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CLASSIFICATION OF STRICT
WONDERFUL VARIETIES

by Paolo BRAVI & Stéphanie CUPIT-FOUTOU

Abstract. — In the setting of strict wonderful varieties we prove Luna’s con-
jecture, saying that wonderful varieties are classified by combinatorial objects, the
so-called spherical systems. In particular, we prove that primitive strict wonderful
varieties are mostly obtained from symmetric spaces, spherical nilpotent orbits and
model spaces. To make the paper as self-contained as possible, we also gather some
known results on these families and more generally on wonderful varieties.

Résumé. — D’après la conjecture de Luna, les variétés magnifiques peuvent
être classifiées en termes d’objets combinatoires, les systèmes sphériques. Dans le
présent article, nous prouvons cette conjecture dans le cas des variétés magnifiques
dites strictes. Nous montrons, en particulier, que les variétés magnifiques strictes
et primitives sont, pour la plupart, des variétés symétriques, des orbites nilpo-
tentes sphériques ou des espaces modèles. Afin de faciliter la lecture de cet article,
nous rappelons quelques faits connus sur ces variétés et, plus généralement, sur les
variétés magnifiques.

1. Introduction

First examples of wonderful varieties appeared in enumerative geometry
with the so-called variety of complete quadrics in the complex projective
space Pn. This variety is a compactification of the set of non-degenerate
quadrics as an algebraic subset of some given projective space. It has beau-
tiful properties like being smooth, having finitely many orbits under the ac-
tion of the automorphism group PSLn+1 of Pn... The set of non-degenerate
quadrics is isomorphic to the symmetric space PSLn+1/PSOn+1. General-
isations of the variety of complete quadrics were constructed and studied by
De Concini and Procesi in [10] as they considered more general symmetric
spaces.

Keywords: Spherical varieties, wonderful varieties, symmetric varieties, spherical nilpo-
tent orbits, model spaces.
Math. classification: 14M27, 14L30, 20G05.
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In [19], Luna and Vust developed a general theory on embeddings of
homogeneous spaces for algebraic groups. This theory is particularly well-
developed in the context of spherical algebraic varieties (e.g. toric varieties,
flag varieties, symmetric varieties,...) and can be seen as a generalisation
of the combinatorics of toric varieties.

Complete embeddings sharing the properties of De Concini-Procesi com-
pactifications are called wonderful varieties. Luna proved that wonderful
varieties were spherical ([16]) and that they played a central role in the
study of spherical varieties ([17]). After rank 1 and 2 wonderful varieties
were classified (by Ahiezer [1] and Wasserman [28] respectively), Luna in-
troduced in [17] combinatorial invariants, the spherical systems, that he
was able to attach to any wonderful variety. Conversely, he conjectured in
loc. cit. that wonderful varieties could be classified by these spherical sys-
tems. Only for particular acting groups, positive answers to this conjecture
have been obtained (see loc. cit., [6, 3]). For any group, the fact that non-
isomorphic wonderful varieties have different spherical systems has recently
been proved by Losev ([15], see also Section 6.2).

To any spherical homogeneous space, say G/H with G a reductive alge-
braic group, one can naturally assign a wonderful variety: take the wonder-
ful embedding of G/NG(H) where NG(H) is the normaliser of H in G. This
wonderful embedding exists by a result of Knop ([13]) and it is unique.

Here we are interested in wonderful varieties whose every point has a self-
normalising stabiliser. This property can be read off the associated spherical
system. Spherical systems and wonderful varieties satisfying this property
are called strict.

In this paper, we positively answer to Luna’s conjecture for a slightly
more general class of spherical systems: we prove that to every such spher-
ical system, there corresponds a (unique) wonderful variety.

It is known that for many purposes the study of wonderful varieties can
be reduced to that of the so-called primitive wonderful varieties.

We show that most of the strict primitive wonderful varieties come either
from an affine spherical homogeneous space (and often in particular from
a symmetric variety), from a spherical nilpotent adjoint orbit or from a
model homogeneous space.

This paper is an expansion of Section 6 of [4].

Organisation of the paper. In the second section, we gather defi-
nitions and results related to wonderful and spherical varieties. We also
introduce strict wonderful varieties. Some classes of examples of spheri-
cal varieties are given; their properties and their classification are recalled
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CLASSIFICATION OF STRICT WONDERFUL VARIETIES 643

with more details left to the corresponding appendices. In the third sec-
tion, following Luna, we introduce several combinatorial invariants: strict
spherical systems and their colours. In the fourth section we state Luna’s
dictionary which relates some geometrical properties of wonderful varieties
to combinatorial properties of their spherical systems. The fifth section is
devoted to the main result of this paper; we give in particular the list of
all primitive spherical systems without simple spherical roots with their
corresponding wonderful subgroups. The last section is dedicated to the
proofs of our results.

Acknowledgments. Both authors would like to thank P. Littelmann
and D. Luna for helpful discussions, suggestions and support. They are
also grateful to the anonymous referee for his careful reading and valuable
comments.

Main notation. In the following, G is a connected reductive complex
algebraic group and T is a maximal torus of G. We fix a Borel subgroup
B containing T and denote by B− its opposite, that is B ∩B− = T . Let Φ
be the root system of G corresponding to T and S the set of simple roots
associated to B (numbered as in Bourbaki, [2]). The coroot of the root α
is denoted by α∨.

2. Wonderful varieties

2.1. Definitions

In this section we freely recall from [12, 8, 17] notions and results on
spherical varieties with particular attention to wonderful varieties.

Definition 2.1. — An (irreducible) algebraic G-variety X is said to be
wonderful of rank r if

(i) it is smooth and complete,
(ii) it has an open G-orbit whose complement is the union of smooth

prime G-divisors Di (i = 1, . . . , r) with normal crossings and such
that ∩r1Di 6= ∅,

(iii) if x, x′ are such that {i : x ∈ Di} = {i : x′ ∈ Di} then G.x = G.x′.

We shall say that a subgroup H of G (or G/H itself) is wonderful if
the homogeneous space G/H has a wonderful embedding, that is if G/H
can be realised as the dense G-orbit of a wonderful variety. This wonderful
embedding is unique (up to isomorphism).

TOME 60 (2010), FASCICULE 2
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The radical of G always acts trivially on a wonderful variety.
Note that the flag varieties are wonderful of rank 0. More generally,

wonderful varieties are projective and spherical (see [16]).
The terminology spherical means for an algebraic G-variety that it is

normal and has a dense B-orbit (e.g. normal toric varieties). It follows that
spherical varieties have finitely many B-orbits.

A subgroup H of G is called spherical if G/H is spherical. Up to a change
of representative in the conjugation class of H in G, one may assume that
BH is open in G.

For a given spherical G-variety X we will usually denote by H its generic
stabiliser, that is the stabiliser of a point in the dense G-orbit of X.

Colours. The set ∆X of colours of X is defined as the set of irreducible
components of the complementary in G/H of the dense B-orbit. Note that
this B-orbit is affine like every B-orbit, and so the colours are divisors of
G/H.

Let PX denote the stabiliser of the colours ofX, it is a parabolic subgroup
containing B.

Spherical roots. Consider the field C(X) of rational functions on X
endowed with the dual action of G:

(g.f)(x) = f(g−1.x) for f ∈ C(X), g ∈ G and x ∈ X.

Denote by ΞX the lattice formed by the weights of the B-eigenvectors in
C(X).

Let VX be the set of G-invariant Q-valued discrete valuations of C(X);
where a G-invariant valuation v is a valuation with the property that
v(g.f) = v(f) for any g ∈ G and f ∈ C(X). We will regard VX as a
subset of Hom(ΞX ,Q) via the injective map ρ defined by:

ρ(ν)(γ) = ν(fγ)

where fγ is a B-eigenvector of weight γ. Note that fγ is uniquely determined
up to scalar multiple. Moreover, VX is a simplicial cone in Hom(ΞX ,Q).

The set ΣX of spherical roots of X is defined as the set of primitive
elements of ΞX such that

VX = {χ ∈ Hom(ΞX ,Q) : χ(σ) 6 0, for all σ ∈ ΣX}.

Suppose X is wonderful. Then the spherical roots of X may also be
defined as the T -weights of TyX/TyY where y is the point fixed by the
Borel subgroup B− in Y , the (unique) closed G-orbit of X. Further, the
set ΣX is then a basis of the lattice ΞX .

ANNALES DE L’INSTITUT FOURIER
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Rank 1 wonderful varieties were classified by Ahiezer in [1]. As a con-
sequence the possible spherical roots are all known; if G is adjoint (i.e.,
of trivial centre), each spherical root is either a positive root or a sum of
two such roots. In Section 3.3, we have reproduced from [28] the list of all
spherical roots, for G adjoint, except the spherical root which is as well a
simple root.

Definition 2.2. — A wonderful variety X is called strict if each of its
points has a selfnormalising stabiliser.

This condition is equivalent to that given in Section 3 in terms of colours
and spherical roots. Pezzini proved that the strict wonderful varieties are
exactly the wonderful varieties which have a simple immersion i.e., those
that can be embedded in the projectivisation of a simple G-module (see
[24]). Such varieties appear also in [5] (see also Section 6.2).

Recall that in general the normaliser of a spherical subgroup is selfnor-
malising. A selfnormalising spherical subgroup is wonderful (Corollary 7.6
in [13]); and a wonderful subgroup necessarily has finite index in its nor-
maliser.

In the literature, important families of spherical varieties have already
appeared: symmetric varieties, spherical nilpotent orbits in simple Lie al-
gebras, model homogeneous spaces. In the following, we shall gather some
of their well-known properties. Further details can be found in the corre-
sponding appendices.

2.2. Symmetric spaces

Let σ be a non-identical involution of G and Gσ be the corresponding
fixed point subset of G. If H is a subgroup of G such that

Gσ ⊆ H ⊆ NG(Gσ)

then the homogeneous space G/H is called symmetric or H is called a
symmetric subgroup of G. Here NG(Gσ) stands for the normaliser of Gσ
in G.

De Concini and Procesi proved in [10] that selfnormalising symmetric
subgroups are wonderful. More generally, symmetric subgroups are spher-
ical by [27]. Further Gσ is connected (if G is simply connected), reductive
and of finite index in its normaliser (if G is semisimple), [25].

The classification of involutions of G was established by Cartan in the
1920es. Vust described in [27] the valuation cone and the colours associated
to a symmetric space. We shall recall these results in Appendix A.

TOME 60 (2010), FASCICULE 2
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2.3. Spherical nilpotent orbits

Let G be semisimple. Consider the adjoint action of G: G acts by con-
jugation on its Lie algebra g. Panyushev characterises in [21] (see also [22]
for a classification-free proof) the adjoint nilpotent orbits in g which are
G-spherical and provides the list of spherical nilpotent orbits. More specif-
ically, he proves that an adjoint nilpotent orbit G.e is spherical if and only
if (ad e)4 = 0.

In Appendix B we reproduce the list obtained in [21] of nilpotent spher-
ical orbits of height 3, i.e., with (ad e)3 6= 0.

2.4. Model spaces

A quasi-affine homogeneous space G/H is called model if its algebra of
regular functions decomposes as aG-module into the multiplicity-free direct
sum of all simple G-modules. In particular, the subgroup H is spherical (see
[8]).

Let us suppose G to be semisimple. The main theorem of [18] states that
there exists a strict wonderful G-variety X, the model variety, parametris-
ing model G-homogeneous spaces explicitly as follows.

If the homogeneous space G/H is model then H stabilises a unique point
in X whose stabiliser equals NG(H). And, conversely, for all x ∈ X the
homogeneous space G/(Gx)] is model with NG((Gx)]) = Gx. Here (Gx)]
stands for the intersection of the kernels of all characters of Gx.

Luna obtained an explicit description of the principal model homoge-
neous spaces G/(Gx)], namely those with x in the dense orbit of the model
variety X, for any G. We report the generic stabiliser Gx of X in detail in
Appendix C, for G simply connected.

3. Spherical systems

Throughout this section, G is assumed to be semisimple.

Definition 3.1. — A strict spherical system for G is a couple consisting
of a subset Sp of simple roots, a set Σ of spherical roots for G (namely T -
weights that are the spherical root of a rank 1 wonderful G-variety) which
satisfies the following properties.

