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UNIVERSAL ISOMONODROMIC DEFORMATIONS OF
MEROMORPHIC RANK 2 CONNECTIONS ON

CURVES

by Viktoria HEU (*)

Abstract. — We consider tracefree meromorphic rank 2 connections over com-
pact Riemann surfaces of arbitrary genus. By deforming the curve, the position of
the poles and the connection, we construct the global universal isomonodromic
deformation of such a connection. Our construction, which is specific to the trace-
free rank 2 case, does not need any Stokes analysis for irregular singularities.
It is thereby more elementary than the construction in arbitrary rank due to
B. Malgrange and I. Krichever and it includes the case of resonant singularities
in a natural way.

Résumé. — Nous considérons les fibrés à connexion méromorphe sans trace de
rang 2 sur les surfaces de Riemann compactes de genre quelconque. En déformant
la courbe, la position des pôles et le fibré à connexion, nous construisons la dé-
formation isomonodromique universelle globale d’un tel fibré à connexion initial.
Notre construction spécifique au cas du rang 2 et sans trace est plus élémentaire
que la construction en rang quelconque due à B. Malgrange et I. Krichever au sens
où elle ne nécessite pas d’analyse de Stokes des singularités irrégulières. De plus,
elle englobe le cas des singularités résonantes de manière naturelle.

1. Introduction

We consider a meromorphic and tracefree connection ∇0 on a holo-
morphic rank 2 vector bundle E0 over a compact Riemann surface X0 of
genus g. In local trivialization charts for E0, the connection∇0 is defined by
d−A0, where A0 is a 2× 2-matrix whose entries are meromorphic 1-forms
such that tr(A0) ≡ 0. Such a connection (E0,∇0) will be considered up to
holomorphic gauge-transformations of the vector bundle (see section 2.1).

Keywords: Isomonodromic deformation, meromorphic connection.
Math. classification: 32G34, 34M55, 53B05, 32S40,32G15.
(*) This paper is part of the author’s doctoral thesis written at the University of Rennes
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516 Viktoria HEU

Roughly speaking, an isomonodromic deformation of the initial con-
nection (E0 → X0,∇0) is an analytic, topologically trivial deformation
(Et → Xt,∇t)t∈T such that the monodromy data are constant. By topo-
logically trivial deformation we mean that the analytic family π : X → T of
Riemann surfaces with fiber π−1(t) = Xt has contractible parameter space
T and is provided with disjoint sections

Di : T → X for i ∈ {1, . . . ,m},

which correspond to the polar locus of the family of connections. With the
notations D =

∑m
i=1Di and D = (Dt)t∈T , the family (Xt \ Dt)t∈T (resp.

(Xt, Dt)t∈T ) can be seen as a family of marked punctured Riemann surfaces
(resp. m-pointed marked Riemann surfaces).

In the non-singular or logarithmic case (poles of order 1), the monodromy
data reduce to the monodromy representation

π1(X0 \D0)→ SL(2,C),

where D0 is the polar locus of the initial connection. In this case, a defor-
mation (Et → Xt,∇t)t∈T of the curve, the fibre bundle and the connection
is called isomonodromic if it is induced by a flat logarithmic connection
(E → X ,∇). In the general meromorphic case (poles of arbitrary order), one
usually adds Stokes matrices to the monodromy data (see papers of B. Mal-
grange, J. Palmer and I. Krichever), therefore needing a non-resonance con-
dition. In the non-resonant case, a deformation (Et → Xt,∇t)t∈T is called
isomonodromic (and iso-Stokes) if the order of the poles is constant along
the deformation, and it is induced by a flat meromorphic connection over X
whose connection matrix A satisfies

(1.1) (dA)∞ 6 (A)∞,

where (·)∞ denotes the (effective) polar divisor. If (x1, . . . , xN ) are local
coordinates in which the polar locus is given by {x1 = 0}, then condition
(1.1) means that the connection matrix A takes the form

A = M1
dx1

xl1
+

N∑
i=2

Mi
dxi
xl−1

1
,

where Mi, for i ∈ {1, . . . , N}, is a holomorphic 2× 2-matrix whose entries
are holomorphic functions, and l is the order of the pole. It turns out (see
section 2.2) that if we consider the sl(2,C)-case and if the order of the
pole does not vary along {x1 = 0}, then condition (1.1) is equivalent to the
existence of local coordinates in which the connection is gauge-equivalent
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UNIVERSAL ISOMONODROMIC DEFORMATIONS 517

to a constant one:
A = M̃1(x1)dx1

xl1
.

Our definition of isomonodromic deformations shall be this latter one,
which is specific to the sl(2,C)-case and which also takes sense in the
sl(2,C)-resonant case (see section 2.2).

This paper is devoted to the construction of the global universal isomon-
odromic deformation (E → X ,∇) over X → T of the initial connection,
which is carried out in section 3. It is universal in the sense that any other
isomonodromic deformation of the same initial connection can be obtained
by inverse image under some classifying application from the universal ob-
jet (see the theorem 1.1 below for a more precise statement). It is global in
the sense that this universal property holds not only for germs of isomon-
odromic deformations.

In the non-singular or logarithmic case (see sections 3.1 and 3.2), the
parameter space T of the universal isomonodromic deformation is the Te-
ichmüller space T associated to the marked curve X0 with the set of distin-
guished points D0 which corresponds to the polar set of ∇0. Then (E ,∇)
is the unique flat logarithmic extension of (E0,∇0) over the universal Te-
ichmüller curve. In the case of irregular poles there are non-trivial isomon-
odromic deformations of the initial connection, which are fixing the curve
and the poles. The parameter space T of the universal isomonodromic de-
formation in the general case (see section 3.3) is the product of the Teich-
müller space T of the m-pointed curve, with spaces of convenient jets of
diffeomorphisms at the poles. The dimension of this parameter space T is

max{0, 3g − 3 + n},

where n is the number of poles counted with multiplicity, except for the
special case (g, n) = (1, 0), where we have dim(T ) = 1.

The universal property of the universal isomonodromic deformation

(E → X ,∇)

states as follows :

Theorem 1.1 (Universal property). — Let (Ẽ → X̃ , ∇̃) be an isomon-
odromic deformation of (Ẽ0 → X̃0, ∇̃0) with contractible parameter space
T̃ and initial parameter t̃0. Suppose there is an isomorphism

F0 : (X̃0, D̃0) ∼→ (X0, D0)

of marked curves and an isomorphism

Ψ0 : (Ẽ0, ∇̃0) ∼→ (E0,∇0)

TOME 60 (2010), FASCICULE 2



518 Viktoria HEU

of connections given locally by holomorphic gauge transformations ψ0 con-
jugating (Ẽ0, ∇̃0) to F ∗0 (E0,∇0) :

(Ẽ0, ∇̃0)
Ψ0

∼
//

��

(E0,∇0)

��
(X̃0, D̃0)

F0

∼
//

��

(X0, D0)

��
{t̃0}

f0 // {t0}

Then there is a triple (f, F,Ψ) extending (f0, F0,Ψ0) to a commuting dia-
gramm

(Ẽ , ∇̃)

��

Ψ // (E ,∇)

��
(X̃ , D̃)

F //

��

(X ,D)

��
T̃

f // T,

where (f, F ) are holomorphic maps such that F |t̃ is a biholomorphism of
marked Riemann surfaces for each parameter t̃ ∈ T̃ , and Ψ is given locally
by holomorphic gauge transformations ψ conjugating (Ẽ , ∇̃) to F ∗(E ,∇).
For each choice of such maps (f, F ), there is a unique such isomorphism Ψ.

In the non-singular or logarithmic case, the maps (f, F ) above will be
given by Teichmüller theory. In the general case, the maps (f, F ) factor-
ize by the Teichmüller classifying maps. Moreover, the maps (f, F ) (and
thus the triple (f, F,Ψ)) are unique except when there exist non-trivial
automorphisms of the marked m-pointed base curve, that is in the special
cases (g,m) = (0, 0), (0, 1), (0, 2) or (1, 0). Otherwise, the uniqueness can
be restored by means of a quotient in the construction of the universal
isomonodromic deformation by these automorphisms, provided that (g, n)
is different from (0, 0), (0, 1), (0, 2) and (1, 0) (cf. section 4.4). We notice
that the remaining cases are undeformable, i.e. dim(T ) = 0, except for
the special case (g, n) = (1, 0). The following corollary is an immediate
consequence of the construction and the proof of the universal property in
section 4.

ANNALES DE L’INSTITUT FOURIER



UNIVERSAL ISOMONODROMIC DEFORMATIONS 519

Corollary 1.2. — The universal isomonodromic deformation

(E → X ,∇)

of (E0 → X0,∇0) is also the universal isomonodromic deformation of each
of the connections (Et → Xt,∇t) it contains for a parameter t ∈ T .

Such a construction of the universal isomonodromic deformation has been
done in the non-resonant case for arbitrary rank, using Birkhoff normal
form and Stokes matrices, in [11] (see also [15]), [12] and [21] for g = 0,
and in [8] for g > 0. Our construction does not use Stokes analysis, and is
in this sense more elementary, but clearly iso-Stokes in the non-resonant
case. Based on the observations in [10] on pages 10-11, B. Malgrange also
gave a construction of a germ of a universal isomonodromic deformation for
resonant singularities, if the leading term of the connection matrix has only
one Jordan block for each eigenvalue (see [13] and [14]). In the sl(2,C)-case,
each resonant singularity is clearly of that type. Our elementary geometric
approach unifies all these constructions in the special case of tracefree rank
2 connections.

