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THE COMPUTATION OF STIEFEL-WHITNEY
CLASSES

by Pierre GUILLOT

To the memory of Charles Thomas

ABSTRACT. — The cohomology ring of a finite group, with coefficients in a finite
field, can be computed by a machine, as Carlson has showed. Here “compute”
means to find a presentation in terms of generators and relations, and involves
only the underlying (graded) ring. We propose a method to determine some of
the extra structure: namely, Stiefel-Whitney classes and Steenrod operations. The
calculations are explicitly carried out for about one hundred groups (the results
can be consulted on the Internet).

Next, we give an application: thanks to the new information gathered, we can
in many cases determine which cohomology classes are supported by algebraic
varieties.

RESUME. L’anneau de cohomologie d’un groupe fini, modulo un nombre pre-
mier, peut étre calculé a 'aide d’un ordinateur, comme ’a montré Carlson. Ici
« calculer » signifie trouver une présentation en termes de générateurs et rela-
tions, et seul 'anneau (gradué) sous-jacent est en jeu. Nous proposons une méthode
pour déterminer certains éléments de structure supplémentaires : classes de Stiefel-
Whitney et opérations de Steenrod. Les calculs sont concrétement menés pour une
centaine de groupes (les résultats sont consultables en détails sur Internet).

Nous donnons ensuite une application : & ’aide des nouvelles informations ob-
tenues, nous pouvons dans de nombreux cas déterminer quelles sont les classes de
cohomologie qui sont supportées par des cycles algébriques.

1. Introduction

1.1. Computer calculations & Stiefel-Whitney classes

For a long time, it was very common for papers on group cohomology
to point out the lack of concrete, computational examples in the subject
(see for example the introduction to [25]). Since then, the situation has
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566 Pierre GUILLOT

dramatically changed with the observation by Carlson (see [5]) that the co-
homology ring could be computed in finite time, by an algorithmic method
for which a computer could be trusted. The reader can check on the Inter-
net (see [4] and [11]) the myriad of examples of cohomology rings which
have now been obtained.

The question arises then: can we exploit those calculations to tackle some
problems related to the cohomology of groups ? The particular problem
which originally motivated me (and which, as it turned out, was to play
only a secondary role in this paper) was the following. Since Totaro’s paper
[26], it is known that the classifying space BG of a finite group G is a limit
of algebraic varieties (say, over C), and thus one can ask for a description
of the image of the map

CH*BG — H*(BG,Z)

where CH*BG is the Chow ring of BG. It is similar to the question posed
by the Hodge conjecture, but with some distinctive features (for example
CH*BG is all torsion when G is finite, so we cannot be content with a
description of the map above after tensoring with Q).

However, a description of H*(BG,F,) as a ring, which is what the com-
puter provides, if of little help vis-a-vis this problem, and many others. In
any case, let us compare the sort of output produced by the computer with
a more traditional answer.

Let us focus on the example of Q)g, the quaternion group of order 8. At
the address [4], one will find that H*(BQs,F2) is an algebra on generators
z,y, x of degree 1, 1, 4 respectively, subject to the relations 22 +y? +2zy = 0
and z3 = 0. One also finds a wealth of information on subgroups of Qg
and their cohomology, calculations of transfers and restrictions, as well as a
thorough treatment of the commutative algebra of H*(BQs,Fs) (nilradical,
Krull dimension, etc).

On the other hand, if we look at the computation by Quillen of the
cohomology of extraspecial groups (see [22]), one finds in the case of Qs:

PROPOSITION 1.1. — There are 1-dimensional, real representations 1
and ry of Qg, and a 4-dimensional representation A, such that H* (BQs, F2)
is generated by w1 (r1), wy(re) and wy(A). The ideal of relations is gener-
ated by R = w1 (r1)? +wi(r2)* + w1 (r1)wi(r2) and Sq*(R).

Finally, Sq¢*(A) = S¢*(A) = S¢*(A) = 0.

This calls for several comments. First, if r is any real representation of
a (finite or compact Lie) group G, then r can be seen as a homomor-
phism r : G — O(n) where n is the real dimension of r. This yields
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THE COMPUTATION OF STIEFEL-WHITNEY CLASSES 567

a continuous map Br : BG — BO(n) and thus a ring homomorphism
Br* : H*(BO(n),Fs) — H*(BG,F3). The ring H*(BO(n),F2) is polyno-
mial on variables wy, . .., w,, and the element Br*(w;) is written w;(r) and
called the i-th Stiefel-Whitney class of r, a central object of study in this
paper (more details on the definition follow).

Second, the cohomology ring of any space in an unstable algebra, and is
acted on by the Steenrod operations Sq¥, k > 0. This gives much structure
on the cohomology, as will be examplified below. For the time being, we
point out that the presentation of the cohomology of Qg is simplified by
the use of Steenrod operations, in the sense that R is the only significant
relation, the other one being obtained by applying Sq'.

Note that these two things are related, for one knows how to compute
the Steenrod operations on H*(BO(n),Fy) via Wu'’s formula, see [20]. Since
Br* commutes with the S¢*, one knows how these operations act on the
Stiefel-Whitney classes. Once we know that the cohomology of a group is
generated by such classes, as is the case for Qg, we get all the information
on Steenrod operations for free.

Note also, finally, that Stiefel-Whitney classes give some geometric or
representation - theoretic meaning to the relations in the cohomology of a
group, in good cases. In the case of Qg thus, there is a relation between the
representations mentioned in proposition 1.1, namely:

)\Q(A):T1+T2+T1®T2+3

(here “43” means three copies of the trivial representation, and A\? means
the second exterior power). There are formulae expressing the
Stiefel-Whitney classes of a direct sum, a tensor product, or an exterior
power: these will be recalled in section 2. In the present case, they give
wa(ry + 12 + 71 @12+ 3) = wi(r1)? + wi(re)? + wi(ry)w(re), while
wa(A2(A)) = 0. The latter takes into account the fact that wi(A) =
wa(A) = ws(A) = 0, which in turn is a formal consequence of the fact
that A carries a structure of H-module, where H is the algebra of quater-
nions. Putting all this together, we get an “explanation” for the relation
w1 (r1)? 4+ w1 (r2)? + wy(r1)wi (r2) = 0 based on representation theory.

All this extra decoration on the cohomology ring is extremely useful.
For example if we return to the problem, already alluded to, of computing
which cohomology classes are supported by algebraic varieties, then we
have a lot to learn from this new information. The Chern classes, which are
analogous to Stiefel-Whitney classes but related to complex representations
rather than real ones, and which can be computed mod 2 from the Stiefel-
Whitney classes, are always supported by algebraic varieties; this gives a
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568 Pierre GUILLOT

“lower bound”. On the other hand, classes coming from the Chow ring are
killed by certain Steenrod operations, and this gives an “upper bound”. See
§5 for details.

The main purpose of this paper is to describe a method for the systematic
computation of Stiefel-Whitney classes, mostly with the help of a computer.
Let us describe our success in the matter.

1.2. Overview of results

This paper has a companion, in the form of a computer program. The
source and the results of the computer runs can be consulted at [12]. We
encourage the reader to have a look at this page now. The present paper
can largely be seen as an explanation of the program, although it can by
all means be read independently.

It is in the nature of our algorithm that it does not work in all cases.
On the brighter side, it is very much simpler than any full-blown method
for calculating Stiefel-Whitney classes in general (see the Appendix for a
discussion of possible approaches to the general problem). Also, our ba-
sic method can be adjusted for specific groups and made to work in new
cases by small, taylored improvements. Our original goal however was to
constitute, if not a “database”, at least a significant collection of examples
(rather than deal with a handful of important groups).

We have focused on the groups of order dividing 64. We got a full answer
for the 5 groups of order 8, for 13 of the 14 groups of order 16, for 28 of
the 51 groups of order 32, and for 61 of the 267 groups of order 64. Thus
we were able to deal with more than 100 groups.

Obtaining a “full answer” means the following. When H*(BG,F2) is
generated by Stiefel-Whitney classes, the computer proves it, and gives the
same sort of information as in proposition 1.1. When H*(BG,F3) is not
generated by Stiefel-Whitney classes, the answer looks as follows. Let us the
consider the smallest example, which is that of the group of order 16 whose
Hall-Senior number is 11. This group is the semidirect product Z/8 x Z/2
whose centre is a Z/4. The computer output is:

PROPOSITION 1.2. — The cohomology of G is generated by wi(rs),
wi(r3), wa(rs) and a class « of degree 3 which is not in the subring gen-
erated by Stiefel-Whitney classes. Here ro and r3 are 1-dimensional real
representations, while rg is a 4-dimensional representation of complex type.
The relations are

wi(ra)? +wi(r3)? =0,  wi(re)?wi(rs) +wi(r2)wi(r3)? =0,
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wiy(re)x + wq(rg)x =0, 2-90

= =0.
Moreover one has Sq'(w4(rg)) = 0, S¢*(w4(rs)) = wa(rg)wi(r2)wy(r3),
and Sq3(wy(rs)) = 0.

Finally, the element x is the same as the x in Carlson’s presentation for

H*(G).

The only piece of information missing is the action of the Steenrod op-
erations on x. However, one can recover this “by hand”, knowing that x
is the same as Carlon’s z: indeed, on Carlson’s page [4] we see that z is a
transfer of an (explicitly given) element in the cohomology of an elementary
abelian 2-subgroup of G. Transfers commute with Steenrod operations, and
we deduce easily the value of Sq'z and Sq¢?x.

The computer also provides some other details, for example all the Chern
classes, and all the other Stiefel-Whitney classes, are given in this presen-
tation for H*(G).

Turning to the application to algebraic cycles, there are 38 groups for
which we describe the image of CH*BG — H*(G). For example when
G = Qg this image is generated by wy(r1)?, wi(r2)? and wy(A). There
are 62 groups in total for which we provide at least partial information on
algebraic cycles, see §5.

1.3. Strategy & Organization of the paper

Given a group G, we shall always assume that we have a presentation of
H*(BG,F,) as a ring available (as proposition 1.2 suggests, we have cho-
sen to get this information from Carlson’s webpage). We shall then define a
ring Wi (G) as follows. As a graded Fa-algebra, Wi (G) is to be generated
by formal variables w;(r;) where the r;’s are the irreducible, real represen-
tations of G. Then we impose all the relations between these generators
which the theory of Stiefel-Whitney classes predicts: relations coming from
the formulae for tensor products and exterior powers, rationality condi-
tions, and so on. (It is perhaps more accurate to say that we impose all the
relations that we can think of.)