(Σ1) If 2α ∈ Σ ∩ 2S then 1
2 〈α
∨, γ〉 is a non-positive integer for every

γ ∈ Σ \ {2α}.

ANNALES DE L’INSTITUT FOURIER



CLASSIFICATION OF STRICT WONDERFUL VARIETIES 647

(Σ2) If α, β ∈ S are orthogonal and α+β ∈ Σ then 〈α∨, γ〉 = 〈β∨, γ〉 for
every γ ∈ Σ.

(S) For every γ ∈ Σ, there exists a rank 1 wonderful G-variety X with γ
as spherical root and Sp equal to the set of simple roots associated
to PX .

(R) For every γ ∈ Σ, there exists no rank 1 wonderful G-variety X
with 2γ as spherical root and Sp equal to the set of simple roots
associated to PX .

It follows readily from the list of rank 1 wonderful varieties in [28] that
condition (R) implies that the set Σ of spherical roots can not contain
simple roots, that is,
(R’) Σ ∩ S = ∅.

Definition 3.2. — A spherical system for G without simple spherical
roots is a couple (Sp,Σ) as above satisfying conditions (Σ1), (Σ2), (S) and
(R’).

In the following we will consider spherical systems without simple spher-
ical roots. These are slightly (but strictly) more general objects than strict
spherical systems.

In full generality, a spherical system is defined by Luna as a triple (Sp,
Σ, A) with Sp and Σ as above satisfying conditions (Σ1), (Σ2) and (S).
The datum A is a multiset of functionals on ZΣ related to the simple roots
in Σ with some extra conditions (see Section 2.1 in [17] for details).

A spherical system without simple spherical roots is thus a spherical
system in Luna’s sense of shape (Sp,Σ, ∅).

By abuse of language, we shall say that a couple is a spherical system
whenever it is a spherical system without simple spherical roots.

3.1. Colours associated to a spherical system

The set of colours ∆ of a given spherical system (Sp,Σ) is defined as

∆ = (S \ Sp) / ∼

with α ∼ β whenever α ⊥ β and α+ β ∈ Σ.
To avoid any confusion, the elements of ∆ are denoted rather by Dα

than by α. Hence, we have Dα = Dβ if α ∼ β.
Define a Z-linear map ρ : Z∆→ (ZΣ)∗ as follows, for all γ ∈ ZΣ.

〈ρ(Dα), γ〉 =
{ 1

2 〈α
∨, γ〉 if 2α ∈ Σ

〈α∨, γ〉 otherwise.

TOME 60 (2010), FASCICULE 2



648 Paolo BRAVI & Stéphanie CUPIT-FOUTOU

3.2. The spherical system of a wonderful variety

Let X be a wonderful G-variety and ∆X be its set of colours, then
Pic(X) ∼= Z∆X . Let PX be the stabiliser of the colours of X. The colours
being B-stable, the subgroup PX is a parabolic subgroup containing B.
Recall that such parabolic subgroups are in correspondence with subsets of
the set S of simple roots. Denote by SpX the set of simple roots associated
to PX .

Suppose that the set ΣX of spherical roots of X does not contain simple
roots.

Define the map ρX : Z∆X → Ξ∗X by 〈ρX(D), γ〉 = vD(fγ), where vD is
the valuation associated to the divisor D and fγ is the B-eigenvector of
weight γ in C(X) (uniquely determined up to a scalar).

The pair (SpX ,ΣX) is a spherical system for G and ∆X is its set of colours.
It is usually referred as the spherical system of X; by analogy the spherical
system of a wonderful homogeneous space means that of the corresponding
wonderful embedding. Further the map ρX is the map ρ defined in the
previous section. See Section 7 in [17] for details and for the more general
case of an arbitrary wonderful variety.

Remark 3.3. — A wonderful variety without simple spherical roots with
selfnormalising generic stabiliser is strict. This follows from the combina-
torial characterisation of the spherical systems of the selfnormalising won-
derful subgroups, see for example [15], Theorem 2.

3.3. Luna’s diagrams

Let G be of adjoint type. Following [17] (Section 4.1), one can assign
to each spherical system a diagram built on the Dynkin diagram of G. A
colour D = Dα is represented by a circle drawn under (resp. around) the
vertex α if 2α ∈ Σ (resp. otherwise). Whenever D = Dα = Dβ , we join
the corresponding circles by a line. The spherical roots are represented by
shadowing some of the above circles or adding some zig-zag line or some
number “2” as below; more specifically, we list in the following the rank 1
spherical systems with Supp(Σ) = S, as in [28], with their corresponding
diagrams. For convenience, we also provide a labeling of these spherical
systems inspired by that introduced in [17].

ANNALES DE L’INSTITUT FOURIER
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Type A
a(n) n > 2, Sp = S \ {α1, αn}, Σ = {α1 + · · ·+ αn}.q q q qq qq q q qe epppppppppppppppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp p p
a′(1), SP = ∅, Σ = {2α1}. qe
aa(1,1), Sp = ∅, Σ = {α1 + α′1}.qe qe
d(3), Sp = {α1, α3}, Σ = {α1 + 2α2 + α3}.q qq qep pp p pp p p pp p pp p p pp p pp p

Type B
b(n) n > 2, Sp = S \ {α1}, Σ = {α1 + · · ·+ αn}.q q q qq q q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p
b′(n) n > 2, Sp = S \ {α1}, Σ = {2α1 + · · ·+ 2αn}.q q q qq q q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p2
b∗(n) n > 2, Sp = S \ {α1α2}, Σ = {α1 + · · ·+ αn}.q q q qq q q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p e
b∗∗(3), Sp = {α1, α2}, Σ = {α1 + 2α2 + 3α3}.q qq qpppppppppp pppppppppp eppp p pp p p pp p pp p p pp p pp p

Type C
c(n) n > 3, Sp = S \{α2}, Σ = {α1 +2α2 + · · ·+2αi+ · · ·+2αn−1 +αn}.q qq qq qq qq qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p
c∗(n) n > 3, Sp = S \{α1, α2}, Σ = {α1 +2α2 + · · ·+2αi+ · · ·+2αn−1 +
αn}. eq qq qq qq qq qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p
Type D

d(n) n > 4, Sp = S\{α1}, Σ = {2α1+· · ·+2αi+· · ·+2αn−2+αn−1+αn}.eppp p pp p p pp p pp p p pp p pp pq q q qq q q
q

��

@@

There are no spherical roots with support of type E.

TOME 60 (2010), FASCICULE 2
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Type F

f(4), Sp = {α1, α2, α3}, Σ = {α1 + 2α2 + 3α3 + 2α4}.q q q qq qpppppppppp pppppppppp eppp p pp p p pp p pp p p pp p pp p
Type G

g(2), Sp = {α2}, Σ = {2α1 + α2}.q qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p
g′(2), Sp = {α2}, Σ = {4α1 + 2α2}.

q qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p2
g∗(2), Sp = ∅, Σ = {α1 + α2}. q qpppppppppppppppppppp eppp p pp p p pp p pp p p pp p pp pe

For notational convenience, set d(2) = aa(1, 1), b′(1) = a′(1), c∗(2) = b∗(2).

4. Combinatorial dictionary of wonderful varieties

In the following we briefly recall the correspondence established by Luna
between geometrical features of a wonderful variety and some properties
of its spherical system. The statements are reported only in the setting
of spherical systems without simple roots. The proofs rely mainly on the
theory of homogeneous embeddings developed in [19] in terms of combina-
torial objects, the so-called coloured fans, which generalise the notion of fan
associated to a toric variety. We shall not recall the proofs; see Section 3
in [17] for details.

In the remainder, ∆ is the set of colours of a given spherical system
(Sp,Σ).

Further, we shall denote by Supp γ the support of a spherical root γ
which is defined as the set of simple roots α such that γ =

∑
nαα with

nα 6= 0. More generally the support of a set of spherical roots is defined as
the union of the supports of its elements.

ANNALES DE L’INSTITUT FOURIER
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4.1. Localisation

The localisation of (Sp,Σ) at S′ for S′ ⊂ S is the spherical system
(Sp ∩ S′,Σ′) where Σ′ is the set of spherical roots in Σ whose support is
contained in S′.

Given a wonderful variety X with spherical system (Sp,Σ) and S′ a
subset of S. Consider the Levi subgroup L = PS′ ∩ P−S′ . Let C ′ be the
connected centre of L and z the unique point of X fixed by the Borel
subgroup B−. The connected component XS′ of the fixed point set XC′

containing z is a wonderful L-variety having the localisation of (Sp,Σ) at
S′ as its spherical system.

4.2. Quotient

A subset ∆′ of ∆ is said to be distinguished if there exists φ ∈ Z>0∆′
such that

〈ρ(φ), γ〉 > 0 for all γ ∈ Σ.
For a given distinguished subset ∆′ of ∆, one defines:

Sp/∆′ = Sp ∪ {α ∈ S : Dα ∈ ∆′}

Σ/∆′ as the set of indecomposable elements of the semigroup given by the
elements in Z>0Σ which are annihilated by ρ(D) for each D in ∆′.

If the couple (Sp/∆′, Σ/∆′) is a spherical system, it is called the quotient
spherical system of (Sp,Σ) by ∆′.

Given a wonderful variety X, let (Sp,Σ) and ∆ be respectively its spher-
ical system and its set of colours. If ϕ : X → X ′ is a surjective G-morphism
and X ′ is a wonderful G-variety, we shall denote by ∆ϕ the set of colours
of X that are mapped dominantly onto X ′.

Proposition 4.1 ([17], Proposition 3.3.2).
(i) The set ∆ϕ is a distinguished subset of ∆X . Further, if the mor-

phism ϕ has connected fibers then X ′ has (Sp/∆ϕ,Σ/∆ϕ) as spher-
ical system.

(ii) Conversely, let ∆′ be a distinguished subset of ∆ with quotient
spherical system (Sp/∆′,Σ/∆′). Then there exist a unique (up to
isomorphism) wonderful variety with spherical system (Sp/∆′,Σ/∆′)
as well as a unique surjective morphism ϕ : X → X ′ with connected
fibers such that ∆ϕ = ∆′.

TOME 60 (2010), FASCICULE 2
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A distinguished subset ∆′ of ∆ is said to be smooth if Σ/∆′ is a subset
of Σ.

Proposition 4.2 ([17], Proposition 3.3.3). — Let ϕ : X → X ′ be a
morphism with connected fibers between two wonderful G-varieties. The
morphism ϕ is smooth if and only if the subset ∆ϕ is smooth.

4.3. Parabolic induction

Let P be a parabolic subgroup of G. Suppose that X is a wonderful G-
variety and there exists a morphisms X → G/P whose fiber Y over P/P
is acted on trivially by the radical of P . Then Y is a wonderful variety (for
a Levi subgroup of P ) and X is isomorphic to G ×P Y , the fiber bundle
over G/P defined as the quotient of G× Y by the P -action

p.(g, y) = (g.p−1, p.y) for p ∈ P and (g, y) ∈ G× Y .

The variety X is then said to be obtained by parabolic induction from
Y by P .

A subset ∆′ of ∆ is said to be homogeneous if it is distinguished and
such that Σ/∆′ = ∅. Denote by ∅(∆) the set given by the Dα’s with α ∈
Supp(Σ). Note that subsets of ∆ containing ∅(∆) are homogeneous.

Proposition 4.3 ([17], Propositions 3.3.3 and 3.4). — Given a won-
derful G-variety X, let (Sp,Σ) be its spherical system and ∆ its set of
colours.

The homogeneous subsets of ∆ are in one-to-one correspondence with the
morphisms ϕ : X → G/P where P is parabolic in G. Further, the subsets
of ∆ containing ∅(∆) are in one-to-one correspondence with the morphisms
ϕ where X is obtained by parabolic induction from ϕ−1(P/P ) by P .

Therefore, a wonderful variety X can be obtained by (non-trivial) para-
bolic induction if and only if Supp(ΣX) 6⊥ (S \ Supp(ΣX)).

A spherical system is said to be cuspidal if Supp(Σ) = S.

