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COUNTING RATIONAL POINTS ON A CERTAIN
EXPONENTIAL-ALGEBRAIC SURFACE

by Jonathan PILA

Abstract. — We study the distribution of rational points on a certain expo-
nential-algebraic surface and we prove, for this surface, a conjecture of A. J. Wilkie.

Résumé. — Nous étudions la répartition des points rationnels sur une certaine
surface exponentielle-algébrique et prouvons, pour cette surface, une conjecture de
A. J. Wilkie.

1. Introduction

This paper is devoted to giving an upper estimate for the number of non-
trivial rational points (or algebraic points over a given real numberfield)
up to a given height on the surface X ⊂ R3 defined by

X = {(x, y, z) ∈ (0,∞)3 : log x log y = log z}.

The half-lines Lx = {(x, 1, 1) : x > 0} and Ly = {(1, y, 1) : y > 0} con-
tained in X evidently contain rational (or algebraic) points (r, 1, 1), (1, s, 1)
∈ X, where r, s ∈ Q>0 (or r, s ∈ Q ∩ R>0), and these algebraic points we
call trivial. Schanuel’s conjecture implies (as we elaborate in Section 4) that
there are no non-trivial algebraic points on X, and hence that there are no
rational points on X0 = X−(Lx∪Ly). Our result is that this conjecturally
empty set is fairly sparse.

For a set Y ⊂ Rn put Y (Q) = Y ∩ Qn and define, for T > e (which we
assume throughout),

Y (Q, T ) = {x = (x1, . . . , xn) ∈ Y ∩Qn : H(x1), . . . ,H(xn) 6 T}

Keywords: O-minimal structure, rational points, transcendental numbers.
Math. classification: 11G99, 03C64.



490 Jonathan PILA

where H(a/b) = max(|a|, |b|) for a rational number a/b in lowest terms. The
cardinality of a set A will be denoted #A. Note that #(Lx ∪ Ly)(Q, T ) >
cT 2, where c is some positive constant. In the sequel, c(α, β, . . .), C(α, β, . . .)
denote positive constants that depend only on α, β, . . ., and that may differ
at each occurrence.

Theorem 1.1. — Let ε > 0. Then

#X0(Q, T ) 6 c(ε)
(

log T
)44+ε

.

This result may be viewed as a statement about the set of points (x, y) ∈
(0,∞)2 at which the three algebraically independent real-analytic functions
x, y, exp(log x log y) are simultaneously rational, or alternatively about the
points (u, v) ∈ R2 at which the functions eu, ev, euv are simultaneously
rational. The set of points at which algebraically independent meromor-
phic functions of several complex variables simultaneously assume values
in a number field has been quite extensively studied in connection with
transcendental number theory, especially functions generating rings closed
under partial differentiation [8, 1]. Without such assumptions, results of
Lang [9], systematizing methods going back to Schneider, have been im-
proved and extended by Waldschmidt [18] and others (see e.g. [20, 19]), and
are intimately connected to interpolation problems and Schwarz Lemmas
in several variables, see e.g. papers of Roy [16]. See also [17]. Note that we
do not assume any hypotheses on the points (u, v), such as lying in a Carte-
sian product, nor is the ring of functions C[eu, ev, euv] closed under partial
differentiation, while the function exp(log x log y) is not meromorphic in
C2. Nevertheless, complex variable methods may well yield results along
the lines of 1.1, although I am not aware of any explicit statements in the
literature that imply such a result. We will employ real variable methods
and draw on the theory of o-minimal structures.

To contextualise our result, we review the background results and con-
jectures. An o-minimal structure over R is, informally speaking, a sequence
S = (Sn), n = 1, 2, . . .with each Sn a collection of subsets of Rn such that
∪nSn contains all semi-algebraic sets and is closed under certain opera-
tions (boolean operations, products and projections), but nevertheless has
strong finiteness properties (the boundary of every set in S1 is finite). A
formal definition is given in the Appendix (Section 7), or see [5]. If S is an
o-minimal structure over R, a set Y ⊂ Rn belonging to Sn is said to be
definable in S. A set Y ⊂ Rn will be called definable if it is definable in
some o-minimal structure over R.
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COUNTING RATIONAL POINTS 491

The paradigm example of an o-minimal structure is the collection of
semi-algebraic sets. Another example is provided by the collection Ran of
globally subanalytic sets (see [6]), and the crucial example for this paper is
the collection Rexp of sets definable using the exponential function (see Sec-
tion 7). The o-minimality of Rexp is due to Wilkie [21], whose result yields
the elegant description of the sets definable in Rexp given in 7.2. The set
X is definable in Rexp (see 7.3).

Suppose then that Y ⊂ Rn is definable, and consider the counting func-
tion #Y (Q, T ). If Y contains semialgebraic sets of positive dimension (such
as rational curves, as is the case for the set X), then one can certainly have

#Y (Q, T ) > c(Y )T δ

for some positive δ. If on the other hand Y contains no semialgebraic sets
of positive dimension then, according to [15], one has

#Y (Q, T ) 6 c(Y, ε)T ε

for every ε > 0. Indeed if we define, for any Y ⊂ Rn, the algebraic part
Y alg of Y to be the union of all connected semialgebraic subsets of Y of
positive dimension, then an estimate as above holds for the rational points
of the transcendental part Y trans = Y − Y alg of any definable set Y .

Theorem 1.2 ([15]). — Let Y be definable in an o-minimal structure
over R and ε > 0. Then

#Y trans(Q, T ) 6 c(Y, ε)T ε.

Examples show (see [10] 7.5 and 7.6), elaborating a remark from [3]) that
this estimate cannot be much improved in general. For example one can
construct sets definable in Ran such that no estimate of the form

#Y trans(Q, T ) 6 c(Y )(log T )C(Y )

holds. However, Wilkie conjectured in [15] that such an estimate always
holds for a set definable in Rexp.

Conjecture 1.3. — Suppose Y is definable in Rexp. Then

#Y trans(Q, T ) 6 c(Y )(log T )C(Y ).

Thus Theorem 1.1 affirms this conjecture for the particular set X. In
fact Xalg consists of Lx and Ly together with infinitely many other rational
curves defined over R (see 4.1). However these other rational curves do not
contain any algebraic points (see 4.3).

TOME 60 (2010), FASCICULE 2



492 Jonathan PILA

Consider now the question of estimating the number of points of a de-
finable set Y up to a given height defined over a real numberfield. Set
Y (F ) = Y ∩ Fn for a field F ⊂ R and put (again for T > e),

Y (F, T ) = {(x1, . . . , xn) ∈ Y (F ) : H(x1), . . . ,H(xn) 6 T}

where H(x) is the absolute multiplicative height of an algebraic number,
as defined in [2], which agrees with the previous definition of H(x) for
rational x. Theorem 1.2 may be extended quite straightforwardly to an
estimate of the same form for #Y trans(F, T ) when F is a numberfield (i.e.,
[F : Q] <∞), in which the implicit constant depends on Y, ε, and [F : Q].