Then one has a map a : Wi(G) — H*(BG,Fq) with good properties:
namely, it is an isomorphism in degree 1, and turns the cohomology of G
into a finitely generated module over Wi (G). The key point is that, in fact,
there are very few maps between these two rings having such properties (in
practice, there are so many relations in Wi(G) that there are few well-
defined maps out of this ring anyway).

TOME 60 (2010), FASCICULE 2
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The slight twist here is that, unlike what you might expect, we do not
compute the effect of the map a. Rather, we write down an exhaustive list
of all the maps W5 (G) — H*(BG,F3) having the same properties as a,
and it turns out, most of the time, that all these maps have the same kernel
and “essentially” the same image (the word “essentially” will be justified
later). More often than not, all the maps are surjective; let us assume in
this introduction that it is so for a given G, postponing the more difficult
cases. Since a is among these maps (without our knowing which one it is!),
we know its kernel, and we have a presentation of H*(BG,F3) as a quotient
of Wi (G), that is a presentation in terms of Stiefel-Whitney classes. The
computation of Steenrod operations becomes trivial.

As a toy example, we may come back to G = Qg. In this case one has

Fy [wl (7"1), w1 (7"2), w4(A)]
(R,5¢'(R))

Wi(G) =

where R = w1 (r1)? + w1 (r2)? + w1 (r1)wa(rs). It is apparent that Wi(G)
is abstractly isomorphic with H*(G,F3); Quillen’s theorem states much
more specifically that the map a is an isomorphism. Our approach, reduc-
ing to something trivial here, is to note that there are only two classes in
degree 4 in the cohomology ring, namely 0 and an element = which gener-
ates a polynomial ring. If the image under a of the Stiefel-Whitney class
wq(A) were 0, then H*(G,F3) could not be of finite type over Wi(G).
Thus a(w4(A)) = x. Since a is an isomorphism in degree 1, it must be sur-
jective; for reasons of dimensions it is an isomorphism. In this fashion we
recover Quillen’s result from the presentation of the cohomology as given
by Carlson and a simple game with W5 (G), and this (in spirit if not in
details) is what our program will do. Now, describing Wi (G) explicitly is
extremely long if one proceeds manually, but it is straightforward enough
that a computer can replace us.

We insist that we are not able to give an expression for the Stiefel-
Whitney classes in terms of the generators originally given in the presen-
tation of H*(BG,F2) that we start with. Thus we do not “compute” the
Stiefel-Whitney classes in the sense that one might have expected. For this
reason, we have found it worthwile to collect in an Appendix a review of
the methods that one could use in order to actually perform these com-
putations (in the sense, say, of obtaining cocycle representatives for the
Stiefel-Whitney classes relative to a given projective resolution). Our ob-
jective is twofold: on the one hand, we hope to convince the reader that
these computations are considerably difficult indeed, and that we should be
so lucky to have a “trick” to avoid them; on the other hand, we also hope
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that the suggestions we make in the Appendix will actually be useful to
anyone wishing to take up the challenge. We describe three ways to attack
the calculations, none of which I have seen presented in the literature as a
computational device (though they each rely on classical results).

It is perhaps useful at this point to comment on the logic underlying
this paper. After reflecting on the difficulties arising in the computation of
Stiefel-Whitney classes, as exposed in the Appendix, one wishes to calculate
a minimal number of them. Certainly if a representation can be expressed
in terms of others using direct sums, tensor products and exterior powers,
then there is no need to compute its Stiefel-Whitney classes separately. The
ring W5.(G) was originally designed to keep track of all such redundancies
in a compact way. Subsequently, it has come as a genuine surprise that this
ring made the computations so much simpler that, in many cases, there
was nothing left to do.

{ The paper is organized as follows. In section 2, we introduce the ring
Wi (G), whose definition is a bit lengthy. The map a will appear naturally.
In section 3, we describe in details our algorithm to find a presentation for
the cohomology of G' with the help of W (G), as outlined above. In section
4, we comment on the experimental results which we have had. Finally in
section 5, we apply the preceding results to the study of the “cycle map”
between the Chow ring and the cohomology of BG.

¢ Acknowledgements. It is a pleasure to thank David Green and Jon
Carlson for their early interest in this work. I am also grateful to Alain
Sartout and Pierre Navarro for their patience and help with the servers
here in Strasbourg. My thanks extend to William Stein for advertising this
work on the SAGE website, and for being generally helpful on the SAGE
forum.

This project would have been impossible to realize without the help
of many wonderful software packages. Crucial use was made of the GAP
algebra system, the Python programming language, and the SAGE mathe-
matical suite. Many tools coming from the GNU Free Software Foundation
have been essential, most of all the g++ compiler. (I could also mention
GNU/Linux in general, emacs, and also Latex.)

No use was made of any commercial software.

¢ This paper is dedicated to the memory of Charles Thomas. Charles
lectured me on Lie groups when I was a graduate student, and was always
available for challenging discussions during my PhD. He was very fond
of characteristic classes, and explained on many occasions how the A-ring
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structure on the representation ring of a group was a much under-used tool.
I hope that the computations which follow, for which the A-operations play
such a key role, would have had some appeal to him.

2. Formal rings of Stiefel-Whitney classes

From now on, we shall write H*(G) for the mod 2 cohomology of the
finite group G. Occasionally we may use the notation H*(BG) in order to
emphasize a topological context.

2.1. Formal rings

Let rq,..., 7, denote the isomorphism classes of real, irreducible repre-
sentations of G, and let n; be the real dimension of r;. Each r; gives rise,
by choice of a basis and a G-invariant inner product, to a homomorphism
G — O(n;) = Oy, (R). The latter is well-defined up to conjugacy in O(n;),
and we also use the notation r; for any choice of homomorphism. Note that
the homotopy class of Br; : BG — BO(n;) is also well-defined.

Consider now the ring

m
AL = Q) H*(BO(ny)).
i=1
This A}, is a polynomial ring on generators which we write w;(r;), for
1 <i<mand 1< j<n;. Thereis a natural map

T =mng: AL — H*(BG)

obtained by tensoring together the induced maps Br}. The image of w;(r;)
under 7 is of course w;(r;), the j-th Stiefel-Whitney class of ;.

There is a modest interpretation of A, (and 7) in “universal” terms. For
this, we need some notations. In the presence of a graded ring R*, we write
R* for the group of elements (a,,) in the product [], R™ such that ap = 1.
We write such elements 1+ aq +as + - -- and multiply them in the obvious
way. Then, writing Rg(G) for the real representation ring of G, the total
Stiefel-Whitney class is the group homomorphism

w: Rr(G) — H*(G),
p = Ltwip) +wa(p) + -
defined by sending the generator r; of the free abelian group Rr(G) to

1 + wq(r;) + wa(r;) + ---. This extends the above definition of w;(—) to
representations which are not necessarily irreducible (and even to virtual
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THE COMPUTATION OF STIEFEL-WHITNEY CLASSES 573

representations). Of course we could also have given an extended defini-

tion directly for an arbitrary representation, exactly as above: it is then a

nontrivial, but very well-known, fact that the two definitions coincide.
Consider now the following diagram:

f
RR(G) — RX

7
.
i g

Ag

Here R* is any graded ring, and R* is as above, while f is any group
homomorphism such that f(r;) is zero in degrees greater than n;. The
map w sends 7; to 1+ wi(r;) + wa(r;) + ---. The universality of w can
be expressed by saying that the dotted arrow g always exists, making the
triangle commute. What is more, g always comes from an underlying map
of graded rings A7, — R*, and the latter is unique.

Taking R* = H*(G) and f = w, the map 7 can then be seen as being
induced by universality.

This brings us to the following definition. Any ring which is obtained as a
quotient of Af, by an ideal contained in ker 7 will be called a formal ring of
Stiefel-Whitney classes. As the name suggests, we shall obtain examples of
such rings by looking at formal properties of Stiefel-Whitney classes, as we
have just done with the property “w;(r;) = 0 when j > n;”. Each example
F* will come equipped with a map Rg(G) — F* which is universal among
certain maps, but we shall leave to the reader this interpretation.

An extreme example of formal ring, thus, is Af,/ker 7, which we denote
by W*(G). It can be thought of as a subring of H*(G), namely the subring
generated by all the Stiefel-Whitney classes. Eventually we shall end up
being able to compute W*(G) in many cases, and our main tool is the use
of other formal rings, which we use as approximations to W*(G).

2.2. Formal properties

The definition of A}, (in universal terms) uses only the fact that w;(r;)
vanishes when j is large, and implicitly the formula for the Stiefel-Whitney
classes of a direct sum (in that w is a group homomorphism). We shall now
review the other familiar properties of Stiefel-Whitney classes.

¢ Rationality. Let V be a real and irreducible representation of G.
Schur’s lemma says that K = Endg(V) is a field (not necessarily commu-
tative). Since K must contain R in its centre, it follows that K must be one
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of R, C or H. Accordingly, V' is said to be of real, complex, or quaternion
type.

The consequences on Stiefel-Whitney classes are as follows. If r; is of
complex type, then r; : G — O(n;) can be factorized as a composition

G — U(d;) — O(n,)

where U(d;) is the unitary group, n; = 2d;, and the second arrow is reali-
fication. Thus we can also write:

Br}: H*BO(n;) —» H*BU(d;) — H*BG.

Since the cohomology of BU(d;) is concentrated in even degrees, we con-
clude that waj41(r;) = 0 when 7; is of complex type.

Similarly, when r; is of quaternion type, we have w;(r;) = 0 whenever
j is not divisible by 4, for the cohomology of BSp(d;) is concentrated in
degrees divisible by 4. Here Sp(d;) is the symplectic group and n; = 4d;.

It is very easy to check whether a given representation is of complex or
quaternion type, see [24], §13.2. In this way we obtain with little effort a
collection of elements of the form w;(r;) in AZ, which all belong to ker .

© Before we proceed, we need to recall the splitting principle. This says
roughly that everything happens as if any representation were a direct sum
of 1-dimensional representations, as far as computing the Stiefel-Whitney
classes goes. More precisely, given real representations o and 3 of dimen-
sions n, and ng respectively, one may find an injection of H*(G) into a
ring in which we have factorizations
Na
w(a) = [] (1 +ax)
k=1

and
ng

w(B) =TT +be)

=1
where each ay and by has degree 1. Thus one recovers wy,(a) as the n-th
elementary symmetric function in the “roots” ay, and likewise for 3. The
formulae below will be given in terms of the roots. This traditional choice
avoids introducing lots of universal polynomials with awkward names.