4.4. Decomposable spherical systems

Let ∆1 and ∆2 be two distinguished non-empty subsets of ∆. The set
∆3 = ∆1 ∪ ∆2 is thus obviously distinguished. The subsets ∆1 and ∆2
decompose the spherical system (Sp,Σ) if:

ANNALES DE L’INSTITUT FOURIER
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(i) ∆1 ∩∆2 = ∅,
(ii) (Σ \ (Σ/∆1)) ∩ (Σ \ (Σ/∆2)) = ∅,
(iii) ((Sp/∆1) \ Sp) ⊥ ((Sp/∆2) \ Sp),
(iv) ∆1 or ∆2 is smooth.

Proposition 4.4 ([17], Proposition 3.5). — Suppose ∆1 and ∆2 de-
compose a given spherical system (Sp,Σ). Assume also that there exists a
wonderful G-variety Xi with spherical system (Sp/∆i,Σ/∆i) for i = 1, 2, 3.
Then X1 ×X3 X2 is a wonderful G-variety with spherical system (Sp,Σ).

5. Classification of strict wonderful varieties

Theorem 5.1. — Let G be a semisimple group of adjoint type. To any
spherical system (Sp,Σ) for G, where the set of spherical roots Σ contains
no simple root, there corresponds a (unique up to G-isomorphism) won-
derful G-variety. In particular, strict wonderful varieties are in bĳective
correspondence with strict spherical systems.

The above assertion was conjectured by Luna. His conjecture is stated
more generally for any wonderful variety and any spherical system (see
Appendix A.2.2 in [18]), and can be suitably generalised to any semisim-
ple group G not necessarily of adjoint type. Losev recently proved the
uniqueness part of the general conjecture ([15]). We propose an alternative
approach in case of strict wonderful varieties (see Section 6.2).

A cuspidal and indecomposable spherical system is called primitive.
By the results recalled in Section 4, it is enough to prove Theorem 5.1

for primitive spherical systems.
Primitive spherical systems (without simple spherical roots) and their

corresponding wonderful subgroups are listed in Section 5.1.
If G is simply connected and G/H is

– a symmetric space,
– an adjoint nilpotent orbit of height 3 in g

– or a principal model homogeneous space
then G/H =

∏
iGi/Hi and it appears that, for all i, the normaliser of Hi

is in the list of primitive cases.
These three families (are not disjoint and) do not cover all the primitive

cases.
There are primitive cases whose corresponding wonderful subgroup is

the normaliser of some H with G/H a non-symmetric affine homogeneous
space, namely:
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– SL(n + 1)/Sp(n) for n even (this is also a model homogeneous
space),

– Spin(2n+1)/GL(n) (here G/NG(H) is a model homogeneous space
for G adjoint),

– Spin(7)/G2,
– Spin(9)/Spin(7),
– SL(2)× Sp(2n)/SL(2)× Sp(2n− 2),
– Sp(2n1)× Sp(2n2)/SL(2)× Sp(2n1 − 2)× Sp(2n2 − 2),
– Sp(2n)/GL(1)× Sp(2n− 2),
– Spin(8)/G2,
– G2/SL(3).

Furthermore, in the primitive cases listed in Section 5.1 as
(12), (16), (18) for p even, (26), (27), (28), (31) for q > 2, (39), (42), (43)
for p even, (58) and (59)
the wonderful subgroup is selfnormalising but does not belong to any of
the above families.

Finally, there are some primitive cases where the wonderful subgroup is
not selfnormalising, namely
(10), (15), (17), (24) for q = 2, (64).
By Remark 3.3, these are exactly the non-strict primitive spherical systems
(without simple spherical roots).

5.1. The list of primitive cases

To simplify the notation, let us take G simply connected. We report
below spherical systems for G/ZG, where ZG is the centre of G, hence Σ
will be included in the root lattice. Therefore, the generic stabiliser H of a
wonderful variety with such a spherical system will always contain ZG.

After each spherical system we describe the corresponding subgroup H
of G. Naturally, G is the simply connected group with the given Dynkin
diagram.

Type A.
(1) aa(p,p), p > 1, Sp = ∅, Σ = {α1 + α′1, . . . , αi + α′i, . . . , αp + α′p}.
H = SL(p+ 1) · ZG (symmetric subgroup).

q q q qq qe e e e
q q q qq qe e e e
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(2) ao(n), n > 1, Sp = ∅, Σ = {2α1, . . . , 2αi, . . . , 2αn}. H = SO(n +
1) · ZG (symmetric subgroup).q q q qq qqe qe qe qe

(3) ac(n), n > 3 odd, Sp = {α1, . . . , α2i−1, α2i+1, . . . , αn}, Σ = {α1 +
2α2 + α3, . . . , α2i−1 + 2α2i + α2i+1, . . . , αn−2 + 2αn−1 + αn}. H =
Sp(n+ 1) · ZG (symmetric subgroup).eppp p pp p p pp p pp p p pp p pp pq qq qq q ep pp p pp p p pp p pp p p pp p pp pq qq q

(4) aa(p + q + p), n = 2p+ q, p > 1, q > 2, Sp = {αp+2, . . . , αp+q−1},
Σ = {α1 +αn, . . . , αi+αn+1−i, . . . , αp+αp+q+1;αp+1 + · · ·+αp+q}.
H = (GL(p+ q)×GL(p+ 1)) ∩G (symmetric subgroup).q q q qq q q qq q q qq qq q q qe epppppppppppppppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp p pe ee e

(5) aa′(p + 1 + p), n = 2p+ 1, p > 1, Sp = ∅, Σ = {α1 + αn, . . . , αi +
αn+1−i, . . . , αp + αp+2; 2αp+1}. H = NG(SL(p + 1) × SL(p + 1))
(symmetric subgroup).q q q qq qq qqee ee e

(6) a(n), n > 2, Sp = {α2, . . . , αn−1}, Σ = {α1 + · · ·+αn}. H = GL(n)
(symmetric subgroup). q q q qq qq q q qe epppppppppppppppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp p p

(7) ac∗(n), n > 3, Sp = ∅, Σ = {α1 +α2, . . . , αi+αi+1, . . . , αn−1 +αn}.
– n odd:H is the parabolic subgroup of semisimple type C(n−1)/2

of the symmetric subgroup Sp(n+ 1) · ZG.
– n even: H = Sp(n)×GL(1).q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppq qpppppppppppppppppppp pppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppppppppp

Type B.
(8) bb(p,p), p > 2, Sp = ∅, Σ = {α1 + α′1, . . . , αi + α′i, . . . , αp + α′p}.
H = Spin(2p+ 1) · ZG (symmetric subgroup).

q q q qq qpppppppppp ppppppppppq qe e e e e
q q q qq qpppppppppp ppppppppppq qe e e e e

(9) bo(p + q), n = p + q, p > 1, q > 1, Sp = {αp+2, . . . , αn}, Σ =
{2α1, . . . , 2αi, . . . , 2αp; 2αp+1 + · · · + 2αn}. H = Spin(p + 1) ×
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Spin(2n− p) (symmetric subgroup).q q q qq qqe qe qe q q q qq q q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p2
(10) b(n), n > 2, Sp = S \ {α1}, Σ = {α1 + · · · + αn}. H = Spin(2n)

(symmetric subgroup).q q q qq q q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p
(11) b′(n), n > 2, Sp = S \ {α1}, Σ = {2α1 + · · · + 2αn}. H =

NG(Spin(2n)) (symmetric subgroup).q q q qq q q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p2
(12) b∗(n), n > 2, Sp = {α2, . . . , αn−1}, Σ = {α1 + · · · + αn}. H is

the parabolic subgroup of semisimple type An−1 of the symmetric
subgroup Spin(2n). q q q qq q q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p e

(13) bc∗(n), n > 3, Sp = ∅, Σ = {α1 +α2, . . . , αi+αi+1, . . . , αn−1 +αn}.
– n odd: H is the stabiliser of the line [e] ∈ P(g), where e

is a nilpotent element in the adjoint orbit of characteristic
(10 . . . 01).

– n even: H ⊂ P , where P is the parabolic subgroup of semisim-
ple type An−1 in the symmetric subgroup Spin(2n), H has the
same radical and semisimple type Cn/2.q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p eq qpppppppppppppppppppp pppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppppppppp

(14) bc′(n), n > 2, Sp = ∅, Σ = {α1 + α2, . . . , αi + αi+1, . . . , αn−1 +
αn; 2αn}. H = NG(GL(n)).q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppq qpppppppppppppppppppp pppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppppppppp q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p qe

(15) a(p) + b(q), n = p + q, p > 2, q > 2, Sp = {α2, . . . , αp−1; αp+2,
. . . , αn}, Σ = {α1 + · · · + αp, αp+1 + · · · + αn}. H is the para-
bolic subgroup of semisimple type Ap−1 × Dn−p in the symmetric
subgroup Spin(2n), of index 2 in its normaliser.q q q qq qq q q qe epppppppppppppppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp p p q qq q q qq q q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p

(16) a(p) + b′(q), n = p + q, p > 2, q > 1, Sp = {α2, . . . , αp−1; αp+2,
. . . , αn}, Σ = {α1 + · · ·+αp, 2αp+1 + · · ·+2αn}. H is the normaliser
of the wonderful subgroup of case (15).q q q qq qq q q qe epppppppppppppppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp p p q qq q q qq q q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p2
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(17) ac∗(p) + b(q), n = p + q, p > 2, q > 2, Sp = {αp+2, . . . , αn},
Σ = {α1 + α2, . . . , αi + αi+1, . . . , αp−1 + αp;αp+1 + · · · + αn}. H
has index 2 in its normaliser, the wonderful subgroup of case (18).q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qq qpppppppppppppppppppp pppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppppppppp q q q qq q q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p

(18) ac∗(p) + b′(q), n = p + q, p > 2, q > 1, Sp = {αp+2, . . . , αn},
Σ = {α1 + α2, . . . , αi + αi+1, . . . , αp−1 + αp; 2αp+1 + · · ·+ 2αn}.

– p even: H ⊂ P , where P is the parabolic subgroup of semisim-
ple type Ap−1 × Dn−p in the symmetric subgroup Spin(2n),
H has the same radical, semisimple type Cp/2 × Dn−p and is
selfnormalising.

– p odd: H is the stabiliser of the line [e] ∈ P(g), where e
is a nilpotent element in the adjoint orbit of characteristic
(10 . . . 010 . . . 0), with αp(h) = 1.q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qq qpppppppppppppppppppp pppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppppppppp q q q qq q q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p2

(19) b∗∗(3), Sp = {α1, α2}, Σ = {α1 + 2α2 + 3α3}. H = G2 · ZG.q qq qpppppppppp pppppppppp eppp p pp p p pp p pp p p pp p pp p
(20) b∗(4) + b∗∗(3), Sp = {α2, α3}, Σ = {α1 +α2 +α3 +α4, α2 + 2α3 +

3α4}. H = Spin(7) · ZG.q qq qq qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p ep pp p pp p p pp p pp p p pp p pp p
Type C.
(21) cc(p,p), p > 3, Sp = ∅, Σ = {α1 + α′1, . . . , αi + α′i, . . . , αp + α′p}.

