28], or, for modern versions, [1, 7, 29]) one obtain that the tangent space
of F along an invariant line by G is constant, i.e. G is tangent to the folia-
tion determined by the fibers of GF . Therefore F is a degenerate foliation
on P4.

6.1.3. Bands

Example 6.3. — Let C ⊂ P4 be a planar curve distinct from a line and
Σ ∼= P2 ⊂ P4 the plane containing C.

Let us define the foliation by lines. We first consider a non-constant
morphism

ψ : Σ∗ ∼= P1 −→ C.

For each π ∈ Σ∗ let Bπ ⊂ G(1, 4) the family of lines contained in π passing
through ψ(π) ∈ C. Let G be the foliation by lines on P4 determined by the
family

B = ∪π∈Σ∗Bπ ⊂ G(1, 4).
Given p ∈ C a smooth point, one denote by lp the tangent line to C at p.

We consider the family of planes defined in the following

P = ∪π ∪ξ∈(lψ(π))∗
π
ξ ⊂ G(2, 4),

where π ∈ Σ∗ runs over points such that ψ(π) is a smooth point to C.
Now we can define the surface

X = {(π, ξ) ∈ Σ∗ × P | ξ ⊂ π} ⊂ P1 ×G(2, 4).

and consider the natural projection

φX : P4 99K X

p ∈ ξ 7→ (π, ξ) ; ξ ⊂ π.

Finally, given some foliation η on X one may define

F := φ∗X(η).

According to the construction, the leaves of F are bands over C. A simple
local computation shows that the tangent space of F along an invariant
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line by G is constant, i.e. G is tangent to the foliation determined by the
fibers of GF . Then F is a degenerate foliation on P4.

Example 6.4. — Let Σ ∼= P2 ⊂ P4 be a plane and

ψ : Σ∗ ∼= P1 −→ Σ∨ ∼= P2

a non-constant morphism, where Σ∨ denote the set of lines in Σ.
We consider the surface

X = {(π, p) ∈ Σ∗ × Σ | p ∈ ψ(π) ⊂ Σ} ⊂ P1 × P2

with natural projections

τ1 : X −→ Σ∗

(π, p) 7→ π,

τ2 : X −→ Σ
(π, p) 7→ p.

Let R be the divisor of ramification points of τ2. We can write R = D+V ,
where D is the divisor associated with the horizontal components (i.e. if E
is a component of the support of D, then τ1|E is dominant) and V is the
divisor associated with the vertical components (i.e. τ1||V | is not dominant).

Now, let us define the foliation by lines. We consider a morphism

ϕ : Σ∗ −→ G(1, 4)

satisfying
(1) ϕ(π) ⊂ π, for all π ∈ Σ∗;
(2) ϕ(π) ∩ Σ = pπ /∈ ψ(π), for a generic π ∈ Σ∗.

where we still denote by ϕ(π) the corresponding subset of P4.
If pπ does not belong to ψ(π), then the family of lines

Bπ = {l ∈ G(1, 4) | l intersect ϕ(π) and ψ(π)}

define a foliation by lines on π. Therefore we may consider the foliation by
lines G on P4 determined by the family of lines

B = ∪πBπ ⊂ G(1, 4),

where π runs over the points of Σ∗ such that pπ /∈ ψ(π).
The foliation G defines a foliation η on X in following form. Let θπ

be the radial foliation on Σ determined by lines passing through pπ and
uπ ∈ H0(Σ, TΣ ⊗ T ∗θπ ) a tangent field to θπ. Since τ2 is generically a local
isomorphism, for all π ∈ Σ∗ we can define a field of directions on τ−1

2 (ψ(π))

vπ := τ2
∗(uπ |ψ(π)).
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Hence we obtain a foliation η on X which is tangent to vπ when π runs
over Σ∗. We shall say that G induces η on X.

It is not hard to prove the following proposition which gives a better
knowledge about η. See [3, Chapter 4] for Riccati foliations.

Proposition 6.5. — Let G be the foliation by lines defined as above.
Then the foliation η induced by G on X is a Riccati foliation with respect
to τ1 tangent to the kernel of dτ2 along the support of D. Reciprocally,
each Riccati foliation η on X (with respect to τ1) tangent to the kernel of
dτ2 along the support of D, defines a foliation by lines G on P4 as above
which induces η on X.