¢ Tensor products. One has the following well-known formula:

w(a@ﬂ): H (1+ak+bg).
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The reader should notice that the formula is strictly associative, in the
sense that the two universal formulae for the total Stiefel-Whitney class of
a® B ®~ which you could deduce from the result above would be precisely
the same. Likewise, it is strictly commutative. The fact that the tensor
product operation is associative and commutative up to isomorphism only
guarantees, a priori, that the formula is associative and commutative in
H*(G), for all G; since we can consider the universal example of orthogonal
groups and their defining representations, however, this is enough. We shall
use trivial remarks of this sort without comments in the sequel. They are of
some importance nonetheless, as we sometimes work in the ring Af, before
applying 7 to reach H*(G).
To exploit this, we look at the presentation

Rr(G) = Z[ry,...,rm]/a.

For any x € a, we wish to obtain a relation T'(z) € A}, which lies in ker .
We need some care to make sure that the computation can be done in
finite time, and in particular we want to avoid the computation of inverses
of elements in the group A5. We proceed thus: write x = P — @ where P is
the sum of the terms of z which have positive coefficients. Then @ also has
positive coefficients. One may obtain an element Tp in AJ by computing
the total Stiefel-Whitney class of each term of P according to the rule
above for tensor products, and then multiply out (in A) the results for
the various terms. Proceed similarly for T, working with @ instead of P.
Then put T'(x) = Tp — T (which is also T —Tp as we are in characteristic
2). That T'(z) € ker7 follows from the fact that z = 0 in Rg(G) and the
fact that the formula for tensor products indeed holds, in H*(G).

We note that, if one writes x = P’ — Q' for any P’ and Q' having positive
coefficients, then P’ = P+ S and Q' = Q + S for some polynomial S. Then
Tpr —Tg =Ts(Tp —Tg). Since T is a unit in every truncated ring AéN,
it follows that T(z) = u(Tp: — Tgy) (here u is a truncation of T5'). We use
this in the proof of lemma 2.2 below.

Example 2.1. — Let G = Z/4. Then G has three real, irreducible rep-
resentations: the trivial one, the one-dimensional representation a coming
from the projection Z/4 — Z/2, and the 2-dimensional representation (3
obtained by viewing G as the group of 4-th roots of unity in C.

We have

Zla, B]

(052—1, 62_204_25 aﬁ_ﬁ)
Consider the relation a8 = (. The formula for tensor products gives in
this case w(af) = 1+ w1 (B) + wi(a)wy(B) + w2(B). This being equal to

Rr(G) =
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the total Stiefel-Whitney class of 3, we have therefore wy(a)wy(5) = 0. In
other words

T(af — B) = wi(a)w(B) € kerm.
Similarly, looking at 32 = 2a + 2 gives the relation w;(a)? = w;(3)?, and
the element T(3% — 2a — 2) = wy(a)? — w1(B)? is in ker . The relation
a? = 1 gives nothing.

Now, the representation § has a complex structure, of course. It follows
that wi(8) = 0, and we will find the element w;(3) in ker .

Combining all this, we see that ker7 contains w;(3) and w;(a)?. Of
course the cohomology of Z/4 is known, and it turns out that kerw is
precisely generated by these two elements. So in this simple case all of
kerw, and indeed all the relations in the cohomology, are explained by
representation theory.

All the information available can be got in finite time:

LEMMA 2.2. — If xq,...,x, generate a, then any element of the form
T(z) for x € a is in the ideal generated by the homogeneous parts of the
elements T'(z1),...,T(zy,) in Ag.

Proof. — If x and y are in a, thenlet x = P —Q and y = P — Q' as
above. We have T(z + y) = u(Tp+p — To+¢’). However Tpypr = TpTpr,
a product in A or rather a product of non-homogeneous elements in AY;
similarly for Q. Thus

T(x+y) =ulp(Tp —Tg) +ulg (T — Tg) = uTpT(y) + uly /T (x).
So T'(z + y) is in the ideal generated by T'(x) and T'(y).
Further, T'(x) = T'(—xz) clearly.

Finally, assume z is in a and y = r, for some k. Write x = P — Q.
Then T'(zy) = Tpy — Ty From the above we see that there is a universal

polynomial f such that Tp, = f(TI(Dl),TI(f),...,wl(y),wg(y), ...), where
Tl(f ) is the degree i homogeneous part of Tp; moreover the same f has also
Toy = f(TC(;),Té;)7 ooy wi(y), w2 (y), . ..). It is then clear that T'(zy) is in
the ideal generated by the various Tl(j ) Tg ), which are the homogeneous

parts of T'(x).
This completes the proof. O

o Exterior powers. We recall the following.

w(APr;) = H (1+as, +--+ag,).

1<i1 < <ip<ni
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So the structure of A-ring on Rg(G) will give us relations between the
Stiefel-Whitney classes. Now, the whole A-ring structure is entirely de-
scribed by the value of AP(r;) for 1 < p < n;, for there are universal
polynomials expressing AP (z + y) and AP(zy) in terms of the various A" (z)
and A*(y).

A little more precisely, for each relation A’(r;) = P;, where P, , €
Z[r1,...,rm) has degree < 1 and positive coefficients, we obtain a corre-
sponding element L;, € Af which lies in kern as follows: compute the
total Stiefel-Whitney class of AP(r;) in AJ acording to the rule above, then
compute the total Stiefel-Whitney class of P; ,,, and call L; ;, the difference
between the two (viewed as elements of A,).

Consider then a presentation

Rr(G) =Z[ri, \Pr;]1 <i<m, 1 <p<nl/b.

Note that we may combine the formulae for tensor products and exterior
powers, and “translate” any relation in b into a relation in ker . The details
should be clear by now. Then one has (with z; as in the previous lemma):

LEMMA 2.3. — For an element b € b, call R the “translation” of b = 0
into an element of A}, following the rules above for tensor products and
exterior powers. Then R is in the ideal generated by the the homogeneous
parts of the elements L;,, and T'(z;).

Proof. — If we substitute P, , for A\?(r;) into b, we get a polynomial in
Zlr1,...,my] which evaluates to 0 in Rg(G), that is, an element of a. So b
can be written as the sum of an element of a and an element in the ideal
generated by the elements AP(r;) — P; ,. The result now follows easily by
an argument as in the previous proof. O

Remark 2.4. — The reader who feels uncomfortable with the details of
lemma 2.2 and 2.3 will be reassured to know that we do not use them in
the sequel, strictly speaking. They motivate our decision to give priority
to the elements T'(z;) and L, p, but this could have been presented as an
arbitrary decision without breaking the logic.

Example 2.5. — We return to the example of G = Qg already consid-
ered in the introduction. This group has three 1-dimensional, irreducible,
real representations 71, ro and r3, and an irreducible, 4-dimensional, real
representation A of quaternion type. We have r3 = r1r9 which, as above,
yields wq (r3) = w1 (r1) + wi(ra).

However, we also have

)\2(A) =7ry+re+r3+3.
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Computing the Stiefel-Whitney classes of A2(A) using the formula for exte-
rior powers, together with the fact that wq(A) = we(A) = ws(A) = 0 since
A has quaternion type, yields in particular ws(A?(A)) = 0. On the other
hand, one finds that wa(ry +re +1r3 4+ 3) = wi(r1)wi(r2) + wi(ry)wi (r3) +
wy (r2)w1(rs), and so this element must be zero. Combined with the ex-
pression for wi (r3), this yields wy (r1)? + wy(ra)? + wy (r1)wq (r2) = 0.
Examining the classes in degree 3 rather than 2 gives, similarly, that

wl(r1)2w1 (7’2) + w1 (7"1)11)1 (7”2)2 =0.

The relations obtained in degree 1 and 4 are redundant.
In other words, we have found the following elements in ker 7:

w1 (A), wa(A), w3(A), w1 (rs) — wi(r1) — wi(re),

w1 (r1)? 4+ w1 (r2)? 4 w1 (1)W1 (ro), W1 (r1) 2wy (1) + w1 (111 (r2) 2.

Again in this example, it turns out that ker 7 is generated by these elements.

2.3. Chern classes

Everything which we have done so far can also be done with Chern
rather than Stiefel-Whitney classes, with minor modifications. Moreover,
one can draw consequences on Stiefel-Whitney classes by looking at Chern
classes, and some of this information cannot be got otherwise. We proceed
to explain this.

Let p1, ..., ps denote the complex, irreducible representations of G, and
let d; be the complex dimension of p;. There is a universal ring Ag o which
is polynomial on generators ¢;(p;) for 1 < i < s and 1 < j < d;. There
is amap o : Af ¢ — H*(G), and the image of ¢;(p;) is ¢;(p;), the j-th
Chern class of p;. One can take Ag  to be a tensor product of cohomology
rings of various classifying spaces of unitary groups, and g is induced by a
collection of group homomorphisms.

We write C*(G) for Ag /kero, and see it as the subring of H*(G)
generated by all Chern classes. A quotient of Af o by an ideal contained
in ker o will be called a formal ring of Chern classes. We obtain examples
of formal rings by using the formal properties of Chern classes, which are
identical to those of Stiefel-Whitney classes: one only has to bear in mind
that ¢;(r;) has degree 2j and that the “roots” of the splitting principle have
degree 2. Otherwise the formulae for tensor products and exterior powers
are the same.

Now, an element in kero yields an element in ker m according to the
following recipe. If p; is the complexification of a real (and irreducible)

ANNALES DE L’INSTITUT FOURIER



THE COMPUTATION OF STIEFEL-WHITNEY CLASSES 579

representation r, then one has ¢;(p;) = w;(r)?. Note that r is of real type
in this case. If on the other hand, p; is not such a complexification, then we
let r denote its realification: it is still irreducible, and of either complex or
quaternion type. In this case one has ¢;(p;) = wg;(r) (while the odd-degree
Stiefel-Whitney classes of r are zero, as already pointed out). As a result, if
we formally replace each element ¢;(p;) by either w;(r)? or ws;(r) following
this rule, then indeed any element in ker ¢ is turned into an element in ker 7.
It is perhaps as well to say that we have just described a map

¢ Ag g — Ag

such that ¢ = 7 o ¢. It must carry ker o into ker 7.

2.4. Steenrod operations

The ring Af, is naturally an unstable algebra, so we have operations S q*
for k > 0 on it. Of course H*(G) is also an unstable algebra, and 7 is
compatible with the operations. As a result, the ideal ker 7 is stable under
the Steenrod operations.

Now given any ideal I in A}, there is a unique smallest ideal Sq(I)
containing it and stable under each S¢* (namely the intersection of all
such ideals). If I C kerm, then Sq(I) C kerm.

