

ANNALES

DE

L'INSTITUT FOURIER

Katsutoshi YAMANOI

On fundamental groups of algebraic varieties and value distribution theory Tome 60, n° 2 (2010), p. 551-563.

http://aif.cedram.org/item?id=AIF_2010__60_2_551_0

© Association des Annales de l'institut Fourier, 2010, tous droits réservés.

L'accès aux articles de la revue « Annales de l'institut Fourier » (http://aif.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques

http://www.cedram.org/

ON FUNDAMENTAL GROUPS OF ALGEBRAIC VARIETIES AND VALUE DISTRIBUTION THEORY

by Katsutoshi YAMANOI

Dedicated to Professor Junjiro Noguchi on his 60th birthday

ABSTRACT. — If a smooth projective variety X admits a non-degenerate holomorphic map $\mathbb{C} \to X$ from the complex plane \mathbb{C} , then for any finite dimensional linear representation of the fundamental group of X the image of this representation is almost abelian. This supports a conjecture proposed by F. Campana, published in this journal in 2004.

RÉSUMÉ. — Si une variété X projective lisse admet une application holomorphe non-dégénérée $\mathbb{C} \to X$ du plan complexe \mathbb{C} , alors pour chaque représentation linéaire de dimension finie du groupe fondamental de X l'image de cette représentation est presque abélienne. Cela soutient une conjecture proposée par F. Campana, parue dans ce même journal en 2004.

1. Main results

Let X be a smooth projective variety. We say that a holomorphic map $f \colon \mathbb{C} \to X$ is non-degenerate if the image $f(\mathbb{C})$ is Zariski dense in X. A group G is called almost abelian if G has a finite index subgroup which is abelian. In this paper, we prove the following theorem.

THEOREM 1.1. — Let X be a smooth projective variety which admits a non-degenerate holomorphic map $f: \mathbb{C} \to X$. Then for any representation $\varrho \colon \pi_1(X) \to \mathrm{GL}_n(\mathbb{C})$, the image $\varrho(\pi_1(X))$ is almost abelian.

This theorem shows that the following conjecture proposed by F. Campana [4, Conjecture 9.8] is true in the special case that $\pi_1(X)$ is linear.

Keywords: Value distribution theory, holomorphic map, fundamental group, algebraic variety.

Math. classification: 32H30, 14F35.

Conjecture 1.2. — Let X be a smooth projective variety which admits a non-degenerate holomorphic map $f: \mathbb{C} \to X$. Then the fundamental group $\pi_1(X)$ is almost abelian.

This conjecture comes from Campana's theory of "special" variety (cf. [4]). A complex manifold X which admits a holomorphic map $f: \mathbb{C} \to X$ with metrically dense image has vanishing Kobayashi pseudo-metric. It is Campana's view that a smooth projective variety X would have vanishing Kobayashi pseudo-metric if and only if X is "special" (cf. [4, Conjecture 9.2]), and that the fundamental group of a "special" variety would be almost abelian (cf. [4, Conjecture 7.1]). For more discussion about Conjecture 1.2, we refer the reader to [4].

A representation $\varrho \colon \pi_1(X) \to \mathrm{GL}_n(\mathbb{C})$ is called big if the following condition is satisfied (cf. [11]):

If $Z \subset X$ is a positive dimensional subvariety containing a very general point of X, then the image $\varrho(\operatorname{Im}(\pi_1(\bar{Z}) \to \pi_1(X)))$ is infinite. Here \bar{Z} is a desingularization of Z.

For example, if there exists an unramified Galois covering $\widetilde{X} \to X$ such that \widetilde{X} is a Stein space and its Galois transformation group Γ is a linear group, then the corresponding surjection $\pi_1(X) \to \Gamma$ is a big representation.

COROLLARY 1.3. — Let X be a smooth projective variety with a big representation $\varrho \colon \pi_1(X) \to \operatorname{GL}_n(\mathbb{C})$. If X admits a non-degenerate holomorphic map $f \colon \mathbb{C} \to X$, then there exists a finite unramified covering X'of X which is birationally equivalent to an Abelian variety.

The strategy of the proof of Theorem 1.1 is roughly as follows. Based on results of [4] and [20], Campana proved the following ([4]): If there exists a representation $\varrho \colon \pi_1(X) \to \operatorname{GL}_n(\mathbb{C})$ such that the image $\varrho(\pi_1(X))$ is not almost abelian, then there exist a finite unramified covering $X' \to X$ and a dominant rational map $X' \dashrightarrow Z$ with Z of general type and positive dimensional. The proof of this result shows that Z is not only of general type, but has more precise structure. Thanks to this precise structure, we can show that every holomorphic map $g \colon \mathbb{C} \to Z$ is degenerate, i.e. the image $g(\mathbb{C})$ is not Zariski dense in Z. This implies our theorem.

2. A reduction of the proof of Theorem 1.1

The proof of Theorem 1.1 is based on the following proposition, which is a special case of the theorem.