H = Sp(2p) · ZG (symmetric subgroup).

q q q qq qppppppppppppppppppppq qe e e e e
q q q qq qppppppppppppppppppppq qe e e e e

(22) co(n), n > 3, Sp=∅, Σ={2α1, . . . , 2αi, . . . , 2αn}. H = NG(GL(n))
(symmetric subgroup).q q q qq qqe qe qe qe qeq qpppppppppppppppppppp

(23) c(n), n > 3, Sp = S \ {α2}, Σ = {α1 + 2α2 + · · · + 2αi + · · · +
2αn−1 + αn}. H = SL(2)× Sp(2n− 2) (symmetric subgroup).q qq qq qq qq qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p

(24) cc(p + q), n = p+q, p > 2 even, q > 2, Sp = {α1, . . . , α2i−1, α2i+1,

. . . , αp+1; αp+3, . . . , αn}, Σ = {α1 + 2α2 + α3, . . . , α2i−1 + 2α2i +
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α2i+1, . . . , αp−1 + 2αp + αp+1; αp+1 + 2αp+2 + · · ·+ 2αn−1 + αn}.
H = Sp(p+ 2)× Sp(2n− p− 2) (symmetric subgroup).eppp p pp p p pp p pp p p pp p pp pq qq qq q ep pp p pp p p pp p pp p p pp p pp pq qq qq qq qq qq qq qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p

(25) cc′(p + 2), n = p + 2 > 4 even, Sp = {α1, . . . , α2i−1, α2i+1,
. . . , αn−1}, Σ = {α1 + 2α2 + α3, . . . , α2i−1 + 2α2i + α2i+1, . . . ,
αn−3 + 2αn−2 + αn−1; 2αn−1 + 2αn}. H = NG(Sp(n) × Sp(n))
(symmetric subgroup).eppp p pp p p pp p pp p p pp p pp pq qq qq q ep pp p pp p p pp p pp p p pp p pp pq qq qq qpppppppppppppppppppp eppp p pp p p pp p pp p p pp p pp p2

(26) c∗(n), n > 3, Sp = {α3, . . . , αn}, Σ = {α1 + 2α2 + · · ·+ 2αi+ · · ·+
2αn−1 +αn}. H is the parabolic subgroup of semisimple type Cn−1
in the symmetric subgroup SL(2)× Sp(2n− 2).eq qq qq qq qq qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p

(27) ca(1 + q + 1), n = q + 2, q > 2, Sp = {α3, . . . , αq}, Σ = {α1 +
αn, α2 + · · · + αn−1}. H is the parabolic subgroup of semisimple
type An−2 × A1 in the symmetric subgroup SL(2)× Sp(2n− 2).q qq q q qq qq q q qe epppppppppppppppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp p pe eq qpppppppppppppppppppp

(28) aa(1 + p + 1) + c∗(q), n = p+q+1, p > 2, q > 2, Sp = {α3, . . . , αp;
αp+4, . . . , αn}, Σ = {α1 + αp+2, α2 + · · · + αp+1, αp+2 + 2αp+3 +
· · ·+ 2αn−1 +αn}. H is the parabolic subgroup of semisimple type
A1 × Ap × Cn−p−2 in the symmetric subgroup SL(2)× Sp(2n− 2).q q q qq q q qq qq q q qe epppppppppppppppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp p pe eq qq qq qq qq qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p

(29) aa(1,1) + c∗(n), n > 2 (if n = 2 the corresponding component is
of type B2), Sp = {α′3, . . . , α′n}, Σ = {α1 + α′1, α′1 + 2α′2 + · · · +
2α′n−1 + α′n}. H = SL(2)× Sp(2n− 2).qe eq qq qq qq qq qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p

(30) aa(1,1) + c∗(n1) + c∗(n2), n1, n2 > 2 (if ni = 2 the corresponding
component is of type B2), Sp = {α3, . . . , αn1 ; α′3, . . . , α′n2

}, Σ =
{α1+α′1, α1+2α2+· · ·+2αn1−1+αn1 , α

′
1+2α′2+· · ·+2α′n2−1+α′n2

}.
H = SL(2)× Sp(2n1 − 2)× Sp(2n2 − 2).

eq qq qq qq qq qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p
eq qq qq qq qq qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p
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(31) ac∗(p) + c∗(q), n = p + q − 1, p > 2, q > 2, Sp = {αp+2, . . . , αn},
Σ = {α1 + α2, . . . , αi + αi+1, . . . , αp−1 + αp;αp + 2αp+1 + · · · +
2αn−1 + αn}.

– p even: H is the parabolic subgroup of semisimple type Cp/2×
Cn−1−p/2 in the symmetric subgroup Sp(p)× Sp(2n− p).

– p odd: H is the parabolic subgroup of semisimple type C(p−1)/2
×Cn−(p+1)/2 in the symmetric subgroup Sp(p+ 1)× Sp(2n−
p− 1).q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppq qpppppppppppppppppppp pppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppppppppp q qq qq qq qq qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p

(32) a′(1) + c∗(q), n = q > 3, Sp = {α3, . . . , αn}, Σ = {2α1, α1 + 2α2 +
· · ·+ 2αn−1 + αn}. H = NG(GL(1)× Sp(2n− 2)).qeq qq qq qq qq qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p

Type D.
(33) dd(p,p), p > 4, Sp = ∅, Σ = {α1 + α′1, . . . , αi + α′i, . . . , αp + α′p}.

H = Spin(2p) · ZG (symmetric subgroup).

q q q qq q q
q

��

@@

e e e e e
e

q q q qq q q
q

��

@@

e e e e e
eB

BB
B
BB

B
BB

B
BB B

BB

B
BB

(34) do(p + q), n = p + q > 4, p > 1, q > 2, Sp = {αp+2, . . . , αn},
Σ = {2α1, . . . , 2αi, . . . , 2αp; 2αp+1 + · · · + 2αn−2 + αn−1 + αn}.
H = (Pin(p+ 1)× Pin(2n− p− 1)) ∩G (symmetric subgroup).

qeq q qeq qqe eppp p pp p p pp p pp p p pp p pp pq q q qq q q
q

��

@@

q q
(35) do(n), n > 4, Sp = ∅, Σ = {2α1, . . . , 2αi, . . . , 2αn}. H = Spin(n)×

Spin(n) (symmetric subgroup).

qe qe qe qeq q q qq q q
q

��

@@qe
qe

(36) d(n), n > 4, Sp = S \ {α1}, Σ = {2α1 + · · ·+ 2αi + · · ·+ 2αn−2 +
αn−1 + αn}. H = Spin(2n− 1) · ZG (symmetric subgroup).

eppp p pp p p pp p pp p p pp p pp pq q q qq q q
q

��

@@
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(37) dc′(n), n > 6 even, Sp = {α1, . . . , α2i−1, α2i+1, . . . , αn−1}, Σ =
{α1 + 2α2 + α3, . . . , α2i−1 + 2α2i + α2i+1, . . . , αn−3 + 2αn−2 +
αn−1; 2αn}. H = NG(GL(n)) (symmetric subgroup).

eppp p pp p p pp p pp p p pp p pp pq qq q ep pp p pp p p pp p pp p p pp p pp pq qq qq q q q q
q

��

@@

eppp p pp p p pp p pp p p pp p pp p qe
(38) dc(n), n > 5 odd, Sp = {α1, . . . , α2i−1, α2i+1, . . . , αn−2}, Σ =

{α1 + 2α2 + α3, . . . , α2i−1 + 2α2i + α2i+1, . . . , αn−4 + 2αn−3 +
αn−2;αn−1 + αn−2 + αn}. H = GL(n) (symmetric subgroup).

eppp p pp p p pp p pp p p pp p pp pq qq qq q ep pp p pp p p pp p pp p p pp p pp pq qq q q
q

��

@@e
e

(39) ds(n), n > 4, Sp = {α2, . . . , αn−2}, Σ = {α1 + · · · + αn−1, α1 +
· · · + αn−2 + αn}. H is the parabolic subgroup of semisimple type
An−2 in the symmetric subgroup Spin(2n− 1) · ZG.

q q q qq q q
q

��

@@

e e
epppppppppppppppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp pppppppp p ppppppppppppppppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp pppppppp p p

(40) ds∗(4), Sp = {α2}, Σ = {α1 +α2 +α3, α3 +α2 +α4, α4 +α2 +α1}.
H = K · ZG, with K simple subgroup of type G2.

q q q
q

��

@@

e e
epppppppppppppppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppppppppppppppppppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp

(41) dc∗(n), n > 4, Sp = ∅, Σ = {α1 + α2, . . . , αi + αi+1, . . . , αn−2 +
αn;αn−2 + αn}.

– n even: H is the stabiliser of the line [e] ∈ P(g), where e
is a nilpotent element in the adjoint orbit of characteristic
(10 . . . 011).

– n odd: H ⊂ P , where P is the parabolic subgroup of semisim-
ple type An−2 in the symmetric subgroup Spin(2n − 1) · ZG,
H has the same radical and semisimple type C(n−1)/2.

q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppq q q
q

��

@@e
epppppppppppppppppppp pppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppppppppp

(42) a(p) + d(q), n = p + q, p, q > 2, Sp = {α2, . . . , αp−1; αp+2, . . . ,
αn}, Σ = {α1 + · · ·+ αp, 2αp+1 + · · ·+ 2αn−2 + αn−1 + αn}. H is
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the parabolic subgroup of semisimple type Ap−1 × Bn−p−1 in the
symmetric subgroup Spin(2n− 1) · ZG.

q q q qq qq q q qe epppppppppppppppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp p p q qep pp p pp p p pp p pp p p pp p pp pq q q qq q q
q

��

@@

(43) ac∗(p) + d(q), n = p + q, p > 2, q > 2, Sp = {αp+2, . . . , αn},
Σ = {α1 + α2, . . . , αi + αi+1, . . . , αp−1 + αp; 2αp+1 + · · ·+ 2αn−2 +
αn−1 + αn}.

– p even: H ⊂ P , where P is the parabolic subgroup of semisim-
ple type Ap−1 × Bq−1 in the symmetric subgroup of type Spin
(2n − 1) · ZG, H has the same radical and semisimple type
Cp/2 × Bq−1.

– p odd: H is the stabiliser of the line [e] ∈ P(g), where e
is a nilpotent element in the adjoint orbit of characteristic
(10 . . . 010 . . . 0), with αp(h) = 1.q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppq qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qpppppppppppppppppppp pppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppppppppp q qep pp p pp p p pp p pp p p pp p pp pq q q qq q q

q
��

@@

Type E.
(44) ee(p,p), p = 6, 7, 8, Sp = ∅, Σ = {α1+α′1, . . . , αi+α′i, . . . , αp+α′p}.

H = K · ZG (symmetric subgroup) with K simple of type Ep.

q qq qq qq qqq q qq qe e e e e e ee

q qq qq qq qqq q qq qe e e e e e ee
B

B
B

B
B
B

B
B
B

B
B
B

B
B
B

B
B
B

(45) eo(n), n = 6, 7, 8, Sp = ∅, Σ = {2α1, . . . , 2αi, . . . , 2αn}. H is the
symmetric subgroup respectively equal to Sp(8) · ZG, SL(8) · ZG,
Spin(16). q qq qq qq qqqqe qe qe qe qe qe qeqe

q qq q
(46) ea(6), Sp = ∅, Σ = {α1 + α6, α3 + α5, 2α2, 2α4}. H = (SL(6) ×

SL(2)) · ZG (symmetric subgroup).

q qq qq qq qqqqe
qee e e e
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(47) ed(6), Sp = {α3, α4, α5}, Σ = {α1 +α3 +α4 +α5 +α6, 2α2 + 2α4 +
α3 + α5}. H = Spin(10)×GL(1) (symmetric subgroup).q qq qq qq qqqe eeppp p pp p p pp p pp p p pp p pp p

pppppppppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppppppppp
(48) ef(6), Sp = {α2, α3, α4, α5}, Σ = {2α1 + 2α3 + 2α4 +α2 +α5, α2 +

α3 + 2α4 + 2α5 + 2α6}. H = K ·ZG (symmetric subgroup) with K
simple of type F4. q qq qq qq qqqep pp p pp p p pp p pp p p pp p pp p ep pp p pp p p pp p pp p p pp p pp p

(49) ec(7), Sp = {α2, α5, α7}, Σ = {2α1, 2α3, α2 + 2α4 +α5, α5 + 2α6 +
α7}. H = (Spin(12)× SL(2)) · ZG (symmetric subgroup).q qq qq qq qq qqqep pp p pp p p pp p pp p p p

p p pp p ep pp p pp p p pp p pp p p pp p pp pqe qe
(50) ef(n), n = 7 (or 8), Sp = {α2, α3, α4, α5}, Σ = {2α1 + 2α3 + 2α4 +

α2 + α5, 2α6 + 2α5 + 2α4 + α2 + α3, 2α7, (2α8)}.
– n = 7: H = NG(K × GL(1)) (symmetric subgroup) with K

simple of type E6.
– n = 8: H = (K × SL(2)) · ZG (symmetric subgroup) with K

simple of type E7.q qq qq qq qq qqqep pp p pp p p pp p pp p p pp p pp p ep pp p pp p p pp p pp p p pp p pp p qe qeq q
(51) ec∗(n), n = 6, 7, 8, Sp = ∅, Σ = {α1 + α3, α2 + α4, α3 + α4, . . . ,

αi + αi+1, . . . , αn−1 + αn}.
– n = 6: H is the parabolic subgroup of semisimple type C3 in

the symmetric subgroup of type F4.
– n = 7: H is the stabiliser of the line [e] ∈ P(g), where e

is a nilpotent element in the adjoint orbit of characteristic
(0100001).

