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ON FUNDAMENTAL GROUPS OF ALGEBRAIC
VARIETIES AND VALUE DISTRIBUTION THEORY

by Katsutoshi YAMANOI

Dedicated to Professor Junjiro Noguchi on his 60th birthday

Abstract. — If a smooth projective variety X admits a non-degenerate holo-
morphic map C → X from the complex plane C, then for any finite dimensional
linear representation of the fundamental group of X the image of this represen-
tation is almost abelian. This supports a conjecture proposed by F. Campana,
published in this journal in 2004.

Résumé. — Si une variété X projective lisse admet une application holomorphe
non-dégénérée C → X du plan complexe C, alors pour chaque représentation li-
néaire de dimension finie du groupe fondamental de X l’image de cette représenta-
tion est presque abélienne. Cela soutient une conjecture proposée par F. Campana,
parue dans ce même journal en 2004.

1. Main results

Let X be a smooth projective variety. We say that a holomorphic map
f : C → X is non-degenerate if the image f(C) is Zariski dense in X. A
group G is called almost abelian if G has a finite index subgroup which is
abelian. In this paper, we prove the following theorem.

Theorem 1.1. — Let X be a smooth projective variety which admits a
non-degenerate holomorphic map f : C → X. Then for any representation
% : π1(X)→ GLn(C), the image %(π1(X)) is almost abelian.

This theorem shows that the following conjecture proposed by
F. Campana [4, Conjecture 9.8] is true in the special case that π1(X) is
linear.

Keywords: Value distribution theory, holomorphic map, fundamental group, algebraic
variety.
Math. classification: 32H30, 14F35.



552 Katsutoshi YAMANOI

Conjecture 1.2. — Let X be a smooth projective variety which ad-
mits a non-degenerate holomorphic map f : C→ X. Then the fundamental
group π1(X) is almost abelian.

This conjecture comes from Campana’s theory of “special” variety (cf.
[4]). A complex manifold X which admits a holomorphic map f : C → X

with metrically dense image has vanishing Kobayashi pseudo-metric. It is
Campana’s view that a smooth projective variety X would have vanishing
Kobayashi pseudo-metric if and only if X is “special” (cf. [4, Conjecture
9.2]), and that the fundamental group of a “special” variety would be almost
abelian (cf. [4, Conjecture 7.1]). For more discussion about Conjecture 1.2,
we refer the reader to [4].

A representation % : π1(X) → GLn(C) is called big if the following con-
dition is satisfied (cf. [11]):

If Z ⊂ X is a positive dimensional subvariety containing
a very general point of X, then the image %(Im(π1(Z̄) →
π1(X))) is infinite. Here Z̄ is a desingularization of Z.

For example, if there exists an unramified Galois covering X̃ → X such
that X̃ is a Stein space and its Galois transformation group Γ is a linear
group, then the corresponding surjection π1(X)→ Γ is a big representation.

Corollary 1.3. — Let X be a smooth projective variety with a big
representation % : π1(X) → GLn(C). If X admits a non-degenerate holo-
morphic map f : C→ X, then there exists a finite unramified covering X ′
of X which is birationally equivalent to an Abelian variety.

The strategy of the proof of Theorem 1.1 is roughly as follows. Based on
results of [4] and [20], Campana proved the following ([4]): If there exists
a representation % : π1(X)→ GLn(C) such that the image %(π1(X)) is not
almost abelian, then there exist a finite unramified covering X ′ → X and
a dominant rational map X ′ 99K Z with Z of general type and positive
dimensional. The proof of this result shows that Z is not only of general
type, but has more precise structure. Thanks to this precise structure, we
can show that every holomorphic map g : C → Z is degenerate, i.e. the
image g(C) is not Zariski dense in Z. This implies our theorem.

2. A reduction of the proof of Theorem 1.1

The proof of Theorem 1.1 is based on the following proposition, which is
a special case of the theorem.
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Proposition 2.1. — Let X be a smooth projective variety, and let G
be an almost simple algebraic group defined over the complex number field.
Assume that there exists a representation % : π1(X) → G(C) whose image
%(π1(X)) is Zariski dense in G. Then every holomorphic map f : C→ X is
degenerate.