PROPOSITION 2.1. — Let X be a smooth projective variety, and let G be an almost simple algebraic group defined over the complex number field. Assume that there exists a representation $\varrho \colon \pi_1(X) \to G(\mathbb{C})$ whose image $\varrho(\pi_1(X))$ is Zariski dense in G. Then every holomorphic map $f \colon \mathbb{C} \to X$ is degenerate.

Proposition 2.1 implies Theorem 1.1. — Let X be a smooth projective variety which admits a non-degenerate holomorphic map $f: \mathbb{C} \to X$. Let $\varrho \colon \pi_1(X) \to \mathrm{GL}_n(\mathbb{C})$ be a representation. We shall prove that $\varrho(\pi_1(X))$ is almost abelian.

Let $H \subset GL_n(\mathbb{C})$ be the Zariski closure of the image $\varrho(\pi_1(X))$. Let $H_0 \subset H$ be the connected component of H containing the identity element of H. Then $\Gamma = \varrho^{-1}(\varrho(\pi_1(X)) \cap H_0)$ is a finite index subgroup of $\pi_1(X)$. Replacing X by the finite unramified covering $X' \to X$ which corresponds to Γ , we may assume that H is connected.

Let $R(H) \subset H$ be the radical of H, i.e. R(H) is the maximal connected solvable closed normal subgroup of H. Put $H_{s.s.} = H/R(H)$. We first prove that $H_{s.s.}$ is trivial.

Assume, for the sake of contradiction, that $H_{s.s.}$ is not trivial. Then $H_{s.s.}$ is a semi-simple algebraic group. Hence $H_{s.s.}$ is an almost direct product of almost simple algebraic groups G_1, \ldots, G_l . Let $H_{s.s.} \to G_1$ be a projection, and let $\varrho' \colon \pi_1(X) \to G_1$ be the composition of ϱ and the two projections $H \to H_{s.s.} \to G_1$. Since the image $\varrho'(\pi_1(X))$ is Zariski dense in G_1 , we may apply Proposition 2.1 to conclude that every holomorphic map $\mathbb{C} \to X$ is degenerate. This contradicts to our assumption that X admits a non-degenerate holomorphic map $f \colon \mathbb{C} \to X$. Hence we have proved that $H_{s.s.}$ is trivial, i.e. H = R(H).

Now the image $\varrho(\pi_1(X))$ is a solvable group. We note that every finite unramified covering X' of X admits a non-degenerate holomorphic map $f'\colon \mathbb{C} \to X'$ coming from a lifting of $f\colon \mathbb{C} \to X$. Hence by [14, Theorem 6.4.1], the Albanese map of X' is surjective for every finite unramified covering X' of X. Hence by [3, Théorème 2.9], there exists a finite unramified covering X' of X such that ϱ factors the induced group homomorphism $\pi_1(X') \to \pi_1(\mathrm{Alb}(X'))$. From this, we conclude that $\varrho(\pi_1(X'))$ is abelian. Hence $\varrho(\pi_1(X))$ is almost abelian.

3. Representations over non-archimedian local fields

Let K be a number field, and let \mathcal{O}_K be the ring of integers in K. Given a prime ideal p from \mathcal{O}_K , we denote by K_p the completion of K with

respect to the natural discrete valuation defined by p. Let G be an almost simple algebraic group defined over K_p , and let $\varrho \colon \pi_1(X) \to G(K_p)$ be a p-adic representation. We say that ϱ is p-bounded if the image $\varrho(\pi_1(X))$ is contained in a maximal compact subgroup of $G(K_p)$. If ϱ is not p-bounded, then we say that ϱ is p-unbounded.

In this section, we prove the following:

PROPOSITION 3.1. — Let X be a smooth projective variety. Let G be an almost simple algebraic group defined over the p-adic field K_p . Assume that there exists a p-unbounded representation $\varrho \colon \pi_1(X) \to G(K_p)$ whose image is Zariski dense in G. Then every holomorphic map $f \colon \mathbb{C} \to X$ is degenerate.

The proof of this proposition is based on the consideration of the spectral covering $\pi\colon X^s\to X$. We follow the exposition of [20, Section 1]. The construction of X^s is based on the theory of equivariant harmonic maps to buildings due to Gromov and Schoen [8]; Since ϱ is reductive, there exists a non-constant ϱ -equivariant pluriharmonic map $u\colon \widetilde{X}\to \triangle(G)$ from the universal covering of X to the Bruhat-Tits building of G. Considering the complexified differential of u, we get a multi-valued holomorphic one form ω on X. We consider a finite ramified Galois covering $\pi\colon X^s\to X$ such that $\pi^*\omega$ splits into single-valued holomorphic one forms ω_1,\ldots,ω_l . All the forms ω_1,\ldots,ω_l are contained in the space $H^0(X^s,\pi^*\Omega^1_X)$. The covering $\pi\colon X^s\to X$ is unramified outside $\bigcup_{\omega_i\neq\omega_j}(\omega_i-\omega_j)_0$ where $\omega_i-\omega_j$ are considered as forms from $H^0(X^s,\pi^*\Omega^1_X)$ (cf. [9, Lemma 2.1]). For more detail about the construction of the spectral covering, we refer the reader to [20], [21], [5] and [10].