Let us define the degenerate foliation on P4. Since Σ is a fundamental
component of G, there exist a horizontal component E ⊂ Λ such that
Σ = f(E). By using the projection along the lines of G

φE : P4 99K Σ,

we obtain the rational map

φX : P4 99K X

p ∈ π 7→ (π, φE(p)).

Finally, we define the degenerate foliation on P4 as

F := φ∗X(η).

By construction, one leaf of F is a band over a curve N ⊂ Σ where N is
the direct image by τ2 of a leaf of η. A simple local account shows that the
tangent space of F along an invariant line by G is constant, i.e. G is tangent
to the foliation determined by the fibers of GF . Then F is a degenerate
foliation on P4.

Remark 6.6. — When Im(ψ) ⊂ Σ∨ is a line, then |D| is invariant by η
and F is pull-back by φE of some foliation on Σ.

Example 6.7. — Let Σ ∼= P2 ⊂ P4 be a plane and

ψ : Σ∗ ∼= P1 −→ |OΣ(d)|,

d > 1 (if d = 1 we are in Example 6.4), a non-constant morphism such that
there exist a morphism

µ : Σ∗ −→ Σ
in which µ(π) ∈ ψ(π) and µ(π) is a point of multiplicity (d − 1) for ψ(π)
(where we still denote by ψ(π) ⊂ Σ the corresponding subset of P4).

We consider the surface

X = {(π, p) ∈ Σ∗ × Σ | p ∈ ψ(π)} ⊂ P1 × P2
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with natural projections

τ1 : X −→ Σ∗

(π, p) 7→ π,

τ2 : X −→ Σ
(π, p) 7→ p.

Let θπ be the radial foliation on Σ determined by the lines passing
through µ(π) and uπ ∈ H0(Σ, TΣ ⊗ T ∗θπ ) a tangent field to θπ. Since τ2
is generically a local isomorphism, for all π ∈ Σ∗ we can define a field of
directions on τ−1

2 (ψ(π))

vπ := τ2
∗(uπ |ψ(π)).

Therefore we obtain a foliation η on X which is tangent to vπ when π

runs over Σ∗. This case is distinct of the Example 6.4 in the sense that the
foliation η is determined by the morphism ψ.

Let us define the foliation by lines. We consider a morphism

ϕ : Σ∗ −→ G(1, 4)

such that
(1) ϕ(π) ⊂ π for all π ∈ Σ∗;
(2) ϕ(π) ∩ Σ = µ(π) for all π ∈ Σ∗.

where we still denote by ϕ(π) see as subset of P4. The family of lines
Bπ ⊂ G(1, 4) which intersects ϕ(π) and ψ(π) defines a foliation by lines on
π. Therefore one can consider the foliation by lines G on P4 determined by
the family

B = ∪π∈Σ∗Bπ.

Since Σ is a fundamental component of G, there exist a horizontal com-
ponent E ⊂ Λ such that Σ = f(E). By using the projection along the lines
of G

φE : P4 99K Σ,

we obtain the rational map

φX : P4 99K X

p ∈ π 7→ (π, φE(p)).

Finally, we define the degenerate foliation on P4 as

F := φ∗X(η).
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In the construction, the generic leaf of F is a band over a curve N ⊂ Σ
where N is the direct image by τ2 of a leaf of η. A simple local computation
shows that the tangent space of F along an invariant line by G is constant,
i.e. G is tangent to the foliation determined by the fibers of GF . Then F is
a degenerate foliation on P4.

Example 6.8. — Let S = S1,2 the rational normal scroll of degree three
in P4, that is, a linear projection from Veronese surface V ⊂ P5 with center
at p ∈ V

VOO

v
τp

  A
A

A
A

P2
ξ //___ S.

We consider the linear system of dimension two, C := ξ∗|OP2(1)| which
a generic element is an irreducible conic in S. It is known that the family
of planes

P = {π ∈ G(2, 4) | C ⊂ π for some C ∈ C} ,
defines a foliation by planes on P4. We denote by πC the plane containing
C.

We will use such foliation by planes to define a foliation by lines on P4.
Let θ be a foliation on P̌2 with non-degenerate Gauss map

Gθ : P̌2 99K P2

l 7→ Gθ(l).