Less straightforwardly, a much stronger result holds. For an integer k > 1,
denote by

Y (k) = {(x1, . . . , xn) ∈ Y : [Q(x1) : Q], . . . , [Q(xn) : Q] 6 k}

the set of algebraic points of Y of degree 6 k. Observe that the definition
permits the coordinates of a point in Y (k) to be defined over different fields.
Put (for T > e)

Y (k, T ) = {(x1, . . . , xn) ∈ Y (k) : H(x1), . . . ,H(xn) 6 T}.

Then for a definable set Y ⊂ Rn, k > 1, and ε > 0 we have ([14])

#Y trans(k, T ) 6 c(Y, k, ε)T ε.

To obtain this result one studies the rational points of a suitable definable
set Yk of higher dimension than Y whose rational points correspond to
points of Y of degree 6 k. However Y trans

k is empty, and a closer study of
the proof structure of 1.2 is required.

In view of the above results for Y (F, T ) and Y (k, T ), it seems likely
that if Conjecture 1.3 is affirmed, then the following stronger versions will
also be affirmed. First, a version for varying number field with exponent
independent of the number field.

Conjecture 1.4. — Let Y ⊂ Rn be definable in Rexp and F ⊂ R a
numberfield of degree f = [F : Q] <∞. Then

#Y trans(F, T ) 6 c(Y, f)
(

log T
)C(Y )

.

Second, a version for algebraic points of bounded degree.

Conjecture 1.5. — Let Y ⊂ Rn be definable in Rexp and k > 1. Then

#Y trans(k, T ) 6 c(Y, k)
(

log T
)C(Y,k)

.
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The following theorem affirms 1.4 for X. For the time being I cannot
establish 1.5 for X. However I frame in Section 3 a conjecture (3.4) that
would imply 1.4 and 1.5 in general.

Theorem 1.6. — Let F ⊂ R be a numberfield of degree f over Q, and
let ε > 0. Then

#Xtrans(F, T ) 6 c(f, ε)
(

log T
)44+ε

.

That the exponent of log T in 1.6 is independent of F is a feature related
to transcendence theory. In [13] I affirmed Wilkie’s conjecture for pfaff
curves (see 5.2). (This class of plane curves does not contain all plane
curves definable in Rexp, but on the other hand there are pfaff curves that
are not definable in Rexp.) In [14] I observed that the result held for the
points of a pfaff curve defined over a real number field F , and with an
exponent of log T independent of F . This result applies in particular to the
graph Wα : y = xα, x ∈ (0,∞), for positive irrational α, though it gives a
result weaker than previously known results in that case. According to [13]
and (for algebraic points) [14], if F ⊂ R is a numberfield with [F : Q] = f

then
#Wα(F, T ) 6 C(f)

(
log T

)20
.

This estimate directly implies a weak form of the “Six Exponentials
Theorem” as follows. Suppose there were 21 algebraic points (xi, yi) on
Wα with the xi multiplicatively independent. Then, considering the points
(Πxaii ,Πy

ai
i ) for 21-tuples of integers ai, we would have #Wα(F, T ) >

c(Wα, F )
(

log T
)21 for suitable F , giving a contradiction. Therefore, we

conclude that if wi are 21 real numbers, linearly independent over Q, then
at least one of the 42 exponentials expwi, exp(αwi) must be transcendental.

In fact the same conclusion holds if there are just 3 linearly independent
wi, namely that at least one of the six exponentials expwi, exp(αwi) is
transcendental. This is the Six Exponentials Theorem, and our “Forty-
Two Exponentials Theorem” is rather weak. However the point I wish to
observe is that any estimate #Wα(F, T ) 6 c(Wα, F )

(
log T

)C(Wα) with
C(Wα) independent of F entails a transcendence result because the curve
Wα is a group (with suitable height growth in the group law), so that
finitely many independent points generate an infinite set of a certain log-
power density. The surface X is not a group, and so our #Xtrans(F, T ) 6

c(f)
(

log T
)C estimate does not yield a transcendence result, even though

it is – qualitatively speaking – of the same quality.
Thus a uniform version of Wilkie’s conjecture i.e., that #Y trans(F, T ) 6

c(Y, F )
(

log T
)C(Y ) for a set Y definable in Rexp and a real numberfield F

TOME 60 (2010), FASCICULE 2
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with an exponent C(Y ) indepenent of F (just as we affirm for X in 1.6) can
be viewed as a qualitative transcendence-type statement, and for suitable
sets Y it would indeed imply a transcendence result.

Our strategy combines elements of the approaches of several previous
papers. The key to the method of [15] is the possibility of parameteriz-
ing a definable subset of (0, 1)n of dimension k by finitely many functions
(0, 1)k → (0, 1)n all of whose partial derivatives up to a prescribed order
are bounded in absolute value by 1. In [12] I showed that Wilkie’s conjec-
ture holds for pfaff curves that are mild, i.e., admit a parameterization in
which derivatives to all orders are suitably controlled (see Section 2). Later,
I established Wilkie’s conjecture in the form 1.3 for all pfaff curves by a
different method in [13], and in the form 1.4 in [14]. Here, a mild parame-
terization of X is used to show that X(F, T ) is contained in << (log T )C
intersections of X with hypersurfaces of degree << (log T )2. These inter-
section curves are treated by adapting the methods of [13]. Here, as in
[12, 13], a crucial role is played by results of Gabrielov and Vorobjov [7]
estimating the topological complexity of Pfaffian sets (see Section 5). As it
stands, this combination of methods — mild parameterization for the ini-
tial set and Pfaffian bounds for the intersection curves — is applicable only
to surfaces. Our surface X was selected as being related to the threefold
log x log y = log z log t associated with the Four Exponentials Conjecture
(see [18]). The present method is generalized by Butler [4] to further sur-
faces definable in Rexp.

Acknowledgements. My thanks to Lee Butler for detailed corrections to
a previous version of this paper, to Eric Descheemaeker for assistance,
and to the referee for helpful comments and suggestions. I am grateful to
Roger Heath-Brown and the Mathematical Institute, Oxford, for affording
me hospitality as an Academic Visitor, and to the Leverhulme Trust for
supporting my work through a Research Fellowship.

2. Mild functions

We write x = (x1, . . . , xk) etc. as variables in Rk. For a function φ :
U → R defined on some domain U ⊂ Rk and µ = (µ1, . . . , µk) ∈ Nk we set
|µ| =

∑
µi and denote by ∂µφ the partial derivative

∂µφ = φ(µ) = ∂|µ|φ

∂xµ1
1 . . . ∂xµkk

of order |µ|. We denote by xµ the monomial
∏
i x
µi
i of degree |µ|. We set

µ! =
∏
i µi! and µ = maxi µi.
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Definition 2.1. — A function φ : (0, 1)k → (0, 1) is called (A,C)-mild
if it is C∞ and, for all µ ∈ Nk and all z ∈ (0, 1)k,

|∂µφ(z)| 6 µ!(A|µ|C)|µ|.