It is easy to compute Sq(I) concretely. If I is generated by t1,ta, ..., s,
then either I is “Steenrod stable” or the ideal I5 generated by all elements
SqFt; (1 <i < Cand 0 < k < [t;]) is strictly bigger than I. If I is not
Steenrod stable, we get a strictly bigger ideal I5 in the same fashion, and
so on. Because A} is noetherian, this process has to stop, and we obtain
Sq(I) in finite time.

2.5. The ring Wi (G)

We shall now describe a particular formal ring of Stiefel-Whitney classes,
to be denoted Wi (G), which combines all the relations which we have been
discussing.

We proceed as follows:

e First, we let I C ker 7 denote the ideal generated by all the elements
T(z;) and L;p as in the lemmas 2.2 and 2.3, together with all the
“rationality” relations. In other words, we consider all the relations
in ker 7 which are discussed in section 2.2.
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e Similarly, we define J C ker o using the relations coming from the
tensor product formula and the exterior power formula, only with
Chern rather than Stiefel-Whitney classes.

e Next, we consider the ideal I’ generated by I and ¢(J) (see §2.3).

e Finally, we take I"” = Sq(I’) as in §2.4. We define

Wi(G) = Ag/T".

There is a surjective map Wi (G) — W*(G). Composing it with the
inclusion into H*(G) induced by 7, we obtain a map a : Wi(G) — H*(G).

PROPOSITION 2.6. — The map a is an isomorphism in degree 1, and
turns H*(QG) into a finitely generated Wi(G)-module.

Proof. — The first point follows from the isomorphism H(G) =
Hom(G,Z/27). For the second point, we embed G into an orthogonal
group O(n), and consider the fibration O(n)/G — BG — BO(n). Since
O(n) is compact, the homogeneous space O(n)/G has finitely many cells,
and it follows from the Serre spectral sequence that H*(G) is finitely gen-
erated as an H*BO(n)-module. A fortiori, it is also finitely generated as a
Wi (G)-module. O

Example 2.7. — Let us consider the group G of order 16 which appears
in proposition 1.2. As indicated, this group is the only semidirect product
Z/8 x Z/2 whose centre is cyclic of order 4. The nonzero element in the
Z/2 factor acts on the Z/8 factor by multiplication by 5.

There are 10 conjugacy classes, and so 10 complex, irreducible represen-
tations. Leaving out the trivial one, the character table looks like this:

Conjugacy class | 1 | 2 3 4 5 6 718 9 |10
p1 1]-11] 1 1 1 |-1]-1|1 1 ]-1
P2 111 ]-1] 1 1 |-1)1|-1| 1 |-1
03 1]-1]-1] 1 1 1 |-1|-1] 1 1
P4 1| 4 1 | -11]1 vt | =t | —=1] =1 | —3
05 1\ —| 1 | -1 1 |—i| ¢ |—-1|—-1/|71
06 1V ¢ | -1} -1] 1| —¢|—¢| 1 |—-1]|71
Joke 1 —|-1| 1] 1 ) ) 1| -1 —2
P8 2 2 | =2 0 | =22
P9 2 -2 | -2 0 2i
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Here we have ordered the conjugacy classes arbitrarily (in fact, we follow
the choices made by the GAP computer package). The first is the class of
the unit in G, and the sizes of the classes are 1, 2, 2, 1, 1, 2, 2, 2, 1, 2.

This is enough to compute the rationality according to the recipe in [24]
(Prop. 39). We find that the first three representations are the complexifi-
cations of r1, 73, r3, which have thus real type. The others give irreducible,
real representations of complex type after “realification”. We let 74, r¢ and
rg be the real representations underlying p4, pg and ps respectively (these
are conjugated to ps, pr and pg respectively). The irreducible, real rep-
resentations of G are exactly 71,792,713, 74,76, 78 together with the trivial
representation.

Let us explore some of the relations in Wi (G). From now on, the elements
in this ring will be written w;(r;) rather than w;(r;), for simplicity.

We find that 71 = ro ® r3, so that wq(r1) + wi(r2) + wi(rs) = 0. Next,
we observe that )\2(7“8) =14 ry + r9 + r3 + rg which, taking into account
that wy(rg) = ws(rg) = wy(rg) = 0 because rg and rg have complex type,
yields

wi (r1)wy (re)w (r3) + wa(re)[wi(r1) + wi(re) +wi(rs)] = 0.
Combining this with the previous relation, we get
wi (r2)?wi(r3) + wi(r2)wi(r3)? = 0. (R)

We also note that p; = py ®c pa, so that ¢1(p1) = 2¢1(ps) = 0 (mod 2).
However c1(p1) = wi(r1)? = w1 (r2)? + w1 (r3)?. So

w1(7’2)2 + wl(TS)Z =0. (S)
As it turns out, these are all the relations that we shall keep, for we have

Fo [wl (T2)7 w1 (TS)v w4(708)]
(R,S)

The end of the proof of this is a lengthy exercise for the reader. It involves
showing the following relations:

Wi(G) =

wa(ry) = w1 (r2)? + wi(ro)wi(rs), wa(re) = wi(ra)wi(rs),

wa(rg) = wi(r2)wi(r3).

This explains why we keep only the three variables above in Wi(G). Also,
one should prove that all the other relations that one throws into Wi(G)
are redundant at this point, which of course takes a lot of time (and was
done with the help of a computer).
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3. The main algorithm

In this section we explain in details the procedure outlined in the intro-
duction.

3.1. Notations & Preliminaries

¢ Choice of variables. We shall assume that we have for H*(G) a
presentation in terms of variables g1, go, ... and relations.

As for Wi (G), we have a canonical choice of variables which are all of
the form w;(r;), and we have computed the relations between these which
define Wi (G) in the previous section. We shall split the variables into three
sets, and we shall use the following rule.

Assume that R is a ring with a surjective map P : k[Xy,...,X,] — R,
where k is any field, and let z; = P(X;), for each i. Then we shall say that
x;, for lack of a better name, is a polynomial variable with respect to this
presentation if there is a generating set for ker P which consists of poly-
nomials not involving X;. For definiteness, let us rephrase this. Starting
with any generating set for an ideal, one may compute the reduced Grob-
ner basis for this ideal using Buchberger’s algorithm (see [1]) and this is
unique. It is apparent that Buchberger’s algorithm does not introduce new
variables, and therefore, a variable x; is polynomial if and only if X; does
not appear in any of the elements of the reduced Grobner basis for ker P.
(It also follows that the order on the power products, which is needed for
Buchberger’s algorithm, is irrelevant here.)

If x1,...,x,, are polynomial variables for R with respect to the pre-
sentation P (m < n), then one has, putting S = R/(x1,...,%m), the
isomorphism R = S[z1,...,Zn].

We apply this to W}(G) and its presentation as a quotient of Af,. We

shall write t1,ts,... for the degree 1 variables. As for the other variables,
we write p1,pa, ... for those which are polynomial, and ¢, go,... for the
others.

Write Q = Falt1, ta,...,41,42,...], a subring of Wi (G). Then one has
W}(G) = Q[pl,pg, .. ]

Concretely, we shall compute the reduced Grobner basis for kerm, and
extract from it a minimal set of generators Ri, R, ... for this ideal. The
variables not showing up in any Ry, are the polynomial variables (note that
some of the t;’s may well be polynomial, too).

Example 3.1. — Throughout this section, we shall follow the example
of the group G already considered in proposition 1.2 and example 2.7. The
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algorithm is particularly simple in this case, yet it seems to illustrate most
of the features of the general case.
A presentation of H*(G) is as a quotient of the graded polynomial ring

Falz,y, z,w] with |z| = |y| = 1, |z| = 3 and |w| = 4. The relations are then:
22 =0, 2% =0,
zx =0, 22 =0.

(These form a Grobner basis.)

On the other hand, as already mentioned, we find that W (G) is a quo-
tient of the polynomial ring Falwi(r2), w1 (r3), wa(rs)] where the subscript
gives the degree, for some representations g, r3 and rg. The relations are:

wi(r2)? +wi(r3)? =0, wi(r2)® +wy(r2)?wi(rs) = 0.

Again these form a Grobner basis.
The variable w4(rg) is polynomial; there is no variable corresponding to
the ¢;’s in this case.

¢ Admissible maps; equivalent maps. An admissible map
f: Wi(G) — H*(G) is one which is an isomorphism in degree 1 and
which turns H*(G) into a finitely generated Wi (G)-module.

When A is a graded Fo-algebra, we let A~Y denote the ideal of elements
of positive degree. If f : A — B is any map of graded algebras, we write
(f) for the ideal of B generated by f(A>"). When A and B are connected,
then f is surjective if and only if (f) = B>°. Also, B is a finitely generated
A-module if and only if B/(f) is finite dimensional over Fs.

Two maps f and ¢ from W;.(G) to H*(G) are said to be equivalent when
they have the same kernel, and when (f) = (g). This defines an equivalence
relation on the set of all maps from Wj(G) to H*(G).

3.2. Construction of certain maps Wi (G) — H*(G).

The main idea is to construct all maps from W5(G) to H*(G), then
reject those which are not admissible, then reject more maps using finer
criteria, and finally hope that the remaining maps are all equivalent. How-
ever, we cannot quite follow this programme, for the computation of all
maps between these two rings would simply take too much time. Careful
precautions will allow us to reduce the number of computations by many
orders of magnitude. Some work will be needed to prove that we get a
correct answer nonetheless.

In this section, f is a homomorphism W;.(G) — H*(G) which we grad-
ually build by specifying the values f(t;), then f(g;), and then f(p;), step
by step.
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o Step 1 : setting the degree 1 variables. We start by listing all
the possible values for the various f(¢;), that is, we list all choices of
f(t1), f(t2), ... such that

(1) f is an isomorphism in degree 1,
(2) the relations Ry, involving the elements ¢;’s only are “satisfied”, that
is, map to 0 under f.

We do this by simply exhausting all elements in degree 1 in H*(G), though
we use the following trick in order to save time in the sequel. Whenever
we have two possible choices f and f’, that is whenever we have a; =
f(t1),a2 = f(t2),... on the one hand and b, = f'(t1),bs = f'(t2),... on
the other hand such that both conditions are satisfied, we compare them
thus: we check whether the map o : H*(G) — H*(G) sending a; to b;
and all other variables in H*(G) to themselves is well-defined. If so, it is
an automorphism of H*(G) such that f/ = a o f. Clearly in this case,
continuing the process with f or f’ is immaterial for what follows.

So we keep only one map out of the pair (f, f'). When this is over, we
have a set of partially defined maps; for each one, we move to the next
step. We keep writing f for a particular choice.