Proposition 2.1 implies Theorem 1.1. — Let X be a smooth projective
variety which admits a non-degenerate holomorphic map f : C → X. Let
% : π1(X) → GLn(C) be a representation. We shall prove that %(π1(X)) is
almost abelian.

Let H ⊂ GLn(C) be the Zariski closure of the image %(π1(X)). Let
H0 ⊂ H be the connected component of H containing the identity element
of H. Then Γ = %−1(%(π1(X)) ∩H0) is a finite index subgroup of π1(X).
Replacing X by the finite unramified covering X ′ → X which corresponds
to Γ, we may assume that H is connected.

Let R(H) ⊂ H be the radical of H, i.e. R(H) is the maximal connected
solvable closed normal subgroup of H. Put Hs.s. = H/R(H). We first prove
that Hs.s. is trivial.

Assume, for the sake of contradiction, that Hs.s. is not trivial. Then Hs.s.

is a semi-simple algebraic group. Hence Hs.s. is an almost direct product of
almost simple algebraic groups G1, . . . , Gl. Let Hs.s. → G1 be a projection,
and let %′ : π1(X) → G1 be the composition of % and the two projections
H → Hs.s. → G1. Since the image %′(π1(X)) is Zariski dense in G1, we
may apply Proposition 2.1 to conclude that every holomorphic map C→ X

is degenerate. This contradicts to our assumption that X admits a non-
degenerate holomorphic map f : C→ X. Hence we have proved that Hs.s.

is trivial, i.e. H = R(H).
Now the image %(π1(X)) is a solvable group. We note that every finite

unramified covering X ′ of X admits a non-degenerate holomorphic map
f ′ : C → X ′ coming from a lifting of f : C → X. Hence by [14, Theorem
6.4.1], the Albanese map of X ′ is surjective for every finite unramified cov-
ering X ′ of X. Hence by [3, Théorème 2.9], there exists a finite unramified
covering X ′ of X such that % factors the induced group homomorphism
π1(X ′) → π1(Alb(X ′)). From this, we conclude that %(π1(X ′)) is abelian.
Hence %(π1(X)) is almost abelian. �

3. Representations over non-archimedian local fields

Let K be a number field, and let OK be the ring of integers in K. Given
a prime ideal p from OK , we denote by Kp the completion of K with

TOME 60 (2010), FASCICULE 2
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respect to the natural discrete valuation defined by p. Let G be an almost
simple algebraic group defined over Kp, and let % : π1(X) → G(Kp) be a
p-adic representation. We say that % is p-bounded if the image %(π1(X)) is
contained in a maximal compact subgroup of G(Kp). If % is not p-bounded,
then we say that % is p-unbounded.

In this section, we prove the following:

Proposition 3.1. — Let X be a smooth projective variety. Let G be
an almost simple algebraic group defined over the p-adic field Kp. Assume
that there exists a p-unbounded representation % : π1(X) → G(Kp) whose
image is Zariski dense in G. Then every holomorphic map f : C → X is
degenerate.

The proof of this proposition is based on the consideration of the spectral
covering π : Xs → X. We follow the exposition of [20, Section 1]. The
construction of Xs is based on the theory of equivariant harmonic maps to
buildings due to Gromov and Schoen [8]; Since % is reductive, there exists
a non-constant %-equivariant pluriharmonic map u : X̃ → 4(G) from the
universal covering of X to the Bruhat-Tits building of G. Considering the
complexified differential of u, we get a multi-valued holomorphic one form
ω on X. We consider a finite ramified Galois covering π : Xs → X such
that π∗ω splits into single-valued holomorphic one forms ω1, . . . , ωl. All the
forms ω1, . . . , ωl are contained in the space H0(Xs, π∗Ω1

X). The covering
π : Xs → X is unramified outside ∪ωi 6=ωj (ωi − ωj)0 where ωi − ωj are
considered as forms from H0(Xs, π∗Ω1

X) (cf. [9, Lemma 2.1]). For more
detail about the construction of the spectral covering, we refer the reader
to [20], [21], [5] and [10].