If we see l as subset of P2, then Gθ(l) ∈ l.
Therefore one has the following commutative diagram

C = ξ∗|OP2(1)|
OO

ξ∗

ψθ //______ SOO

ξ
�
�
�

P̌2 = |OP2(1)|
Gθ //______ P2

where ψθ := ξ ◦ Gθ ◦ ξ−1
∗ . If we see C as subset of S, then ψθ(C) ∈ C

because Gθ(l) ∈ l.
Let us denote by ψθ(C)∗πC ⊂ G(1, 4) the family of lines contained in πC

passing through ψθ(C). Hence, the family

B := ∪C∈C ψθ(C)∗πC
defines a foliation by lines G on P4 such that G|πC is the radial foliation on
πC determined by the lines passing through ψθ(C) ∈ C.
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To define the degenerate foliation on P4 one consider the rational map

ϕ : P4 99K P̌2

q ∈ πC 7→ ξ−1
∗ (C).

Therefore, we define the degenerate foliation on P4 as

F := ϕ∗(θ).

Now, let us look at the leaves of F . Since Gθ is generically a local iso-
morphism, then it sends θ to a web θ∨ on P2 (the dual web of θ). Hence,
we obtain a web ξ∗θ∨ on S because ξ is a birational map. We will see that
the leaves of F are locally a band over a curve invariant by ξ∗θ∨.

Let p ∈ S a generic point and C1, ..., Ck ∈ C such that

ψ−1
θ (p) = {C1, ..., Ck} .

We take li ∈ P̌2, i = 1, ..., k, such that ξ∗(li) = Ci. Since Gθ is generically
a local isomorphism, there exist one neighbourhood U ⊂ S of p and one
neighbourhood Vi ⊂ P̌2 of li, i = 1, ...k, such that

(a) We have ξ ◦Gθ(Vi) = U for all i = 1, ..., k;
(b) The map Gθ send θ|Vi to a smooth foliation ηi on U for all i =

1, ..., k;
(c) The foliations η1, ..., ηk are the local decomposition of (ξ∗θ∨) in U ,

i.e. the tangent spaces of η1, ..., ηk are tangent to (ξ∗θ∨) and are in
general position at all point of U ;

(d) The foliation ηi is tangent to Ci at p for all i = 1, ..., k.

Let us consider the projection along the leaves of G

φ : P4 99K S

p ∈ πC 7→ ψθ(C).

We notice that

φ−1(p) = ∪ki=1πCi

and

φ−1(U) = ∪ki=1Wi

with πCi ⊂Wi.
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It follows from the commutativity of the diagram

P4

φ

((k g c _ [ W S

ϕ
$$I

I
I

I
I

//___ ξ∗|OP2(1)|
OO

ξ∗

ψθ

//___ SOO

ξ
�
�
�

P̌2
Gθ

//_____ P2

that F|Wi = φ∗(ηi), i = 1, ..., k. We notice that since ηi is tangent to Ci
at p, one obtains that πCi contains the tangent line to ηi at p. Therefore,
by the construction, a leaf of F|Wi

is a band over a leaf of ηi because is a
union of such planes πCi . Thus F is a degenerate foliation on P4.

Remark 6.9. — In examples 6.2, 6.3, 6.4, 6.7 and 6.8 the following
proposition implies that if F does not have a rational first integral then it
has rank three. Because, in these cases, G is not tangent to a foliation by
planes containing a line.

Proposition 6.10. — Let F be a degenerate foliation on P4 which does
not have rational first integral. Suppose there is a foliation by lines G on P4

in which is tangent to the foliation determined by the fibers of GF . If G
is not tangent to a foliation by planes containing a line, then F has rank
three.

Proof. — If F does not have rank three, then either it has a rational first
integral or is a linear pull-back of some foliation on P2. By hypothesis one
can suppose F is the pull-back by a linear projection ψ : P4 99K P2 with
center at the line L, of some foliation on P2.

If F has rank one, then their leaves coincide with the fibers of GF . So,
in this case F is a pencil of hyperplanes containing a line. Hence F has
a rational first integral. It remains to consider the case which F has rank
two.

Suppose F has rank two. Since the foliation determined by the fibers
of ψ is tangent to the foliation determined by the fibers of GF , this implies
that these two foliations are the same. If G is a foliation by lines under the
hypothesis of the proposition, then G must be tangent to the fibers of ψ.
Since the fibers of ψ are planes containing the line L, this concludes the
proof. �
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6.2. Classification Theorem

Theorem 6.11. — Let F be a degenerate foliation on P4. Then we have
one of the following possibilities:

(1) F has a rational first integral;
(2) F is one of the foliations as in examples of §6.1.