We construct the Albanese map $\Phi\colon X^s\to A$ with respect to ω_1,\ldots,ω_l as follows (cf. [21, p. 64]): Let $a\colon \widehat{X^s}\to A(\widehat{X^s})$ be the Albanese map, where $\psi\colon \widehat{X^s}\to X^s$ is a desingularization of X^s . For $i=1,\ldots,l$, let $\widetilde{\omega_i}$ be the holomorphic one form on $A(\widehat{X^s})$ such that $\psi^*(\omega_i)=a^*\widetilde{\omega_i}$. Let $B\subset A(\widehat{X^s})$ be the maximal Abelian subvariety such that all $\widetilde{\omega_i}$ vanish on B. We set $A=A(\widehat{X^s})/B$. Then since X^s is normal, the composition of $\widehat{X^s}\to A(\widehat{X^s})\to A$ factors through $\psi\colon \widehat{X^s}\to X^s$. This induces the desired map $\Phi\colon X^s\to A$.

We summarize the needed properties of the spectral covering from [20, Section 1].

Proposition 3.2. — Assume furthermore that ϱ is big. Then:

- (1) $\Phi: X^s \to A$ is generically finite.
- (2) X^s is of general type.

The proof of (1) can be found in [20, p. 148]. Indeed the following stronger result is proved in [20, p. 148]: The Stein factorization of $\Phi \colon X^s \to A$ is a Shafarevich map for the pull-back representation $\pi^*\varrho \colon \pi_1(X^s) \to G(K_p)$. The implication of (1) is immediate; Since ϱ is big, $\pi^*\varrho$ is also big. Hence the Shafarevich map for the representation $\pi^*\varrho$ is birational, which implies (1). The proof of (2) can be found in [20, p. 151].

Notation. — Before going to prove Proposition 3.1, we introduce the notations of Nevanlinna theory (cf. [14], [13]). Let Y be a Riemann surface with a proper surjective holomorphic map $p_Y \colon Y \to \mathbb{C}$. For r > 0, we set $Y(r) = p_Y^{-1}(\{z; |z| < r\})$. We put

$$N_{\operatorname{ram} p_Y}(r) = \frac{1}{\deg p_Y} \int_1^r \left[\sum_{y \in Y(t)} \operatorname{ord}_y \operatorname{ram} p_Y \right] \frac{dt}{t},$$

where ram p_Y is the ramification divisor of p_Y .

Let X be a projective variety and let Z be a closed subscheme of X. Let $g \colon Y \to X$ be a holomorphic map with Zariski dense image. Since Y is one dimensional, the pull-back g^*Z is a divisor on Y. We set

$$N(r, g, Z) = \frac{1}{\deg p_Y} \int_1^r \left[\sum_{y \in Y(t)} \operatorname{ord}_y g^* Z \right] \frac{dt}{t},$$
$$\bar{N}(r, g, Z) = \frac{1}{\deg p_Y} \int_1^r \left[\sum_{y \in Y(t)} \min\{1, \operatorname{ord}_y g^* Z\} \right] \frac{dt}{t}.$$

Let $\psi \colon \widehat{X} \to X$ be a desingularization, let $\widehat{g} \colon Y \to \widehat{X}$ be the lifting of g. Let M be a line bundle on X. Let $||\cdot||$ be a smooth Hermitian metric on ψ^*M , let Ω be the curvature form of $(M, ||\cdot||)$. We define

$$T(r,g,M) = \frac{1}{\deg p_Y} \int_1^r \left[\int_{Y(t)} \widehat{g}^* \Omega \right] \frac{dt}{t} + O(1).$$

This definition is independent of the choice of desingularization and Hermitian metric up to bounded function O(1). Given a divisor $D \in H^0(X, M)$, we have the following Nevanlinna inequality (cf. [14, p. 180], [12, p. 269]):

(3.1)
$$N(r, g, D) \leqslant T(r, g, M) + O(1).$$

Let M be an ample line bundle on X. Let $\omega \in H^0(X, \Omega_X^1)$ be a holomorphic one form. Set $\eta = g^*\omega/p_Y^*(dz)$. Then η is a meromorphic function on Y. We set

$$m(r,\eta) = \frac{1}{\deg p_Y} \int_{\partial Y(r)} \max\{\log |\eta(y)|, 0\} \frac{d \arg p_Y(y)}{2\pi}.$$

Then by the lemma on logarithmic derivative ([13, Lemma 1.6]), we have

$$m(r, \eta) = o(T(r, g, M)) \mid \mid.$$

Here the symbol || means that the stated estimate holds for r > 0 outside some exceptional interval with finite Lebesgue measure. By the first main theorem (cf. [12, p. 269]), we have

$$T(r, \eta, \mathcal{O}_{\mathbb{P}^1}(1)) = N(r, \eta, \infty) + m(r, \eta) + O(1),$$

where we consider η as a holomorphic map from Y into \mathbb{P}^1 . Thus we have

$$(3.2) T(r, \eta, \mathcal{O}_{\mathbb{P}^1}(1)) \leqslant N(r, \eta, \infty) + o(T(r, g, M)) \mid \mid.$$