We construct the Albanese map Φ: Xs → A with respect to ω1, . . . , ωl
as follows (cf. [21, p. 64]): Let a : X̂s → A(X̂s) be the Albanese map,
where ψ : X̂s → Xs is a desingularization of Xs. For i = 1, . . . , l, let ω̃i
be the holomorphic one form on A(X̂s) such that ψ∗(ωi) = a∗ω̃i. Let
B ⊂ A(X̂s) be the maximal Abelian subvariety such that all ω̃i vanish on
B. We set A = A(X̂s)/B. Then since Xs is normal, the composition of
X̂s → A(X̂s)→ A factors through ψ : X̂s → Xs. This induces the desired
map Φ: Xs → A.

We summarize the needed properties of the spectral covering from [20,
Section 1].

Proposition 3.2. — Assume furthermore that % is big. Then:
(1) Φ: Xs → A is generically finite.
(2) Xs is of general type.
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The proof of (1) can be found in [20, p. 148]. Indeed the following stronger
result is proved in [20, p. 148]: The Stein factorization of Φ: Xs → A is a
Shafarevich map for the pull-back representation π∗% : π1(Xs) → G(Kp).
The implication of (1) is immediate; Since % is big, π∗% is also big. Hence
the Shafarevich map for the representation π∗% is birational, which implies
(1). The proof of (2) can be found in [20, p. 151].

Notation. — Before going to prove Proposition 3.1, we introduce the
notations of Nevanlinna theory (cf. [14], [13]). Let Y be a Riemann surface
with a proper surjective holomorphic map pY : Y → C. For r > 0, we set
Y (r) = p−1

Y ({z; |z| < r}). We put

Nram pY (r) = 1
deg pY

∫ r

1

 ∑
y∈Y (t)

ordy ram pY

 dt
t
,

where ram pY is the ramification divisor of pY .
Let X be a projective variety and let Z be a closed subscheme of X. Let

g : Y → X be a holomorphic map with Zariski dense image. Since Y is one
dimensional, the pull-back g∗Z is a divisor on Y . We set

N(r, g, Z) = 1
deg pY

∫ r

1

 ∑
y∈Y (t)

ordy g∗Z

 dt
t
,

N̄(r, g, Z) = 1
deg pY

∫ r

1

 ∑
y∈Y (t)

min{1, ordy g∗Z}

 dt
t
.

Let ψ : X̂ → X be a desingularization, let ĝ : Y → X̂ be the lifting of g.
Let M be a line bundle on X. Let || · || be a smooth Hermitian metric on
ψ∗M , let Ω be the curvature form of (M, || · ||). We define

T (r, g,M) = 1
deg pY

∫ r

1

[∫
Y (t)

ĝ∗Ω

]
dt

t
+O(1).

This definition is independent of the choice of desingularization and Hermit-
ian metric up to bounded function O(1). Given a divisor D ∈ H0(X,M),
we have the following Nevanlinna inequality (cf. [14, p. 180], [12, p. 269]):

(3.1) N(r, g,D) 6 T (r, g,M) +O(1).

Let M be an ample line bundle on X. Let ω ∈ H0(X,Ω1
X) be a holo-

morphic one form. Set η = g∗ω/p∗Y (dz). Then η is a meromorphic function
on Y . We set

m(r, η) = 1
deg pY

∫
∂Y (r)

max{log |η(y)|, 0}d arg pY (y)
2π

.
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Then by the lemma on logarithmic derivative ([13, Lemma 1.6]), we have

m(r, η) = o(T (r, g,M)) ||.

Here the symbol || means that the stated estimate holds for r > 0 outside
some exceptional interval with finite Lebesgue measure. By the first main
theorem (cf. [12, p. 269]), we have

T (r, η,OP1(1)) = N(r, η,∞) +m(r, η) +O(1),

where we consider η as a holomorphic map from Y into P1. Thus we have

(3.2) T (r, η,OP1(1)) 6 N(r, η,∞) + o(T (r, g,M)) ||.