Remark 2.2. — One could define a finer notion (A,B,C)-mild with a
term (|µ| + 1)B to enable finer estimates. However only the parameter C
survives to influence the exponent of log T in the density estimate, so the
above notion was preferred for simplicity.

Definition 2.3. — A function θ : (0, 1)k → (0, 1)n, θ(x) = (θ1(x), . . . ,
θn(x)) is called (A,C)-mild if each of its coordinate functions θi is (A,C)-
mild.

Definition 2.4. — A set Y ⊂ (0, 1)n of dimension k is called (J,A,C)-
mild if there exists a collection Θ of (A,C)-mild maps θ : (0, 1)k → (0, 1)n
such that #Θ = J and ⋃

θ∈Θ
θ
(
(0, 1)k

)
= Y.

A set Y ⊂ (0, 1)n is called mild if it is (J,A,C)-mild for some J,A,C.

Conjecture 2.5. — Every set Y ⊂ (0, 1)n definable in Rexp is mild.

A more precise version of this conjecture is formulated in 3.4. A more
optimistic version would require a fixed value of C. The following property
of mild functions will be used in the sequel.

Proposition 2.6. — Suppose φ1, . . . , φ` : (0, 1)k → (0, 1) are (A,C)-
mild, µ ∈ Nk and z ∈ (0, 1)k. Then

|∂µφ1 . . . φ`(z)| 6 µ!(µ+ 1)(`−1)k (A|µ|C)|µ| .
Proof. — We have

∂µφ1 . . . φ` =
∑

µ1+...+µ`=µ
Ch(µ1, . . . , µ`)

∏̀
i=1

∂µiφi

where, for α = (α1, . . . , αk), β = (β1, . . . , βk), etc.

Ch(α, β, . . . , ζ) =
k∏
j=1

(αj + βj + . . .+ ζj)!
αj !βj ! . . . ζj !

.

Therefore

|∂µφ1 . . . φ`(z)|
µ!

6
∑

µ1+...+µ`=µ

k∏
i=1

|∂µiφi|
µi!

6 (µ+ 1)(`−1)k
∏(

A|µi|C
)|µi| 6 (µ+ 1)(`−1)k

(
A|µC|

)|µ|
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as required. �

We next establish that certain functions that we will use in our param-
eterizations are mild. First observe that the function

ψ(r) = rre1−r = exp
(
r log r + 1− r

)
is increasing for r > 1, as the derivative log r of the exponent is positive
for r > 1, and has ψ(1) = 1. We define ψ(0) = 1.

Lemma 2.7. — Letm=(m1, . . . ,mk)∈(0,∞)k, a=(a1, . . . , ak)∈ [0,∞)k
and suppose that, for each i, either ai = 0 or ai > mi. Define Em,a :
(0, 1)k → R by

Em,a(z) = exp
(

1− 1
zm

)
1
za
.

Then
sup
z∈(0,1)k

|Em,a(z)| = ψ
(

max
i

(ai/mi)
)
.

Proof. — If all aj = 0 then the supremum is clearly 1, which agrees with
our definition of ψ(0) = 1. So we can assume that some aj > 0, so that
aj > mj by our hypothesis, and then maxi(ai/mi) > aj/mj > 1.

We proceed by induction on k. If k = 1 we have Em,a(z) = E(t) =
exp(1 − t−1)t−r where t = zm, t ∈ (0, 1), r > 1. The maximum of the
function for t ∈ [0,∞) occurs at t = 1/r ∈ (0, 1] and has the value ψ(r).

Suppose the result true for k − 1 variables, k > 2. We have

∂xiEm,a(z) = Em,a(z)
zi

(
miz

−m − ai
)
.

If all ai/mi = r, the function again reduces to a function of one variable,
Em,a(z) = exp(1 − t−1)t−r, where t = zm, r > 1, t ∈ (0, 1). As before the
maximum of the function for t ∈ [0,∞) occurs at t = 1/r and has the value
ψ(r), affirming the conclusion.

If the ai/mi are not all equal, then there is no stationary point inside
(0, 1)k and the supremum is given by the maximum of the function on
[0, 1]k, which is attained on a boundary, and moreover on a boundary where
some xi = 1, as the function is flat at the xi = 0 boundaries.

By induction, the supremum on a boundary xj = 1 is ψ(max(rj , j 6= i)).
As the function ψ is increasing for arguments > 1, we get the desired
conclusion in this case too, and complete the induction and the proof. �

Proposition 2.8. — For m = (m1, . . . ,mk) ∈ (0,∞)k define Em :
(0, 1)k → R by

Em(z) = exp
(

1− 1
zm

)
.
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Then Em is (A,C)-mild with C = max ((mi + 1)/mi) and A = (m +
1)CCe−C .

Proof. — Write E = Em. For µ ∈ Nk we have

∂µE = E
∑
m′

a
(µ)
m′ z

−m′

over suitable m′ ∈ (0,∞)k. The m′ that appear all have, for each i, m′i = 0
or m′i > mi. Furthermore, for each i, the largest m′i occuring is µi(mi+ 1).

Set, for µ ∈ Nk,
αµ =

∑
m′

|a(µ)
m′ |

and, for ` ∈ N,
α` = max

|µ|=`
αµ.

Denote by ei the element of Nk that has zero entries except for an entry 1
in the i-th place, so that ∂ei = ∂zi . Observe that

∂ei∂µE = ∂ei

(
E
∑
m′

a
(µ)
m′ z

−m′
)

= E
∑
m′

a
(µ)
m′

(
z−m

′ mi
zm+ei

− m′i
zm′+ei

)
.

Therefore

αµ+ei 6 miαµ+ max
m′

(m′i)αµ = miαµ+µi(mi+ 1)αµ 6 (µi+ 1)(m+ 1)αµ,

and so, by induction on |µ|,

αµ 6 µ!(m+ 1)|µ|.

The largest “a/m” occuring is

max
i

µi(mi + 1)
mi

6 µλ

where
λ = max

i

mi + 1
mi

.

By Lemma 2.7,

|∂µE(z)|
µ!

6 (m+ 1)|µ|
(
µλ

e

)µλ
.

This establishes that Em is (A,C)-mild with

A = (m+ 1)
(
λ

e

)λ
, C = λ

as required. �
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3. Exploring mild sets with algebraic hypersurfaces

Proposition 3.1. — For integers a > 0, x > a(a+ 1)/2,

xa

a!
6

(
a+ x

a

)
6
xa

a!

(
1 + a(a+ 1)

x

)
.