Proof. — Let F be a degenerate foliation on P4. If GF has rank at most
two, then either F has a rational first integral or F is a linear pull-back of
some foliation on P2 (cf. [4]). Since a linear pull-back of some foliation on
P2 is also a linear pull-back of some foliation on P3 as in Example 6.1, it
remains to consider the case in which F has rank three.

Let F be a foliation of rank three on P4. We can consider the foliation
by lines G determined by the fibers of GF . Let M0 be the saturation of a
germ of leaf of F by G, as in §5.1 one has the following diagram

ΛM0

fM0 :=f◦i1

&&

gM0

��

i1

// Λ

g

��

f
// P4

BM0 i2

// B

.

Given L ∈ B we still denote by L the correspondent line see as subset of
P4. Given L an invariant line by G not contained in Sing(G) and seeing the
focal points as divisors in L, it follows from Theorem 5.2 that:

(1) ∆M0(L) has degree 2;
(2) ∆G(L) has degree 3;
(3) ∆M0(L) 6 ∆G(L).

Let E be an irreducible component of the support of HG , on one hand
we can consider the codimension one foliation FE := (f∗F)|E on E. Since
the line g−1(L) is invariant by f∗F , thus E is not invariant by f∗F . On
the other hand we can consider the foliation ηE defined by f on E (see
Definition 4.4). We denote to ηE ⊂ FE when ηE is tangent to FE . The
following lemma relates such foliations with focal points.

Lemma 6.12. — Let F be a foliation of rank three on P4 and G the
foliation by lines determined by the fibers of GF . If E is an irreducible
component of the support of HG such that f(E) has dimension two, then

ηE ⊂ FE
if and only if |∆∗M0

(L)| ∩ E is not empty for a generic line invariant by G.
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Proof. — It follows from Proposition 4.5 that

kerdf(x) ⊂ TxE,

for a generic point x ∈ E. Thus

kerdf(x) = ker
(
df(x)|TxE

)
= TxηE .

By definition x belongs to |∆∗M0
(L)| if and only if fM0 is not an immersion

at x. Therefore x belongs to |∆∗M0
(L)| if and only if

TxηE = kerdf(x) ⊂ Tx(M0 ∩ E) = TxFE .

This proves the lemma. �

The Lemma 6.12 will play a main role. Because if g−1(L) ∩E is a set of
a single point we may consider the projection along the lines of G

φE : P4 99K f(E),

and it is easy to see that a fiber of φE is an invariant cone by F if and only
if

ηE ⊂ FE .

If G is the radial foliation determined by the lines passing through p ∈ P4,
then F is the linear pull-back of some foliation on P3. In fact, let ψ : P4 99K
P3 be the linear projection from p. By hypothesis ψ has fibers which is
tangent to F , thus it follows from [5, Lemma 2.2] (applied to ψ|(P4\{p}))
that there is a foliation η on P3 such that F = ψ∗(η). Therefore we are
in Example 6.1. From now on we will suppose G does not have isolated
singularities.

Since ∆M0(L) has degree two, we will separate in the following cases:
(I) - ∆M0(L) = p1 + p2, with p1 6= p2.

(II) - ∆M0(L) = 2p.

Case (I). — To deal with this let us consider the following:
(I.a) The support of HG has just one irreducible component;
(I.b) The support of HG has at least two irreducible distinct components.

Case (I.a). — We suppose HG = E. The inequality

∆M0(L) 6 ∆G(L)

implies that |∆∗M0
(L)| ∩E is not empty for a generic line L invariant by G.

It follows from 4.3 that f(E) has dimension two. Hence by Lemma 6.12 we
get

ηE ⊂ FE .
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Since the multiplicity at a generic point of E must be constant we have
that

∆G(L) = p1 + p2 + p3.

But this contradicts the fact that ∆M0(L) has degree two, because ηE ⊂ FE
implies that pi ∈ |∆M0(L)|, i = 1, 2, 3. Therefore this case cannot happen.

Case (I.b). — We first consider the following claim: Suppose that

∆M0(L) = p1 + p2,

the support of HG has at least two irreducible distinct components and ∆G
has pure dimension two. Then F has a rational first integral.