Proof of Proposition 3.1. — First we shall reduce to the case that %
is big. Put H = ker ρ and consider the H-Shafarevich map shHX : X 99K
ShH(X) ([11, p. 185]). We remark that ShH(X) is only defined up to bi-
rationally equivalent class. Replacing X and ShH(X) by suitable mod-
els, we may assume that shHX : X → ShH(X) is a morphism. Let F be
a general fiber of shHX and let π1(F )X be the image of the natural map
π1(F ) → π1(X). Then by the definition of the H-Shafarevich map, the
image %(π1(F )X) ⊂ G(Kp) is finite. We apply [21, Lemma 2.2.3]. The con-
clusion is as follows: After passing to a blowing-up and a finite unramified
covering e : X ′ → X, and denoting s : X ′ → Σ the Stein factorization of
shHX ◦e, there exists a representation %Σ : π1(Σ) → G(Kp) such that the
pullback representation e∗% : π1(X ′)→ G(Kp) factors through %Σ. Replac-
ing X ′ and Σ by suitable models, we may assume that Σ is smooth. By the
construction of Σ, we remark that the representation %Σ is big and Zariski
dense (cf. [21, Proposition 2.2.2]). Given a holomorphic map f : C → X,
we may take a lifting f ′ : C→ X ′ of f . If the composite holomorphic map
s ◦ f ′ : C → Σ is degenerate, then f is also degenerate. Thus replacing X
by Σ, % by %Σ and f by s ◦ f ′, we have reduced to the case when % is big.

Now assume, for the sake of contradiction, that there exists non-
degenerate holomorphic map f : C → X. Then we may construct a
Riemann surface Y with proper, surjective holomorphic map pY : Y → C
such that:

• the lifting g : Y → Xs of f exists, and
• pY is unramified outside the discrete set g−1(R) ⊂ Y , where R is

the ramification divisor of π : Xs → X. Hence we have

(3.3) Nram pY (r) 6 (deg pY )N̄(r, g,R).

Since we are assuming that f is non-degenerate, we remark that

(3.4) the image g(Y ) is Zariski dense in Xs.

ANNALES DE L’INSTITUT FOURIER
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For ωi 6= ωj , we set Ξij = (ωi−ωj)0, where ωi−ωj is considered as a form
from H0(Xs, π∗Ω1

X). We have

(3.5) R ⊂ ∪i,jΞij .

�

Let M be an ample line bundle on Xs.

Claim. — N̄(r, g,Ξij) 6 εT (r, g,M) || for all ε > 0.

Proof of Claim. — We prove the claim in the two possible cases:

Case 1. — g∗ωi 6= g∗ωj . Since ωi ∈ H0(Xs, π∗Ω1
X), we may consider

g∗ωi as a holomorphic section of p∗Y Ω1
C. Thus ηi = g∗ωi/p

∗
Y (dz) is a holo-

morphic function on Y . Since g∗ωi 6= g∗ωj , we have ηi 6= ηj . Note that if
g(y) ∈ Ξij , we have ηi(y) = ηj(y). Hence using the Nevanlinna inequality
(3.1), we have

N̄(r, g,Ξij) 6 N(r, ηi − ηj , 0)
6 T (r, ηi − ηj ,OP1(1)) +O(1).

Since ηi − ηj has no poles, we have N(r, ηi − ηj ,∞) = 0. Thus, applying
(3.2) to ηi − ηj = g∗(ωi − ωj)/p∗Y (dz), we have

T (r, ηi − ηj ,OP1(1)) = o(T (r, g,M)) ||.

We conclude that
N̄(r, g,Ξij) = o(T (r, g,M)) ||.