Proof. — We have(
a+ x

a

)
= (a+ x)!

a!x!
= xa

a!

(
1 + a

x

)(
1 + a− 1

x

)
. . .

(
1 + 1

x

)
.

So the left-hand inequality of the Proposition is immediate provided only
a, x are positive, while

log
((

1 + a

x

)(
1 + a− 1

x

)
. . .

(
1 + 1

x

))
6
a

x
+ . . .+ 1

x
= a(a+ 1)

x
.

Since ey 6 1 + 2y for 0 6 y 6 1, the assumption x > a(a+ 1)/2 implies(
1 + a

x

)(
1 + a− 1

x

)
. . .

(
1 + 1

x

)
6 exp

(
a(a+ 1)

2x

)
6 1 + a(a+ 1)

x

giving the right-hand inequality provided x > a(a+ 1)/2. �

We observe the following consequences of this Lemma, in which the ex-
pression “1 + o(1)” is to apply for d→∞ with k, n fixed.

Let Λk(d) denote the set of monomials of exact degree d in k variables,
and Lk(d) = #Λk(d). Then

Lk(d) =
(
k − 1 + d

k − 1

)
= dk−1

(k − 1)!
(1 + o(1)).

Let ∆k(d) denote the set of monomials of degree 6 d in k variables, and
Dk(d) = #∆k(d). Then

Dk(d) = Lk+1(d) = dk

k!
(1 + o(1)).

Let b(k, n, d) be the unique positive integer b with

Dk(b) 6 Dn(d) < Dk(b+ 1).

Then

b(k, n, d) =
(
k!dn

n!

)1/k
(1 + o(1)).

Let

B(k, n, d) =
b∑
β+0

Lk(β)β +

Dn(d)−
b∑
β=0

Lk(β)

 (b+ 1).
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Then

B(k, n, d) = 1
(k + 1)!(k − 1)!

(
k!
n!

)(k+1)/k
dn(k+1)/k(1 + o(1)).

Finally, let

V (n, d) =
d∑
β=0

Ln(β)β.

Then

V (n, d) = 1
(n+ 1)(n− 1)!

dn+1(1 + o(1)).

The following are the results showing that, for a mild set Y ⊂ (0, 1)n of
dimension k, Y (F, T ) is contained in “few” algebraic hypersurfaces. It is
convenient to establish the result first using a different height function.

For an algebraic number α we denote by den(α) the denominator of α,
namely, the least positive integer m such that mα is an algebraic integer.
If αi ∈ C are the conjugates of α we set

Hsize(α) = max{den(α), |αi|}.

Suppose α, of degree f , with minimal polynomial (over Z) af (t−α1) . . . (t−
αf ). Then [2], 1.6.5, 1.6.6,

Hsize(α) 6 |af |
∏

max(1, |αi|) = H(α)f .

For Y ⊂ Rn we set

Y size(F, T ) = {(x1, . . . , xn) ∈ Y (F ) : Hsize(x1), . . . ,Hsize(xn) 6 T}.

For α ∈ R we let [α] denote the integer part (least integer not exceeding α).

Theorem 3.2. — Suppose Y ⊂ (0, 1)n of dimension k has a (J,A,C)-
mild parameterization. Let f be a positive integer and F ⊂ R a numberfield
of degree f over Q. Then Y size(F, T ) is contained in at most

Jc(k, n)fA(k+1)(1+o(1))( log T
)C(n(k+1)

n−k

)
(1+o(1))

intersections of Y with hypersurfaces (possibly reducible) of degree

d =
[(

log T
) k
n−k
]

where “1+o(1)” is taken as T →∞ with implicit constants depending only
on k, n.
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Proof. — Since Y is the union of J images of mild maps, it suffices (given
the factor J in the conclusion) to suppose that Y is the image of a single
(A,C)-mild map θ : (0, 1)k → (0, 1)n.

Consider a Dn(d)×Dn(d) determinant ∆ of the form

∆ = det
(

(x(i))j
)

where j ∈ Nn with |j| 6 d indexes the columns, x(i) ∈ Y (F, T ), i =
1, . . . , Dn(d), and xj denotes as usual the monomial

∏
` x
j`
` .

Each coordinate of each x(i) has denominator 6 T . The entries in row
i consist of monomials in which each coordinate is raised to power 6 d.
Therefore K∆ is an algebraic integer for some positive integer K with

K 6 TndDn(d),

and then ∏
σ

(
K∆

)σ ∈ Z

where σ runs over the embeddings F → C.
Let us estimate |∆σ| (later we will use the mild parameterization to get

a better estimate for ∆ itself, i.e., when σ = id). Expand ∆σ into a sum
of Dn(d)! terms. Since ∆ has Ln(β) columns of degree β, for β = 0, . . . , d,
and in each column the entries have absolute value at most T β , the largest
term in the expansion has complex absolute value

6 T
∑
Ln(β)β = TV (n,d)

so that, for any σ,
|∆σ| 6 Dn(d)!TV (n,d).

Therefore, if ∆ 6= 0 then
∏
σ(K∆)σ is a non-zero integer and

1 6 |K∆|
∏
σ 6=id
|K∆σ| 6 |∆|T fndDn(d)+(f−1)V (n,d)(Dn(d)!

)f−1
.

To estimate |∆|, suppose that the points x(i) are the images of some
points z(i) ∈ (0, 1)k under θ where the z(i) in fact belong to some cube of
side 6 r 6 1, and so are at a distance 6 r in each coordinate from the
centre z(0) of the cube, which contains also all the lines segments from z(0)

to z(i). We have then that

∆ = det
(
φj(z(i))

)
where φj is the monomial function indexed by j, namely

φj(z(i)) =
(
θ1(z(i)), . . . , θn(z(i))

)j
=
(
x

(i)
1 , . . . , x(i)

n

)j
.

ANNALES DE L’INSTITUT FOURIER



COUNTING RATIONAL POINTS 501

We expand each entry of ∆ as a Taylor series about z(0) of order b =
b(k, n, d) with remainder terms of order b+ 1:

φj(z(i))=
∑

µ∈∆k(b)

∂µφj(z(0))
µ!

(
z(i) − z(0)

)µ
+

∑
µ∈Λk(b+1)

∂µφj(ζ)
µ!

(
z(i)−z(0)

)µ
where ζ = ζij is a suitable intermediate point on the line segment from z(0)

to z(i).
Now we expand out the determinant. In doing so, terms of low degree as

products of terms of the form (z(i)
` − z

(0)
` ) cancel out, as observed in [10],

Proof of 3.1. Specifically, consider the totality of terms corresponding to
a particular specification of the number of multiplicands of each order of
derivative. Consider a minor of size h × h of det(φj(z(i)) comprising the
expansion terms of degree β 6 b only. That is, select h points ζ(i) from
among the z(i), and h functions ψj from among the φj and consider

det

 ∑
µ∈Λk(β)

∂µψj(z(0)

µ!