Proof. — It follows from hypothesis

∆M0(L) = p1 + p2

and from Lemma 6.12 that there are E1, E2 irreducible components of the
support of HG (with possibility E1 = E2) such that

ηEi ⊂ FEi , i = 1, 2.

Thus
HM0 = F1 + F2,

where F1,F2 are irreducible distinct components of ΛM0 and invariant by
ηE1 , ηE2 respectively. Therefore M0 is a join J(f(F1), f(F2)), that is, the
set of lines which intersect f(F1) and f(F2).

Let Ni, i = 1, 2, be a leaf of ηEi such that Ni ∩ Fi 6= ∅. We set i ∈
{1, 2}, since the leaves of ηi are algebraic curves one obtain that g−1(g(Ni))
intersect Fj , i 6= j in a algebraic curve Cj which is not invariant by ηEj .
Hence M0 is contained in join J(f(C1), f(C2)) which is algebraic. Therefore
a generic leaf of F is algebraic. Since F has infinite algebraic leaves, the
result follows from [16, Theorem 3.3]. �

To finish the Case (I) it remains to consider the case in which the support
of HG has at least two irreducible distinct components and ∆G has one
fundamental component of dimension one, that is,

HG = E1 + 2E2 , dimf(E1) = 2 , dimf(E2) = 1.

Since ∆M0(L) = p1 + p2, it follows from Lemma 6.12 that ηE1 ⊂ FE1 . Let
us consider the projection along the lines of G

φE1 : P4 99K f(E1).

The condition ηE1 ⊂ FE1 implies that the fibers of φE1 are invariant cones
by F . We notice also that the fibers of φE1 are connected because these
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are cones over the irreducible curve f(E2). It follows from [5, Lemma 2.2]
that there is a foliation η on f(E1) such that

F = φ∗E1
(η).

Therefore F is one of the foliations as inExample 6.2. This concludes
Case (I).

Case (II). — As we have noticed, a generic leaf of F is either a cone, a
join or a band. By hypothesis a leaf of F cannot be a join. Suppose that a
generic leaf is a cone. Then it must be a cone with vertex running over a
curve C (contained in the fundamental set of G) because we are supposing
G does not have isolated singularities. We can consider the projection along
the lines of G

φ : P4 99K C,

According to the hypothesis, F must be the foliation defined by the fibers
of φ. Therefore F has a rational first integral.

Let us suppose that a generic leaf of F is a band, that is, a union of
tangents planes to a curve. The family of such planes P ⊂ G(2, 4) defines
a foliation by planes on P4. By Theorem 4.8 we have the two following:

Case (1) of Theorem 4.8. — If there is a line l such that P is determined
by the family of planes which contains l, then

Im(GF ) ⊂ l∗ ∼= P2 ⊂ P̌4.

Thus F does not have rank three. Therefore this case cannot happen.

Case (2) of Theorem 4.8. — Suppose there exists a plane Σ and a non-
constant morphism

ψ : Σ∗ ∼= P1 −→ G(1, 4)

such that P is determined by the family of planes

∪π∈Σ∗ ∪ξ∈(ψ(π))∗π ξ.

Since P is tangent to G, for each π ∈ Σ∗ there exist a morphism

ϕπ : (ψ(π))∗π −→ π , ϕπ(ξ) ∈ ξ,

such that G|ξ is determined by the family of lines which contains the point
ϕπ(ξ). We have the following possibilities:

(i). — ψ(π) is contained in Σ for all π ∈ Σ∗ (see Figure 6.1).
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(i.a). — If Imϕπ = ψ(π), then

HG = 3E , f(E) = Σ.

We can suppose C∨ := Im(ψ) is a curve contained in Σ∨. Let C ⊂ Σ be
the dual curve of C∨, i.e. the family of lines ψ(π) ⊂ Σ are tangent to C.

We set p ∈ P4\Sing(F) and M0 the saturation of a germ of leaf of F by
G passing through p. We know that M0 is a band over a curve CM0 , that
is, M0 is a union of planes which contain the tangent lines to CM0 . We also
know that the restriction of G to any of this planes is radial by a point
q ∈ CM0 . Thus

C∨M0
⊂ C∨ ⊂ Σ∨,

and hence CM0 ⊂ C. But this contradicts the hypothesis Imϕπ = ψ(π).
Therefore this case cannot happen.