Case 2. — g∗ωi = g∗ωj . Let b : Xs → B be the Albanese map with
respect to ωi − ωj , which is constructed as follows: Let Φ: Xs → A be
the Albanese map with respect to ω1, . . . , ωl. For k = 1, . . . , l, let ω̃k be
the holomorphic one form on A such that Φ∗ω̃k = ωk. Let C ⊂ A be the
maximal Abelian subvariety such that ω̃i−ω̃j vanishes on C. Put B = A/C.
We define the map b : Xs → B by the composition of Φ: Xs → A and the
quotient A→ B.

Let Ξ′ij be an irreducible component of Ξij . Since there are only finitely
many irreducible components of Ξij , it is enough to prove

N̄(r, g,Ξ′ij) 6 εT (r, g,M) || for all ε > 0.

Since ωi − ωj vanishes on Ξ′ij , we see that b(Ξ′ij) is a point on B. We
take an open subset U ⊂ B and a holomorphic function ϕ on U such that
ϕ(b(Ξ′ij)) = 0 and ωi − ωj = b∗(dϕ) on b−1(U).

Let S → b(Xs) be the normalization. Since Xs is normal, b factors as

Xs c→ S
ψ→ B.

TOME 60 (2010), FASCICULE 2
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Since ψ is finite, c(Ξ′ij) is a point on S; We denote this point by P . Let
Oan
S,P be the stalk at P in the sense of analytic space, and let m ⊂ Oan

S,P

be the maximal ideal. Since S is normal, Oan
S,P is integral. We remark that

ϕ◦ψ ∈ Oan
S,P is neither zero nor a unit, which follows from ωi−ωj = b∗(dϕ)

and ϕ(b(Ξ′ij)) = 0. Hence we have

(3.6) dimOan
S,P /(ϕ ◦ ψ) = dimS − 1.

Set
Vn = SpecOan

S,P /
(
(ϕ ◦ ψ) + mn

)
.

Then Vn is a closed subscheme of S with suppVn = P .
Let L be an ample line bundle on S. Using (3.6), we have

h0(Vn,OVn ⊗ L⊗`) = h0(Vn,OVn) = O(ndimS−1).

On the other hand, there are positive constants c > 0 and `0 > 0 such that

h0(S,L⊗`) > c`dimS

for ` > `0. Thus we may take a positive integer `(n) such that `(n) = o(n)
as n → ∞, and that h0(Vn,OVn ⊗ L⊗`(n)) < h0(S,L⊗`(n)). For example,
`(n) ∼ n1− 1

2 dimS . Thus we may take a divisor Dn from H0(S,L⊗`(n)) such
that Vn ⊂ Dn.

Now we claim that if c◦g(y) = P for y ∈ Y , then ordy(c◦g)∗Dn > n. To
see this, we take y ∈ Y such that c◦g(y) = P . Let O ⊂ Y be the connected
component of (b◦g)−1(U) containing y. By the assumption g∗(ωi−ωj) = 0,
we have ϕ ◦ b ◦ g = 0 on O. Hence (ϕ ◦ ψ) ◦ (c ◦ g) = 0 on O. Thus by the
construction of Vn, we have ordy(c ◦ g)∗Vn > n. Hence by Vn ⊂ Dn, we
have ordy(c ◦ g)∗Dn > n.

By (3.4), c ◦ g(Y ) is Zariski dense in S. Hence we have

nN̄(r, g,Ξ′ij) 6 nN̄(r, c ◦ g, P )
6 N(r, c ◦ g,Dn)
6 l(n)T (r, c ◦ g, L) +O(1),

where the last estimate follows from the Nevanlinna inequality (3.1). Thus,
by l(n) = o(n) and T (r, c ◦ g, L) = O(T (r, g,M)), we have

N̄(r, g,Ξ′ij) 6 εT (r, g,M) ||

for all ε > 0. We have proved our claim.

Now we go back to the proof of Proposition 3.1. By (3.3) and (3.5), we
have

Nram pY (r) 6 εT (r, g,M) ||

ANNALES DE L’INSTITUT FOURIER
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for all ε > 0. Hence by Proposition 3.2 and Proposition 3.3 below, we
conclude that the image g(Y ) is not Zariski dense in Xs, which contradicts
to (3.4). This conclude the proof of Proposition 3.1. �

Proposition 3.3. — Let X be a smooth projective variety such that
(1) the Albanese map is generically finite, and (2) X is of general type.
Let M be an ample line bundle on X. Let g : Y → X be a holomorphic
map from a Riemann surface Y with a proper surjective holomorphic map
pY : Y → C. Assume that

Nram pY (r) 6 εT (r, g,M) ||

for all ε > 0. Then the image of g is not Zariski dense in X.