Proof of Proposition 3.1. — First we shall reduce to the case that ϱ is big. Put $H = \ker \rho$ and consider the H-Shafarevich map $\operatorname{sh}_X^H \colon X \dashrightarrow$ $\operatorname{Sh}^H(X)$ ([11, p. 185]). We remark that $\operatorname{Sh}^H(X)$ is only defined up to birationally equivalent class. Replacing X and $Sh^{H}(X)$ by suitable models, we may assume that $\operatorname{sh}_X^H \colon X \to \operatorname{Sh}^H(X)$ is a morphism. Let F be a general fiber of sh_X^H and let $\pi_1(F)_X$ be the image of the natural map $\pi_1(F) \to \pi_1(X)$. Then by the definition of the H-Shafarevich map, the image $\varrho(\pi_1(F)_X) \subset G(K_p)$ is finite. We apply [21, Lemma 2.2.3]. The conclusion is as follows: After passing to a blowing-up and a finite unramified covering $e: X' \to X$, and denoting $s: X' \to \Sigma$ the Stein factorization of $\operatorname{sh}_X^H \circ e$, there exists a representation $\varrho_{\Sigma} \colon \pi_1(\Sigma) \to G(K_p)$ such that the pullback representation $e^*\varrho\colon \pi_1(X')\to G(K_p)$ factors through ϱ_{Σ} . Replacing X' and Σ by suitable models, we may assume that Σ is smooth. By the construction of Σ , we remark that the representation ρ_{Σ} is big and Zariski dense (cf. [21, Proposition 2.2.2]). Given a holomorphic map $f: \mathbb{C} \to X$, we may take a lifting $f': \mathbb{C} \to X'$ of f. If the composite holomorphic map $s \circ f' \colon \mathbb{C} \to \Sigma$ is degenerate, then f is also degenerate. Thus replacing X by Σ , ϱ by ϱ_{Σ} and f by $s \circ f'$, we have reduced to the case when ϱ is big.

Now assume, for the sake of contradiction, that there exists non-degenerate holomorphic map $f\colon \mathbb{C} \to X$. Then we may construct a Riemann surface Y with proper, surjective holomorphic map $p_Y\colon Y\to \mathbb{C}$ such that:

- the lifting $g: Y \to X^s$ of f exists, and
- p_Y is unramified outside the discrete set $g^{-1}(R) \subset Y$, where R is the ramification divisor of $\pi: X^s \to X$. Hence we have

$$(3.3) N_{\operatorname{ram} p_Y}(r) \leqslant (\operatorname{deg} p_Y) \bar{N}(r, g, R).$$

Since we are assuming that f is non-degenerate, we remark that

(3.4) the image
$$g(Y)$$
 is Zariski dense in X^s .

For $\omega_i \neq \omega_j$, we set $\Xi_{ij} = (\omega_i - \omega_j)_0$, where $\omega_i - \omega_j$ is considered as a form from $H^0(X^s, \pi^*\Omega_X^1)$. We have

$$(3.5) R \subset \cup_{i,j} \Xi_{ij}.$$

Let M be an ample line bundle on X^s .

CLAIM. —
$$\bar{N}(r, g, \Xi_{ij}) \leqslant \varepsilon T(r, g, M) \mid\mid \text{ for all } \varepsilon > 0.$$

Proof of Claim. — We prove the claim in the two possible cases:

Case 1. — $g^*\omega_i \neq g^*\omega_j$. Since $\omega_i \in H^0(X^s, \pi^*\Omega_X^1)$, we may consider $g^*\omega_i$ as a holomorphic section of $p_Y^*\Omega_{\mathbb{C}}^1$. Thus $\eta_i = g^*\omega_i/p_Y^*(dz)$ is a holomorphic function on Y. Since $g^*\omega_i \neq g^*\omega_j$, we have $\eta_i \neq \eta_j$. Note that if $g(y) \in \Xi_{ij}$, we have $\eta_i(y) = \eta_j(y)$. Hence using the Nevanlinna inequality (3.1), we have

$$\bar{N}(r, g, \Xi_{ij}) \leqslant N(r, \eta_i - \eta_j, 0)$$

$$\leqslant T(r, \eta_i - \eta_j, \mathcal{O}_{\mathbb{P}^1}(1)) + O(1).$$

Since $\eta_i - \eta_j$ has no poles, we have $N(r, \eta_i - \eta_j, \infty) = 0$. Thus, applying (3.2) to $\eta_i - \eta_j = g^*(\omega_i - \omega_j)/p_V^*(dz)$, we have

$$T(r, \eta_i - \eta_j, \mathcal{O}_{\mathbb{P}^1}(1)) = o(T(r, g, M)) \parallel.$$