Another possible approach, that we omit in this work, is the Kodaira-
Spencer method. After projectivization of the fibre bundle E , the flat con-
nection ∇ defines a codimension 1 equisingular unfolding on P(E) in terms
of [16], [17]. The obstruction space is given by H1(X0,ΘX0(D0)), where D0
is the effective polar divisor of ∇0 and Θ is the sheaf of holomorphic vector
bundles. The dimension of ΘX0(D0) is 3g − 3 + deg(D0). The main result
of [17] insures the existence of a local Kuranishi space. This is a germ of
our parameter space.

2. Definitions and elementary properties

In the following, we shall always denote by M a complex manifold and
by X a compact Riemann surface. We denote by O the sheaf of holomorphic
functions on M (resp. X) and by Ω⊗M the sheaf of meromorphic 1-forms
on M (resp. X).

2.1. Flat meromorphic connections and monodromy

Let E be a holomorphic rank r vector bundle over M . The bundle E is
given by a trivialization atlas (Ui) onM with transition maps ϕij , providing

TOME 60 (2010), FASCICULE 2



520 Viktoria HEU

trivialization charts Ui ×Cr with local coordinates (zi, Yi), and transition
maps (Φij) = (ϕij , φij) satisfying

(zi, Yi) = (ϕij(zj), φij(zj) · Yj),

where φij ∈ GL(r,O(Ui ∩ Uj)). Later on, we also denote by E the global
space of the vector bundle.

A meromorphic connection ∇ on E associates to each trivialization chart
Ui ×Cr of E with coordinates (zi, Yi) a system

(2.1) dYi = Ai(zi) · Yi

with Ai ∈ gl(2,Ω ⊗M(Ui)), such that the connection matrices Ai glue
together by means of the transition maps (Φij):

Ai ◦ ϕij = φijAjφ
−1
ij + dφijφ−1

ij .

Biholomorphic coordinate transformations z̃i = ϕi(zi) in the local coordi-
nates of M are conjugating a connection matrix Ai(zi) to

Ãi(z̃i) = Ai ◦ ϕ−1
i (z̃i).

If the coordinates of M are fixed, we consider connections modulo holo-
morphic gauge transformations Ỹi = φi(zi)Yi with φi ∈ GL(r,O(Ui)) on
the local charts, conjugating system (2.1) to dỸi = Ãi(zi)Ỹi with

Ãi = φiAiφ
−1
i + dφiφ−1

i .

Otherwise we consider connections modulo holomorphic gauge-coordinate
transformations, i.e. combinations of coordinate and gauge transforma-
tions. Two connections over the same manifold are called isomorphic, if
there is an isomorphism of vector bundles conjugating the associated con-
nection matrices.

The poles of the matrices Ai are the poles of the connection ∇. They
do not depend on the chart, and the polar divisor (∇)∞ is well defined.
We shall denote by D the reduced polar divisor. The connection ∇ is
said to be a non-singular (resp. logarithmic) connection if it has no poles
(resp. if it has only simple poles and its connection matrices Ai satisfy
(dAi)∞ 6 (Ai)∞.) A connection is flat or integrable, if the connection ma-
trices Ai satisfy dAi ≡ Ai ∧Ai. Equivalently, the connection is flat if each
non-singular point has a small neighborhood such that there is a gauge
transformation (z, Ỹ ) = (z, φ(z) · Y ) conjugating the connection matrix to
the trivial connection matrix Ãi = 0.

We can choose a fundamental solution S, that is a basis of the space
of local solutions in some base point in the set of non-singular points
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UNIVERSAL ISOMONODROMIC DEFORMATIONS 521

M∗ = M \D. Then analytic continuation along a closed path γ in M∗ pro-
vides another fundamental solution S′ = ρ−1(γ)S, where ρ(γ) is called the
monodromy along the path γ. In that way we get a monodromy represen-
tation ρ : π1(M∗)→ GL(r,C) which will be considered modulo conjugacy
of the image of ρ by an element of GL(r,C).

Each meromorphic rank r connection ∇ on E induces a trace connection
tr(∇) on the line bundle det(E), given by

dyi = tr(Ai(zi)) · yi.

We say a connection is tracefree, if its trace connection is the trivial con-
nection dy ≡ 0 on the trivial line bundle M ×C. For tracefree connections,
it is possible to choose transition maps with φij ∈ SL(r,O(Ui ∩ Uj)). For
tracefree connections we thus will only consider gauge transformations φi
in SL(r,O(Ui)).

2.2. Isomonodromic deformations

Let (Xt)t∈T be an analytic family of marked Riemann surfaces (cf. [19],
page 347) which is given by a submersion π : X → T with contractible pa-
rameter space T . Let (E ,∇) be a meromorphic connection (not necessarily
flat) on X , inducing an analytic family (Et → Xt,∇t)t∈T . For each param-
eter t ∈ T denote by Dt the polar set of the connection (Et → Xt,∇t). We
only consider the case where D = (Dt)t∈T is a smooth divisor on X , which
is transversal to the parameter t. In particular, X \D → T then is a family
of marked punctured Riemann surfaces and for each parameter t ∈ T the
inclusion map Xt \Dt

� � // X \ D defines an isomorphism

π1(Xt \Dt) ∼= π1(X \ D).

We call (Et → Xt,∇t)t∈T a topologically trivial, analytic family of con-
nections.

A topologically trivial, analytic family (Et → Xt,∇t)t∈T is called an
isomonodromic family, if it is induced by a flat connection over the total
space X → T of the family of curves. Along an isomonodromic family, the
monodromy representation is constant. An isomonodromic deformation is
a special case of isomonodromic families, which is induced by some initial
connection (E0 → X0,∇0), and where the Stokes-data are also constant
along the deformation. Yet Stokes data are well-defined only in the non-
resonant case, i.e. if the leading term of the connection matrix of the initial
connection has only distinct eigenvalues. Usually (c.f. [11], [12], [21], [8]),
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522 Viktoria HEU

isomonodromic deformations of tracefree rank 2 connections are defined as
follows.

Definition 2.1. — Let (E0 → X0,∇0) be a non-resonant, tracefree
rank 2 connection on a Riemann surface X0. A topologically trivial, ana-
lytic deformation (Et → Xt,∇t)t∈T of this initial connection is called an
isomonodromic deformation, if

• for each parameter t, the order of the poles of ∇t is equal to the
order of the poles of ∇0 and
• (Et → Xt,∇t)t∈T is induced by a flat connection (E → X ,∇),

whose connection matrix A satisfies the following transversality-
condition :

(2.2) (dA)∞ 6 (A)∞.

Remark 2.2. — Consider a flat tracefree connection of rank 2 on a
smooth family of vector bundles over Riemann surfaces with smooth polar
divisor D (as a set). Then any irreducible component Di of the polar divisor
D not satisfying the transversality condition (2.2) is projectively apparent
in the following sense : after a bimeromorphic transformation, the polar
divisor of the associated projective connection becomes D \ Di (as a set)
(see [9], page 736).

Let (E → X ,∇) be a flat connection inducing an isomonodromic defor-
mation (Et → Xt,∇t)t∈T of an initial sl(2,C)-connection (E0 → X0,∇0).
Locally over each non-singular point of X , the connection ∇ is given by
systems dY ≡ 0. In particular, any local solution in a non-singular point
is automatically transverse to the parameter t ∈ T , i.e. transverse to
{t = const}. We shall see that the transversality condition (2.2), together
with the constancy of the order of the poles and our initial hypothesis of
the divisor D being transverse to the parameter implies local constancy,
which is a certain local product structure of the connection with the pa-
rameter space even at the singular points. Let us now precise the notion of
local constancy.

On smooth families (Xt)t∈T of marked Riemann surfaces we shall always
denote by (t, x) ∈W ×U local trivialization coordinates, with t1 ∈W ⊂ T
and x ∈ U ⊂ Xt1 . By our initial hypothesis, the distinguished points
D = (Dt)t∈T can locally be given by {x = 0} in such coordinates. By gauge-
coordinate transformations in such coordinates (t, x, Y ) ∈W×U×C2 with
W ⊂ T , we will always mean gauge-coordinate transformations fixing the
parameter t:

(t̃, x̃, Ỹ ) = (t, ϕ(t, x), φ(t, x) · Y ).

ANNALES DE L’INSTITUT FOURIER



UNIVERSAL ISOMONODROMIC DEFORMATIONS 523

Definition 2.3. — A flat connection ∇ on a smooth family of holo-
morphic vector bundles (Et → Xt)t∈T is called locally constant if locally
in each point of the total space X of the curve deformation, the connec-
tion matrix does not depend on the parameter t ∈ T , up to a convenient
gauge-coordinate transformation.

Remark 2.4. — In other words, on open sets as above, there are sub-
mersions ϕ : W × U → U transversal to the parameter, such that ∇ is
gauge-equivalent to the pull-back ϕ∗(∇|t=t1).