(i.b). — If Imϕπ = {pπ} ⊂ ψ(π), then G is one of the foliations as in
Example 6.3, i.e.

HG = 3E , dimf(E) = 1 and f(E) ⊂ Σ.

Hence the projection
φX : P4 99K X

as in Example 6.3 has connected fibers tangent to F . It follows from [5,
Lemma 2.2] that there exist a foliation η on X such that F = φ∗X(η).
Therefore F is one of the foliations as in Example 6.3.

(i.c). — Suppose that Imϕπ is not contained in ψ(π). We consider the
surface

S = ∪π∈Σ∗Imϕπ ⊂ P4.

We set p ∈ P4 and M0 the saturation of a germ of leaf of F by G passing
through p. We know that M0 is a band over a curve CM0 , i.e. M0 is a
union of planes which contain the tangent lines to CM0 . We also know that
G restrict to any of this planes is radial by a point q ∈ CM0 . Therefore
CM0 ⊂ S.

Since p is a generic point, we may suppose that M0 is not contained in π
because F is not the pencil of hyperplanes containing Σ. Thus CM0 is not
contained in π and the same holds for TqCM0 .

But by hypothesis under M0, there exist a plane ξ ∈ P such that G
restrict to ξ is the radial foliation through q and also ξ contains TqCM0 .
Since ξ ⊂ π this is a contradiction, because TqCM0 is not contained in π.
Therefore this case cannot happen.
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Σ

ψ(π)

ξ

π

Σ

ψ(π)

ξ Σ

π

ψ(π)
ξ

π

Case (i.a)                                     Case (i.b)                                    Case (i.c)

Figure 6.1. Case (i).

(ii). — ψ(π) is not contained in Σ for generic π ∈ Σ∗ (see Figure 6.2).

(ii.a). — If Imϕπ = ψ(π), we consider the surface

S = ∪π∈Σ∗Imϕπ ⊂ P4.

With the same argument as in (i.c) we see that this case cannot happen.

(ii.b). — If Imϕπ = {pπ} ⊂ ψ(π), we consider the curve

C = ∪π∈Σ∗pπ.

By the description of leaves of F , the planes in P contains the tangent lines
to C. But this is a contradiction because such planes are tangent to the
pencil of hyperplanes π ∈ Σ∗. Therefore this case cannot happen.

(ii.c). — If Imϕπ ⊂ π\(ψ(π) ∪ Σ), we consider the surfaces

S1 = ∪π∈Σ∗ψ(π) and S2 = ∪π∈Σ∗Imϕπ.

We notice that
∆G(L) = p1 + p2 + p3

where p1 = L ∩ S1, p2 = L ∩ L2 and p3 = L ∩ Σ. But this contradicts the
hypothesis ∆M0(L) = 2p because ∆M0(L) 6 ∆G(L). Therefore this case
cannot happen.

(ii.d). — If Imϕπ ⊂ Σ, we consider the surface

S = ∪π∈Σ∗ψ(π).

We suppose first that the family of curves Imϕπ, π ∈ Σ∗ is constant, that
is, the map π 7→ Imϕπ is constant. We know that if M0 is the saturation
of a germ of leaf of F by G passing through p, then it is a band over a
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curve CM0 , i.e. M0 is a union of planes which contain the tangent lines
to CM0 . We have also that G restrict to any of this planes is radial by a
point q ∈ CM0 . Thus CM0 ⊂ Imϕπ ⊂ Σ. But this is a contradiction because
a generic ξ ∈ P is not tangent to Imϕπ. Therefore we may suppose that
π 7→ Imϕπ is not constant.

If every curve Imϕπ, π ∈ Σ∗ is a line, then G is one of the foliation as
in Example 6.4, if not, G is one of the foliation as in Example 6.7. In both
cases we have the projection

φX : P4 99K X

which fibers are connected and invariant by F . It follows from [5, Lemma
2.2] that there is a foliation η on X such that F = φ∗X(η). Therefore F is
either one of the foliations as in Example 6.4 or as in Example 6.7.

π

ψ(π)

ξ

Σ

Case (ii.a)                    Case (ii.b)                      Case (ii.c)                     Case (ii.d)

π
ψ(π)

ξ

Σ Σ

π
ψ(π)

ξ
Σ

π
ψ(π)

ξ

Figure 6.2. Case (ii).