This is a generalization of [18, Corollary 3.1.14]. The proof is parallel to
that of [18, Corollary 3.1.14]. See also [17] for a generalization of Proposi-
tion 3.3.

4. Proof of Proposition 2.1

In this section, we prove Proposition 2.1. A representation of the fun-
damental group into an algebraic group G is called rigid if every nearby
representation is conjugate to it. A representation which is not rigid is called
non-rigid. The proof of Proposition 2.1 divides into two cases according to
whether the representation % : π1(X)→ G is rigid or non-rigid.

4.1. Case 1: % is rigid

In this case % is defined over some number field K. Given a prime ideal p
from Op, we denote by %p : π1(X)→ G(Kp) the composition of % : π1(X)→
G(K) and the inclusion G(K) ⊂ G(Kp). If there exists a prime ideal p
such that %p is p-unbounded, then Proposition 2.1 is a direct consequence
of Proposition 3.1. Hence in the following, we consider the case that %p is
p-bounded for every prime ideal p.

In this case, we remark that %−1(G(OK)) is of finite index in π1(X)
(cf. [19, p. 120]). This can be proved as follows: Since π1(X) is finitely
generated, there are only finite prime ideals p1, . . . , pk such that %(π1(X)) is
not contained in G(OKp). Since %(π1(X)) is pi-bounded for all pi, the image
of %(π1(X)) in G(Kp)/G(OKp) is finite for all pi. This shows our assertion.

TOME 60 (2010), FASCICULE 2
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Thus, after passing to a finite unramified covering, we may assume that
%(π1(X)) ⊂ G(OK).

Now by a result of Simpson (cf. [16, p. 58]), % is a complex direct factor of
a Z-variation of Hodge structure. In particular, there is the period mapping
c : X → Γ rD of this variation of Hodge structure (cf. [7, p. 57]). Here D
is the classifying space and Γ is the arithmetic group which preserves the
polarization and the lattice of the variation of Hodge structure. Then c

is a horizontal locally liftable holomorphic map (cf. [7, 3.13]). Hence, for
a holomorphic map f : C → X, c ◦ f : C → Γ r D is also a horizontal
locally liftable holomorphic map. Since D has negative curvature in the
horizontal direction, c ◦ f is constant (cf. [6, Corollary 9.7]). Since Γ r D
has the structure of a normal analytic space (cf. [7, p. 56]), the fibers of c
are Zariski closed subsets on X. This shows that f is degenerate. Hence we
have proved Proposition 2.1 when % is rigid.

4.2. Case 2: % is non-rigid

It suffices to prove the following:

Lemma 4.1. — Let G be an almost simple algebraic group defined
over the complex number field. Assume that there exists a Zariski dense,
non-rigid representation % : π1(X) → G(C). Then every holomorphic map
f : C→ X is degenerate.

Proof. — We remark that G is defined over some number field K after
some conjugations. Since π1(X) is finitely presented, there exists an affine
scheme R over K such that

R(L) = Hom(π1(X), G(L))

for every field extension L/K. This space is defined as follows: We choose
generators γ1, . . . , γk for π1(X). Let R be the set of relations among the
generators γi. Then

R ⊂ G× · · · ×G︸ ︷︷ ︸
k times

is the closed subscheme defined by the equations r(m1, . . . ,mk) = 1 for
r ∈ R. A representation τ : π1(X) → G(L) corresponds to the point
(m1, . . . ,mk) ∈ R(L) with mi = τ(γi). Note that R is an affine scheme,
since it is a closed subscheme of an affine variety. Let RZ.D. ⊂ R be the
space of Zariski dense representations. Then by [1, Proposition 8.2], RZ.D.
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is a Zariski open subset of R. The group G acts on R by simultaneous con-
jugation. Put M = R//G, and let p : R → M be the quotient map. Then
M is an affine scheme defined over K. Let [%] ∈ RZ.D.(C) be the point
which correspond to the Zariski dense representation % : π1(X)→ G(C).