This means that up to an appropriate gauge-coordinate transformation
on W×U×C2, the system dY = A(x)Y dx defining∇|t=t1 over U defines∇
over W × U as well. In this sense, ∇ can locally be seen as the product of
an initial connection with the parameter space.

Proposition 2.5. — Let (E → X ,∇) be a flat tracefree rank 2 connec-
tion on (X ,D) → T , such that the leading term of the connection matrix
A has no zeros along the polar divisor. Then the connection (E → X ,∇) is
locally constant if, and only if, its connection matrix satisfies the transver-
sality condition (2.2).

Remark 2.6. — The transversality condition is strictly weaker to the
condition of local constancy, if we consider connections of rank greater
than 2 or rank 2 connections with non-trivial trace.

In order to prove proposition 2.5, we will use the following lemma.

Lemma 2.7. — Let (E → X ,∇) be a flat tracefree rank 2 connection
on (X ,D)→ T which satisfies the transversality condition (2.2) and whose
order of the poles is constant. Then for each point t1 of T there is a neigh-
borhood W of t1 and for each point of the polar divisor in the fibre over t1,
there is a neighborhood W × U ×C2 with coordinates (t, x, Y ) where the
connection ∇ is given by systems of normal form

(2.3) dY = 1
xl

(
0 1
c(x) 0

)
Y dx

not depending on t, where c is a holomorphic function on U .

Proof. — On a local chart W × U ×C2, let ∇ be given by a system

dY = A(t, x)Y with A =
(
a b

c −a

)
.

If ∇ has a pole of order l at {x = 0} for each parameter t in a neighborhood
of t1, then at least one of the 1-forms a, b or c has a pole of order l at {x = 0},
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which remains a pole of order l in restriction to t1. We may suppose this
is the case for b, otherwise we may apply a gauge transformation such as

Ỹ =
(

0 1
−1 0

)
Y or Ỹ =

(
1 1
0 1

)
Y.

If the transversality condition is satisfied, then b is of the form

b = 1
xl

(b0(t, x)dx+ xb1(t, x)dt),

where b0 and b1 are holomorphic functions with b0(t, 0) 6≡ 0. By our assump-
tion, b0(t, 0) is even non-zero for each parameter t in a small neighborhood
of t1. Thus xlb defines a non-singular (integrable) foliation transverse to
the parameter t, and there is a coordinate transformation fixing {x = 0}
and straightening the foliation given by xlb = 0 to dx = 0.

Remark 2.8. — With the notions of remark 2.4, the submersion ϕ(t, x)
defining this coordinate change is given by a first integral of the foliation
xlb = 0.

In other words, up to a coordinate transformation, we make sure that b
is of the form b = 1

xl
b0(t, x)dx, where b0(t, x) has no zeros in a sufficiently

small neighborhood of (0, t1). By a gauge transformation of the form

Ỹ =
(

(
√
b0)−1 0
0

√
b0

)
Y

we obtain b = 1
xl

dx. The integrability condition dA = A ∧ A is equivalent
to

da = b ∧ c
db = 2a ∧ b
dc = 2c ∧ a.

(2.4)

From the special form of b then follows that db = 0, then a is of the
form a0(t,x)

xl
dx. By the gauge transformation Ỹ =

( 1 0
a0 1

)
Y , which keeps

b invariant, we get even a ≡ 0. Then by (2.4) we have 0 = b ∧ c. Thus c
has the form c0(t,x)

xl
dx. Again by (2.4) we get dc = 0. Therefore c does not

either depend on t: we have c = c0(x)
xl

. �

Example 1. — The condition in the upper lemma that the order of the
poles has to be constant is necessary. Consider for example the connection

dY =
(
− t
x2 dx+ 1

xdt 0
0 t

x2 dx− 1
xdt

)
Y
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on the trivial bundle over (C, 0)× (C, 0) with coordinates (t, x). It satisfies
the transversality condition, but it can not be locally constant since the
order of the poles changes for t = 0.

Proof of proposition 2.5. — Note first that (2.2) is satisfied if, and only
if, it is satisfied after a gauge-coordinate transformation. Clearly, systems of
normal form (2.3) are locally constant. Conversely, if ∇ is locally constant,
the local charts can be chosen in a way that the connection matrices A do
not depend on the parameter t :

dY = A(x)Y.

Then dA is zero and has no polar divisor. �

Remark 2.9. — Let (E → X,∇) be a meromorphic, tracefree rank 2
connection over a Riemann surface. The upper proof shows in particular
that up to an appropriate holomorphic gauge-transformation this connec-
tion is given locally by systems of normal form (2.3). Then the rational
number max{l + 1− ν

2 , 0}, where ν is the greatest integer such that c
xν is

still holomorphic, is equal to the Katz-rank of the singularity (see [22] for
a definition of the Katz-rank). The Katz-rank is invariant under meromor-
phic gauge transformation. Moreover, we see that the Katz-rank is constant
along isomonodromic deformations.

According to proposition 2.5, isomonodromic deformations of tracefree
rank 2 connections may be defined alternatively as follows :

Definition 2.10. — A topologically trivial, analytic deformation

(Et → Xt,∇t)t∈T
of some initial tracefree rank 2 connection (E0 → X0,∇0) is called an
isomonodromic deformation, if it is induced by a flat, locally constant con-
nection (E → X ,∇).

In this paper, we shall use this latter definition of isomonodromic defor-
mations, which is specific to the sl(2,C)-case. As we shall see, this definition
is naturally valid also in the sl(2,C)-resonant case.

Two isomonodromic deformations of a common initial connection will be
called isomorphic, if the associated flat connections are isomorphic. More
precisely, two isomonodromic deformations (E → X ,∇) and (Ẽ → X̃ , ∇̃)
with polar sets D and D̃ respectively and parameter spaces T and T̃ re-
spectively are isomorphic, if there is a biholomorphism f , an isomorphism
F of marked m-pointed curves and an isomorphism Ψ of vector bundles ex-
tending the isomorphism of the initial connections, such that the following
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diagramm commutes
(E ,∇) Ψ

∼
//

��

(Ẽ , ∇̃)

��
(X ,D) F

∼
//

��

(X̃ , D̃)

��
T

f

∼
// T̃ .

Here Ψ consists locally of gauge-coordinate transformations compatible
with F which are conjugating ∇ to ∇̃.

It is clear that an isomonodromic deformation (Et → Xt,∇t)t∈T of some
initial connection (E0 → X0,∇0) can also be seen as an isomonodromic
deformation of each of the connections (Et → Xt,∇t) it contains for a
parameter t ∈ T .

Remark 2.11. — We would like to stress that the gauge transformations
we defined for these flat families of connections are not only holomorphic
families of gauge transformations, but global holomorphic gauge transfor-
mations of the flat connection on the global bundle E of the family.

3. Construction

Let X0 be a Riemann surface of genus g. Let ∇0 be a meromorphic
tracefree rank 2 connection on E0 → X0 with m poles of multiplicity re-
spectively n1, . . . nm, given in local coordinates xi by {xi = 0}. Denote by
n = n1 + . . .+nm the number of poles counted with multiplicity and denote
by D0 =

∑n
i=1{xi = 0} the polar set in X0 of this connection. By X∗0 we

denote the set of non-singular points X0 \D0. Let ρ : π1(X∗0 ) → SL(2,C)
be the monodromy representation of ∇0. In this section, we construct the
universal isomonodromic deformation (E → X ,∇) of (E0 → X0,∇0) over
a base curve X → T . Consider the universal curve of marked m-pointed
Riemann surfaces XT → T , parametrized by (T , τ0) being the Teichmüller
space Teich(g,m) with initial parameter τ0 corresponding to X0 with the
distinguished set D0, as in [19], page 322.

Remark 3.1. — The dimension of the Teichmüller space Teich(g,m) is

3g − 3 +m if g > 2
max{m, 1} if g = 1

max{m− 3, 0} if g = 0.
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We shall denote by DT =
∑m
i=1DiT the submanifold of XT correspond-

ing to the distinguished points and their deformations. Consider the exact
sequence of homotopy groups associated to the fibration X ∗T → T , where
X ∗T = XT \ DT . Since the Teichmüller space T is contractible (cf. [6], page
274), the natural inclusion map of X∗0 into X ∗T induces an isomorphism
between their fundamental groups. In that way, we can consider ρ as a
representation of π1(X ∗T ) as well.

If the initial connection (E0 → X0,∇0) has only logarithmic poles in D0,
we shall see that it extends in a unique way to an integrable logarith-
mic connection on XT with poles in DT . This will define the universal
isomonodromic deformation in the logarithmic case. In the case of a non-
logarithmic initial connection, there still is an integrable locally constant
connection on XT with poles in DT extending (E0 → X0,∇0), but this
connection will no longer be unique. Indeed, each pole of order l will con-
tribute l − 1 degrees of freedom in the construction. We thereby get a
universal isomonodromic deformation of dimension

3g − 3 +m+ (n−m) = 3g − 3 + n

if (g,m) 6= (0, 0), (0, 1), (0, 2), (1, 0). The universal isomonodromic deforma-
tion will be global, due to the existence of tubular neighborhoods U iT of
DiT in XT .