(
ζ(i) − z(0)

)µ .

If h > Lk(β) then the columns are dependent and the minor vanishes. Thus
if, for a particular specification of orders, there are more than Lk(β) mul-
tiplicands of order β for some β, then the totality of terms corresponding
to this choice vanishes.

Therefore, all surviving terms are products of B(k, n, d) or more terms
of the form (z(i)

` −z
(0)
` ). The number of surviving terms is estimated by the

number of terms assuming no cancellation, i.e., for each term we consider
which row the multiplicand from column j came from, for which there are
Dn(d)! possibilities, and given this choice we can then choose, for each
column, one of the Dk(b + 1) terms in the Taylor expansion, giving an
estimate for the number of terms of at most

Dn(d)!Dk(b+ 1)Dn(d).

Finally, each term is a product of Dn(d) terms, each one of the summands
in the Taylor formula for φj which, neglecting the terms (z(i)

` − z
(0)
` ), takes

the form
∂µ
(
θj
)

(ζ)
µ!

for some suitable ζ, and some µ with |µ| 6 b+ 1. By Proposition 2.6, as θ
is (A,C)-mild and |µ| 6 b+ 1,

|∂µ
(
θj
)

(ζ)|
µ!

6 (µ+ 1)(|j|−1)k(A(b+ 1)C
)b+1

6 (b+ 2)|j|k
(
A(b+ 1)C

)b+1
.
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Now ∑
j∈Nn:|j|6d

|j| =
d∑
β=0

βLn(β) = V (n, d)

so that ∏
j∈Nn:|j|6d

(b+ 2)|j|k 6 (b+ 2)kV (n,d).

Therefore, since |z(i)
` − z

(0)
` | 6 r 6 1,

|∆| 6 Dn(d)!Dk(b+ 1)Dn(d)(b+ 2)kV (n,d)
((
A(b+ 1)C

)b+1)Dn(d)
rB(k,n,d),

and if the points x(i) do not lie on any hypersurface in Rn of degree d then
∆ 6= 0 and

1 6 (Dn(d)!)fDk(b+ 1)Dn(d)(b+ 2)kV (n,d)T fndDn(d)+fV (n,d)(
(A(b+ 1)C)b+1)Dn(d)

rB(k,n,d).

Now we take the B(k, n, d)-th root of this inequality. In the following
discussion, the expression “1 + o(1)” is to be taken as d → ∞ with k, n

fixed, while c(k, n) is a positive constant that may differ at each occurence.
First we observe that

Dn(d)
B(k, n, d)

= dn

n!
(k + 1)(k − 1)!
dn(k+1)/k

(
n!
k!

) k+1
k

(1 + o(1)) = c(k, n)
dn/k

where

c(k, n) = k + 1
k

(
n!
k!

)1/k
(1 + o(1)),

and that
V (n, d)
B(k, n, d)

= c(k, n)(1 + o(1)) dn+1

dn(k+1)/k = c(k, n)
dn/k−1 .

So(
Dn(d)!

)f/B(k,n,d)
6 Dn(d)

fDn(d)
B(k,n,d) =

(
c(k, n)(1 + o(1)d

n

)
)fc(k,n)/dn/k

=
(
1 + o(1)

)f
,

and similarly

Dk(b+ 1)
Dn(d)
B(k,n,d) =

(
(b+ 1)k

k!
(1 + o(1))

) c(k,n)(1+o(1))
dn/k

=
(
c(k, n)(1 + o(1))d

n

)
) c(k,n)(1+o(1))

dn/k = 1 + o(1).
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Next,

(b+ 2)
kV (n,d)
B(k,n,d) =

(
c(k, n)(1 + o(1))dn/k

) c(k,n)
dn/k−1 = 1 + o(1).

We have
T
fnDn(d)+fV (n,d)

B(k,n,d) = c(k, n)f

provided
d =

[(
log T

) k
n−k
]
.

Finally
(b+ 1)Dn(d)
B(k, n, d)

= k + 1
k

(1 + o(1)),

so that(
A(b+ 1)C

) (b+1)Dn(d)
B(k,n,d) =

(
Ac(k, n)(1 + o(1))dCn/k

) k+1
k (1+o(1))

= c(k, n)AP dnCP/k.

where
P = k + 1

k
(1 + o(1)).

Thus if ∆ 6= 0 we find that

1 6 c(k, n)fAP dnCP/kr

where
d =

[(
log T

) k
n−k
]

and all the preimages z(i) of the points x(i) lie in a cube of side r in
(0, 1)k. The points x(i) whose coordinates have Hsize(x(i)

j ) 6 T and whose
preimages lie in such a cube must therefore all lie on one hypersurface
(possibly reducible) of degree d provided

r < c(k, n)fA−P d−nCP/k,

and since (0, 1)k may be covered by at most

c(k, n)fAkP dnCP

such cubes, and T, d go to infinity together, the proof is complete. �

Corollary 3.3. — Suppose Y ⊂ (0, 1)n of dimension k has a (J,A,C)-
mild parameterization. Let f be a positive integer and F ⊂ R a numberfield
of degree f over Q. Then Y (F, T ) is contained in at most

Jc(k, n)fA(k+1)(1+o(1))(f log T
)C(n(k+1)

n−k

)
(1+o(1))

intersections of Y with hypersurfaces (possibly reducible) of degree

d =
[(
f log T

) k
n−k
]
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where “1+o(1)” is taken as T →∞ with implicit constants depending only
on k, n.

Proof. — We have Y (F, T ) contained in Y size(F, T f ). �

Conjecture 3.4. — Let Y ⊂ (0, 1)n be definable in Rexp. There exist
constants C1, C2, C3, C4, C5 depending only on Y with the following prop-
erty. Let F be an algebraic family of closed algebraic sets in Rn of degree
d = d(F), and suppose V ∈ F . Then Y ∩ V is (C2d

C3 , C4d
C5 , C1)-mild.

Conjecture 3.5. — Conjecture 3.4 implies Conjectures 1.4 and 1.5.

Proof. — It suffices to work with Hsize. By maps x → ±x±1 it suffices,
as in [15], to consider sets Y ⊂ (0, 1)n. Then one iteratively intersects
with hypersurfaces. Assuming 3.4, all the sets involved are (J,A,C1)-mild
with C1 fixed and J,A depending polynomially on the degree of the family.
For 1.5, imitate the proof of Theorem 5.3 in [14] using 3.3 to estimate the
number of intersections required at each stage, rather than the appeal in
[14] (via [15]) to [10], Lemma 4.4. For 1.4, use 3.3 on Y and then on the
intersections given by the conclusion of 3.3 repeatedly. In both cases the
degrees of the families are polynomial in (log T ) at each stage. �

4. The algebraic part,
Schanuel’s conjecture and algebraic points

Proposition 4.1. — Let

X = {(x, y, z) ∈ (0,∞)3 : log x log y = log z}.