Since RZ.D.(Q̄) is dense in RZ.D.(C), by deforming % slightly and replac-
ing K by its finite extension, we may assume that % is defined over K. Let
p be a prime ideal from OK and let Kp be the completion. In the following,
we shall work over this Kp.

Since % is non-rigid, we have dimM > 0. Hence there exists a morphism
ψ : M → A1 such that the image ψ(M) is Zariski dense in A1. Since the
image ψ ◦ p(RZ.D.) is also Zariski dense in A1, there exists an affine curve
C ⊂ RZ.D. such that the restriction ψ ◦ p|C : C → A1 is generically finite.
We may take a Zariski open subset U ⊂ A1 such that ψ ◦ p|C is finite over
U . Let x ∈ U(Kp) be a point, and let y ∈ C(K̄p) be a point over x. Then
y is defined over some extension of Kp whose extension degree is bounded
by the degree of ψ ◦ p|C : C → A1. Note that there are only finitely many
such field extensions. Hence there exists a finite extension L/Kp such that
the points over U(Kp) are all contained in C(L). Since U(Kp) ⊂ A1(L) is
unbounded, the image ψ ◦ p(RZ.D.(L)) ⊂ A1(L) is unbounded.

Let R0 ⊂ R(L) be the subset whose points correspond to p-bounded
representations. Let M0 ⊂ M(L) be the image of R0 under the quotient
p : R → M . Then by Lemma 4.2 below, M0 is compact. Hence ψ(M0) is
compact. In particular it is bounded. On the other hand, ψ◦p(RZ.D.(L)) ⊂
A1(L) is unbounded. Hence we have RZ.D.(L) 6⊂ R0. Thus we may take a
Zariski dense, p-unbounded representation %̃ : π1(X)→ G(L). By Proposi-
tion 3.1, every holomorphic map f : C→ X is degenerate. �

Lemma 4.2. — M0 is compact.

Proof. — Note that there are only finitely many conjugacy classes of
maximal compact subgroups in G(L). Hence all maximal compact sub-
groups are conjugate to one of maximal compact subgroups H1, . . . ,Hk ⊂
G(L). Hence given a p-bounded representation τ : π1(X)→ G(L), there is
a G(L)-conjugation τ̃ : π1(X) → G(L) of τ such that the image τ̃(π1(X))
is contained in one of H1, . . . ,Hk.

Now take a sequence [τ1], [τ2], . . . ∈ M0. Then we may take representa-
tions τ1, τ2, . . . from R0 such that τj(π1(X)) is contained in one of H1, . . . ,

Hk. By taking subsequence, we may assume that τj(π1(X)) ⊂ Hi for
all j. Now since Hi is compact, some subsequence τj should converge to
τ∞ : π1(X) → Hi. Then the sequence [τj ] converges to [τ∞] ∈ M0. This
shows that M0 is compact. �
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5. Proof of Corollary 1.3

Let X be a smooth projective variety with a big representation
% : π1(X) → GLn(C). Assume that X admits a non-degenerate holomor-
phic map f : C→ X. Then by Theorem 1.1, the image %(π1(X)) is almost
abelian. Hence after passing to a finite unramified covering X ′ of X we
may assume that %(π1(X)) is a free abelian group, i.e. % factors the Al-
banese map aX : X → Alb(X). We shall prove that the Albanese map aX
is birational.

Since X admits a non-degenerate holomorphic map, the Albanese map
aX is surjective ([14, Theorem 6.4.1]) and has connected fibers ([15]). Let
F be a general fiber of aX . Then %(Im(π1(F )→ π1(X))) is trivial. Since %
is big, F should be a point. Hence the Albanese map aX is birational. This
conclude the proof of the corollary.
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