3.1. Non-singular case (arbitrary rank)

In the non-singular case, the existence of the universal isomonodromic
deformation follows immediately from the classical Riemann-Hilbert corre-
spondence recalled by P. Deligne in [2].

Theorem 3.2 (Riemann-Hilbert correspondence). — Let M 3 z0 be
a complex manifold. The functor of monodromy with respect to the fibre
over z0 defines an equivalence between the category of non-singular inte-
grable rank r connections on M and the category of representations from
π1(M, z0) to GL(F ), where F is an r-dimensional C-vector space. At the
left side, the homomorphisms we consider are isomorphisms; at the right
side, we consider isomorphisms between the vector spaces which identify
two representations.

Proof. — Let us prove the essential surjectivity first. For a given rep-
resentation ρ : π1(M, z0) → GL(F ), we can construct an associated con-
nection over M by suspension. We choose an isomorphism F ∼= Cr. The
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induced representation π1(M, z0) → GL(Cr) shall also be denoted by ρ.
Let M̃ be the universal cover of the complex manifold M . Let ∇̃ be the
trivial connection dỸ ≡ 0 on the trivial bundle M̃ ×Cr with coordinates
(z̃, Ỹ ) over M̃ . Now the fundamental group π1(M) is naturally acting on
M̃ . We may further define an action on M̃ ×Cr in the following way :

γ · (z̃, Ỹ ) = (γ · z̃, ρ(γ) · Ỹ ).

Since the monodromy matrices ρ(γ) are constant, the connection dỸ = 0
can naturally be pushed down to the quotient of this action. Thereby we
define a non-singular connection on an implicitely defined vector bundle E
over M . This connection has monodromy ρ with respect to the fibre over z0.

In order to prove the full faithfulness of the monodromy functor, let
(E,∇) and (Ẽ, ∇̃) be two non-singular integrable rank r connections overM
with fibres F and F̃ respectively over z0. We suppose that there is an
isomorphism ψ0 : F ∼→ F̃ which induces an isomorphism of their mon-
odromy representations ρ and ρ̃. We have to show that there is a unique
isomorphism ψ : (E,∇) ∼→ (Ẽ, ∇̃) wich induces ψ0 in restriction to the
fibre over z0. We may choose a common atlas of M for both connections.
Let U be a small neighborhood of z0 ∈ M . Then up to gauge transfor-
mations φ(z) · Y and φ̃(z) · Ỹ respectively, the connections ∇ and ∇̃ are
defined in the trivialization charts over U by dY = 0 and dỸ = 0 respec-
tively. Horizontal sections are constant in these coordinates, and thus ψ0
induces a unique isomorphism ψ = φ̃−1 ◦ψ0 ◦φ between the connections in
restriction to U . This isomorphism can be continued analytically and since
the analytic continuations of ψ0 ◦φ and φ̃ give rise to the same monodromy
representation ρ̃, the analytic continuation of ψ has trivial monodromy.
Thus ψ0 defines a unique isomorphism ψ over M . �

Under the notations of the beginning of this section, recall that the natu-
ral inclusion map X0

� � // XT defines an isomorphism of the fundamen-
tal classes π1(X0, x0) ∼= π1(XT , x0). We thus get the following corollary
from the classical Riemann-Hilbert correspondence.

Corollary 3.3. — If (E0,∇0) is non-singular over X0, then this con-
nection extends to a flat non-singular connection (E ,∇) over the universal
Teichmüller curve XT → T , provided with an isomorphism

(E → XT ,∇)|τ=τ0
∼= (E0 → X0,∇0).

This object is unique, up to unique isomorphism, i.e. given another flat con-
nection over XT together with an isomorphism of (E0,∇0) to its restriction
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to the initial parameter, the latter isomorphism extends in a unique way
to an isomorphism of the connections over XT .

In the non-singular case, the flat connection (E → XT ,∇) of the above
corollary defines the universal isomonodromic deformation of

(E0 → X0,∇0).

Remark that for each parameter τ ∈ T , this universal object induces
the unique (modulo isomorphism) non-singular rank 2 connection (Eτ →
Xτ ,∇τ ) over Xτ , having monodromy ρ (modulo conjugacy).

3.2. Logarithmic case (arbitrary rank)

There is also a Riemann-Hilbert correspondence for flat logarithmic con-
nections on a complex manifold M with a given normal crossing divisor
D, if we fix the residus in each pole, i.e. the eigenvalues of the polar part
of the connection matrix. If there is no resonance, i.e. if the residues in
each pole do not differ in non-zero integers, then the monodromy functor
establishes an equivalence between the category of flat logarithmic rank r
connections over M with polar divisor D and the given residues (modulo
holomorphic gauge transformations) and the category of representations of
π1(M \ D) in GL(F ), where F is an r-dimensional C-vector space (see [2],
[7], [1]). In the rank 2 case, it is even possible to avoid the non-resonance
condition if one considers some more precise monodromy data (indicat-
ing the position of special lines). Together with the observation that the
residues and the special lines can not change along an isomonodromic de-
formation, this Riemann-Hilbert correspondence immediately provides the
universal isomonodromic deformation as it did in the non-singular case.
Yet we prefer to follow the more elegant construction B. Malgrange gave
in his article [13] in order to prove the following theorem, which remains
valid even in arbitrary rank (the notations are those of the beginning of
the section).

Theorem 3.4. — If (E0,∇0) is logarithmic over X0 with simple poles
in D0, then this connection extends to a flat logarithmic connection (E ,∇)
with polar set DT over the universal Teichmüller curve XT → T , provided
with an isomorphism

(E → XT ,∇)|τ=τ0
∼= (E0 → X0,∇0).

This object is unique, up to unique isomorphism and shall be called the
universal isomonodromic deformation of (E0 → X0,∇0).
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Proof. — Let us start with the construction of (E → XT ,∇). As usual,
we denote by ρ the monodromy representation of the initial connection
(E0,∇0). Since we can identify π1(X∗0 ) ∼= π1(X ∗T ), the classical Riemann-
Hilbert correpondence provides a non-singular integrable tracefree rank 2
connection (E∗ → X ∗T ,∇∗) over the punctured curve X ∗T = XT \DT having
monodromy ρ. Recall that this connection extends (E0,∇0)|X∗0 and it is
unique up to unique isomorphism.

From the Bers construction of the universal Teichmüller curve (see [6])
follows the existence of tubular neighborhoods U iT of DiT . In other words,
there are global coordinates of DiT in U iT , i.e. holomorphic functions ξi :
U iT → C such that div(ξi) = DiT . We may suppose that the function
induced by ξi on U iT ∩X0 is the coordinate function xi on U i0 = U iT ∩X0.

In order to complete the connection (E∗,∇∗) at the polar set, we define
an integrable connection ∇i on the trivial vector bundle E i over the ger-
mification of such a tubular neighborhood U iT by ∇i = ξ∗i∇0|Ui0 . In other
words, if ∇0 is defined by a system dY = A(xi)Y dxi over U i0, which has a
pole in {xi = 0}, then ∇i shall be given over U iT by the product connection
dY = A(ξi)Y dξi, having a pole in DiT .

In restriction to the punctured chart U iT
∗ = U iT \ Di both (E i,∇i) and

(E∗,∇∗) have local monodromy ρ. According to the classical Riemann-
Hilbert correspondence, there is an isomorphism gluing them into a con-
nection (E ,∇) over XT such that (E → XT ,∇)|τ=τ0 = (E0 → X0,∇0).

We now have to show the uniqueness of this construction. Let (E ′,∇′)
be another flat logarithmic connection extending (E0,∇0) over XT . Con-
sider the rank 4 vector bundle E ′′ over XT defined by Hom(E ′, E). Since ∇′
and ∇ are flat logarithmic connections, the natural connection ∇′′ on E ′′ is
clearly logarithmic. According to the classical Riemann-Hilbert correspon-
dence, the isomorphism ψ0 between the initial connections extends in a
unique way to an isomorphism ψ : (E ′,∇′)|X∗T

∼−→ (E ,∇)|X∗T over XT \DT .
This isomorphism can be seen as a horizontal section of (E ′′,∇′′)|Vi\DiT ,
where Vi is a small neighborhood of Di

0 in XT . In particular, the section ψ
is uniform, i.e. it has no monodromy on Vi \ DiT . On the one hand, the
fact that ∇′′ is a flat logarithmic connection (and thus ∇′′|Vi\DiT is regular
singular) implies that this uniform section ψ can be continued analytically
at DiT . It is clear from the Cauchy theorem that the zero set of a horizontal
section of a flat logarithmic connection is either trivial, or it defines a divi-
sor of codimension 1 on the base curve which has to be a subset of the polar
divisor, i.e. it is equal to the polar divisor. By consequence, the analytic
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continuation of our horizontal section ψ on Vi \ DiT to Vi is either holo-
morphic on Vi ∩DiT , or for each τ1 ∈ T it has a pole on Vi ∩ {τ = τ1}. On
the other hand, the restriction ψ0 of ψ at X0 is holomorphic at Di

0. Thus
ψ is holomorphic over Vi and can be continued holomorphically along DiT .
In using the same argument for ψ−1, we see that (E ′,∇′) and (E ,∇) can
be identified over XT by means of a unique isomorphism which extends
ψ0. �

Remark 3.5. — It is clear from the upper proof that the polar set of
a flat logarithmic connection on a family of marked Riemann surfaces is
closed. Moreover, if the polar divisor is contractible and transverse to the
parameter (as in our case), it follows from proposition 2.5 that such a flat
logarithmic connection is locally constant in the sl(2,C)-case.