Case (3) of Theorem 4.8. — There is a cubic surface S and a family C
of dimension two of conics in S (distinct from double lines) such that P is
determined by the family of planes containing such conics. It follows from
a classical Segre’s Theorem (cf. [27]; [20, Theorem 4]) that either S is a
cone if such conics are reducible or S = S1,2 (the rational normal scroll of
degree three in P4) if a generic member of C are irreducible.

We denote by πC the plane containing C ∈ C. Since πC is invariant by G
for all C ∈ C (by definition of P) one obtains that G restrict to πC is the
radial foliation determined by the lines passing through qC ∈ πC .

We claim that qC ∈ S. In fact, if qC /∈ S we would have

∆G(L) = qC + p1 + p2

where p1, p2 ∈ S because for a generic point in S there is infinite invariant
lines by G passing through it. But this contradicts the hypothesis ∆M0(L) =
2p because ∆M0(L) 6 ∆G(L).
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We first suppose that S is a cone. The family C defines a fibration by line
in S passing through the vertex. Let M0 the saturation of a germ of leaf
of F by G through p. We know that M0 is a band over a curve CM0 ∈ S,
i.e. M0 is a union of planes ξ ∈ P which contain the tangent lines to CM0 .
This implies that CM0 is tangent to fibration defined by C, hence CM0 ⊂ C
for some C ∈ C. Thus M0 is a band over a line. In this case it is easy to
see that M0 has rank one, that is, F does not have rank three. Therefore
this case cannot happen.

Let us suppose S = S1,2. We consider the morphism

ψ : C −→ S

C 7→ ψ(C) = qC ∈ C,

and the projection

τ : P4 99K C
p ∈ πC 7→ C.

Hence, as in Example 6.8, we have the following commutative diagram

P4

ϕ
  @

@
@

@
τ //___ COO

ξ∗

ψ //___ SOO

ξ
�
�
�

P̌2 //___ P2

Where ϕ := ξ−1
∗ ◦ τ . Since the fibers of ϕ are connected and tangent to F

it follows from [5, Lemma 2.2] that there is a foliation θ on P̌2 such that
F = ϕ∗(θ). Therefore F is one of the foliations as in Example 6.8. This
finish the proof of Theorem 6.11. �

BIBLIOGRAPHY

[1] B. Adlandsvik, “Joins and Higher secant varieties”, Math. Scand. 61 (1987),
p. 213-222.

[2] M. Akivis & V. Gol’dberg, Differential geometry of varieties with degenerate
Gauss maps, Springer, 2004.

[3] M. Brunella, Birational geometry of foliations, Monografias de Matemática.
[Mathematical Monographs], Instituto de Matemática Pura e Aplicada (IMPA),
Rio de Janeiro, 2000, 138 pages.

[4] D. Cerveau & A. L. Neto, “Irreducible Components of the Space of Holomorphic
Foliations of Degree Two in CP(n), n > 3”, The Annals of Mathematics 143 (1996),
no. 3, p. 577-612.

TOME 60 (2010), FASCICULE 2



486 Thiago FASSARELLA

[5] D. Cerveau, A. Neto, F. Loray, J. Pereira & F. Touzet, “Algebraic Reduction
Theorem for complex codimension one singular foliations”, Comment. Math. Helv.
81 (2006), no. 1, p. 157-169.

[6] D. Cerveau, “Feuilletages en droites, équations des eikonales et aures équations
différentielles”, arXiv:math.DS/0505601v1, 2005.

[7] M. Dale, “Terracini’s lemma and the secant variety of a curve”, Proc. London
Math. Soc. 3 (1984), p. 329-339.

[8] P. De Poi, “On first order congruences of lines of P4 with a fundamental curve”,
manuscripta mathematica 106 (2001), no. 1, p. 101-116.

[9] ——— , “Congruences of lines with one-dimensional focal locus”, Portugaliae Math-
ematica 61 (2004), no. 3, p. 329-338.

[10] ——— , “On first order congruences of lines in P4 with irreducible fundamental
surface”, Mathematische Nachrichten 278 (2005), no. 4, p. 363-378.

[11] ——— , “On First Order Congruences of Lines in P4 with Generically Non-reduced
Fundamental Surface”, Asian Journal of Mathematics 12 (2008), p. 56-64.