We conclude that

$$\bar{N}(r, g, \Xi_{ij}) = o(T(r, g, M)) \mid\mid.$$

Case 2. — $g^*\omega_i = g^*\omega_j$. Let $b\colon X^s \to B$ be the Albanese map with respect to $\omega_i - \omega_j$, which is constructed as follows: Let $\Phi\colon X^s \to A$ be the Albanese map with respect to ω_1,\ldots,ω_l . For $k=1,\ldots,l$, let $\widetilde{\omega_k}$ be the holomorphic one form on A such that $\Phi^*\widetilde{\omega_k} = \omega_k$. Let $C \subset A$ be the maximal Abelian subvariety such that $\widetilde{\omega_i} - \widetilde{\omega_j}$ vanishes on C. Put B = A/C. We define the map $b\colon X^s \to B$ by the composition of $\Phi\colon X^s \to A$ and the quotient $A \to B$.

Let Ξ'_{ij} be an irreducible component of Ξ_{ij} . Since there are only finitely many irreducible components of Ξ_{ij} , it is enough to prove

$$\bar{N}(r, g, \Xi'_{ij}) \leqslant \varepsilon T(r, g, M) \mid \mid \text{ for all } \varepsilon > 0.$$

Since $\omega_i - \omega_j$ vanishes on Ξ'_{ij} , we see that $b(\Xi'_{ij})$ is a point on B. We take an open subset $U \subset B$ and a holomorphic function φ on U such that $\varphi(b(\Xi'_{ij})) = 0$ and $\omega_i - \omega_j = b^*(d\varphi)$ on $b^{-1}(U)$.

Let $S \to b(X^s)$ be the normalization. Since X^s is normal, b factors as

$$X^s \stackrel{c}{\to} S \stackrel{\psi}{\to} B.$$

TOME 60 (2010), FASCICULE 2

Since ψ is finite, $c(\Xi'_{ij})$ is a point on S; We denote this point by P. Let $\mathcal{O}_{S,P}^{\mathrm{an}}$ be the stalk at P in the sense of analytic space, and let $\mathfrak{m} \subset \mathcal{O}_{S,P}^{\mathrm{an}}$ be the maximal ideal. Since S is normal, $\mathcal{O}_{S,P}^{\mathrm{an}}$ is integral. We remark that $\varphi \circ \psi \in \mathcal{O}_{S,P}^{\mathrm{an}}$ is neither zero nor a unit, which follows from $\omega_i - \omega_j = b^*(d\varphi)$ and $\varphi(b(\Xi'_{ij})) = 0$. Hence we have

(3.6)
$$\dim \mathcal{O}_{SP}^{\mathrm{an}}/(\varphi \circ \psi) = \dim S - 1.$$

Set

$$V_n = \operatorname{Spec} \mathcal{O}_{SP}^{\operatorname{an}} / ((\varphi \circ \psi) + \mathfrak{m}^n).$$

Then V_n is a closed subscheme of S with supp $V_n = P$.

Let L be an ample line bundle on S. Using (3.6), we have

$$h^0(V_n, \mathcal{O}_{V_n} \otimes L^{\otimes \ell}) = h^0(V_n, \mathcal{O}_{V_n}) = O(n^{\dim S - 1}).$$

On the other hand, there are positive constants c > 0 and $\ell_0 > 0$ such that

$$h^0(S, L^{\otimes \ell}) > c\ell^{\dim S}$$

for $\ell > \ell_0$. Thus we may take a positive integer $\ell(n)$ such that $\ell(n) = o(n)$ as $n \to \infty$, and that $h^0(V_n, \mathcal{O}_{V_n} \otimes L^{\otimes \ell(n)}) < h^0(S, L^{\otimes \ell(n)})$. For example, $\ell(n) \sim n^{1-\frac{1}{2\dim S}}$. Thus we may take a divisor D_n from $H^0(S, L^{\otimes \ell(n)})$ such that $V_n \subset D_n$.

Now we claim that if $c \circ g(y) = P$ for $y \in Y$, then $\operatorname{ord}_y(c \circ g)^* D_n \geqslant n$. To see this, we take $y \in Y$ such that $c \circ g(y) = P$. Let $O \subset Y$ be the connected component of $(b \circ g)^{-1}(U)$ containing y. By the assumption $g^*(\omega_i - \omega_j) = 0$, we have $\varphi \circ b \circ g = 0$ on O. Hence $(\varphi \circ \psi) \circ (c \circ g) = 0$ on O. Thus by the construction of V_n , we have $\operatorname{ord}_y(c \circ g)^* V_n \geqslant n$. Hence by $V_n \subset D_n$, we have $\operatorname{ord}_y(c \circ g)^* D_n \geqslant n$.