Example 3.2. — Resuming example 3.1, we have only one possibility
for f after Step 1, in this case, namely:

flwi(r2)) = 2+, flwi(rs)) =y.

One could have exchanged the roles of wi(re) and wq(rsg), but then the
automorphism « of H*(G) which sends y to y + z and all other variables
to themselves would bridge the two options. So we have indeed a single f
that we take to the next step.

In passing note that, from the above, we see that there is more symmetry
in choosing wy(r2) and wq(r3), rather than y and z, as the generators in
degree 1.

o Step 2 : setting the value of f(¢;). We wish to continue in the
same fashion, and find all possible values for f(g;). Here “possible values”
means that the remaining relations Ry, not yet considered in step 1, must
be satisfied. Again we proceed by exhaustion, but a simple observation can
save us a spectacular amount of time.

Instead of defining all f(g;)’s and then check whether the relations are
satisfied, we proceed one relation at a time (of course). Given a relation
Ry, involving ¢;,, ..., ¢, as well as degree 1 variables, we find all values for
f(gi,),s -, f(q:,) such that f(Ry) = 0. Then we move to the next relation.
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However, the order in which we consider the relations is crucial. Indeed,
suppose that ¢;; has degree d;;, and that H*(G) is of dimension ¢;; in
degree d;;. Then if ¢ = Zj ¢i;, we have 2¢ possibilities for the values of
the variables i, - This number 2¢ we call the weight of Ry. We start our
investigation with the relation of lowest weight. Then, having made a choice
for f(qi,;), we recompute the weights of the other relations, which have
decreased because there are now fewer choices to make. We proceed with
the lowest weight relation remaining, and so on.

Looking for the possibilities in this order rather than a random order can
reduce the computing time from hours to minutes.

Of course it may happen, for a given f resulting from Step 1, that there
is no way of completing Step 2. However, the existence of the map a guar-
antees that at least one choice can pass both steps. Let f be such a map,
defined on €.

o Step 3 : Setting the value of f(p;). When we come to the poly-
nomial variables, any value for f(p;) gives a well defined homomorphism
f. However, in practical terms, this means that the number of homomor-
phisms that we end up with is simply too large: finishing the algorithm
would take far too much time. Instead we use the following simplification,
which slightly increases the chances of failure of the algorithm but greatly
improves the speed. (Although as we point out later, if one is particularly
interested in a single group G and is willing to wait long enough, it may
be best not to use this trick).

Let R denote the quotient of H*(G) by the ideal generated by f(Q2>°)
(in the notation above this is R = H*(G)/(f) if one keeps in mind that f is
only defined on Q so far). We extend the composition f : Q@ — H*(G) — R
to a map f : Wi(G) — R by choosing f(p;) arbitrarily (but of the right
homogeneous degree, of course). The point being that R is much smaller
than H*(G) and there are relatively few choices for f.

Then we pick an arbitrary lift for f, giving finally a map f: Wi(G) —
H*(G). Note that any two lifts f and f’ have (f) = (f’). In particular, the
finite generation of H*(G) as a module over Wi(G) via the map f does
not depend on the choice of lift.

Example 3.3. — We continue with the f of example 3.2. The dimension
of H*(G) is 3, with a basis given by y*, yz and w for example. So we have
23 = 8 choices for f(w4(rs)). However, the ring R is generated by (the
images of) « and w, so that it is 1-dimensional in degree 4 (with w the only
nonzero element in this degree), which leaves only 2 choices for f. We end
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up with two possibilities for f: we may either send w4(rs) to 0, or to w (in
either case, any other lift would do, but we keep only one).

This is a toy example of course, and the computer could well exhaust all
8 possibilities. However, we point out that dividing the number of subse-
quent computations by 4 is quite satisfactory, and such reductions become
inevitable if one wishes to deal with bigger groups (the sensitivity being
exponential).

3.3. Tests & Conclusions

We have now a certain finite set S of maps Wi(G) — H*(G). We shall
now run a series of tests on the maps in 5, leading either to definite conclu-
sions regarding the map a, or to the decision to give up on the computation.

At this point it is not clear whether a € S, or even whether a is equivalent
to a map in S. However, there is certainly a map f in S which agrees with
a on Q (perhaps with the degree 1 variables in H*(G) relabelled, cf Step
1), and with (a) = (f).

o Test 1 : finite generation of H*(G). We reject all the maps in S
which are not admissible, ie those which do not turn H*(G) into a finitely
generated Wi(G)-module. There remains a smaller set S’. The last remark
shows that S’ is not empty.

Example 3.4. — We continue from example 3.3. Out of our two maps in
S, only one is admissible, namely that with f(w4(rs)) = w. Thus we keep
only this f.

¢ Test 2 : polynomial variables. Let f € S’. We check which of the
given generators for H*(G) are non zero in H*(G)/(f); for simplicity, say
these are numbered ¢, ..., g,. We adjoin polynomial variables with the
same name to Wi (G), thus obtaining

Wi(G)T =Wi(G)lgr, - gm]-

The map f has an obvious extension to Wi (G)* which we call fT; it is
surjective.

We then compute the reduced Grobner basis of ker(f™). If the polyno-
mial variables p; show up in this Grobner basis, that is if the p;’s are not
polynomial anymore in Wi (G)*/ ker(f) with respect to the obvious pre-
sentation, we give up on the computation altogether. Otherwise, if all maps
in S’ pass this test, we move to Test 3 with S’ unchanged.

We shall give below a heuristic explanation according to which it is rea-
sonable to expect that Test 2 is often completed succesfully. Our interest
in this test comes from the following lemma.
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LEMMA 3.5. — Let f € S’ satisfy the test above, and let g be a map
Wi (G) — H*(G) obtained by a different choice of lift in Step 3. Then f
and g are equivalent. Also, f* and g are equivalent.

Proof. — We have pointed out that (f) = (g) always, so we need to show
that ker f = ker g.

Assume that the p;’s are ordered by degree, that is assume that |p;| <
Ipa] < . Write QF = Q[g1,...,gm] so that WH(G)T = QT [p1,pa,.. ]
Note that f* and g* are both defined on this ring Wi (G)*, and are both
surjective. We define an automorphism « of Wi (G) " such that f* = gtoa.

Indeed, since gT is surjective, and from the definitions, we see that

Frwi) = fpi) = g(pi) + 97 (wi) = g (0 +wi)
for some w; € QT [p; : |pj| < |pil]. So we may define o by requiring it to
be the identity on 21, and to send p; to p; + w;. In order to see that « is
an isomorphism, one may for example show by induction on i that w;, and
thus p;, is in the image of «; therefore « is surjective and is an isomorphism
as a result.

It is now easy to conclude. Let by, bs, ... be the reduced Grobner basis
for ker(fT). By choosing the term order carefully, we can arrange things so
that the b;’s not involving the variables g1, ..., g, constitute the reduced
Grobner basis for ker f; say these are by, ..., b,. Now, since f, or rather f+,
passes Test 2, then the elements bq,...,b,. do not involve the p;’s, either.
It follows that «a(b;) = b; and that ker f C ker g.

From the relation g7 = ft oa ™!, it is clear that g passes Test 2 as well,
so we may reverse the roles and obtain ker g C ker f.

Proving that f* and gT are equivalent is a similar, but easier, matter. [J

Assuming that all maps in S’ have passed the test, we can move on to
Test 3 knowing that a is equivalent to some map in S’.

Example 3.6. — We continue from example 3.4. There is only one f to
deal with. In this case H*(G)/(f) is generated by x only as an algebra, so
we adjoin a variable z to Wi (G), obtaining Wi (G)* which is generated by
wi(r2), wi(rs), wa(rs) and x. We extend f to this ring by setting fT(z) = x.

A Grobner basis for ker(f*) is then

w1 (7’2)2 + wl(Ts)Q, wl(T2)2w1 (rs) + wl(Tz)wl(T3)2,

wy(r2)r +wi(rs)e, z?.

These do not involve wy(rg). Test 2 is successful.
Note that, since we have only one map in S’, there is no need to perform
Test 3 and Test 4, which we describe now in the general case.
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o Test 3 : Steenrod operations. We reject all maps in S’ whose kernel
is not stable under the Steenrod operations. There remains a smaller set
S”. Since a is a map of unstable algebras, S” is not empty.

o Test 4 : restrictions to elementary abelian subgroups. When
E is an elementary abelian 2-group, then H*(FE) is completely understood,
including Stiefel-Whitney classes. One way to state this is to say that ap :
Wi(E) — H*(E) is an isomorphism, and that (as always) the map A%}, —
Wi (E) is explicitly described.

We exploit this to setup our final test. The map a : Wi(G) — H*(G)
can be composed with the restriction H*(G) — H*(E) for any elementry
abelian subgroup E of G, thus giving a map Wi (G) — H*(E) which we
understand fully: to determine the image of w;(r;), decompose r; as a sum
of irreducible, real representations of F/, and compute the Stiefel-Whitney
of this sum using the usual formula; then use the map A}, — H*(E) to
express the result in terms of your favorite choice of generators for H*(E).

Our test is the following. If the generators for ker f do not map to 0 under
the restriction maps Wi (G) — H*(E), for E running among the maximal
elementary abelian subgroups, then we reject f from S”. We obtain in this
way a smaller, nonempty set S".

¢ Conclusion. If the maps in §”’ are not all equivalent, the computation
has failed. If they are, we compute for each f € S the map f*+ has above;
note that all these are defined on the same ring Wi (G) ™. If the maps f*
are not all equivalent, the computation has failed. Otherwise, we claim that
we have succeeded, in a sense which we make precise now.

Pick an f in S”. Then f is equivalent to a. Moreover f* and a™ are
defined on the same ring Wi (G) ™", are both surjective, and are equivalent.
Thus, we know the kernel of the surjective map

at WiE(@grs- -, gm] — H*(G).
This is the desired presentation of H*(G).

Example 3.7. — We conclude example 3.6, and the proof of proposition
1.2 at the same time. There being only one candidate in S’, Test 3, Test 4
and the final check are all redundant. Note that the map f is not necessarily
equal to a: in Step 1 we had two choices, and in Step 3 we had four, so
we can write down 8 maps from Wi(G) to H*(G), one of which will be
a. However, these are all equivalent, and their extensions to Wi (G)* are
also all equivalent. In the end, we know the kernel of a™, as it was given
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in the previous example. Thus proposition 1.2 holds (the information on
Steenrod operations follows from Wu’s formula).