Then Xalg consists of the lines Lx = {(x, 1, 1) : x ∈ (0,∞)} and Ly =
{(1, y, 1) : y ∈ (0,∞)} and, for q ∈ Q∗, the curves Γx,q = {(x, eq, z) : z =
xq, x > 0} and Γy,q = {(eq, y, z) : z = yq, y > 0}.

Proof. — Suppose that Γ is an arc of an algebraic curve contained in X.
Suppose x is constant on Γ. If x = 1 then also z = 1 and Γ is an arc of the
line Ly. If x is constant but not equal to 1 then q = log x must be rational,
and Γ is contained in the curve Γy,q. Similarly, if y is constant we find Γ
contained in Lx or Γx,q. If z is constant, we get no algebraic curves unless
z = 1 and we find that either x = 1 or y = 1 identically on Γ and revert to
the previous cases. Otherwise, x, y, z are non-constant and further y, z are
algebraic functions of x. We then have

x = exp
(

log z(x)
log y(x)

)
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on Γ and, by analytic continuation, this relation holds also for large (pos-
sibly complex) x. Then y(x), z(x) are given by some convergent Puiseaux
series,

z(x) = z0x
ζ + . . . , y(x) = y0x

η + . . .

and we have

x = exp
(
ζ log x+ log z0 + log(1 + . . .)
η log x+ log y0 + log(1 + . . .)

)
which is clearly untenable for large |x| as the right hand side tends to a
finite limit. �

We now elaborate the implications of Schanuel’s conjecture for algebraic
points on X. Schanuel’s conjecture implies that the logarithms of multi-
plicatively independent algebraic numbers are algebraically independent
over Q (see e.g. [19]).

Proposition 4.2. — Assume Schanuel’s conjecture (or just that the
logarithms of multiplicatively independent algebraic numbers are algebrai-
cally independent). Then if x, y, z ∈ (0,∞) are algebraic with log x log y =
log z then either (x, y, z) = (x, 1, 1) for some x ∈ Q, or (x, y, z) = (1, y, 1)
for some y ∈ Q.

Proof. — Suppose x, y, z are algebraic numbers in (0,∞) with log x log y
= log z. Then x, y, z are multiplicatively dependent, and we have

xaybzc = 1

for certain integers a, b, c. If two of a, b, c equal 0 then one of x, y, z = 1
and then we have either x = z = 1 and y arbitrary or y = z = 1 and x

arbitrary.
Suppose that just one of a, b, c is zero, assuming x, y, z 6= 1. If c = 0

we have y = xr for some rational r 6= 0 and r(log x)2 = log z. Then x, z

must (by Schanuel) be multiplicatively related, say z = xs for some s ∈ Q∗
and r(log x)2 = s log x implies log x = 0 (contrary to our assumptions) or
log x ∈ Q∗, whence x is non-algebraic. If a = 0, then z = yr for some
r ∈ Q∗ and log x log y = r log y implies (as log y 6= 0) that log x ∈ Q∗ and
is not algebraic.

Suppose then that none of a, b, c is zero. Then z depends multiplicatively
on x and y and we get a relation r log x + s log y = log x log y with r, s

non-zero rational numbers. Then x, y must be multiplicatively related, and
we find that log x is algebraic and hence x = 1. �

Summary 4.3. — The set Xalg consists of infinitely many real semi-
algebraic curves: the lines Lx, Ly and, for each q ∈ Q∗, the curves Γx,q,Γy,q.
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By the Hermite-Lindemann theorem the curves Γx,q,Γy,q contain no alge-
braic points. The lines Lx, Ly evidently contain algebraic points. Under
Schanuel’s Conjecture, X0(⊃ Xtrans) contains no algebraic points.

5. Pfaffian sets and Gabrielov-Vorobjov bounds

Definition 5.1 and the key result Theorem 5.3 are taken from the paper
[7] of Gabrielov and Vorobjov.

Definition 5.1 ([7], Definition 2.1). — A pfaffian chain of order r > 0
and degree α > 1 in an open domain G ⊂ Rn is a sequence of analytic
functions f1, . . . , fr in G satisfying differential equations

dfj =
n∑
i=1

gij(x, f1(x), . . . , fj(x))dxi

for 1 6 j 6 r, were gij ∈ R[x1, . . . , xn, y1, . . . , yj ] are polynomials of degree
not exceeding α. A function

f = P (x1, . . . , xn, f1, . . . , fr)

where P ∈ R[x1, . . . , xn, y1, . . . , yr] is a polynomial of degree not exceeding
β > 1 is called a pfaffian function of order r and degree (α, β).

Definition 5.2. — By a pfaffian set we will mean the set of common
zeros of some pfaffian functions. By a pfaff curve we mean the graph of a
pfaffian function of one variable on a connected subset of R.

In the above definition no restriction is placed on the domain G. To
obtain complexity bounds on pfaffian sets, one must impose restrictions
on G (as we will do, following [7]), or allow more complicated domains
whose complexity contributes to the complexity of the pfaffian sets. By
a simple domain G ⊂ Rn we mean, as in [7], that G is a domain of the
form Rn, [−1, 1]n, (0,∞)n or {x : ||x||2 < 1}. The number of connected
components of a set Y is denoted cc(Y ).

Theorem 5.3 ([7], Corollary 3.3). — Let h1, . . . , h` be pfaffian functions
in a simple domain G ⊂ Rn having a common pfaffian chain of order r and
degrees (α, βi) respectively. Put β = maxi βi. Let Y be the pfaffian set

Y = {x ∈ G : h1(x) = . . . = h`(x) = 0}.

Then

cc(Y ) 6 2r(r−1)/2+1β(α+ 2β − 1)n−1 ((2n− 1)(α+ β)− 2n+ 2)r .
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Observe that the bound on cc(Y ) does not depend on `. When the am-
bient space Rn and the pfaffian chain are fixed, as they will be, this fixes
n, r, α and then we have

cc(Y ) 6 c(n, r, α)βn+r.

6. Proof of Theorems 1.1 and 1.6

Theorems 1.1 and 1.6 concern the surface

X = {(x, y, z) ∈ (0,∞)3 : log x log y = log z}.

If log x = 0 then log z = 0 also, so X ∩ {x = 1} = {(x, y, z) : x = z =
1} ⊂ Xalg. Likewise X ∩ {y = 1} ⊂ Xalg, while if log z = 0 we must
have log x = 0 or log y = 0, so that X ∩ {z = 1} ⊂ Xalg too. In studying
(X −Xalg)(F, T ) we may therefore assume that x, y, z 6= 1. Let

X = {(x, y, z) ∈ (0, 1)3 : log x log y = − log z}.