By (3.4), $c \circ g(Y)$ is Zariski dense in S. Hence we have

$$\begin{split} n\bar{N}(r,g,\Xi_{ij}') \leqslant n\bar{N}(r,c\circ g,P) \\ \leqslant N(r,c\circ g,D_n) \\ \leqslant l(n)T(r,c\circ g,L) + O(1), \end{split}$$

where the last estimate follows from the Nevanlinna inequality (3.1). Thus, by l(n) = o(n) and $T(r, c \circ g, L) = O(T(r, g, M))$, we have

$$\bar{N}(r, g, \Xi'_{ij}) \leqslant \varepsilon T(r, g, M) \mid\mid$$

for all $\varepsilon > 0$. We have proved our claim.

Now we go back to the proof of Proposition 3.1. By (3.3) and (3.5), we have

$$N_{\operatorname{ram} p_Y}(r) \leqslant \varepsilon T(r, g, M) \mid \mid$$

for all $\varepsilon > 0$. Hence by Proposition 3.2 and Proposition 3.3 below, we conclude that the image g(Y) is not Zariski dense in X^s , which contradicts to (3.4). This conclude the proof of Proposition 3.1.

PROPOSITION 3.3. — Let X be a smooth projective variety such that (1) the Albanese map is generically finite, and (2) X is of general type. Let M be an ample line bundle on X. Let $g \colon Y \to X$ be a holomorphic map from a Riemann surface Y with a proper surjective holomorphic map $p_Y \colon Y \to \mathbb{C}$. Assume that

$$N_{\operatorname{ram} p_Y}(r) \leqslant \varepsilon T(r, g, M) \mid \mid$$

for all $\varepsilon > 0$. Then the image of q is not Zariski dense in X.

This is a generalization of [18, Corollary 3.1.14]. The proof is parallel to that of [18, Corollary 3.1.14]. See also [17] for a generalization of Proposition 3.3.

4. Proof of Proposition 2.1

In this section, we prove Proposition 2.1. A representation of the fundamental group into an algebraic group G is called rigid if every nearby representation is conjugate to it. A representation which is not rigid is called non-rigid. The proof of Proposition 2.1 divides into two cases according to whether the representation $\varrho \colon \pi_1(X) \to G$ is rigid or non-rigid.

4.1. Case 1: ρ is rigid

In this case ϱ is defined over some number field K. Given a prime ideal p from \mathcal{O}_p , we denote by $\varrho_p \colon \pi_1(X) \to G(K_p)$ the composition of $\varrho \colon \pi_1(X) \to G(K)$ and the inclusion $G(K) \subset G(K_p)$. If there exists a prime ideal p such that ϱ_p is p-unbounded, then Proposition 2.1 is a direct consequence of Proposition 3.1. Hence in the following, we consider the case that ϱ_p is p-bounded for every prime ideal p.

In this case, we remark that $\varrho^{-1}(G(\mathcal{O}_K))$ is of finite index in $\pi_1(X)$ (cf. [19, p. 120]). This can be proved as follows: Since $\pi_1(X)$ is finitely generated, there are only finite prime ideals p_1, \ldots, p_k such that $\varrho(\pi_1(X))$ is not contained in $G(\mathcal{O}_{K_p})$. Since $\varrho(\pi_1(X))$ is p_i -bounded for all p_i , the image of $\varrho(\pi_1(X))$ in $G(K_p)/G(\mathcal{O}_{K_p})$ is finite for all p_i . This shows our assertion.

Thus, after passing to a finite unramified covering, we may assume that $\varrho(\pi_1(X)) \subset G(\mathcal{O}_K)$.

Now by a result of Simpson (cf. [16, p. 58]), ϱ is a complex direct factor of a \mathbb{Z} -variation of Hodge structure. In particular, there is the period mapping $c\colon X\to \Gamma\smallsetminus \mathcal{D}$ of this variation of Hodge structure (cf. [7, p. 57]). Here \mathcal{D} is the classifying space and Γ is the arithmetic group which preserves the polarization and the lattice of the variation of Hodge structure. Then c is a horizontal locally liftable holomorphic map (cf. [7, 3.13]). Hence, for a holomorphic map $f\colon \mathbb{C}\to X,\ c\circ f\colon \mathbb{C}\to \Gamma\smallsetminus \mathcal{D}$ is also a horizontal locally liftable holomorphic map. Since \mathcal{D} has negative curvature in the horizontal direction, $c\circ f$ is constant (cf. [6, Corollary 9.7]). Since $\Gamma\smallsetminus \mathcal{D}$ has the structure of a normal analytic space (cf. [7, p. 56]), the fibers of c are Zariski closed subsets on X. This shows that f is degenerate. Hence we have proved Proposition 2.1 when ϱ is rigid.

4.2. Case 2: ρ is non-rigid

It suffices to prove the following:

LEMMA 4.1. — Let G be an almost simple algebraic group defined over the complex number field. Assume that there exists a Zariski dense, non-rigid representation $\varrho \colon \pi_1(X) \to G(\mathbb{C})$. Then every holomorphic map $f \colon \mathbb{C} \to X$ is degenerate.