3.4. Comments

All of the comments below will have something to do with the trick used
in Step 3 and its validation in Test 2.

o A variant. There is an evident variation that we may want to try:
namely, in Step 3, drop the ring R and the choice of lifts altogether, and
simply gather all possible homomorphisms by listing all possible values for
the polynomial variables. Then Test 2 becomes irrelevant.

As already pointed out, this will often lead to a number of elements in
the set S which is impossible to manage: each homomorphism in S will
need to have its kernel computed, and this uses Buchberger’s algorithm
for Grobner basis, a time-consuming process of exponential complexity.
However, in very particular cases, it may still be best to go down this road
anyway.

Example 3.8. — Consider the group number 12 (in the GAP library) of
order 64; it can be described as (Z/4 x Z/8) x Z/2. The algorithm above
produces about 60 homomorphisms after Step 3, and Test 2 fails. However,
the variant algorithm produces 384 homomorphisms, which are all surjec-
tive and fall into 9 equivalence classes. They all pass Test 3. Fortunately
only one of them passes Test 4, and the computation is complete.

Similarly, we may look at the group number 87 of order 64, a group of
type Z/2 x ((Z/8 x Z/2) x Z/2). The normal algorithm yields about 800
homomorphisms, and Test 2 fails. It is still possible to use the variant,
even though there are now 24,576 homomorphisms to deal with. They are
all surjective, fall into 5 equivalence classes, only one of which passes Test
3. The computation is complete, and takes about 30 minutes on an average
computer. Clearly, we cannot let the complexity gain an extra order of
magnitude.

¢ The success of Test 2. There are above 100 groups for which our
computations are successful; only 4 of them have required the lengthy al-
ternative algorithm. On the other hand, in the vast majority of cases, when
the computation fails it does so for reasons other than Test 2. This means
that the test is often passed, and indeed it was our hope that it should be so.

A loose explanation is as follows. The ring Wi(G) is sufficiently fine that
the kernel of a is relatively small; in particular, if a variable is polynomial
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in Wi (G), it is unlikely that its image should not be polynomial in H*(G).
So the map a itself should pass Test 2. Now, this tells us something about
the size of H*(G) relative to that of W (G), and if another homomorphism
[ WE(G) — H*(G) were to fail Test 2, that is, were to have a polynomial
variable showing up in its kernel, it is likely to have an image which is too
small, and thus Test 1 will reject it. Otherwise, f would have to have a
much bigger image on 2 than a does, which again is unlikely.

The examples above show that “unlikely” does not mean “impossible”.
We also note that a refinement of Wj.(G), which one could obtain by think-
ing of more relations to throw in, would increase the chances of our algo-
rithm.

¢ The order of the tests. It is tempting to run the straightforward
Test 3 and Test 4 first, and thus have a smaller set of homomorphisms
on which to try the more dubious Test 2. However, this cannot be done.
Indeed, a map could well fail Test 3, say, whereas another choice of lift in
Step 3 would give a map that passes it.

4. Experimental results

We shall first comment on the practicalities on the computations, and
then on the mathematics.

4.1. Practicalities

© The programs. The first task is to gather information on the charac-
ters of the group GG, and on the sizes of the conjugacy classes. From this, one
can compute scalar products between characters, and thus express tensor
products and exterior powers in terms of the irreducible representations.
One also finds out what the real characters are. All this is done with the
help of the GAP computer package.

The bulk of our project, comprising more than 99% of the code, is a
C++ program which computes a presentation for Wi.(G) and then goes
through the algorithm just presented. There are about 18,000 lines of C++
code in standard presentation, to which one must add about 5,000 lines of
comments (by comparison, the ITEX source for the present article has just
above 2,000 lines).

It is also necessary to get the information on H*(G) from Carlson’s
webpage, which is presented there as a Magma file. In order to download
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all the necessary files automatically and translate them into C++, we have
used the Python programming language. Incidentally, Python was also used
to produce the various HTML files containing the results.

It has been very convenient to use the SAGE computer package, which
allows the smooth blending of GAP, Python, and C++.

¢ The computing time. All computations were performed on the
irmasrv3 server at the university of Strasbourg. This machine has 12
CPUs, which was extremely handy to run the various calculations in par-
allel. Each CPU though has the power of a standard, personal machine.

The preliminaries, before the algorithm of section 3 starts, take little
time. It may happen that the computation of universal polynomials, used
in the formulae for tensor products for example as in section 2, take several
minutes.

The main algorithm can in many cases be completed in a few seconds;
sometimes it can take above 20 minutes (group 87 of order 64); or it can
take several hours (for example for Qg x (Z/2)3, for which it is of course
preferable to use the Kunneth formula).

Also, occasionally, the algorithm seems to take so long that we have inter-
rupted it and given up on the computation. The reader may be surprised
to learn that it is mostly innocent-looking Step 2 which is particularly
time-consuming. This is in fact the most common cause of failure of the
algorithm, much more frequently encountered than a failure after Test 2 or
at the very end when there are more than one equivalence class.

4.2. Mathematical results

o Success. As announced in the introduction, we have focused on the
groups of order dividing 64. The computation was successful for the 5
groups of order 8, for 13 of the 14 groups of order 16, for 28 of the 51
groups of order 32, and for 61 of the 267 groups of order 64 (a total of 107
groups).

Note that the method is not well-behaved with respect to products: even
if we can successfully run the computation for both G and H, it may still
fail for G x H (because the complexity explodes).

¢ Cohomology rings generated by Stiefel-Whitney classes.
Among our succesful computations, only 13 groups have been found to
have a cohomology which is not generated by Stiefel-Whitney classes. Of
course one may argue that the algorithm is more likely to terminate without
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incident when the cohomology is generated by such classes (and there are
no maps fT to consider at all). However we have pointed out that the main
cause of failure is the excessive time needed by the calculations, and so we
find it reasonable to conclude that “most” groups have W*(G) = H*(G).

© A curiosity: groups with isomorphic cohomologies. Let G be the
group of order 32 whose Hall-Senior number is 21; its number in the GAP
library is 12, and it can be described as a semidirect product Z/4 xZ/8. On
the other hand, let G’ be the group of order 32 whose Hall-Senior number
is 29; its number in GAP is 14 and it is also a semidirect product, this time
Z/8 X Z/4.

Then H*(G) and H*(G') are isomorphic rings. What is more, our com-
putations show that they are isomorphic as unstable algebras, that is, there
is an isomorphism between them which commutes with the Steenrod oper-
ations.

This implies classically ([18], Prop. 3.1.5.2) that, for any elementary
abelian 2-group E, there exists a bijection Rep(F,G) = Rep(E,G’) (the
set Rep(A, B) consists of all group homomorphisms from A into B up to
conjugacies in B).

5. Application to algebraic cycles
5.1. Algebraic cycles in the cohomology

¢ The Chow ring. For any algebraic group G over C, for example a
finite group, the classifying space BG can be approximated by algebraic
varieties, in such a way that there is a well-defined Chow ring CH*BG. As
the notation suggests, everything works as if BG were an algebraic variety
itself, and CH* BG is to be thought of as generated by the subvarieties of
BG. For details see [26].

There is a cycle map

cl: CH*BG — H**(BG,Z),

whose image we denote by €h*(G). Cohomology classes in €h*(G) are usu-
ally said to be supported by algebraic varieties. Our aim is to compute
¢h*(G) for as many groups G as possible, using our results on Stiefel-
Whitney classes. More precisely, we will obtain information on the compo-
sition

CH*BG ®7Fy — H**(BG,7) ®7 Fy — H**(BG,TFy).
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This map we still denote by cl, and its image by €h*(G). Also, CH*BG
will stand for CH* BG ®z F5 from now on, unless we repeat the reduction
mod 2 for emphasis. Recall that we write H*(G) for the mod 2 cohomology
of G.

o A lower bound. If V is a complex representation of (G, then it has
Chern classes ¢; (V') € H*(G), which are pulled-back from H*(BGL,,(C),Fs).
However, it turns out that the cycle map ¢l is an isomorphism for GL,,(C)
(see [26]), so we have an identification H*(BGL,(C),F3) = CH*BGL,(C).

What is more, the cycle map cl is natural in G. It follows that the Chern
classes ¢;(V) “come from the Chow ring”, ie are in the image of the cycle
map for G. In symbols,

C*(G) C €h™(@G).

¢ An upper bound. The Steenrod algebra acts on the ring CH* BG®z
F,, and the cycle map commutes with the operations Sq*: for this see [3].
However Sq! acts trivially. Note that CH*BG is often seen as a graded
ring concentrated in even degrees, with CH"BG in degree 2n; with this
convention, S¢* raises the degrees by k, so if k is odd then S¢* must be
zero on the Chow ring indeed.

Let (Sq') be the two-sided ideal generated by Sq¢* in the mod 2 Steenrod
algebra. We see that (Sq!') acts as 0 on the Chow ring of any variety; as a
result, any class in €h*(G) is killed by (Sq').

It is traditional to write OH*(G) for the subring of H*(G) of all those
even-degree classes which are killed by (Sq'). This is the largest unsta-
ble submodule of H*(G) which is concentrated in even degrees. With this
notation one has:

¢h*(G) c OH*(G).

5.2. Computations

Our strategy is pretty simple-minded: we shall compute C*(G) and
OH*(G), and hope that they coincide. In such cases (which are quite com-
mon, as we shall see), these two subrings also coincide with €h*(G).

The ring C*(G) is trivial to describe for those groups G for which our
previous computations were successful: indeed we have explained in §2.3
how to express Chern classes in terms of Stiefel-Whitney classes, and we
have a full understanding of the map Af, — W*(G).

As for OH*(G), we need a couple of results before we start.
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¢ Milnor derivations. Define Qg = Sq' and

Qni1 =S¢ Qn+QnSq

Then each @); acts as a derivation on any unstable algebra, and is called
the i-th Milnor derivation (see [19]). They all commute with each other.

2n+1

LEMMA 5.1. — If A is an unstable algebra and x € A has even degree,
then x belongs to OA if and only if Q;(x) =0 for all i > 0.

Proof. — In fact, let A’ denote the algebra of all elements (of even degree
or not) killed by each @;, and let A” denote the algebra of all elements
(again, of arbitrary degree) killed by (Sq'). We prove that A’ = A”.

Since the Milnor derivations are clearly in (Sq'), we certainly have A" C
A’. On the other hand, Qo = Sq*, so it suffices to show that A’ is stable
under the Steenrod operations to get the inclusion A’ C A”.