– n = 8: H is the stabiliser of [e] ∈ P(g), where e is a nilpotent
element with characteristic (01000000).q qq qq qq qqq q qq qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp e epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp e epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp e epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp e epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp e epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppepppppppppppppppppppp ppppppp ppppppp pppppppppppppppppppppppppppppppppppppppppppppppp

(52) ef(6) + a(2), Sp = {α2, α3, α4, α5}, Σ = {2α1 + 2α3 + 2α4 + α2 +
α5, 2α6 + 2α5 + 2α4 + α2 + α3, α7 + α8}. H is the stabiliser of the
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line [e] ∈ P(g), where e is a nilpotent element in the adjoint orbit
of characteristic (00000010).q qq qq qq qqqep pp p pp p p pp p pp p p pp p pp p ep pp p pp p p pp p pp p p pp p pp pq qq qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp

(53) aa(2,2) + a(2), Sp = ∅, Σ = {α1 + α6, α3 + α5, α2 + α4}. H is the
stabiliser of the line [e] ∈ P(g), where e is a nilpotent element in
the adjoint orbit of characteristic (000100).q qq qq qq qqqe e e eeepppppppppppppppppppp ppppppp ppppppp pppppppppppppppppppppppppppppppppppppppppppppppp

(54) ac(5) + a(2), Sp = {α2, α5, α7}, Σ = {α1 +α3, α2 + 2α4 +α5, α5 +
2α6 + α7}. H is the stabiliser of the line [e] ∈ P(g), where e is a
nilpotent element in the adjoint orbit of characteristic (0010000).q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qq qq qq qqqep pp p pp p p pp p pp p p p

p p pp p ep pp p pp p p pp p pp p p pp p pp p
Type F.
(55) ff(4,4), Sp = ∅, Σ = {α1 + α′1, α2 + α′2, α3 + α′3, α4 + α′4}. H is a

symmetric subgroup, simple of type F4.

q q q qq qpppppppppp ppppppppppe e e e
q q q qq qpppppppppp ppppppppppe e e e

(56) fo(4), Sp = ∅, Σ = {2α1, 2α2, 2α3, 2α4}. H = Sp(6)× SL(2) (sym-
metric subgroup). q q q qq qpppppppppp ppppppppppqe qe qe qe

(57) f(4), Sp = S \ {α4}, Σ = {α1 + 2α2 + 3α3 + 2α4}. H = Spin(9)
(symmetric subgroup).q q q qq qpppppppppp pppppppppp eppp p pp p p pp p pp p p pp p pp p

(58) fa(1 + 2 + 1), Sp = ∅, Σ = {α1 + α4, α2 + α3}. H is described in
Section 5.1.1. q q q qe eq qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p e

(59) fd(4), Sp = {α2}, Σ = {α1 +α2 +α3, α2 +2α3 +α4}. H is described
in Section 5.1.1. q q q qq qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p ep pp p pp p p pp p pp p p pp p pp p e
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(60) ao(2) + a(2), Sp = ∅, Σ = {α1 + α2, 2α3, 2α4}. H is the stabiliser
of the line [e] ∈ P(g), where e is a nilpotent element in the adjoint
orbit of characteristic (0100).q q q qq qpppppppppp pppppppppp qe qeq qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp

(61) fc∗(4), Sp = ∅, Σ = {α1 +α2, α2 +α3, α3 +α4}. H is the parabolic
subgroup of semisimple type A1 × B2 in the symmetric subgroup
Spin(9). q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppq qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p

Type G.
(62) gg(2,2), Sp = ∅, Σ = {α1 + α′1, α2 + α′2}. H is a symmetric sub-

group, simple of type G2.q qppppppppppppppppppppe e q qppppppppppppppppppppe e
(63) go(2), Sp = ∅, Σ = {2α1, 2α2}. H = SL(2) × SL(2) (symmetric

subgroup). q qppppppppppppppppppppqe qe
(64) g(2), Sp = {α2}, Σ = {2α1 + α2}. H = SL(3).q qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p
(65) g′(2), Sp = {α2}, Σ = {4α1 + 2α2}. K = NG(SL(3)).q qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p2
(66) g∗(2), Sp = ∅, Σ = {α1 + α2}. H is the stabiliser of the line

[e] ∈ P(g), where e is a nilpotent element in the adjoint orbit of
characteristic (10). q qpppppppppppppppppppp eppp p pp p p pp p pp p p pp p pp pe

5.1.1. Two cases in type F

The wonderful subgroups H of the rank two cases (58) and (59) are
known and can be described, like all the others, by providing a Levi factor
L and the unipotent radical Hu as an L-representation ([28]).

Note that they are neither reductive, neither stabilisers of the line span-
ned by a nilpotent element in the adjoint representation, nor contained in
a parabolic subgroup of a symmetric subgroup of G.

In order to get a more geometric description we realise them as stabilisers
of a line in a fundamental representation of G.
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Let us denote by ωi, i = 1, 2, 3, 4, the i-th fundamental weight of G and
by V (ωi) the corresponding fundamental representation.

Case 58. The subgroup H is the stabiliser of a line [v] ∈ P(V (ω2)).
The representation V (ω1) is the adjoint representation, its 2nd alternating
power decomposes as

∧2
V (ω1) = V (ω2)⊕ V (ω1). One can take the vector

v to be
Xα1+2α2+3α3+α4 ∧Xα1+2α2+3α3+2α4 ∈ V (ω2),

where the Xγ ’s are root vectors. It is of weight ω3.

Case 59. The subgroup H is the stabiliser of a line [v] ∈ P(V (ω3)).
The group G consists of automorphisms of the exceptional Jordan al-

gebra J of hermitian (3 × 3)-matrices of complex Cayley octonions. The
space of elements of trace 0 in J realises the representation V (ω4). Its 2nd
alternating power decomposes as V (ω3)⊕ V (ω1).

We omit the details, but it is worth saying that the investigated vec-
tor v ∈ V (ω3) can be explicitly found in the 5-dimensional eigenspace of
weight ω4.

6. Proofs

6.1. Primitive spherical systems

We shall explain how we determine all primitive spherical systems with-
out simple spherical roots. As in [17] (see also [6]), we make systematic use
of the notion of ∆-connectedness.

6.1.1. ∆-Connectedness

Take a spherical system (Sp,Σ). Denote ∆ its set of colours.
Let S′ be a subset of simple roots. Define ∆(S′) = {Dα : α ∈ S′}.
Two spherical roots γ1, γ2 ∈ Σ are said to be strongly ∆-adjacent if

(i) 〈ρ(D), γ2〉 6= 0 for all D ∈ ∆(Supp γ1);
(ii) 〈ρ(D), γ1〉 6= 0, for all D ∈ ∆(Supp γ2).

Given a subset Σ′ of Σ, the spherical system (Sp ∩ Supp(Σ′),Σ′) is said to
be strongly ∆-connected if for every couple of spherical roots γ, γ′ in Σ′
there exists a sequence

γ1 = γ, γ2, . . . , γn = γ′
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of spherical roots in Σ′, such that γi is strongly ∆-adjacent to γi+1 for
i = 1, . . . , n−1. If Σ′ ⊂ Σ is maximal with this property (Sp∩Supp(Σ′),Σ′)
is called a strongly ∆-connected component of (Sp,Σ).

Denote ∆(Σ′) the subset of colours D ∈ ∆(Supp(Σ′)) such that

〈ρ(D), γ〉 = 0 for all γ ∈ Σ \ Σ′.

We say that (Sp ∩ Supp(Σ′),Σ′) is
– erasable if there exists a nonempty smooth distinguished subset of

colours ∆′ included in ∆(Σ′).
– quasi-erasable if there exists a nonempty distinguished subset of

colours ∆′ included in ∆(Σ′) such that (Sp/∆′, Σ/∆′) is a spherical
system.

Lemma 6.1 ([6] Lemma 3.9). — Given a spherical system (Sp,Σ). Let
Σ1 and Σ2 be two disjoint subsets of Σ giving two quasi-erasable localisa-
tions. Suppose one of them (at least) is erasable. Then the corresponding
subsets ∆′1 ⊂ ∆(Σ1) and ∆′2 ⊂ ∆(Σ2) decompose the spherical system
(Sp,Σ).

The strongly ∆-connected component (Sp∩Supp(Σ′),Σ′) is said to be iso-
lated if the partition given by Supp(Σ′) and its complement within Supp(Σ)
yields a decomposition of (Sp ∩ Supp(Σ),Σ). An isolated component is
erasable.

6.1.2. General procedure

To obtain the list of primitive spherical systems we first list cuspidal
strongly ∆-connected spherical systems, by adding one by one a strongly ∆-
adjacent (non-simple) spherical root. Then for each strongly ∆-connected
spherical system (Sp,Σ′) one can realise how it can be a strongly ∆-
connected component of a bigger spherical system: there will be some
colours D such that ρ(D) is non-zero on some spherical root not belonging
to Σ′, and it will be possible to check whether such a component is isolated,
erasable, quasi-erasable or none of them. This property does not depend
on the other components, but only on the way of gluing. So one can easily
realise that many strongly ∆-connected components are always erasable or
quasi-erasable no matter which is the whole spherical system. Therefore,
to get all the remaining primitive spherical systems we glue together, in
all possible ways, two or more non-isolated cuspidal strongly ∆-connected
spherical systems, avoiding pairs satisfying the hypothesis of Lemma 6.1.
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6.1.3. Cuspidal strongly ∆-connected spherical systems

Isolated: aa(p, p) p > 3, ao(n) n > 3, ac(n) n > 7, aa(p + q + p) p > 2,
aa′(p+ 1 + p), bb(p, p), bo(p+ q), cc(p, p), co(n), c(n), cc(p+ q), cc′(p+ 2),
ca(1 + q + 1), dd(p, p), do(p + q), do(n), dc′(n), dc(n) n > 7, ee(p, p),
eo(n), ea(6), ec(7), ef(n) n = 7, 8, ec∗(n) n = 7, 8, ff(4, 4), fo(4), f(4),
fa(1 + 2 + 1), gg(2, 2), go(2), g(2), g′(2), g∗(2).

Erasable: aa(1 + q + 1), ac∗(n) n > 7 odd, bc∗(n) n even, dc(5), dc∗(n)
n even, ed(6), b∗∗(3).

Quasi-erasable: ac∗(n) n > 4, b∗(n) n > 5, bc∗(n) n > 5, ds(n), ds∗(4),
dc∗(n), ec∗(6).

Not necessarily quasi-erasable: aa(p, p) p = 1, 2, ao(n) n = 1, 2, ac(n) n =
3, 5, a(n), ac∗(3), b(n), b′(n), b∗(n) n = 2, 3, 4, bc∗(3), c∗(n), d(n), ef(6).

6.1.4. A non-trivial example

Consider the case ac∗(n) with n > 3. It is strongly ∆-connected. Let us
call Σ′ its set of spherical roots and D1, . . . , Dn its colours. Let us suppose
it corresponds to the strongly ∆-connected component of a possibly bigger
spherical system.

If ∆(Σ′) contains D2, . . . , Dn−1, then it is itself distinguished. If it con-
tains D1 (or Dn) also, then it is smooth. If n = 3, then {D2} is homoge-
neous. If ∆(Σ′) does not containD2, . . . , Dn−1, then the underlying Dynkin
diagram has a component of type D or E. In type D it can happen that
∆(Σ′) = {D1, D3}, with n = 3, and this is distinguished. In type E, it can
happen that D2 /∈ ∆(Σ′), for n = 3, 4, 5, 6, then Di ∈ ∆(Σ′) for i 6= 2, n.
If moreover n 6= 3, the set of the Di’s with i odd is in ∆(Σ′) and distin-
guished, since Dn ∈ ∆(Σ′) or n = 4. Otherwise, if n = 3 and D3 /∈ ∆(Σ′),
then ∆(Σ′) = {D1} is not distinguished. However, in this last case ac∗(3)
can be a strongly ∆-connected component of no primitive spherical system.