Proof. — We remark that G is defined over some number field K after some conjugations. Since $\pi_1(X)$ is finitely presented, there exists an affine scheme R over K such that

$$R(L) = \operatorname{Hom}(\pi_1(X), G(L))$$

for every field extension L/K. This space is defined as follows: We choose generators $\gamma_1, \ldots, \gamma_k$ for $\pi_1(X)$. Let \mathcal{R} be the set of relations among the generators γ_i . Then

$$R \subset \underbrace{G \times \cdots \times G}_{k \text{ times}}$$

is the closed subscheme defined by the equations $r(m_1, ..., m_k) = 1$ for $r \in \mathcal{R}$. A representation $\tau \colon \pi_1(X) \to G(L)$ corresponds to the point $(m_1, ..., m_k) \in R(L)$ with $m_i = \tau(\gamma_i)$. Note that R is an affine scheme, since it is a closed subscheme of an affine variety. Let $R_{Z.D.} \subset R$ be the space of Zariski dense representations. Then by [1, Proposition 8.2], $R_{Z.D.}$

is a Zariski open subset of R. The group G acts on R by simultaneous conjugation. Put M=R//G, and let $p\colon R\to M$ be the quotient map. Then M is an affine scheme defined over K. Let $[\varrho]\in R_{Z.D.}(\mathbb{C})$ be the point which correspond to the Zariski dense representation $\varrho\colon \pi_1(X)\to G(\mathbb{C})$.

Since $R_{Z.D.}(\overline{\mathbb{Q}})$ is dense in $R_{Z.D.}(\mathbb{C})$, by deforming ϱ slightly and replacing K by its finite extension, we may assume that ϱ is defined over K. Let p be a prime ideal from \mathcal{O}_K and let K_p be the completion. In the following, we shall work over this K_p .

Since ϱ is non-rigid, we have $\dim M>0$. Hence there exists a morphism $\psi\colon M\to \mathbb{A}^1$ such that the image $\psi(M)$ is Zariski dense in \mathbb{A}^1 . Since the image $\psi\circ p(R_{Z.D.})$ is also Zariski dense in \mathbb{A}^1 , there exists an affine curve $C\subset R_{Z.D.}$ such that the restriction $\psi\circ p|_C\colon C\to \mathbb{A}^1$ is generically finite. We may take a Zariski open subset $U\subset \mathbb{A}^1$ such that $\psi\circ p|_C$ is finite over U. Let $x\in U(K_p)$ be a point, and let $y\in C(\bar{K_p})$ be a point over x. Then y is defined over some extension of K_p whose extension degree is bounded by the degree of $\psi\circ p|_C\colon C\to \mathbb{A}^1$. Note that there are only finitely many such field extensions. Hence there exists a finite extension L/K_p such that the points over $U(K_p)$ are all contained in C(L). Since $U(K_p)\subset \mathbb{A}^1(L)$ is unbounded, the image $\psi\circ p(R_{Z.D.}(L))\subset \mathbb{A}^1(L)$ is unbounded.

Let $R_0 \subset R(L)$ be the subset whose points correspond to p-bounded representations. Let $M_0 \subset M(L)$ be the image of R_0 under the quotient $p: R \to M$. Then by Lemma 4.2 below, M_0 is compact. Hence $\psi(M_0)$ is compact. In particular it is bounded. On the other hand, $\psi \circ p(R_{Z.D.}(L)) \subset \mathbb{A}^1(L)$ is unbounded. Hence we have $R_{Z.D.}(L) \not\subset R_0$. Thus we may take a Zariski dense, p-unbounded representation $\tilde{\varrho}: \pi_1(X) \to G(L)$. By Proposition 3.1, every holomorphic map $f: \mathbb{C} \to X$ is degenerate.

Lemma 4.2. — M_0 is compact.

Proof. — Note that there are only finitely many conjugacy classes of maximal compact subgroups in G(L). Hence all maximal compact subgroups are conjugate to one of maximal compact subgroups $H_1, \ldots, H_k \subset G(L)$. Hence given a p-bounded representation $\tau \colon \pi_1(X) \to G(L)$, there is a G(L)-conjugation $\tilde{\tau} \colon \pi_1(X) \to G(L)$ of τ such that the image $\tilde{\tau}(\pi_1(X))$ is contained in one of H_1, \ldots, H_k .

Now take a sequence $[\tau_1], [\tau_2], \ldots \in M_0$. Then we may take representations τ_1, τ_2, \ldots from R_0 such that $\tau_j(\pi_1(X))$ is contained in one of H_1, \ldots, H_k . By taking subsequence, we may assume that $\tau_j(\pi_1(X)) \subset H_i$ for all j. Now since H_i is compact, some subsequence τ_j should converge to $\tau_\infty \colon \pi_1(X) \to H_i$. Then the sequence $[\tau_j]$ converges to $[\tau_\infty] \in M_0$. This shows that M_0 is compact.