The surface X contains semi-algebraic curves corresponding to fixing a
rational negative value for log x or log y. However, these curves contain no
algebraic points (the corresponding x or y is transcendental by the Hermite-
Lindemann Theorem). Thus X alg(Q) is empty, and we need not restrict our
counting to X trans.

If (x, y, z) ∈ X(F, T ) with x > 1, y > 1 then z > 1 also. Since H(α) =
H(1/α) for any nonzero algebraic number α, we see that (1/x, 1/y, 1/z) ∈
X (F, T ). If (x, y, z) ∈ X(F, T ) with x < 1, y > 1 then z < 1 and now
(x, 1/y, z) ∈ X (F, T ). The cases x > 1, y < 1 and x, y < 1 are similar and
we see that, up to a finite multiplicative factor, Theorems 1.1 and 1.6 follow
from the following result concerning X .

Theorem 6.1. — Let F ⊂ R be a numberfield of degree f over Q and
let ε > 0. Then

#X (F, T ) 6 c(X , f, ε)
(

log T
)44+ε

.

Proof. — It suffices to prove a bound of the stated form for #X size(F, T ).
For each integer g > 1 we have a (J(g), A(g), 1+1/g)-mild parameterization
(with J(g) = 1) of X given by

θ : (0, 1)2 → (0, 1)3,

θ(s, t) =
(

exp
(

1− 1
sg

)
, exp

(
1− 1

tg

)
, exp

(
−
(

1− 1
sg

)(
1− 1

tg

)))
.
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By Theorem 3.2, X size(F, T ) is contained in

6 c(g, f)
(

log T
)9(1+1/g)(1+o(1))

intersections of X with hypersurfaces of degree[(
log T

)2]
with the 1+o(1) as T →∞ (and implicit constants depending only on g, f).
These intersections all have dimension 1, since X is not semi-algebraic, and
we may ignore any semi-algebraic components, as the semi-algebraic curves
in X contain no algebraic points.

The mild parameterization plays no further role in the study of these
hypersurface intersections. In applying the Gabrielov-Vorobjov bounds it is
advantageous to define them as pfaffian sets with as low degree as possible.
For the remainder of the proof we therefore consider X to be parameterized
by

(0,∞)2 → (0, 1)3,

(p, q) 7→
(
e−p, e−q, e−pq

)
= (x, y, z) ∈ X .

If H ∈ R[x, y, z] defines the hypersurface VH : H(x, y, z) = 0 then the
intersection X ∩ VH is the image of the exponential-algebraic curve (not
necessarily connected) in the (p, q)-plane defined by

K(p, q) = H(e−p, e−q, e−pq) = 0, p, q > 0.

We observe that, for H 6= 0, the equation K(p, q) = 0 defines a curve
V = VK , i.e., a set of dimension 1, again because X is not semi-algebraic.
The set of singular points Vs of V is defined by

K = 0, Kp = −Hxe−p − qHze−pq = 0, Kq = −Hye−q − pHze−pq = 0.

It is a finite set (definable of dimension zero).
We now follow the procedure of [10, 11], substituting Gabrielov-Vorobjov

bounds for the appeals made in [10, 11] to Gabrielov’s Theorem for suban-
alytic sets.

Let then Π be a coordinate plane in R3 whose coordinates we denote
(u, v). Projection of R3 onto Π takes the curve V defined by K(p, q) = 0
into some curve in Π. At a point P = (p, q) of V − Vs, V is locally an
analytic curve. If Kq 6= 0 at P then we may use q as a local parameter and
we find that u is nonconstant at P unless

upKq − uqKp = 0.

Similarly, v is nonconstant at P unless

vpKq − vqKp = 0.
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Let Vu be the subset of V −Vs where one or more of these quantities vanish.
At points of V −Vs−Vu the slope du/dv is well defined, and the image of V
in Π is locally the graph of a function. We proceed to derive an expression
for its derivatives. We have, locally,

u = u(p(v), q(v)), v = v(p(v), q(v)), K(p(v), q(v)) = 0.

Differentiating the second and third equations implicitly,

1 = vpp
′ + vqq

′, Kpp
′ +Kqq

′ = 0

which we may write as a matrix equation(
vp vq
Kp Kq

)(
p′

q′

)
=
(

1
0

)
giving(
p′

q′

)
= 1
vpKq − vqKp

(
Kq −vq
−Kp vp

)(
1
0

)
= 1
vpKq − vqKp

(
Kq
−Kp

)
.

We have then
du

dv
= upp

′ + uqq
′ = upKq − uqKp

vpKq − vqKp
.

To get expressions for higher derivatives, we differentiate this expression
with respect to v and use the expressions we have for p′, q′. For points (u, v)
with vpKq − vqKp 6= 0 and a positive integer m we will have

dmu

dvm
= Rm(u, v,K)

(vpKq − vqKp)2m−1

for a suitable differential polynomial Rm.
We want to estimate the number of zeros of Rm which we will do by

controlling its order and degree as a pfaffian function. Let us write

∆ = vpKq − vqKp

(no confusion should arise with the previous use of ∆), which we consider
as a function of v, so that

p′ = Kq
∆
, q′ = −Kp

∆
and

∆′ =
vppK

2
q−vpqKpKq+vpKqpKq−vpKqqKp−vqpKqKp+vqqK2

p − vqKppKq+vqKpqKp
∆

=
Γ
∆
.

If we now write
dmu

dvm
= Rm

∆2m−1 , R′m = Sm
∆
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then

dm+1u

dvm+1 =
∆2m−2 ∆Sm

∆ − (2m− 1)∆2m−2 Γ
∆Rm

∆4m−2 = Rm+1

∆2(m+1)−1

gives a recurrence for Rm (and validates the asserted form for dmu/dvm),
starting with

R1 = upKq − uqKp.

Consider the pfaffian chain of functions on (0,∞)2

f1 = e−p, f2 = e−q, f3 = e−pq

where we have ∂pf3 = −qf3, ∂qf3 = −pf3. This is then a pfaffian chain
of order r = 3 and degree α = 2. The function u, v,K and their partial
derivatives with respect to p, q are pfaffian with this chain, i.e., they are
polynomials in p, q, f1, f2, f3, and therefore so are all the functions Rm and
Sm, and they therefore have order 3 and degree (2, β), where β > 1 is their
degree as a polynomial in p, q, f1, f2, f3.

Claim. — uµ has degree (2, |µ|+ 1).

Proof of Claim. — By induction. It holds for |µ| = 1, the “worst case”
being u = f3 = e−pq for which up = −qf3 is a polynomial of degree 2. Sup-
pose the Claim is true for all µ with |µ| 6 m. Then, with some polynomial
P of degree 6 |µ|+ 1,

∂p∂µu = ∂pP (p, q, f1, f2, f3)=Pp+Pf1(f1)p+Pf3(f3)p = Pp−Pf1f1−qPf3f3

having degree 6 |µ|+ 2. The ∂q∂µ calculation is similar. �

If H has degree d then K = H(f1, f2, f3) is pfaffian with the chain
f1, f2, f3 and degree (2, d). Generalizing the previous Claim we find:

Claim. — Kµ has degree (2, d+ |µ|).