This follows from [19], theorem 4a, from which we extract just one for-
mula: -

QrSq" = Z o T
i=0
This is really a finite sum, with the convention that S¢* = 0 when a < 0.
Clearly this proves the claim. O

o The kernel of a derivation. If A is an algebra over a field &, and
d:A— A

is a derivation, how are we to compute generators for the algebra kerd ?
Here is the simple method which we have used.
We assume that we have a subalgebra B of A such that:
e d vanishes on B. Thus d is B-linear when A is viewed as a B-module.
e there is a presentation 74 : A — A, resp rp : B — B, where A4,
resp B, is a polynomial ring. These are compatible in the sense that
there is a commutative diagram

B—— A

TBl lm

B— A
where the horizontal maps are inclusions.
e Ais a free B-module of finite rank n.
In the case at hand, namely finitely generated algebras over Fs, it is easy
to find such a B, mostly because d vanishes on squares. Assume that A is
presented as a quotient of A = Fy[X;], and write x; = r4(X;). If d(z;) = 0,
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put Y; = X;; if not, put ¥; = X?. The algebra B = F5[Y;] and its quotient
B = B/kerr, together satisfy the properties given. (Note that we could
simply take ¥; = X2 for all i, but this increases the rank n, which is not
desirable in practice.)

Let us introduce some notations. We let &1, ..., &, be generators for A
as a B-module. Using these we can and we will identify A and B™. Put
£; = 1 4(&;). We write p : B® — A for the map of B-modules underlying 4,
and we let 01,...,0 be generators for ker p. (When we know generators
fi, fa,... for kerry as an ideal, then the collection of all elements &;f;
provides a choice of such generators for ker p).

We then pick a lift d of d:

B 4, pn

pl lp
A —% 4

Let d; = J(él) € B". Now if x = > bie; € A, with each b; € B, then z
belongs to kerd if and only if > bid; € kerp, where (ISZ) = b;. In other
words this happens if and only if there exist elements ¢; € B such that

n k
Z Z)Zdz + ZCiO'i =0.
i=1 i=1
Or, to say this yet differently, the element (51, e bpaCly e cx) of Btk
belongs to the syzygy module of the elements dy,...,d,,01,...,0%, which
all live in B™.

Now, computing generators for the syzygy module of a collection of ele-
ments in a free module over a polynomial ring is standard computational
algebra®) | see [1]. Having computing generators, we only keep their first
n coordinates (ie we keep the b;’s and drop the ¢;’s). Applying p yields
generators for ker d.

¢ Computing in finite time. We are now prepared to compute ker @;
for each . The algebra OH*(G) is the intersection of all those. The inter-
section of the first NV + 1 kernels is easy to obtain, for it is the kernel of Q

(1) as is, probably, the computation of the kernel of a derivation. In this paragraph our
goal is to justify and explain our own method, in particular to the benefit of readers of
the source code. We point out that feeding our results on Steenrod operations to the
appropriate sofware would require a considerable amount of work anyway; and more
seriously, as we proceed recursively with d playing the role of each @Q; one after the
other, we have been able to include a number of optimizing tricks, saving work between
one computation and the next.
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viewed as a derivation on the algebra recursively computed as the intersec-
tion of the first N kernels. (Recall that the Milnor derivations commute).

However, we would like to compute only a finite number of kernels. The
next lemma follows from 5.1.

LEMMA 5.2. — If the integer N is such that the even part of

N
ﬂ ker Q;
i=0

is stable under the Steenrod operations, then this even part is OH* (@).
This lemma provides an easy test for completion. Moreover:

PROPOSITION 5.3. — There exists an N as in the lemma. In other
words, the computation of OH*(G) terminates in finite time.

Proof. — Let A = H*(G), and let © = Qy4/r, be the module of Fa-
differentials of A. Then Der(A, A) = Homa (92, A).

If A is generated by elements x1, .. ., z, as an algebra, then € is generated
by the elements dz1,...,dz, as an A-module, and in particular it is finitely
generated. Thus Hom 4 (2, A) injects in a free A-module of finite rank, and
since A is Noetherian, it follows that Der(A, A) is finitely generated as an
A-module.

Thus for all N larger than some Ny, the derivation @y is an A-linear
combination of the derivations Qo, ..., Qn,, and we see that

No
ker Qn C ﬂ ker Q;.

i=0
Therefore we may take Ny in the lemma. O
5.3. Results

¢ Success and failure. We have attempted to go through the above
procedure for all the groups G “at hand”, namely all those for which
the computation of Stiefel-Whitney classes was completed and for which
H*(G) = W*(G). In such cases the action of the Steenrod operations is al-
ready given, while for other groups more work would be needed to find out
the action of each Sq¢* on cohomology classes which are not Stiefel-Whitney.
So we had 107 — 13 = 94 groups to try (see §4).

In principle there is nothing to prevent the calculation from reaching its
end. However in practice, it may happen that the computer runs out of
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memory, or that the computation takes simply too long. We have obtained
answers in the following cases: for all 5 groups of order 8, for 10 groups of
order 16, for 17 groups of order 32, and for 30 groups of order 64, a total
of 62 groups.

Among these, 38 groups G have C*(G) = ¢h*(G) = OH*(G) (and of
course all three are explicitly presented). It is interesting to note that, in
the remaining cases, one has at least

C*(G)/V/(0) = €n*(G)/+/(0) = OH"(G)//(0)
where /(0) denotes the ideal of elements which square to 0 (not the radi-
cal). This is slightly stronger than what the general theory predicts, which
is that C*(G) — OH*(G) is an F-isomorphism (in other words, it is known
that for any z € OH*(G), one has 22" € C*(G) for n sufficiently large).

o A worked out example. Let us consider G = (Z/2)3. It is easy to
perform the computations by hand (see below), but this example will serve
well to illustrate what the computer does.

We have H*(G) = Fa[z,y, z] where x = wi(r1), y = wi(re), and z =
wi (r3) for some 1-dimensional, real representations ri, 79 and r3. One has

1 2 0 2 0 2 0
In the notations above, we take A = H*(G) and B = Fa[z?, 32, 2%]. Gen-
erators for A as a B-module are 1, z,vy, z, vy, xz,yz, zyz (here A = A and
B = B).

One computes dy = Sq¢lz = 22 = (22,0,0,0,0,0,0,0) € B8, then d5 =
Sqtay = 2%y + xy? = (0,y>,22,0,0,0,0), and so on.

The module of syzygies for the elements dy,...,ds has 21 generators.
However as an algebra, we find that

ker S¢* = Blay, az, a3, a4]
where
a; = 22z + za? as = yzm + ny
asz = yzz + y22 ag = yQZx + yz2x + ysz.
The even part of ker Sq' is not stable under the Steenrod operations, for

2,22

Sq?(ay) = ytzx + yztae 4+ 9?2222 + yzat

and applying Sq' to the right hand side does not give 0.
So we move to
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Now A = ker S¢' while B stays the same. The generators for A as a B-
module are 1, a4, as, as, a1, a3a4, a204, G203, 104, G103, G102, 20304,
a1a3ay4, 10204, 410203, A1020304.

One applies @1 to these and then computes the module of syzygies.
There are 27,730 generators for this module, and only one (!) generator for
ker Q1 Nker Sq' as an algebra, namely

ker Q1 Nker Sq¢' = Blyta; + y?2%a; + 2%ay + 2%2%as)].

The even part of this algebra is B, on which every @; clearly vanishes
(every element of B being a square in H*(G)). In conclusion

OH*(G) = Fy[z?,y?, 22).
Of course w(r;)? = ¢1(r; ® C) (i = 1,2,3), so OH*(G) is generated by
Chern classes and C*(G) = OH*(G) = ¢h*(Q).
Similar results hold for (Z/2)™ for any n, and the shortest proof is by

induction (in good cases one can use a Kiinneth formula for OH*(G), see
[23]).

Appendix A. Theoretical considerations

In this Appendix, we expose three methods that we recommend in order
to compute the Stiefel-Whitney classes. They are all “theoretical” methods,
in that in each case there are serious diffulties arising when one attempts
to carry the method into practice. What we have described up to this point
is a way to circumvent the hard work in a lot of cases.

Throughout this section, G denotes a finite group.

A.1. The Atiyah-Evens approach

Historically, Atiyah was the first to ask for a purely algebraic definition
of the Chern (rather than Stiefel-Whitney) classes: see [2]. The first answer
was provided by Evens, based on his multiplicative “norm”, see [7]. This
approach was generalized by Fulton and MacPherson in [10]. We base our
discussion on [17].

The basic strategy is as follows. Suppose that G is a 2-group. Then any
irreducible, complex representation of G is induced from a 1-dimensional
representation of a subgroup of G (see [24]). For real representations, the
corresponding statement is: any irreducible, real representation of G is in-
duced from a representation of a subgroup K of G which is either 1- or
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2-dimensional, and in either case obtained from a homomorphism K — C,
where C is a finite cyclic 2-group of roots of unity in C.

Now, the cohomology of C' is completely understood, of course. To be
precise, when C' is of order 2, it has a nontrivial real representation of real
dimension 1, and its first Stiefel-Whitney class is the only nonzero class
in H'(C,Fs); if C has order > 4, it has a real, irreducible representation
V' of dimension 2 obtained by viewing C' has a group of roots of unity,
and one has wq (V) = 0 while wy(V) = ¢1(V) is the only nonzero class in
H?(C,F3). The representation of K considered above is the “restriction”
of one of these, so the Stiefel-Whitney classes may be computed by pulling
back the classes in H*(C,F3) to H*(K,F2).

The difficult part is to obtain a formula for the Stiefel-Whitney (or
Chern) classes of an induced representation, given the corresponding classes
in the cohomology of the subgroup K. As noted above, Evens was the first
to provide such a formula, valid only for Chern classes, while Fulton and
MacPherson gave a very general statement. See also Evens and D. Kahn [§],
B. Kahn [15], and Kozlowski [16]. We give the Fulton-MacPherson formula
in the case when K has index 2 in G:

w(Ind(r)) = N(w(r)) + i[(l + 1)~ + 1N (wa(r))
d=0

There are quite a few notations to explain. Here r is a representation of K,
and e is its real dimension; Ind(r) is the representation of G induced by r.
The notation w(p) stands for the total Stiefel-Whitney class of p:

w(p) =1+ wi(p) +w2(p) +---

which is a non-homogeneous element in the cohomology of the group of
which p is a representation. Further, N is the Evens norm from K to G:
recall that this is a map H*(K,Fs) — H*(G,F3) which is neither additive
nor degree-preserving, but it is multiplicative; moreover N can be computed
algebraically, see [6]. Finally, u is the class in H*(G, Fy) determined by the
homomorphism G — G/K = Z/27.