6.2. Uniqueness proof

For a general connected reductive group G, Losev proves in [15] that two
spherical G-homogeneous spaces G/H1, G/H2 that have the same com-
binatorial invariants, ΞG/H1 = ΞG/H2 , VG/H1 = VG/H2 and ∆G/H1 =
∆G/H2 , are G-equivariantly isomorphic. This implies that two (not nec-
essarily strict) wonderful G-varieties with the same spherical system are
G-equivariantly isomorphic.

TOME 60 (2010), FASCICULE 2



668 Paolo BRAVI & Stéphanie CUPIT-FOUTOU

For strict wonderful varieties, the same uniqueness result may be deduced
from [5] as we now explain.

First, let us recall the main results obtained in loc. cit.
Take X a strict wonderful G-variety. Its spherical system (and more

precisely its set of colours) naturally provides an embedding of X in the
product of some projective spaces of simple G-modules, say Vi for i =
1, . . . , s. More specifically, Vi is the irreducible G-module of highest weight
given by the B-weight of a colour of X. The variety X being strict, these
B-weights are linearly independent.

Let π : X̃ 99K X be the affine multicone given by this embedding and
X0 be the affine multicone over the closed G-orbit of X. The G-variety X0
is a spherical subvariety of V .

A spherical G-subvariety of V is called an invariant deformation of X0 if
it is a (classical) deformation of X0 and its coordinate ring is isomorphic
as a G-module to the coordinate ring of X0.

Theorem 6.2 (see Corollary 2.5 in [5]). — Every invariant deformation
of X0 is isomorphic to the closure of a G-orbit in X̃ on which π is regular.

Let X and X ′ be strict wonderful G-varieties. Suppose they have the
same spherical system. Let x (resp. x′) be a point in X̃ (resp. X̃ ′) over the
open G-orbit of X (resp. of X ′). Note that X and X ′ have the same closed
G-orbit since the latter is determined by the data Sp of their common
spherical system. Then by the above theorem the stabilisers of x and x′ in
G are conjugate.

The generic stabiliser of X (and that of X ′) equals the normaliser of the
stabiliser of x (and that of x′) in G; the uniqueness follows.

6.3. Existence Proof

We shall check case by case that the spherical subgroups H of G listed
in Section 5.1 are indeed wonderful and have the spherical system which is
stated. Recall that the cases of rank 1 and rank 2 are already known.

We shall make use of the following identities for a wonderful subgroup
H of G:

Lemma 6.3 ([17], Section 5.2).

(6.1) dimG/H = dimG/PSp
G/H

+ card ΣG/H ;

(6.2) rank Ξ(H) = card ∆G/H − card ΣG/H .
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The existence proof can be conducted as in [17, 6, 3]. Let us briefly recall
the approach used there for proving that G/H has a wonderful embedding
and has the desired spherical system, where H is the proposed wonderful
subgroup.

One can first consider the case whereH is reductive (and spherical). Such
subgroups of semisimple groups are classified in [14, 7] and [20]. When H
is properly included in its normaliser, we may need to compute explicitly
the colours in G/H to deduce that H is wonderful. Indeed, by a result of
Knop (Corollary 7.6 in [13]), the subgroup of the normaliser NG(H) which
stabilises the set of the colours of G/H is wonderful. Once we know that H
is wonderful the identities in Lemma 6.3 strongly restrict the possibilities
for the corresponding spherical system.

If H is not reductive, to check that H is spherical one can also use a
criterion of Panyushev (see Corollary 1.4 in [21]). Here one remarks that
H is always (except in one case with rank greater than 2) selfnormalising
hence wonderful. Notice that to compute the normaliser of H it is enough
to consider the normaliser of its reductive part. The computation of the
latter can be done by hand. From the identities stated in the lemma above,
it is possible to conclude with ad hoc arguments.

In this paper we rather proceed slightly differently, namely we shall con-
sider the wonderful varieties attached either to symmetric spaces (more
generally to affine spherical homogeneous spaces), to spherical nilpotent
orbits or to model spaces. We will then see that they provide almost all
wonderful varieties without simple spherical roots. The few remaining cases
will be worked out separately.

6.3.1. Symmetric spaces

Recall the notation of Appendix A.
Proposition 6.4. — In case B II and C II with q = 2, there are two

wonderful subgroups without simple spherical roots, namely Gσ and its
normaliser. The corresponding spherical systems are:

B II: (10) b(n) and (11) b′(n),
C II: (24) cc(p+ q) with q = 2 and (25) cc′(p+ 2).

In all the remaining cases, there is one wonderful (selfnormalising) symmet-
ric subgroup without simple spherical roots. Further its spherical system is
entirely determined by the basis ∆̃ of its restricted root system; the set of
its spherical roots coincides with ∆̃.

More specifically, the spherical systems of the selfnormalising symmetric
subgroups are (respectively to the list of simple involutions given in the
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appendix): 1, 8, 21, 33, 44, 55, 62; 2–6, 9, 11, 22, 23, 24 for q > 2, 25,
34–38, 45–50, 56, 57, 63.

Proof. — Recall from Appendix A that the spherical roots of G/H are
given (up to a scalar) by the elements of its restricted root system.

Consider first the cases distinct from case B II and case C II and set
H = NG(Gσ) for the corresponding involutions σ. One sees that if α̃ is
an arbitrary element of one of these restricted root systems then none of
its multiples, except α̃ itself, is a spherical root. It follows that the set of
spherical roots of G/H does coincide with the corresponding restricted root
system.

Let us work out now the case of the involutions labeled by B II and C II
with q = 2. Note first that Gσ is of index 2 in its normaliser. Consider the
following identity (Lemma 3.1 in [27])

Λ (T−1/(T−1 ∩Gσ)) =
(
ZΦ̃∨
)∗
.

Together with the characterisation of the valuation cone of G/Gσ recalled
in the corresponding appendix, we get that the αi− σ(αi)’s are indeed the
spherical roots of G/Gσ. Remark now that the αi − σ(αi)’s form a basis
of
(
ZΦ̃∨
)∗ hence of the character group ΞG/Gσ = Λ (T−1/(T−1 ∩Gσ)). It

follows that Gσ is a wonderful subgroup of G. �

6.3.2. Other affine homogeneous spaces

First let us recall the following criterion of affinity; see [8].
A spherical homogeneous space G/H is affine if and only if there exists
ξ ∈ Z>0Σ such that 〈ρ(δ), ξ〉 > 0 for every δ ∈ ∆G/H .

As a consequence, we get

Lemma 6.5. — The spherical system of a non-symmetric affine won-
derful homogeneous space without simple spherical roots (provided it is
cuspidal and indecomposable) is one of the following:

(7) ac∗(n) for n even,
(14) bc′(n), (19) b∗∗(3), (20) b∗(4) + b∗∗(3),
(29) aa(1, 1) + c∗(n), (30) aa(1, 1) + c∗(n1) + c∗(n2), (32) a′(1) + c∗(q),
(40) ds∗(4)
(64) g(2) and (65) g′(2).

Proposition 6.6. — Let H ⊂ G be one of the following subgroups.
Then G/NG(H) has as its spherical system the corresponding entry in the
list of Lemma 6.5.
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– Sp(n) in SL(n+ 1), for n even.
– GL(n) in Spin(2n+1), the connected stabiliser of a maximal isotro-

pic subspace of C2n+1.
– G2 in Spin(7), the connected subgroup of automorphisms of the

complex Cayley octonions.
– Spin(7) in Spin(9).
– SL(2)×Sp(2n−2) in SL(2)×Sp(2n), where H ⊂ SL(2)×SL(2)×
Sp(2n−2) ⊂ G, SL(2)×Sp(2n−2) being the symmetric subgroup
of Sp(2n) and SL(2) diagonally embedded in SL(2)× SL(2).

– SL(2) × Sp(2n1 − 2) × Sp(2n2 − 2) in Sp(2n1) × Sp(2n2), where
SL(2)×Sp(2ni−2) is the symmetric subgroup of Sp(2ni), i = 1, 2,
and SL(2) maps diagonally in SL(2)× SL(2).

– GL(1)× Sp(2n− 2) in Sp(2n).
– G2 in Spin(8), the connected subgroup of automorphisms of the

complex Cayley octonions, as above G2 ⊂ Spin(7) ⊂ Spin(8).
– SL(3) in G2, given by the root subsystem of long roots.

Proof. — By [7] (and [14, 20]), we know all connected spherical sub-
groups H ⊂ G such that G/H is affine: for G simply connected, we have
listed in the proposition all those which cannot be written as non-trivial
product G1/H1 ×G2/H2, are not symmetric and such that G/NG(H) has
no simple spherical roots. The spherical system of G/NG(H) is thus cusp-
idal and satisfies the above criterion of affinity.

We already know rank 1 and rank 2 cases from [28]. The first and the
second cases were worked out in [18]; these are model spaces (see Sec-
tion 6.3.4).

To find all the corresponding spherical systems one can use the identities
of Lemma 6.3: they turn out to be indecomposable and thus in the list of
Lemma 6.5. �

Remark 6.7. — When G is of type Cn or G2, the subgroup H itself is
also wonderful, but in type Cn the spherical system of H contains a simple
spherical root (see [28]). The corresponding case in type G2 is labeled as
(64) in the list of Section 5.1.

6.3.3. Adjoint nilpotent orbits

Proposition 6.8. — The primitive spherical systems corresponding to
a spherical nilpotent orbit are:

(13) bc∗(n) for n odd, (18) ac∗(p) + b′(q) for p odd,
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(41) dc∗(n) for n even, (43) ac∗(p) + d(q) for p odd,
(51) ec∗(n) for n = 7, 8, (52) ef(6) + a(2),
(53) aa(2, 2) + a(2), (54) ac(5) + a(2),
(60) ao(2) + a(2), (66) g∗(2).

Proof. — We will keep the notation of Appendix B and as recalled there,
we shall be concerned here only by nilpotent elements of height 3. One can
compute the spherical system of the (non-necessarily primitive) symmetric
space L/NL(K) (by means for example of Proposition 6.4); note that the
Lie algebras l and k are given in the appendix. And in turn, one gets
the spherical system of G/NG(H)P r by parabolic induction from that of
L/NL(K) ' P/NG(H)P r. Here P r denotes the radical of the parabolic
subgroup P .

Moreover, there exists a dominant morphism with connected fibers be-
tween the wonderful embeddings of G/NG(H) and of G/NG(H)P r (see
Proposition 4.1). We then check case by case that there exists only one
spherical system admitting the spherical system of NG(H)P r as quotient
and satisfying the identity in (6.1). This gives the spherical system of
NG(H). The proposition follows. �

Lemma 6.9. — Let e ∈ g be a nilpotent element and [e] be the line
spanned by e. If H = Ge is spherical then NG(H)/H is one-dimensional
and NG(H) = G[e].

Proof. — Recall the notation of Appendix B. The subspace Ch is the
maximal reductive subalgebra contained in ng(e)/ge where ng(e) is the Lie
algebra of the normaliser NG(H); see for example [9]. If H is spherical
then NG(H)/H is a diagonalisable group; see for example [8]. The lemma
follows readily. �

Remark 6.10. — Due to the previous lemma, we have listed in Sec-
tion 5.1 the wonderful subgroups corresponding to the above spherical sys-
tems as stabilisers of the line [e] spanned by a nilpotent element e.

Remark 6.11. — The fact that the above spherical systems do not con-
tain simple spherical roots implies the saturation of the weight cone of
spherical adjoint nilpotent orbits (Conjecture 5.12 in [22], Section 1.3 in
[18]).

6.3.4. Model homogeneous spaces

Spherical systems of model spaces have already been computed by Luna.
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Proposition 6.12 ([18]). — The spherical system of a model G-variety
X does not depend on the isogeny type of G except in type B.