3.3. General case

We are now going to construct the universal isomonodromic deforma-
tion in the general meromorphic sl(2,C)-case. Like in the logarithmic case,
we get a non-singular connection (E∗,∇∗) over the punctured universal
curve X ∗T over the Teichmüller space T = Teich(g,m), which is unique up
to unique isomorphisms. We may also construct local connections (E i,∇i)
over germs of tubular neighborhoods U iT of DiT in order to stuff the gaps.
These are unique only up to gauge- and coordinate-transformations. Again,
both connections are non-singular over the punctured neighborhood U iT

∗ =
U iT \DiT and they have the same local monodromy. The classical Riemann-
Hilbert correspondence thus provides an isomorphism gluing (E∗,∇∗) and
the (E i,∇i) into a connection over XT . Yet the gluing will not be unique in
general : it depends on the chosen gluing of the coordinates on the germ U iT .
Thereby we get additional parameters in the construction.

3.3.1. Freedom in the gluing construction

Let us now see in detail why the resulting connection might not be
unique. Since both (E∗,∇∗) and (E i,∇i) are constant in appropriate local
coordinates, it makes sense to consider firstly a similar situation without
parameter (and forget the condition of extending the initial connection for
a while). In spite of the tubular neighborhood U iT , let us consider a germ
(C, 0). Let ∇i be a connection on Ei = (C, 0) × C2 given in coordinates
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(x, Y ) by dY = A(x)Y dx with a pole at {x = 0}. Let (E∗,∇∗) be a non-
singular connection over (C∗, 0) and suppose there is a gluing isomorphism
between the two connections. Let V × C2 be a simply connected chart
of E∗ where ∇∗ is given by dY = 0. Denote by Y 7→ φ(xi)Y be the gauge
transformation on V ×C2 defined by the restriction on V of the gluing iso-
morphism from (Ei,∇i) to (E∗,∇∗). Let ϕ be any diffeomorphism of the
germ (C, 0). Now the gauge-coordinate transformation (ϕ(x), φ(x)Y ) will
also conjugate the two systems. We thus have constructed another gluing
isomorphism on (C∗, 0).

gluing 1 gluing 2

V

V

V

U

(x, Φ(x)Y )

U∗

V
V V

U V

U∗ V

(x, Φ(x)Y )

V

id

ϕ∗∇∗

∇i∇i

∇∗

x #→ ϕ(x)−1

V
ϕ−1(V )

We will get the same connection for this second gluing if, and only if, ϕ∗∇i,
given by the system dY = A◦ϕ−1(x)Y dϕ−1(x), is conjugated to ∇i, given
by the system dY = A(x)Y dx, by a holomorphic gauge transformation
Y 7→ φ̃(x)Y :

∇∗ ϕ∗∇∗

∇i

(ϕ(x),φ(x)Y )
44hhhhhhhhhhhhhhhhhhhhhhhhh

(x,φ(x)Y )

OO

ϕ∗∇i

(x,φ(x)Y )

OO

(x,φ̃(x)Y )oo_ _ _ _ _ _ _ _ _ _ _ _

Or equivalently, we get the same gluing construction if there is a holomor-
phic gauge transformation φ̃(x) such that (ϕ(x), φ̃(ϕ(x))Y ) is conjugat-
ing ∇i to itself :

∇i ϕ∗∇i
(x,φ̃(x)Y )oo_ _ _ _ _ _ _ _ _ _ _ _ _

ϕ−1

wwooooooooooooo

∇i
(ϕ(x),φ̃(ϕ(x))Y )

ffNNNNNNNNNNNNN
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We saw that there is a unique connection resulting from such a gluing in
the logarithmic case. In the general case, we have the following result.

Lemma 3.6. — Let ∇i be a connection on the trivial vector bundle Ei
over a germ (C, 0) with coordinate x, having a pole of order l at {x = 0}.
Let ϕ(x) be a holomorphic diffeomorphism of (C, 0) such that

ϕ(x) ≡ id(x) mod xl.

Then there is a holomorphic gauge transformation φ̃(x) such that
(ϕ(x), φ̃(ϕ(x))Y ) is conjugating ∇i to itself.

Proof. — Choose coordinates (x, Y ) such that (Ei,∇i) is given by dY =
A(x)Y dx with connection matrix

A(x) = 1
xl

(
a(x) b(x)
c(x) −a(x)

)
,

which has a pole of order l. In order to prove this lemma, we shall use
the path method of J. Moser (see [18], see also appendix 1 in [3]). Our
starting point is the connection (Ei0,∇i0) = (Ei,∇i) on (C, 0). We want
to prove that it is conjugated to the connection (Ei1,∇i1) = ϕ∗(Ei,∇i)
on (C, 0) by a gauge-transformation φ̃. By (ϕs(x))s∈[0,1] with ϕs(x) =
sϕ(x) + (1 − s)id(x), we define an analytic isotopy of holomorphic diffeo-
morphisms on (C, 0) joining ϕ to the identity. It defines an analytic path
of connections (Eis,∇is)s∈[0,1] by (Eis,∇is) = ϕ∗s(Ei,∇i). We want to find
an analytic path of gauge-transformations (φs(x))s∈[0,1] such that (Eis,∇is)
is conjugated to (Ei0,∇i0) by φs. Note that the analytic isotopy of diffeo-
morphisms (ϕs(x))s∈[0,1] defines the flow of a vector field v(s, x) such that
v(s, ϕs(x)) = ∂

∂s +
[
∂
∂sϕs(x)

]
∂
∂x . Indeed, v is given by

v(s, x) = ∂

∂s
+ ϕ∗sv0(x),

where v0(x) = (ϕ(x)− x) ∂
∂x .

By assumption, v0 has a zero of order l at x = 0. Then

(3.1) v(s, x) = ∂

∂s
+ xlfs(x) ∂

∂x
,

where (fs)s∈[0,1] is an analytic isotopy of holomorphic functions. Recall that
the connection matrix A of the initial connection has a pole of order l. By
consequence, a holomorphic vector field on Ei0 tangent to the connection∇i0
is a holomorphic multiple of

W = xl
∂

∂x
+ (a(x)y1 + b(x)y2) ∂

∂y1
+ (c(x)y1 − a(x)y2) ∂

∂y2
.
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v(s, ϕs(x))
v(0, x)

x

ϕ(x)

ϕs(x)

1

Figure 3.1. Vector field v associated to the isotopy of diffeomorphisms

By (3.1), for each time s1 ∈ [0, 1], the vector field v|s=s1 thus lifts to the
vector field Vs1 = fs1(x)W on Ei0, which is tangent to the connection ∇i0.
The flow of the vector field

V(s, x) = ∂

∂s
+ fs(x)W

defines an analytic isotopy of holomorphic gauge-coordinate-transforma-
tions of the form

(ΦVs )s∈[0,1] = (ϕs, φs)s∈[0,1].

They are indeed gauge-transformations with respect to the Y -coordinate,
since we are integrating in the Lie-algebra of gauge-transformations. By
construction, we have

(ΦVs )∗(Ei0,∇i0) = (Ei0,∇i0)

for each time s ∈ [0, 1]. In other words, for each time s ∈ [0, 1], the
gauge-transformation φ̃s = ϕ∗sφs then conjugates the connection (Eis,∇is)
to (Ei0,∇i0), as desired. In particular, we have found a gauge-coordinate
transformation of the form

ΦV1 (x, Y ) = (ϕ(x), φ(x)Y ) = (ϕ(x), φ̃(ϕ(x))Y )

such that (ΦV1 )∗(Ei0,∇i0) = (Ei0,∇i0). �

Inversely, if there is an analytic isotopy

(ϕs(x), φs(x)Y )s∈[0,1]

with
(ϕ0, φ0) = (id, I)

of holomorphic gauge-coordinate transformations on Ei keeping ∇i invari-
ant, then we can associate a vector field depending on s tangent to the con-
nection, as we will see in lemma 4.3. This implies ϕs(x) ≡ id(x) mod xl.
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Remark 3.7. — It is possible that there are gauge-coordinate transfor-
mations on Ei keeping ∇i invariant and such that the induced coordinate
change is not tangent to the identity. For example dY = 1

xl
Y dx is invari-

ant under the coordinate transformation x 7→ e
2iπ
l−1x. But the set of such

coordinate transformations is discrete.

3.3.2. Explicit construction

In order to construct the universal isomonodromic deformation in the
case of multiple poles, consider for each pole of order ni > 1 the set

J i = Jets<ni(Diff(C, 0))

of (ni−1)-jets of biholomorphisms of (C, 0). We identify J i to C∗×Cni−2,
where s = (s1, . . . , sni−1) is associated to

ϕs(x) = s1x+ s2x
2 + . . .+ sni−1x

ni−1.