There is also a formula when K has index greater than 2, but it is
much more complicated. It seems easier, in this case, to consider a series
of subgroups K C K1 C Ky C --- C K,, = G, each of index 2 in the next,
and to use the formula repeatedly.

¢ Pros and cons. The advantage of this method is its relative sim-
plicity (compare below). However, in practice, there is a serious obstacle
to overcome: namely, following the method may lead one to compute the
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cohomology of very many subgroups of G, together with the Evens norm
in each case. When G is large, it is an understatement to say that the
computation is discouragingly long.

A.2. The Thom construction

We shall now describe a discrete, or combinatorial, version of the Thom
construction, which also allows the computation of Stiefel-Whitney classes.

o The topological side. We recall the following well-known facts (see
[20]). Let X be any topological space, and let E be a real vector bundle
over X. Also, let Ey denote the complement of the zero-section in E. Then
there is a Thom isomorphism

T:HYX,Fy) = H""(E, Ey; Fy)

where n is the rank of F. When X is connected, so that there is a unique
nonzero element 1 € H°(X,Fy), we call T(1) € H"(E, Ey;F5) the Thom
class of E. As it turns out, the Thom isomorphism is given by cup-multipli-
cation with 7'(1).

Consider then the element S¢'T'(1). It corresponds, via the Thom iso-
morphism, to a class in H*(X,Fy). This class is w;(F) (indeed, this is a
possible definition of the Stiefel-Whitney classes).

If now X = BG and V is a real representation of G, we may consider
the universal G-principal bundle EG — BG and form from it the vector
bundle (EG x V) — BG. Call it E. Then w;(V) = w;(E).

o A finite CW complex acted on by G. Let us start with a real
vector space V of dimension n and a set of points A = {ay,...,a,} whose
affine span is all of V. We let A denote the convex hull of A, a polyhedron
inV.

A boundary plane of A will mean a hyperplane of V' which intersects the
topological boundary of A but not its interior. It follows from the Hahn-
Banach theorem that the boundary of A is the union of all the boundary
planes.

If P is a boundary plane, then ANP is the convex hull of a subset A’ C A.
When the affine span of A’ is the whole of P, we call it a supporting plane,
and A N P is called a face of A. It is not hard to show that the boundary
of A is the union of the faces.

Since each A N P is itself a polyhedron in P, one can define inductively
the k-faces of A (which are the k — 1-faces of the faces). The n-faces are

ANNALES DE L’INSTITUT FOURIER



THE COMPUTATION OF STIEFEL-WHITNEY CLASSES 601

the vertices of A, and they form a subset of A. This may be a strict subset
of A in general (say if ay is the middle of the segment from a; to ag), but
if we have chosen a Euclidean metric on V' and chosen the a;’s on the unit
sphere, then none of them can belong to the interior of any k-face, so that
the set of vertices of A is precisely A.

Topologically, A is an n-cell, and its boundary is an n — l-sphere. It
follows that the above decomposition into k-faces yields a decomposition
of A as a CW-complex, each k-face giving an n — k-cell. We let A, denote
the corresponding mod 2 cell complex. Since we need not worry about the
signs here, the boundary of a k-face is, quite simply, the sum of its faces.
Similarly, we shall write Bd(A) for the boundary of A, and Bd(A), for the
corresponding complex. The discussion above is meant to show explicitly
how to compute the above cell complexes in finite time.

The case of interest to us is that of an irreducible real representation
V of the group G, and A = {g,v,q1v,...,gv} for some nonzero v € V,
where the elements of G have been written g, ..., g,. The vector span of
A is V since V is irreducible. Assuming that V' is nontrivial, we see that
the invariant element gogv+- - -+ g, v is 0, so that the barycenter of A is the
origin in V, and it follows that the affine span of A is V. We may assume
that there is a G-equivariant Euclidean metric on V, so that the vertices
of A are the points g;v.

There is an action of G on A and also on A and A,; we see the latter as
a complex of Fy[G]-modules. Note that there is a homeomorphism from A
to the unit ball in V', carrying its boundary to the unit sphere, defined by
sending each ray emanating from the origin to a corresponding ray in the
same direction, with an appropriate rescaling. Since the action of G on V
is linear, this homeomorphism is G-equivariant.

¢ Resolutions. We continue with the notations for V and A. If P, is
any projective resolution of Fy as an F3[G]-module, we define P, to be the
cokernel of

P, ®r, Bd(A)* — P, ®p, A,.

Any chain homotopy between P, and @, yields a chain homotopy between
P, and Q.. Thus we are free to pick the projective resolution that suits our
needs.

For example, we may choose for P, the cell complex of EG, the universal
G-space. Then one knows how to put a CW structure on EG x A so that the
corresponding cell complex is just P, ® A, and likewise for EG x Bd(A).
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We see in this fashion that

H*(P.) ~ H*((FGxA)/G,(EG x Bd(A))/G;TFs)
= H*(E,E07F2>
Here F is the (total space of) the vector bundle (EG x V) /G over BG, as
above. Also, the upper star on H* (P*) is meant to indicate the homology
of the complex Homp, ¢ (P,,Fy). Therefore we have a Thom isomorphism
and in particular, we have a Thom class T(1) of degree n in H*(P,).
On the other hand, we may pick the minimal resolution as our P,. In

this way P, becomes computable.

© Steenrod operations. To complete the analogy with the topological
approach, we need to define the elements Sq¢*T(1). There is indeed an al-
gebraic definition of the Steenrod operations, in terms of the Evens norm
map: see [6]. Strictly speaking, it is only defined for projective resolutions
of a module, and our P, is no such thing. However, extending the opera-
tions to this case is relatively straightforward (it is no harder than to define
Steenrod operations on relative cohomology groups given the definition on
regular cohomology groups).

Thus we do have elements Sq'T(1) € H*(P,), and via the Thom isomor-
phism they correspond to the Stiefel-Whitney classes w; (V) € H*(G,Fy) =
H*(P). Perhaps more concretely, w; (V') is characterized as the only element
in H*(P) such that the (external) cup product w;(V) - T(1) = S¢*T(1).

¢ Pros and cons. On the pros side: there is no reference to any other
group than G, and the procedure works directly for any group, not neces-
sarily a 2-group. On the cons side, one needs to know V rather than just
its character. So we need to find matrices representing the action of each
generator of G. Clearly, this constitutes a rather heavy task and seems to
prevent en masse calculations with lots of groups and lots of representa-
tions.

A.3. The finite field trick

o Universal representations. The last idea which we present is to try
and find finite groups G,, for n = 1,2,... and for each n a real represen-
tation V,, of G, such that any real representation of any group G is the
pull-back of some V,, under some homomorphism f : G — G,,. Essentially,
we shall explain that G,, = O,,(F3) fits the purpose (under some hypotheses
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which are satisfied for us). Moreover, for a given G with a representation
V, we can take n = dim V.

Granted this, one can compute the Stiefel-Whitney classes of V,, in the
cohomology of G,,, and pull them back using f. However complicated the
computations with G,, may be, once they are done for all n < N we are able
to perform rapidly many computations with any G whose representations
are of dimension < IN. Note that the maximal dimension of an irreducible
representation of G grows much more slowly than the size of G.

¢ Reducing mod 3. We shall be concerned with real representations
of real type of a finite group G. We recall that a real representation r of
a finite group can be of real, complex, or quaternion type. In the complex
or quaternion case, r carries a complex structure, and its Stiefel-Whitney
classes can be computed from the Chern classes (see §2). In order to deal
with these Chern classes, one may follow the procedure below, replacing
O,, by GL,, and Stiefel-Whitney by Chern throughout (details left to the
reader). The real case is the more delicate one.

Now, an irreducible real representation V is of real type if and only if its
complexification is still irreducible. Alternatively, an irreducible complex
representation is the complexification of such a real representation of real
type if and only if it carries a G-equivariant symmetric bilinear form. Here
is a first application. Assume from now on that G is a 2-group. Then any
irreducible complex representation is induced from a 1-dimensional repre-
sentation of a subgroup. It follows that an irreducible real representation
V' of real type is induced from a real, 1-dimensional representation of a
subgroup. As a result, we see that V' may be realized with matrices with
integer coefficients (indeed, involving only 1, —1 and 0), and in such a way
that G preserves the symmetric bilinear form given by the identity matrix.

Therefore it makes sense to reduce all those entries mod 3, say (any
odd prime would do). We obtain a representation V of G over Fs, for
which the standard quadratic form is G-invariant. Hence we end up with a
homomorphism f : G — O, (FF3).

The group O,,(F3) has a canonical (defining) representation V;, over Fs.
It is tautological that, if V' is as above, then V = f*(V},) (here f* means
the pull-back along f).

o Going back to characteristic 0. Now we use a Brauer lift of V,,: this
is a virtual representation V,, of O, (Fs) over Zs whose mod 3 reduction
is the given V. Brauer lifts always exist according to [24]. Moreover in
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our case Quillen in [21] has observed that V,, when viewed as a represen-
tation over C, carries an O, (F3)-invariant quadratic form. Thus it is the
complexification of a real representation and it makes sense to speak of its
Stiefel-Whitney classes w;(V;,) € H*(O,,(F3),F2).

If one considers the virtual representation f*(V},) of G, one observes
that its reduction mod 3 is f*(V,,) = V. However, since G is a 2-group, the
process of reducing mod 3 is an isomorphism

RQ3 (G) e Ry, (G)

by [24]. It follows that V and f*(V},) are isomorphic over Qs; hence they are
isomorphic over C as well; since they are each, over the complex numbers,
the complexification of a (possibly virtual) real representation, it follows
that the corresponding real representations are isomorphic, and have thus
the same Stiefel-Whitney classes. The bottom line being that w;(V) =

fr(wi(Vi)).

¢ Pros and cons. Computing the Stiefel-Whitney classes of sufficiently
many V,,’s is not such a tall order. First, the computation for a given N
yields in fact the result for all n < N by restriction. Second, one need
not take N very large: say for groups of order dividing 64, the dimension
of a real representation of real type cannot be more than 4, so dealing
with O4(F3) should be enough to treat these 340 groups (to be honest, we
must recall that one must also take care of GL4(k) for some finite field &k
containing F3 in order to deal with the Chern classes). Finally, we note that
the mod 2 cohomology of O,,(F3) is rather tractable, since it is detected on
a product of dihedral groups (which are well-understood), see [9]. It is an
issue in practical terms, however, that we need to find explicit cocycles for
these Stiefel-Whitney classes.

A significant disadvantage is, as above, that we need to know V in terms
of matrices, rather than just its character, if we are to compute the map f.
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