(i) If G is adjoint of type B, the spherical system is (14) bc′(n).
(ii) In the simply connected case, the spherical roots of X can all be

written as the sum of two non-orthogonal simple roots. Their spher-
ical systems are: (7) ac∗(n), (13) bc∗(n), (31) ac∗(p)+c∗(q) for q = 2,
(41) dc∗(n), (51) ec∗(n), (61) fc∗(4) and (66) g∗(2).

Note that the cases (13) with n odd, (41) with n even, (51) and (66)
belong also to the family of nilpotent orbits whereas the case (7) with n
even and (14) are affine.

6.3.5. A few remaining cases.

From the list of primitive spherical systems there are a few cases not
included in the above families.

Most of them are of rank 1 or 2:
(12) b∗(n), (15) a(p) + b(q), (16) a(p) + b′(q),
(26) c∗(n), (27) ca(1 + q + 1), (39) ds(n), (42) a(p) + d(q),
(58) fa(1 + 2 + 1), (59) fd(4).

The respective wonderful subgroups are already described in [28] and re-
ported in the list of primitive cases.

The remaining spherical systems are:
(17) ac∗(p) + b(q),
(18) ac∗(p) + b′(q) for p even,
(28) aa(1 + p+ 1) + c∗(q)
(31) ac∗(p) + c∗(q) for q > 2,
(43) ac∗(p) + d(q) for p even.

Those in type B and D are very similar to some cases arising from spherical
adjoint nilpotent orbits of height 3. The two cases in type C have already
been treated in [23].

The cases (18) and (43) are easily handled by localisation from the p odd
analogues.

Case 17. Consider the wonderful subgroup H with spherical system
ac∗(p) + b′(q) and let H◦ be the identity connected component of H. Then
H◦ is the investigated wonderful subgroup. Indeed, note that H◦ has index
2 in H and H = NG(H◦). To prove that H◦ is wonderful one needs to
compute explicitly the colours and the spherical roots. In comparison with
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H, one sees easily that the colours are represented by the same regular
B × H-semiinvariant functions on G and that the spherical roots are the
same except for the last one which is just divided by 2. The subgroup H◦
is then wonderful with spherical system equal to ac∗(p) + b(q).

Case 28. Let G = Sp(2n). Take H = K · Hu with K = GL(p + 1) ×
SL(2) × Sp(2n − 2p − 4) and the Lie algebra of Hu, as a K ′-module,
being isomorphic to the direct sum V (ω1 + ω′′1 ) ⊕ V (2ω1). The subgroup
H is spherical, selfnormalising hence wonderful and it is not a parabolic
induction. We have: H ⊂ H1 = KQu ⊂ Q where Q is the standard par-
abolic of G associated to αp+1. Note that H1 is wonderful in G: G/H1 is
a parabolic induction of the symmetric space L/K, that is C II. One thus
checks that there is only one spherical system having such a quotient: it is
aa(1 + p+ 1) + c∗(q).

Case 31. This is a generalisation of the model case in type Cn of Para-
graph 6.3.4. Here G = SO2n. Let K1 be the symmetric group of G of type
Cp/2 × Cn−p/2 if p is even and of type C(p+1)/2 × Cn−(p+1)/2 if p is odd.
Take H to be the parabolic subgroup of semisimple type Cp/2 × Cn−1−p/2
if p is even and of type C(p−1)/2 × Cn−(p+1)/2 if p is odd. In all cases the
subgroup H is spherical and selfnormalising hence wonderful in G. It fol-
lows that the spherical system of G/K1 is a quotient of that of G/H. Note
that the spherical system of G/K1 is cc(p′ + q′), where p′ = (p/2)− 1 if p
is even, and p′ = (p−1)/2 if p is odd. Moreover, H = K ·Hu is included in
H1 = K ·Qu, where Q is the standard parabolic subgroup of G of semisim-
ple type Cn−1. The subgroup H1 is wonderful in G; its spherical system is a
parabolic induction of cc(p′+ (q′−1)). The spherical system ac∗(p) + c∗(q)
is the only one, with the right dimension, admitting the spherical systems
of G/K1 and G/H1 as quotients.

Appendix A. Symmetric spaces

Cartan’s classification of involutions of semisimple groups appears usu-
ally in the literature in terms of Satake diagrams or Kac diagrams (see for
instance Chapter X in [11]). Analogously to these diagrams, the so-called re-
stricted root systems determine (up to conjugation) the involutions. Hence
Cartan’s classification can be also given in terms of restricted root systems.

Before reproducing this classification, we shall recall the definition of a
restricted root system associated to an involution and how this root system

ANNALES DE L’INSTITUT FOURIER



CLASSIFICATION OF STRICT WONDERFUL VARIETIES 675

was related by Vust to the sets of spherical roots of the corresponding
symmetric spaces (recall that a symmetric space is spherical).

For an expository on symmetric varieties, one may also refer to [26].

A.1. Restricted root system (after [27])

Given a non-identical involution σ of a semisimple group G, let T−1 be
a maximal σ-anisotropic torus, namely a torus on which σ acts as the
inversion and which is maximal for this property. Take a maximal torus T
containing T−1. Then T is σ-stable; the lattice Λ of T -weights inherits an
involution σ and the root system Φ attached to T is σ-stable.

Then the set Φ̃ of non-zero elements α−σ(α), for α ∈ Φ, is a root system
for Λ(T−1) ⊗ R which may not be reduced. It is called the restricted root
system associated to σ.

One may choose a Borel subgroup B such that: if α is a positive root
relative to B then σ(α) is either α or it is a negative root. Let H be a
symmetric group corresponding to σ i.e., Gσ ⊂ H ⊂ NG(Gσ). Then BH is
open in G and the set

∆̃ = {αi − σ(αi) : αi ∈ ∆} \ {0}

is a basis of Φ̃.
Further the lattice ΞG/H of B-weights of C(G/H) can be identified to the

character group of T−1/(T−1 ∩H) and the cone of G-invariant valuations
V(G/H) is the antidominant Weyl chamber of the dual root system Φ̃∨.
Hence the elements of ∆̃ are equal (up to a scalar) to the spherical roots
of G/H (Proposition 2 in Section 2.4 of [27]).

A.2. Cartan’s classification

Every symmetric space (for a connected reductive group) is a product
of a torus, symmetric spaces G1 ×G1/G1 (with G1 simple and diagonally
embedded) and symmetric spaces for simple groups.

If G = G1 ×G1 with G1 simple then Φ̃ = 〈α1 + α′1, . . . , αn + α′n〉.
The classification for G simple is presented in the following list. It is

reproduced from [11] but giving the restricted root system instead of the
Satake diagram. The restricted roots systems have been computed case by
case by means of the recalls made above; see also [27] where some cases
are worked out in details. More precisely, we give the Cartan label, the
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restricted root system and the Lie algebra h of the fixed point subgroup.
The Cartan label specifies the type of G. The semisimple rank of G is
denoted by n.

A I: Φ̃ = 〈2α1, . . . , 2αn〉 of type An, h = so(n+ 1).
A II: n odd (n > 3), Φ̃ = 〈α1 + 2α2 +α3, . . . , αn−2 + 2αn−1 +αn〉 of type

A(n−1)/2, h = sp(n+ 1).
A III: n = 2p+ q (p, q > 1),

if q > 2, Φ̃ = 〈α1 +αn, . . . , αp +αn−p+1, αp+1 + · · ·+αp+q〉 of
type BCp+1, h = sl(p+ 1) + sl(p+ q) + gl(1);
if q = 1, Φ̃ = 〈α1 + αn, . . . , αp + αn−p+1, 2αp+1〉 of type Cp+1,
h = sl(p+ 1) + sl(p+ 1) + gl(1).

A IV: if n > 2, Φ̃ = 〈α1 + · · ·+ αn〉 of type A1, h = gl(n);
if n = 1, Φ̃ = 〈2α1〉 of type A1, h = gl(1).

B I: n = p+ q (p, q > 1), Φ̃ = 〈2α1, . . . , 2αp, 2αp+1 + · · ·+ 2αn〉 of type
Bp+1, h = so(p+ 1) + so(2n− p).

B II: Φ̃ = 〈2α1 + · · ·+ 2αn〉 of type A1, h = so(2n).
C I: Φ̃ = 〈2α1, . . . , 2αn〉 of type Cn, h = gl(n).

C II: n = p+ q (p > 0 even, q > 2),
if q > 3, Φ̃ = 〈α1 + 2α2 + α3, . . . , αp−1 + 2αp + αp+1, αp+1 +
2αp+2 + · · ·+ 2αn−1 + αn〉 of type BC(p/2)+1, h = sp(p+ 2) +
sp(2n− p− 2);
if q = 2, Φ̃ = 〈α1 +2α2 +α3, . . . , αn−3 +2αn−2 +αn−1, 2αn−1 +
2αn〉 of type C(p/2)+1, h = sp(n) + sp(n).

D I: n = p+ q (p > 1, q 6= 1),
if q > 2, Φ̃ = 〈2α1, . . . , 2αp, 2αp+1 + · · ·+ 2αn−2 +αn−1 +αn〉
of type Bp+1, h = so(p+ 1) + so(2n− p− 1);
if q = 0, Φ̃ = 〈2α1, . . . , 2αn〉 of type Dn, h = so(n) + so(n);

D II: Φ̃ = 〈2α1 + · · ·+ 2αn−2 + αn−1 + αn〉 of type A1, h = so(2n− 1).
D III: if n is even, Φ̃ = 〈α1 +2α2 +α3, . . . , αn−3 +2αn−2 +αn−1, 2αn〉

of type Cn/2, h = gl(n);
if n is odd, Φ̃ = 〈α1 + 2α2 + α3, . . . , αn−4 + 2αn−3 + αn−2,
αn−2 + αn−1 + αn〉 of type BC(n−1)/2, h = gl(n).

E I: n = 6, Φ̃ = 〈2α1, . . . , 2α6〉 of type E6, h = sp(8).
E II: n = 6, Φ̃ = 〈α1 +α6, α3 +α5, 2α2, 2α4〉 of type F4, h = sl(6)+sl(2).

E III: n = 6, Φ̃ = 〈α1 + α3 + α4 + α5 + α6, 2α2 + 2α4 + α3 + α5〉 of type
BC2, h = so(10) + gl(1).

E IV: n = 6, Φ̃ = 〈2α1 + 2α3 + 2α4 +α2 +α5, α2 +α3 + 2α4 + 2α5 + 2α6〉
of type A2, h = f4.

E V: n = 7, Φ̃ = 〈2α1, . . . , 2αn〉 of type E7, h = sl(8).
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E VI: n = 7, Φ̃ = 〈2α1, 2α3, α2 + 2α4 + α5, α5 + 2α6 + α7〉 of type F4,
h = so(12) + sl(2).

E VII: n = 7, Φ̃ = 〈2α1+2α3+2α4+α2+α5, α2+α3+2α4+2α5+2α6, 2α7〉
of type C3, h = e6 + gl(1).

E VIII: n = 8, Φ̃ = 〈2α1, . . . , 2αn〉 of type E8, h = so(16).
E IX: n = 8, Φ̃ = 〈2α1 + 2α3 + 2α4 + α2 + α5, α2 + α3 + 2α4 + 2α5 +

2α6, 2α7, 2α8〉 of type F4, h = e7 + sl(2).
F I: Φ̃ = 〈2α1, 2α2, 2α3, 2α4〉 of type F4, h = sp(6) + sl(2).

F II: Φ̃ = 〈α1 + 2α2 + 3α3 + 2α4〉 of type BC1, h = so(9).
G: Φ̃ = 〈2α1, 2α2〉 of type G2, h = sl(2) + sl(2).

Appendix B. Spherical nilpotent orbits

We collect some results on adjoint nilpotent orbits from [21, 22] unless
otherwise stated.

B.1. Main properties

Take a nilpotent element e in the Lie algebra g of a simple group G. By
the Jacobson-Morozov theorem, there exist h, f ∈ g such that (e, h, f) is a
SL(2)-triple, this means that

[h, e] = 2e, [h, f ] = −2f and [e, f ] = h.

The semisimple element h yields a Z-grading on g: g = ⊕i∈Zg(i) where
g(i) = {x ∈ g : [h, x] = ix}.

Set
p = ⊕i>0g(i), l = g(0) and n1 = ⊕i>1g(i).