For a simple pole xj = 0 we may consider Jj being the singleton of the
identity. Let J be the universal cover J = J̃1 × . . . × J̃m of the space of
jets, where J̃ i = C̃∗ × Cni−2. Our parameter space T for the universal
isomonodromic deformation will be

T = J × T .

Remark 3.8. — This parameter space is contractible. In particular, we
avoid monodromy phenomena along the parameter space.

Our universal curve (X ,D)→ T shall be the product of the the space of
jets J with the universal Teichmüller curve :

(X ,D) = (J ×XT , J ×DT ).

This curve will be the base curve of the universal isomonodromic deforma-
tion of (E0 → X0,∇0). As before, denote by X ∗ the universal curve minus
the distinguished points and their deformations Di = J×DiT . Let∇∗ be the
unique non-singular integrable connection over X ∗ having monodromy ρ.

For t0 = ((id, . . . , id), τ0) ∈ T, we have ∇∗|t=t0 = ∇∗0.
We have again tubular neighborhoods U i = J × U iT of Di on X and func-
tions ξi : U i → C, identical to the Teichmüller coordinate, but seen on the
bigger space, satisfying Di = div(ξi). On U i0 = U i|t=t0 with coordinate xi,
the initial connection induces a local connection ∇i0 on the trivial bundle
Ei0 = U i0 ×C2 defined by a system

∇i0 : dY = A(xi)Y dxi.
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Then on the tubular neighborhood U i, we define an integrable, locally
constant connection ∇i on the trivial bundle E i = U i × C2 with polar
set Di. Firstly, we define the connection

∇i0 : dY = A(ξi)Y dξi
on the trivial vector bundle E i0 over U i = J × U iT as a product from the
initial connection ∇i0 :

(E i0,∇i0) = ξ∗i (Ei0,∇i0).

Then for coordinates

(ϕ1, . . . , ϕm) ∈ J =
m∏
i=1

J̃ i,

we define ∇i on the trivial vector bundle E i over U i by

(E i,∇i) = ϕ∗i (E i0, ∇̃i0).

Namely, we define

∇i : dY = A((ϕi)−1(ξi))Y d((ϕi)−1(ξi)).

We then have (Ei0,∇i0) = (E i,∇i)|t=t0 . We now have to glue (E i,∇i) with
(E∗,∇∗). Let ψi0 be the gluing isomorphism from (E∗0 ,∇∗0) to (Ei0,∇i0).

(E∗0 ,∇∗0)
ψi0 // (Ei0,∇i0)

(E∗,∇∗)|t=t0 (E i,∇i)|t=t0
On the base curve, we choose the natural, i.e. the identity gluing from X ∗
to U i on the intersection U i∗ = U i\Di. According to the classical Riemann-
Hilbert correspondence and its corollary, there is a gluing isomorphism ψi

given by gauge transformations over U i∗ from (E∗,∇∗) to (E i,∇i) which
extends the initial gluing isomorphism :

ψi|t=t0 = ψi0.

Gluing in this manner each of the local connections (E i,∇i) with (E∗,∇∗),
we have constructed a flat integrable, locally constant tracefree connection
(E → X ,∇) over X → T with polar set D =

∑m
i=1Di which satisfies

(E → X ,∇)|t=t0 = (E0 → X0,∇0).

We remark that the so-defined universal isomonodromic deformation is
global in reference to the Teichmüller space as well as in reference to the
space of jets.
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If the Teichmüller space T has dimension 3g−3+m > 0, then the dimen-
sion of the parameter space T of the universal isomonodromic deformation
constructed above is 3g − 3 +m+

∑m
i=1(ni − 1). Thus

dim(T ) = 3g − 3 + n.

4. Proof of the universal property

Let us now prove the universal property theorem 1.1 for the above con-
structed universal isomonodromic deformation (E → X ,∇) over X → T

with polar set D. Let (Ẽ → X̃, ∇̃) be another isomonodromic deformation
of the initial connection. Let n (resp. m) be the number of poles counted
with (resp. without) multiplicity, as before. We will denote by

∑m
i=1 niD̃i

(resp. D̃) the divisor (resp. the reduced divisor) of (Ẽ → X̃, ∇̃). The re-
duced divisor of ∇0 will be denoted by D0, as usual. Using the product
structure of the parameter space T = J×T , we will construct holomorphic
maps (f, F ) extending the initial isomorphism (f0, F0) of marked Riemann
surfaces, such that the diagram

(X̃ , D̃)
F //

��

(X ,D)

��
T̃

f // T

commutes and such that in restriction to each parameter t̃ ∈ T̃ , the map F
induces an isomorphism of marked Riemann surfaces. Therefore we will
firstly consider the universal curve respective to the deformation in the
Teichmüller space, secondly the deformation respective to the jets. After-
wards we will define an isomorphism ψ : (Ẽ , ∇̃) ∼→ F ∗(E ,∇), which extends
the given isomorphism ψ0 : (Ẽ0, ∇̃0) ∼→ F ∗0 (E0,∇0). Here ψ (resp. ψ0) are
isomorphisms between connections on the same base curve X̃ , (resp. X̃0)
and will thus be given by local gauge transformations. The maps Ψ (resp.
Ψ0) then are obtained via F (resp. F0). The triple (f, F,Ψ) will be unique
if (g,m) is different from (0, 0), (0, 1), (0, 2) and (1, 0). Finally we will study
the default of uniqueness in the special cases.
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4.1. Classifying map and lift to the base curve

Denote again by XT → T the universal Teichmüller curve respective
to X0, and by X → T the universal curve underlying the universal isomon-
odromic deformation of (E0 → X0,∇0). Consider the Teichmüller classify-
ing map h from (T̃ , t̃0) to (T , τ0). The map h is holomorphic and induces
a holomorphic map H, making the following diagramm commute

(X̃ , D̃)
H //

��

(XT ,DT )

��
T̃

h // T

and such that H defines an isomorphism of marked Riemann surfaces in
each fibre (see [19], page 349).

Remark 4.1. — The cases g = 0, m = 1, 2 are not explicitly treated
in [19], but the result remains true in our context since any analytic fibre
space whose fibres are all holomorphically equivalent to one fixed compact
connected complex manifold is locally trivial (see [4]).

From the tubular neighborhoods U iT in the Teichmüller curve, via F we
get tubular neighborhoods ξ̃i : Ũ i → C of D̃i and thus the connection
(Ẽi0, ∇̃i0), induced by the initial connection (Ẽ0, ∇̃0) on Ũ i ∩ X0, can be
considered as a product connection on Ũ i. We will now construct a classi-
fying map in the space of local jets. From the point of view of the product
connection (Ẽ i0, ∇̃i0) = ξ̃∗i (Ẽi0, ∇̃i0), the gluing isomorphism between (Ẽ i, ∇̃i)
and (Ẽ∗, ∇̃∗) = (Ẽ , ∇̃)|

X̃∗
will only depend on the gluing of Ũ i to X̃∗ in the

base curve. From now on, we will forget the variable Y in the sense that we
only indicate whether or not there are gauge-transformations conjugating
two given connections.

Let (t̃, xi) be a local coordinate on Ũ i defined in a small neighborhood
of t̃0. Assume that D̃i is given in these coordinates by {xi = 0}.

Lemma 4.2. — There is a coordinate-transformation

(t̃, xi) 7→ (t̃, ϕ̃i(t̃, xi))

fixing D̃i such that locally on the considered open set of Ũ i, we have

(4.1)

{
id = ϕ̃i|t̃=t̃0
∇̃i = (ϕ̃i)∗∇̃i0,

where ∇̃i0 is considered as a connection on the trivial bundle Ẽ i0 = Ẽi0 × T̃
over Ũ i.
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Proof. — According to the local constancy, there are local gauge-coordi-
nate transformations (t̃, xi, Yi) 7→ (t̃, ϕi(t̃, xi), φi(t̃, xi) · Yi) trivializing the
connection ∇̃i in the parameter t̃ and fixing D̃i. Then

(t̃, xi, Yi) 7→ (t̃, (ϕi)−1(t̃0, ϕi(t̃, xi)), (φi)−1(t̃0, xi) · φi(t̃, xi) · Yi)

satisfies the conditions (4.1). �

Now let us consider ϕ̃i(t̃, xi) as a holomorphic family of holomorphic
diffeomorphisms ϕ̃t̃i(xi) of (C, 0).

Lemma 4.3. — Let ϕ̃t̃i and ˜̃ϕt̃i be two holomorphic families of biholo-
morphisms satisfying (4.1). Then they are equivalent modulo xnii .