5. Proof of Corollary 1.3

Let X be a smooth projective variety with a big representation $\varrho \colon \pi_1(X) \to \operatorname{GL}_n(\mathbb{C})$. Assume that X admits a non-degenerate holomorphic map $f \colon \mathbb{C} \to X$. Then by Theorem 1.1, the image $\varrho(\pi_1(X))$ is almost abelian. Hence after passing to a finite unramified covering X' of X we may assume that $\varrho(\pi_1(X))$ is a free abelian group, i.e. ϱ factors the Albanese map $a_X \colon X \to \operatorname{Alb}(X)$. We shall prove that the Albanese map a_X is birational.

Since X admits a non-degenerate holomorphic map, the Albanese map a_X is surjective ([14, Theorem 6.4.1]) and has connected fibers ([15]). Let F be a general fiber of a_X . Then $\varrho(\operatorname{Im}(\pi_1(F) \to \pi_1(X)))$ is trivial. Since ϱ is big, F should be a point. Hence the Albanese map a_X is birational. This conclude the proof of the corollary.

BIBLIOGRAPHY

- N. A'CAMPO & M. BURGER, "Réseaux arithmétiques et commensurateur d'après G. A. Margulis", Invent. Math. 116 (1994), no. 1-3, p. 1-25.
- [2] G. T. BUZZARD & S. S. Y. Lu, "Algebraic surfaces holomorphically dominable by C²", Invent. Math. 139 (2000), no. 3, p. 617-659.
- [3] F. CAMPANA, "Ensembles de Green-Lazarsfeld et quotients résolubles des groupes de Kähler", J. Algebraic Geom. 10 (2001), no. 4, p. 599-622.
- [4] F. CAMPANA, "Orbifolds, special varieties and classification theory", Ann. Inst. Fourier (Grenoble) 54 (2004), no. 3, p. 499-630.
- [5] P. EYSSIDIEUX, "Sur la convexité holomorphe des revêtements linéaires réductifs d'une variété projective algébrique complexe", *Invent. Math.* 156 (2004), no. 3, p. 503-564.
- [6] P. Griffiths & W. Schmid, "Locally homogeneous complex manifolds", Acta Math. 123 (1969), p. 253-302.
- [7] —, "Recent developments in Hodge theory: a discussion of techniques and results", in Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973), Oxford Univ. Press, Bombay, 1975, p. 31-127.
- [8] M. Gromov & R. Schoen, "Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one", Inst. Hautes Études Sci. Publ. Math. (1992), no. 76, p. 165-246.
- [9] J. Jost & K. Zuo, "Harmonic maps into Bruhat-Tits buildings and factorizations of p-adically unbounded representations of π_1 of algebraic varieties. I", J. Algebraic Geom. 9 (2000), no. 1, p. 1-42.
- [10] L. KATZARKOV, "On the Shafarevich maps", in Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, p. 173-216.
- [11] J. KOLLÁR, "Shafarevich maps and plurigenera of algebraic varieties", Invent. Math. 113 (1993), no. 1, p. 177-215.
- [12] J. NOGUCHI, "Meromorphic mappings of a covering space over C^m into a projective variety and defect relations", *Hiroshima Math. J.* 6 (1976), no. 2, p. 265-280.

- [13] ——, "On the value distribution of meromorphic mappings of covering spaces over \mathbb{C}^m into algebraic varieties", J. Math. Soc. Japan 37 (1985), no. 2, p. 295-313.
- [14] J. NOGUCHI & T. OCHIAI, Geometric function theory in several complex variables, Translations of Mathematical Monographs, vol. 80, American Mathematical Society, Providence, RI, 1990, Translated from the Japanese by Noguchi, xii+283 pages.
- [15] J. NOGUCHI, J. WINKELMANN & K. YAMANOI, "Degeneracy of holomorphic curves into algebraic varieties", J. Math. Pures Appl. (9) 88 (2007), no. 3, p. 293-306.
- [16] C. T. SIMPSON, "Higgs bundles and local systems", Inst. Hautes Études Sci. Publ. Math. (1992), no. 75, p. 5-95.
- [17] K. Yamanoi, "Holomorphic curves in abelian varieties and intersections with higher codimensional subvarieties II", preprint.
- [18] ——, "Holomorphic curves in abelian varieties and intersections with higher codimensional subvarieties", Forum Math. 16 (2004), no. 5, p. 749-788.
- [19] R. J. ZIMMER, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984, x+209 pages.
- [20] K. Zuo, "Kodaira dimension and Chern hyperbolicity of the Shafarevich maps for representations of π_1 of compact Kähler manifolds", J. Reine Angew. Math. **472** (1996), p. 139-156.
- [21] ———, Representations of fundamental groups of algebraic varieties, Lecture Notes in Mathematics, vol. 1708, Springer-Verlag, Berlin, 1999, viii+135 pages.

Manuscrit reçu le 4 décembre 2008, accepté le 27 mars 2009.

Katsutoshi YAMANOI Kumamoto University Graduate School of Science and Technology Kurokami, Kumamoto 860-8555 (Japan) yamanoi@kumamoto-u.ac.jp