Let ge be the centraliser of e in g. It is included in p. Set

k = ge ∩ g(0) and n = ge ∩ ⊕i>1g(i).

Denote by P the connected subgroup of G (resp. L, Pu, H, Hu and
K) with Lie algebra p (resp. l, n1, ge, n and k). Then P = PuL (resp.
H = HuK) is a Levi decomposition of P (resp. H). Further, dimH =
dim g(0) + dim g(1) and dimHu = dim g(1) + dim g(2).

The linear map ad f : ⊕i>3 g(i)→ n1/n is an isomorphism of k-modules.
Define the height of e to be the minimal positive integer such that

(ad e)m 6= 0. The adjoint orbit G.e is spherical if and only if the height
of e is 2 or 3.
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If G/H is spherical then K is the fixed point subgroup of an involution
in the reductive group L.

Assume that the height of e is equal to 2. Then g(i) = 0 for all i > 3
and Hu = Pu. In other words, the spherical homogeneous space G/H
is obtained by parabolic induction from L/K. The wonderful subgroup
NG(H) is thus obtained by parabolic induction from a symmetric subgroup
of the derived group (L,L).

B.2. Panyushev’s classification

Choose now a Cartan subalgebra t and a Borel subalgebra b such that
h ∈ t ⊆ l and b ⊆ p. One then gets a set of simple roots αi such that
0 6 αi(h) 6 2 for all i. The sequence of the non-negative integers αi(h)
is called the characteristic of the orbit; different orbits have different char-
acteristics. Further, the subalgebra l is thus the standard Levi subalgebra
corresponding to the subset of simple roots with αi(h) = 0.

We report below the classification of spherical nilpotent orbits of height 3
(the height 2 case being not cuspidal as just explained) for G simple. We
shall give the type of the simple group G, the characteristic of the nilpotent
orbit, the subalgebra k as well as the k-module n1/n (which can be computed
as in [17, 6]). In case of classical type, the nilpotent orbit can be described
by the size of its Jordan blocks and we shall also provide the corresponding
partition.

– Type B2r+1, r > 1, (10 . . . 01): k ∼= sp(2r) and n1/n ∼= V (ω1);
partition (3, 22r).

– Type B2r+s+1, r, s > 1, (10 . . . 010 . . . 0) with α2r+1(h) = 1: k ∼=
sp(2r)⊕ so(2s) and n1/n ∼= V (ω1); partition (3, 22r, 12s).

– Type D2r+2, r > 1: (10 . . . 011); k ∼= sp(2r) and n1/n ∼= V (ω1);
partition (3, 22r, 1).

– Type D2r+s+2, r, s > 1, (10 . . . 010 . . . 0) with α2r+1(h) = 1: k ∼=
sp(2r)⊕ so(2s+ 1) and n1/n ∼= V (ω1); partition (3, 22r, 12s+1).

– Type E6: (000100); k ∼= sl(3)⊕ sl(2) and n1/n ∼= V (ω′1).
– Type E7: (0010000); k ∼= sl(2)⊕ sp(6) and n1/n ∼= V (ω1).
– Type E7: (0100001); k ∼= sp(6) and n1/n ∼= V (ω1).
– Type E8: (00000010); k ∼= f4 ⊕ sl(2) and n1/n ∼= V (ω′1).
– Type E8: (01000000); k ∼= sp(8) and n1/n ∼= V (ω1).
– Type F4: (0100), k ∼= sl(2)⊕ so(3) and n1/n ∼= V (ω1).
– Type G2: (10); k ∼= sl(2) and n1/n ∼= V (ω1).
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Appendix C. Luna’s classification of model spaces

We refer to [18] for the following, and restrict ourselves to the case of G
simply connected.

A homogeneous space G/H is model for a given semisimple group G =
G1 × · · · × Gr (with Gi simple for i = 1, . . . , r) if and only if H = H1 ×
· · · ×Hr, with Hi ⊂ Gi, and Gi/Hi is model for i = 1, . . . , r.

In case of a simple group G, the model wonderful variety is obtained
as the wonderful compactification of G/H with H one of the following
subgroups.

– Type An with n even: H = Sp(n)×GL1.
– Type An with n odd: H is the parabolic subgroup of semisimple

type C(n−1)/2 of the symmetric subgroup A II.
– Type Bn with n even: consider the parabolic of semisimple type

An−1 of the symmetric subgroup B II, H is included there with the
same radical and with semisimple type Cn/2.

– Type Bn with n odd: H equals the normaliser of the stabiliser of
the nilpotent element in the Lie algebra of G with characteristic
(10 . . . 01).

– Type Cn with n even: H is the parabolic subgroup of semisimple
type C(n/2)−1 × Cn/2 of the symmetric subgroup C II with q = 2.

– Type Cn with n odd: H is the parabolic of semisimple type C(n−1)/2
×C(n−1)/2 of the symmetric subgroup C II with q = 3.

– Type Dn with n even: H is the normaliser of the stabiliser of the
nilpotent element in the Lie algebra with characteristic (10 . . . 011).

– Type Dn with n odd: consider the parabolic subgroup of semisimple
type An−2 of the symmetric subgroup D II, H is included there with
the same radical and with semisimple type C(n−1)/2.

– Type E6: H is the parabolic subgroup of semisimple type C3 of the
symmetric subgroup E IV.

– Type E7: H is the normaliser of the stabiliser of the nilpotent ele-
ment in the Lie algebra with characteristic (010 . . . 01).

– Type E8: H is the normaliser of the stabiliser of the nilpotent ele-
ment in the Lie algebra with characteristic (010 . . . 0).

– Type F4: H is the parabolic subgroup of semisimple type A1 × B2
of the symmetric subgroup F I.

– Type G2: H is the normaliser of the stabiliser of the nilpotent ele-
ment in the Lie algebra with characteristic (10).

TOME 60 (2010), FASCICULE 2



680 Paolo BRAVI & Stéphanie CUPIT-FOUTOU

BIBLIOGRAPHY

[1] D. N. Ahiezer, “Equivariant completions of homogeneous algebraic varieties by
homogeneous divisors”, Ann. Global Anal. Geom. 1 (1983), p. 49-78.

[2] N. Bourbaki, Éléments de mathématique. Groupes et Algèbres de Lie. Chapitre
IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par
des réflexions. Chapitre VI: Systèmes de racines, Actualités Scientifiques et Indus-
trielles, vol. 1337, Hermann, Paris, 1968.

[3] P. Bravi, “Wonderful varieties of type E”, Represent. Theory 11 (2007), p. 174-191.
[4] P. Bravi & S. Cupit-Foutou, “Equivariant deformations of the affine multicone

over a flag variety”, arXiv:math.AG/0603690v2 .
[5] ——— , “Equivariant deformations of the affine multicone over a flag variety”, Adv.

Math. 217 (2008), p. 2800-2821.
[6] P. Bravi & G. Pezzini, “Wonderful varieties of type D”, Represent. Theory 9

(2005), p. 578-637.
[7] M. Brion, “Classification des espaces homogènes sphériques”, Compositio Math.

63 (1987), p. 189-208.
[8] ——— , “Variétés sphériques”, Notes de la session de la S.M.F. “Opérations hamil-

toniennes et opérations de groupes algébriques”, Grenoble, 1997.
[9] R. K. Brylinski & B. Kostant, “The variety of all invariant symplectic structures

on a homogeneous space and normalizers of isotropy subgroups”, in Symplectic
Geometry and Mathematical Physics (D. P. et al., ed.), Birkhauser, Basel, 1991,
Progr. Math. 99, p. 80-113.

[10] C. De Concini & C. Procesi, “Complete symmetric varieties”, in Invariant theory
(Montecatini, 1982) (Berlin), Springer, 1983, Lecture Notes in Math. 996, p. 1-44.

[11] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, corrected
reprint ed., Graduate Studies in Mathematics, vol. 34, AMS, Providence, RI, 2001.

[12] F. Knop, “The Luna-Vust theory of spherical embeddings”, in Proceedings of the
Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) (Madras), Manoj
Prakashan, 1991, p. 225-249.

[13] ——— , “Automorphisms, root systems, and compactifications of homogeneous va-
rieties”, J. Amer. Math. Soc. 9 (1996), p. 153-174.

[14] M. Krämer, “Sphärische Untergruppen in kompakten zusammenhängenden
Liegruppen”, Compositio Math. 38 (1979), p. 129-153.

[15] I. V. Losev, “Uniqueness property for spherical homogeneous spaces”, Duke Math.
J. 147 (2009), p. 315-343.

[16] D. Luna, “Toute variété magnifique est sphérique”, Transform. Groups 1 (1996),
p. 249-258.

[17] ——— , “Variétés sphériques de type A”, Publ. Math. Inst. Hautes Études Sci. 94
(2001), p. 161-226.

[18] ——— , “La variété magnifique modèle”, J. Algebra 313 (2007), p. 292-319.
[19] D. Luna & T. Vust, “Plongements d’espaces homogènes”, Comment. Math. Helv.

58 (1983), p. 186-245.
[20] I. V. Mikityuk, “On the integrability of invariant hamiltonian systems with homo-

geneous configurations spaces (in Russian)”, Math. Sbornik 129 (1986), p. 514-534.
[21] D. I. Panyushev, “Complexity and nilpotent orbits”, Manuscripta Math. 83 (1994),

p. 223-237.
[22] ——— , “Some amazing properties of spherical nilpotent orbits”, Math. Z. 245

(2003), p. 557-580.
[23] G. Pezzini, “Wonderful varieties of type C”, PhD Thesis, Dipartimento di Matem-

atica, Università La Sapienza, Rome, 2003.

ANNALES DE L’INSTITUT FOURIER



CLASSIFICATION OF STRICT WONDERFUL VARIETIES 681

[24] ——— , “Simple immersions of wonderful varieties”, Math. Z. 255 (2007), p. 793-
812.

[25] R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc.,
vol. 80, AMS, Providence, RI, 1968.

[26] D. Timashev, “Homogeneous spaces and equivariant embeddings”,
arXiv:math/0602228 .

[27] T. Vust, “Plongements d’espaces symétriques algèbriques: une classification”, Ann.
Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), p. 165-195.

[28] B. Wasserman, “Wonderful varieties of rank two”, Transform. Groups 1 (1996),
p. 375-403.

Manuscrit reçu le 30 juin 2008,
accepté le 27 mars 2009.

Paolo BRAVI
Università di Roma La Sapienza
Dipartimento di Matematica
P. le Aldo Moro 5
00185 Roma (Italy)
bravi@mat.uniroma1.it
Stéphanie CUPIT-FOUTOU
Universität zu Köln
Mathematisches Institut
Weyertal Str. 86-90
50931 Köln (Germany)
scupit@math.uni-koeln.de

TOME 60 (2010), FASCICULE 2

mailto:bravi@mat.uniroma1.it
mailto:scupit@math.uni-koeln.de

	1. Introduction
	2. Wonderful varieties
	2.1. Definitions
	2.2. Symmetric spaces
	2.3. Spherical nilpotent orbits
	2.4. Model spaces

	3. Spherical systems
	3.1. Colours associated to a spherical system
	3.2. The spherical system of a wonderful variety
	3.3. Luna's diagrams

	4. Combinatorial dictionary of wonderful varieties
	4.1. Localisation
	4.2. Quotient
	4.3. Parabolic induction
	4.4. Decomposable spherical systems

	5. Classification of strict wonderful varieties
	5.1. The list of primitive cases
	5.1.1. Two cases in type F


	6. Proofs
	6.1. Primitive spherical systems
	6.1.1. -Connectedness
	6.1.2. General procedure
	6.1.3. Cuspidal strongly -connected spherical systems
	6.1.4. A non-trivial example

	6.2. Uniqueness proof
	6.3. Existence Proof
	6.3.1. Symmetric spaces
	6.3.2. Other affine homogeneous spaces
	6.3.3. Adjoint nilpotent orbits
	6.3.4. Model homogeneous spaces
	6.3.5. A few remaining cases.


	Appendix A. Symmetric spaces
	A.1. Restricted root system (after Vu)
	A.2. Cartan's classification

	Appendix B. Spherical nilpotent orbits
	B.1. Main properties
	B.2. Panyushev's classification

	Appendix C. Luna's classification of model spaces
	Bibliography