Returning to our functions Rm and Sm, we have that R1 = upKq −
uqKp has degree (2, d + 3). Suppose Rm has degree (2, ρm), so Rm =
P (p, q, f1, f2, f3) for suitable polynomial P of degree 6 ρm. Then

R′m = Ppp
′ + Pqq

′ + Pf1f
′
1 + Pf2f

′
2 + Pf3f

′
3

= PpKq − PqKp − Pf1f1Kq + Pf2f2Kp − qf3Pf3Kq + pf3Pf3Kp
∆

.

Thus the degree (2, σm) of Sm where R′m = Sm/∆ is

σm = (ρm − 1) + 2 + d+ 1 = ρm + d+ 2.
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Since deg Γ = (2, 2d+ 5) by applying the above Claims to the exhibited
expression for Γ and deg(∆) = (2, d+ 3) we find that

ρm+1 = max(d+ 3 + ρm + d+ 2, 2d+ 5 + ρm) = ρm + 2d+ 5

and therefore
ρm = m(2d+ 5)− (d+ 2).

With these degrees in hand, we consider the decomposition of the curve
VK defined by K(p, q) = 0 into “good” curves, where a “good” curve is
a connected subset whose projection into each coordinate plane Π is a
“good” graph with respect to one or other of the axes, namely, the graph
of a function φ which is smooth (indeed analytic) on an interval, has slope
of absolute value at most 1 at each point, and such that the derivative of
φ(m) of each order m = 1, . . . ,M is either non-vanishing in the interior of
the interval or identically zero.

In the following, constants in << depend on a pfaffian chain on a simple
domain G. This will always be the chain f1, f2, f3 of order 3 and degree 2
in the simple domain p, q > 0 in R2, so that the implicit constant is then
absolute and explicit from Theorem 5.3.

The set V = VK has << d5 connected components. Its singular set Vs is
defined by K = 0,Kp = Kq = 0 where Kp,Kq have degree at most d + 1.
So

cc(Vs) << d5

and therefore also
cc(V − Vs) << d5.

Let Vu be the subset of V − Vs where du/dv is undefined. Considering the
conditions exhibited above for such points, and also for the set Va where
the slope of the graph in Π is ±1 we have again

cc(V − Vs − Vu − Va) << d5.

Now take one such component, fix a coordinate plane Π, and consider
the points where some Rm = 0. Since deg(Rm) 6 (2, (2d + 5)m), we have
at most m5(2d+ 5)5 points where Rm = 0, unless it vanishes identically on
the component. In this case the image in Π is the graph of a polynomial
with respect to one of the axes. If the graph is not a polynomial than, sum-
ming over m = 1, 2, . . . ,M , we have at most << M6d5 further components,
whose slope lies in [−1, 1], and for which no derivative up to order M van-
ishes. Taking the isolated points where some Rm = 0 for m = 1, 2, . . . ,M
for each of the 3 coordinate planes Π, we find that VK decomposes into
<< M6d5 connected components whose image in each coordinate plane is
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a graph with respect to one of the axes with slope in [−1, 1] and such that,
for each m = 1, 2, . . . ,M , Rm is nonzero in the interior or identically zero
on the component, i.e., “good” components.

If such a connected component of VK is semi-algebraic then its projection
in each coordinate plane Π will be algebraic, and conversely if all the pro-
jections are semi-algebraic then the component is semi-algebraic. Now we
need not consider algebraic components, therefore we can assume that ev-
ery component has a non-algebraic (and hence non-polynomial) projection
into one of the planes Π.

Let W be a “good” component of VK , and Y its non-semi-algebraic image
in some Π. If we intersect Y with a plane algebraic curve (in Π) defined by
L(u, v) = 0 of degree b, then since the function L(u(p, q), v(p, q)) is pfaffian
of degree (2, b), intersecting with Y gives again at most

<< max(b, d)5

connected components. So Y ∩ {L = 0} consists of at most this many
isolated points.

Since Y is a “good” graph then, by [13] (for rational points) and [14], 6.7
(for F -points), Y size(F, T ) is contained in

c(f)M log T

plane algebraic curves of degree b where M = (b+ 1)(b+ 2)/2. So we get

#Y size(F, T ) 6 c(f) max(b, d)5M log T

and the same estimate holds for the corresponding component of VH , where
having a point of X size(F, T ) requires that the other coordinate be also in
F with its Hsize bounded by T .

Putting all the above together, we find

#X size(F, T ) 6 c(X , f, g)
(

log T
)9(1+1/g)(1+o(1))

M6d5M log T max(b, d)5

where d =
[(

log T
)2], M = (b+ 1)(b+ 2)/2, and b =

[
log T

]
, giving

#X size(F, T ) 6 c(X , f, g)
(

log T
)9(1+1/g)(1+o(1))+35

.

This completes the proof of Theorem 6.1, and thereby establishes Theo-
rems 1.1 and 1.6 as well. �

7. Appendix: O-minimal structures

We give the basic definitions, following [22], referring the reader to [5, 6,
21, 22] for more information.
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Definition 7.1. — A pre-structure is a sequence S = (Sn : n > 1)
where each Sn is a collection of subsets of Rn. A pre-structure S is called
a structure (over the real field) if, for all n,m > 1, the following conditions
are satisfied:

(1) Sn is a boolean algebra (under the usual set-theoretic operations);
(2) Sn contains every semi-algebraic subset of Rn;
(3) if A ∈ Sn and B ∈ Sm then A×B ∈ Sn+m;
(4) if m > n and A ∈ Sm then π(A) ∈ Sn, where π : Rm → Rn is

projection onto the first n coordinates.
If S is a structure and X ⊂ Rn, we say X is definable in S if X ∈ Sn.
If S is a structure and, in addition,

(5) the boundary of every set in S1 is finite
then S is called an o-minimal structure (over the real field).

Definition 7.2 ([5], p.3). — We denote by Rexp the prestructure con-
sisting of those sets in Rn arising as the image under projection maps
Rn+k → Rn of sets of the form {(x, y) ∈ Rn+k : P (x, y, ex, ey) = 0} where
P is a real polynomial in 2(n+k) variables, and where x = (x1, . . . , xn), y =
(y1, . . . , yk), ex = (ex1 , . . . , exn), ey = (ey1 , . . . , eyk).

Example 7.3. — The setX is the image under the projection R6 → R3 of

Y = {(x, y, z, u, v, w) : (x− eu)2 + (y − ev)2 + (z − ew)2 + (uv − w)2 = 0}.

Theorem 7.4 (Wilkie [21]). — Rexp is an o-minimal structure.
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