Proof. — Consider the biholomorphism ϕt̃ = (˜̃ϕt̃)−1 ◦ ϕ̃t̃i. Then ϕ∗
t̃
∇̃i0 =

∇̃i0 for each parameter t̃ ∈ T̃ . This means there is a gauge transforma-
tion Yi 7→ φt̃(xi) · Yi such that the gauge-coordinate-transformation (ϕt̃, φt̃)
conjugates the system

dYi = 1
xnii

A(xi)Yidxi

defining ∇̃i0 to itself.
Let us now fix a parameter t̃1 ∈ T̃ . Let γ : [0, 1]→ T̃ be an analytic path

with γ(0) = t̃0, γ(1) = t̃1. Then (ϕγ(s), φγ(s))s∈[0,1] is an analytic isotopy
of gauge-coordinate-transformations keeping ∇̃i0 invariant. Moreover, this
isotopy contains (id, I) for the initial parameter s = 0. As in lemma 3.6,
we may associate to this isotopy the vector field

V(s, ϕγ(s)(xi)) = ∂

∂s
+
[
∂

∂s
(ϕγ(s), φγ(s))

]
which is tangent to the connection for each time s = s1 ∈ [0, 1]. We may
also consider the vector field v(s, ϕγ(s)(xi)) = ∂

∂s+
[
∂
∂sϕγ(s)(xi)

]
on the base

curve. By construction, for each time s1 ∈ [0, 1], the vector field v|s=s1 lifts
to the holomorphic vector field V|s=s1 = v|s=s1 + f(s1, xi)AYi, which has
to be tangent to the connection ∇̃i0.

(ϕγ(s))s∈[0,1] ///o/o/o/o/o/o/o/o/o (vs)s∈[0,1]

�� �O
�O
�O

(ϕγ(s), φγ(s))s∈[0,1] ///o/o/o/o/o/o/o (Vs)s∈[0,1]

By consequence, v(s, ϕγ(s)(xi))|s=s1 has to be zero modulo xnii for each
s1 ∈ [0, 1]. Since v is analytic and ϕγ(0) is the identity, it follows that ϕγ(s)
is equal to the identity modulo xnii . In particular, ϕt̃1 = id mod xnii . �
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Inversely, if ϕ̃i is satisfying (4.1) and ˜̃ϕi is a holomorphic family of dif-
feomorphisms with

˜̃ϕi ≡ ϕ̃i mod xnii ,

then ˜̃ϕi also satisfies (4.1), according to lemma 3.6.
For each parameter t̃ in a neighborhood W0 of the initial parameter

t̃0 in T̃ , we can find a biholomorphism ϕ̃i(t̃, xi) as in lemma 4.3, whose
(ni−1)-jet is uniquely defined according to lemma 4.3. The map associating
to a parameter in T̃ the associated (ni − 1)-jet of diffeomorphisms can
be analytically continued along any path in T̃ . Indeed, choose an open
set W1 in the germ Ũ i, such that the connection ∇̃i is locally trivial on
this open set up to a convenient gauge-coordinate transformation and such
that W0 ∩ W1 6= ∅. Choose a parameter t1 ∈ W0 ∩ W1, and let ϕ̃t1 be
the associated diffeomorphism. Recall that ∇̃i0 can be seen naturally as a
connection on Ũ i. Like in the above lemmas, we see that on W1, there is a
family of diffeomorphisms ϕ̃i such that

(4.2)

{
ϕ̃t1 = ϕ̃i|t̃=t̃1
∇̃i = (ϕ̃i)∗∇̃i0,

and the (ni − 1)-jet of this family is unique. In particular, it continues
analytically the family of diffeomorphisms on W0. Since T̃ is contractible,
we can associate to each parameter t̃ ∈ T̃ a biholomorphism ϕ̃i(t̃, xi) by
analytic continuation, such that the following map is well-defined and holo-
morphic:

gi : T̃ −→ J i

ϕ̃i 7−→ ϕ̃i mod xnii .

The map

g : (T̃ , t̃0)
(g1,...,gm) // (J1 × . . .× Jm, (id, . . . , id))

constructed in that way can be lifted to the universal cover J = J̃1× . . .×
J̃m. Finally, denote by G the trivial lift

(X̃ , D̃)
G //

��

J

��
T̃

g // J,
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mapping fibres to singletons. Since T = J × T , we obtain a canonical
holomorphic mapping

f : (T̃ , t̃0)
(g,h) // (T, t0) ,

where t0 = ((id, . . . , id), τ0). Recall that the universal curve X is con-
structed as a product (X ,D) = (J × XT , J × DT ). The Teichmüller map
H : X̃ → XT thus lifts via G to a holomorphic map F : (X̃ , D̃)→ (X ,D),
such that

(X̃ , D̃)
F=(G,H) //

��

(X ,D)

��
T̃

f=(g,h) // T

commutes and F defines an isomorphism of marked Riemann surfaces in
each fibre. Moreover, the maps (f, F ) are extending (f0, F0) by construc-
tion.

4.2. Lift to an isomorphism of connections

We want to extend the initial isomorphism ψ0 : (Ẽ0, ∇̃0) → F ∗0 (E0,∇0)
to an isomorphism ψ : (Ẽ , ∇̃)→ F ∗(E ,∇), both given by gauge transforma-
tions in appropriate coordinates of the common base curve X̃0, respectively
X̃ . Therefore we decompose ψ0 into an isomorphism

ψ∗0 : (Ẽ∗0 , ∇̃∗0)→ F ∗0 (E∗0 ,∇∗0)

on the punctured base curve X̃∗0 = X̃0 \ D̃0, and isomorphisms ψi0 defined
in neighborhoods of the poles via trivial gluing isomorphisms Φ̃i0 = (id, I)
and Φi0 = (id, I) respectively :

F ∗0 (E0,∇0) F ∗0 (E∗0 ,∇∗0)
Φi0 // F ∗0 (Ei0,∇i0)

///o/o/o

(Ẽ0, ∇̃0)

ψ0

OO

(Ẽ∗0 , ∇̃∗0)
Φ̃i0

//

ψ∗0

OO

(Ẽi0, ∇̃i0)

ψi0

OO

We may decompose (Ẽ , ∇̃) (resp. F ∗(E ,∇)) into the connections (Ẽ∗, ∇̃∗)
(resp. F ∗(E∗,∇∗)) induced on the punctured base curve X̃ ∗ = X̃ \ D, and
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local connections (Ẽ i, ∇̃i) (resp. F ∗(E i,∇i)) on Ũ i, together with gluing
isomorphisms Φ̃i = (ϕ̃i, φ̃i) (resp. Φi = (ϕi, φi)). According to lemma 4.2
we may suppose that in a small neighborhood of the initial parameter in
U i respectively Ũ i we have

{
(ϕ̃i, φ̃i)|t̃=t̃0 = (id, I) resp. (ϕi, φi)|t=t0 = (id, I)

∇̃i = ∇̃i0 resp. F ∗(∇i) = F ∗0∇i0,

where ∇̃i0 (resp. F ∗0∇i0) are seen on the vector bundle Ẽi0 × T̃ (resp.
F ∗0 (Ei0)× T̃ ) over Ũ i. Moreover, we may suppose by lemma 3.6 that ϕ̃i and
ϕi are (ni−1)-jets of diffeomorphisms with respect to the same coordinates
on the base curve. In the new coordinates, the connection matrices of ∇̃i
and F ∗(∇i) do not depend on the parameter. Thus ψi0 extends trivially
into an isomorphism

(4.3)

{
ψi : (Ẽ i, ∇̃i) ∼−→ F ∗(E i,∇i)
ψi|t̃=t̃0 = ψi0,

given by gauge-coordinate transformations with respect to the coordinate
transformation ϕi◦(ϕ̃i)−1. By lemma 4.3, we know a posteriori that ϕ̃i= ϕi.
In other words, we are still considering a common atlas on the base curve,
and ψi is given by gauge-transformations.

Moreover, ψi is the unique isomorphism satisfying (4.3) with respect
to our coordinates. Indeed, the first condition implies that such an iso-
morphism can not depend on the parameter. Thus the second condition
provides uniqueness. Note that ψi is given a priori only in a small neigh-
borhood of the initial parameter. Yet the uniqueness of ψi implies that ψi
can be continued to an isomorphism over Ũ i following the analytic contin-
uation of the diffeomorphism on the base curve.

Since (Ẽ∗, ∇̃∗) and F ∗(E∗,∇∗) are two non-singular connections defined
on the same base curve and having the same monodromy representation,
the Riemann-Hilbert correspondence provides a unique extension ψ∗ of the
isomorphism ψ∗0 , both given by gauge transformations, such that

{
ψ∗ : (Ẽ∗, ∇̃∗) ∼−→ F ∗(E∗,∇∗)
ψ∗|t̃=t̃0 = ψ∗0 .
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We get a commuting diagramm

F ∗(E∗,∇∗) Φi // F ∗(E i,∇i) F ∗(E ,∇)

///o/o/o

(Ẽ∗, ∇̃∗)
Φ̃i

//

ψ∗

OO

(Ẽ i, ∇̃i)

ψi

OO

(Ẽ , ∇̃).

ψ

OO

inducing a unique isomorphism ψ, given by gauge transformations, such
that {

ψ : (Ẽ , ∇̃) ∼−→ F ∗(E ,∇)
ψ|t̃=t̃0 = ψ0.