[12] T. Fassarella & J. Pereira, “On the degree of polar transformations. An ap-
proach through logarithmic foliations”, Selecta Mathematica, New Series 13 (2007),
no. 2, p. 239-252.

[13] G. Fischer & J. Piontkowski, Ruled varieties: an introduction to algebraic dif-
ferential geometry, Vieweg Verlag, 2001.

[14] P. Griffiths & J. Harris, “Algebraic geometry and local differential geometry”,
Ann. Sci. Ecole Norm. Sup.(4) 12 (1979), no. 3, p. 355-452.

[15] T. Ivey & J. Landsberg, Cartan for beginners: differential geometry via moving
frames and exterior differential systems, American Mathematical Society, 2003.

[16] J. Jouanolou, “Equations de Pfaff algebriques, in Lectures Notes in Mathematics,
708”, 1979.

[17] E. Kummer, “Über die algebraischen Strahlensysteme, insbesondere über die der
ersten und zweiten Ordnung”, Abh. K. Preuss. Akad. Wiss. Berlin (1866), p. 1-120,
also in EE Kummer, Collected Papers, Springer Verlag, 1975.

[18] G. Marletta, “Sopra i complessi d ordine uno dell S4, Atti Accad”, Gioenia, Serie
V, Catania 3 (1909), p. 1-15.

[19] ——— , “Sui complessi di rette del primo ordine dello spazio a quattro dimensioni”,
Rend. Circ. Mat. Palermo 28 (1909), p. 353-399.

[20] E. Mezzetti & D. Portelli, “A tour through some classical theorems on algebraic
surfaces”, An. Stiint. Univ. Ovidius Constanta Ser. Mat 5 (1997), p. 51-78.

[21] E. Mezzetti & O. Tommasi, “On projective varieties of dimension n + k covered
by k-spaces”, Illinois J.Math. 46 (2002), no. 2, p. 443-465.

[22] J. Pereira & S. Yuzvinsky, “Completely reducible hypersurfaces in a pencil”,
Advances in Mathematics 219 (2008), no. 2, p. 672-688.

[23] Z. Ran, “Surfaces of order 1 in Grassmannians”, J. reine angew. Math 368 (1986),
p. 119-126.

[24] E. Rogora, “Classification of Bertini’s series of varieties of dimension less than or
equal to four”, Geometriae Dedicata 64 (1997), no. 2, p. 157-191.

[25] C. Segre, “Su una classe di superficie degl’iperspazii legate colle equazioni lineari
alle derivate parziali di 2 ordine”, Atti della R. Accademia delle Scienze di Torino
42 (1906), p. 559-591.

[26] ——— , “Preliminari di una teoria delle varieta luoghi di spazi”, Rendiconti del
Circolo Matematico di Palermo 30 (1910), no. 1, p. 87-121.

[27] ——— , “Le superficie degli iperspazi con una doppia infinita di curve piane o
spaziali”, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur 56 (1920), p. 75-89.

ANNALES DE L’INSTITUT FOURIER

arXiv:math.DS/0505601v1


DEGENERATE FOLIATIONS 487

[28] A. Terracini, “Sulle Vk per cui la varieta degli Sh (h+ 1)–seganti ha dimensione
minore dell’ ordinario”, Rend. Circ. Mat. Palermo 31 (1911), p. 392-396.

[29] F. Zak, Tangents and secants of algebraic varieties, Translations of mathematical
monographs, vol. 127, American Mathematical Society, Providence, R.I, 1993.

Manuscrit reçu le 9 octobre 2008,
accepté le 20 février 2009.

Thiago FASSARELLA
Universidade Federal do Espírito Santo
Departamento de Matemática – CCE
Av. Fernando Ferrari 514 – Vitória
29075-910 ES (Brasil)
thiago@impa.br

TOME 60 (2010), FASCICULE 2

mailto:thiago@impa.br

	1. Introduction
	2. Basic Definitions
	3. Linearity of the Fibers of the Gauss Map
	4. Foliations by k-Planes
	4.1. Foliations by Lines
	4.2. Foliations by Lines on P3
	4.3. Foliations by Planes on P4

	5. Degenerate Foliations
	5.1. Focal Points
	5.2. Degenerate Foliations on P3

	6. Degenerate Foliations on P4
	6.1. The Examples
	6.1.1. Cones
	6.1.2. Joins
	6.1.3. Bands

	6.2. Classification Theorem

	Bibliography