4.3. Unicity

The argumentation above showed that the triple (f, F,Ψ) is unique if
(h,H) is unique. Now the classifying map h is always unique, whereas H is
unique if, and only if, there are no non-trivial isomorphisms of the universal
Teichmüller curve fixing (X0, D0). This is the case precisely when (g,m) is
different from (0, 0), (0, 1), (0, 2) and (1, 0). In the cases (0, 0), (0, 1), (0, 2)
and (1, 0) however, the map H may be composed by untrivial automor-
phisms of the marked curve. In the case (0, 0), the connection (E0,∇0) is
the trivial connection on the trivial vector bundle on P1 and any isomon-
odromic deformation of this connection is trivial. In the cases (0, 1), (0, 2)
with n > 3, it is possible to define a normalized parameter space J such
that there is a unique map H making sure that the image of the map G is
contained in this normalized space (see section 4.4). In the case (1, 0), it is
possible to refer to the case (1, 1) and thus restore uniqueness, by fixing a
section T → XT (see section 4.4).

4.4. Special cases with automorphisms

If 3g − 3 + m is negative, then the dimension of the Teichmüller space
is zero. Moreover, in the special case g = 1, n = 0, the dimension of the
Teichmüller space is one. The parameter space of the isomomonodromic
deformation constructed above then is strictly greater than 3g − 3 + n.
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On the other hand, there are one-parameter families of automorphisms of
the punctured curve exactly in these cases. Depending on the context, it
may be of interest to take into account those automorphisms.

Assume now 3g − 3 + n > 0. In this case, we may restore the universal
property of the universal isomonodromic deformation due to the automor-
phisms.

1 (The case g=0). — In the case of the Riemann sphere we will be
able to diminish the dimension of T by means of a quotient in order to
get dimension max{0, 3g− 3 + n} again. Let us now consider the universal
isomonodromic deformation for

m− 3 < 0, but n− 3 > 0.

Consider a tracefree rank 2 connection ∇ on the Riemann sphere with no
poles except 0 and ∞, with coordinates x in a neigborhood of 0 and x̃ in a
neighborhood of ∞, where x̃ = 1

x .

a) (The case m=1). — Let us consider the case when ∇ has only one
pole of multiplicity n. We may suppose this pole is {x = 0}. Now apply
the construction of the previous section, but in restriction to the following
parameter space of local jets fixing zero:

J = {1} × {0} ×Cn−3.

The group of automorphisms Aut(P1, 0) of the marked surface (P1, 0) act-
ing on our gluing construction is { λx

1−µx | λ ∈ C∗, µ ∈ C}. Such an isomor-
phism is acting on a jet

x+ s3x
3 + . . .+ sn−1x

n−1

in the following way :

λx+ λµx2 +
n−1∑
i=3

(
λµi−1 +

i∑
l=3

sl

(
i− 1
l − 1

)
λlµi−l

)
xi.

With help of the automorphisms we may thus recover the whole space of
(n− 1)− jets from the previous section

Aut(P1, 0)× J ∼= C∗ ×Cn−2

and their universal covers will be naturally identified. Yet this new defined
isomonodromic deformation will have the universal property.

b) (The case m=2). — Let n0 (resp. n∞) be the multiplicity of the poles
of the connection ∇ at zero (resp. at infinity), such that n = n0 + n∞.
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We suppose again n0 > 1. In this case, we restrict the universal isomon-
odromic deformation to the universal cover of the set J0×J∞ of local jets,
where

J0 = {1} ×Cn0−2 J∞ = C∗ ×Cn∞−2.

The group of automorphisms of the marked surface P1 fixing zero and
infinity then is {λx | λ ∈ C∗}. Such an isomorphism is acting on a pair of
jets

(x+ s0
2x

2 + . . .+ s0
n0−1x

n0−1, s∞1 x̃+ s∞2 x̃
2 + . . .+ s∞n∞−1x̃

n∞−1)

in the following way :

(λx+ λ2s0
2x

2 + . . .+ λn0−1s0
n0−1x

n0−1,

s∞1
λ
x̃+ s∞2

λ2 x̃
2 + . . .+

s∞n∞−1
λn∞−1 x̃

n∞−1)

Again we recover the whole parameter space of the previous section and
restore the universal property.

2 (The case g=1, m=0). — Recall that in this case the universal isomon-
odromic deformation is constructed by suspension. We obtain a non-singu-
lar connection on the universal curve having parameter space H. Notice
that this connection is invariant under the automorphisms z 7→ z+λ(τ) of
the universal curve

H×C�∼,
where (τ, z) ∼ (τ, z + k1τ + k2). As a method to restore the universal
property, we may fix a supplementary point on the base curve. Let us fix
the zero-section (τ, 0) of the universal curve for instance.

If 3g − 3 + n 6 0 and (g, n) 6= (1, 0), then the initial connection is unde-
formable, i.e. up to a quotient by the automorphisms we get dim(T ) = 0
for the parameter space T of the universal isomonodromic deformation. Yet
if 3g−3+n < 0, then there are still automorphisms left, and the classifying
map F in the universal property can not be unique.

5. Complements

5.1. Link to the Painlevé equations

If the initial connection is an irreducible, tracefree rank 2 connection
with four non-resonant poles (counted with multiplicity) over P1 and the
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underlying vector bundle is trivial, then its universal isomonodromic defor-
mation implicitely defines a solution q(t) of the Painlevé equation with the
associated initial parameters. Indeed, the global vector bundle E underlying
the universal isomonodromic deformation can be trivialized by bimeromor-
phic gauge transformations, which are in fact holomorphic in restriction
to the parameter space T \ Θ (see paragraph 3 in [11], for example). The
exceptional set Θ is a strict analytic subset corresponding to the set of pa-
rameters t, such that the associated vector bundle Et is non-trivial. Once
the vector bundle is trivialized, one obtains q(t) directly from the system
matrix, after a normalization. The parameter space on which the Painlevé
equations are defined is the Riemann sphere minus the polar set. Yet the
solutions of these equations are well defined only on the universal cover of
this parameter space. We remark that our construction provides consistent
parameter spaces (see [20]).

poles multiplicity parameter space Painlevé equation
x1, . . . , xm n1, . . . , nm T

0, 1, t,∞ 1, 1, 1, 1 ˜P1 \ {0, 1,∞} = H PVI

0, 1,∞ 2, 1, 1 C̃∗ PV
0,∞ 3, 1 C PIV

0,∞ 2, 2 C̃∗ PIII
0 4 C PII

However, our construction also applies to the resonant case (of irreducible
tracefree rank 2 connections with four poles on P1). It would be interesting
to see which kind of isomonodromy equations occur in this case.

5.2. Remarks on connections with trace

In the spirit of [11], [12],[21] and [8], one can also consider isomonodromic
deformations of rank 2 connections with varying trace and construct their
universal isomonodromic deformations. Consider a meromorphic rank 2
connection (E0,∇0) over a Riemann surface X0 with arbitrary trace. On
the one hand, the trace of this connection defines a meromorphic rank 1
connection (L0, ζ0) = (det(E0), tr(∇0)) over X0. On the other hand, we get
a projective connection (P0,F0) = (P(E0),P(∇0)) over X0, which is given
by a (singular) Riccati foliation on the ruled surface P(E0)→ X0 (see [5]).

(E0,∇0)→
{

(L0, ζ0)
(P0,F0)
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Conversely, given a Riccati foliation (P,F), a rank 1 connection (L, ζ) and
a vector bundle E over X such that P(E) = F , we can lift this Riccati
foliation to a unique rank two connection (E,∇) with trace (L, ζ). One
can see easily that our construction of the universal isomonodromic defor-
mation for the tracefree case generalizes to a construction of the universal
isomonodromic deformation for the projective connnection (P0,F0). By
compactification of the underlying line bundle, the connection (L0, ζ0) de-
fines another Riccati foliation on a ruled surface, and we can construct the
universal isomonodromic deformation of the trace connection. The univer-
sal isomonodromic deformations of (P0,F0) and (L0, ζ0) then lift uniquely
to a universal isomonodromic deformation of (E0,∇0), which is defined over
a convenient base curve X → T . Let us suppose that both ζ0 and F0 have
the same polar divisor (counted with multiplicity) as ∇0. Then the parame-
ter space T will have the following natural product structure : one factor T
comes from the deformation of the punctured initial curve and will have
dimension 3g− 3 +m. The deformation by local jets of (P0,F0) provides a
second factor J of the parameter space, with dimension n−m. As for the
deformation by local jets of (L0, ζ0), we get a supplementary factor J ′ of
the parameter space, with dimension n−m. The parameter space T then
has dimension 3g − 3 + 2n−m. The so-constructed isomonodromic defor-
mation is the universal object of isomonodromic deformations of (E0,∇0)
whose underlying trace-connections and Riccati foliations are locally con-
stant. It is clear that these are isomonodromic deformations in the usual
sense. Conversely, for any isomonodromic deformation in the usual sense,
the underlying trace-connection and Riccati foliation are locally constant
in a neighborhood of generic points of the polar divisor. Here generic points
are those where the order of the poles remains constant. The flat connection
given by

dY =
(

d
(
t+1
x

)
0

0 d
(
t−1
x

))Y
over (C, 0)2 3 (t, x) is an example of an isomonodromic deformation whose
trace is not locally constant at t = 0. In [21], J. Palmer gave a construction
of the universal isomonodromic deformation for the genus 0 case, provided
that the leading terms of the connection matrices are non-resonant. As a
consequence of their respective universal properties, the construction de-
scribed above is generically equivalent to Palmer’s construction in the rank
2 case.
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