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AN OPTIMAL ENDPOINT TRACE EMBEDDING

by Andrea CIANCHI & Luboš PICK (*)

Abstract. — We find an optimal Sobolev-type space on Rn all of whose func-
tions admit a trace on subspaces of Rn of given dimension. A corresponding trace
embedding theorem with sharp range is established.

Résumé. — Nous construisons un espace optimal du type Sobolev dont toutes
les fonctions admettent une trace sur les sous-espaces de Rn d’une dimension don-
née. Un théorème d’inclusion des traces correspondant avec une image précise est
établi.

1. Introduction and results

One important property enjoyed by functions from the Sobolev space
Wm,p(Rn), m ∈ N, p ∈ [1,∞], is that their restrictions, called traces,
to lower dimensional spaces can be properly defined, provided that the
dimension d of the subspaces in question is not too small, depending on n,
m and p. The trace of a function u ∈Wm,p(Rn) turns out to be measurable
with respect to the d-dimensional measure on the relevant subspaces, and
also integrable to some power q, depending on n, m, p and d. Loosely
speaking, increasing the values of m and p causes u to be more regular,
and hence allows smaller values of d and larger values of q.

Keywords: Sobolev spaces, trace inequalities, Lorentz spaces, rearrangement invariant
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(*) This research was partially supported by the research project of MIUR “Partial
differential equations and functional inequalities: quantitative aspects, geometric and
qualitative properties, applications”, by the Italian research project “Geometric proper-
ties of solutions to variational problems” of GNAMPA (INdAM) 2006, by the research
project MSM 0021620839 of the Czech Ministry of Education, by grants 201/07/0388
and 201/08/0383 of the Grant Agency of the Czech Republic and by the Nečas Cen-
ter for Mathematical Modeling project no. LC06052 financed by the Czech Ministry of
Education.



940 Andrea CIANCHI & Luboš PICK

To be more specific, let n, d ∈ N, and let n > 2 and 1 6 d < n. Since
Rn = Rd × Rn−d, any point x ∈ Rn can be represented as x = (y, z), with
y ∈ Rd and z ∈ Rn−d. Moreover, Rd can be identified with the subspace
of those points in Rn having the form (y, 0) for some y ∈ Rd. Given any
m ∈ N and p ∈ [1,∞], the classical Sobolev space Wm,p(Rn) is defined as

Wm,p(Rn) =
{
u : u is an m-times weakly differentiable function on Rn

and |∇ku| ∈ Lp(Rn), 0 6 k 6 m
}
.

Here, ∇ku stands for the vector of all partial derivatives of u of order k,
and |∇ku| denotes its length. The space Wm,ploc (Rn) is defined with obvious
modifications.

Various approaches to traces of functions are available in the literature.
We shall adopt the following definition, which extends more customary
notions of traces of functions in Sobolev spaces – see [4, Chap. 5]. A function
u ∈ L1

loc(Rn) is said to have a trace Tru ∈ L1
loc(Rd) on Rd if there exists a

function u, equivalent to u on Rn, such that

lim
z→0
u(·, z) = Tru(·) in L1

loc(Rd).

A standard trace embedding theorem (see e.g. [1, Theorem 5.4] or [12,
Corollary 1.4.1]), combined with [4, Cor. 1, Chapt. 5], tells us that if 1 6
m < n and either

(1.1) d > n−m and p > 1,

or

(1.2) d < n−m and p >
n− d
m
,

then every function u ∈Wm,ploc (Rn) has a trace on Rd. Moreover, the oper-
ator Tr, which associates Tru with u, is linear, and, if p < n

m , then

(1.3) Tr: Wm,p(Rn)→ L
dp

n−mp (Rd),

where the arrow “→” stands for bounded operator. In particular, there
exists a constant C such that

(1.4) ‖Tru‖
L

dp
n−mp (Rd)

6 C‖∇mu‖Lp(Rn)

for every u ∈ Wm,p(Rn). Note that the case when m > n is uninteresting,
since any function u ∈ Wm,ploc (Rn), p > 1, is continuous, and hence Tru
trivially exists on Rd for every d ∈ [1, n− 1].

Unlike (1.1), in the limiting case when p = n−d
m > 1, functions from the

Sobolev space Wm,
n−d
m

loc (Rn) need not admit a trace on Rd.
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The aim of this note is to fill in this gap and to exhibit an optimal
(largest possible) Sobolev-type space when d < n −m such that all of its
functions admit a trace on Rd. Here, optimality is understood within the
class of Sobolev spaces built upon rearrangement-invariant spaces. This is
accomplished on calling into play the finer scale of Lorentz-Sobolev spaces.
Indeed, we shall show that existence of traces can be restored when p =
n−d
m , provided that Wm,

n−d
m

loc (Rn) is replaced by the Sobolev-type space
WmlocL

n−d
m ,1(Rn) built upon the Lorentz space Ln−dm ,1(Rn). Such a space is

slightly smaller thanWm,
n−d
m

loc (Rn) if n−dm > 1, but agrees with the standard
space Wm,1loc (Rn) when n−dm = 1. Moreover, L

n−d
m ,1

loc (Rn) is optimal among
all rearrangement-invariant spaces.

We recall that a rearrangement-invariant (r.i. for short) space X(Rn) is
a Banach function space (in the sense of Luxemburg) of real-valued mea-
surable functions in Rn endowed with a norm ‖ · ‖X(Rn) satisfying

(1.5) ‖u‖X(Rn) = ‖v‖X(Rn) if u∗ = v∗.

Here, u∗ : (0,∞) → (0,∞) denotes the decreasing rearrangement of u,
namely

u∗(s) = sup
{
t > 0: Ln

(
{x ∈ Rn : |u(x)| > t}

)
> s
}

for s ∈ (0,∞),

where Ln denotes the Lebesgue measure in Rn. The representation space
X(0,∞) of an r.i. space X(Rn) is the r.i. space on (0,∞) equipped with
the norm ‖ · ‖X(0,∞) fulfilling

(1.6) ‖u‖X(Rn) = ‖u∗‖X(0,∞)

for every u ∈ X(Rn).
The m-th order Sobolev space associated with X(Rn) is defined as

WmX(Rn) =
{
u : u is an m-times weakly differentiable function on Rn

and |∇ku| ∈ X(Rn), 0 6 k 6 m
}
,

and is equipped with the norm ‖u‖WmX(Rn) =
∑m
k=0

∥∥∇ku∥∥
X(Rn). The

spaces Xloc(Rn) and WmlocX(Rn) are defined accordingly. We define analo-
gously the spaces X(Ω) and WmX(Ω) if Ω is an open subset of Rn.

Given any 1 < p <∞ and 1 6 q 6∞, the Lorentz space Lp,q(Rn) is the
r.i. space of all measurable functions in Rn for which the quantity

(1.7) ‖u‖Lp,q(Rn) =
∥∥∥s 1

p−
1
q u∗(s)

∥∥∥
Lq(0,∞)

is finite. The functional ‖ · ‖Lp,q(Rn) is always equivalent to an r.i. norm.

TOME 60 (2010), FASCICULE 3



942 Andrea CIANCHI & Luboš PICK

Note that Lp,q(Rn) ( Lp,r(Rn) if 1 6 q < r 6 ∞ and Lp,p(Rn) =
Lp(Rn). In the same vein, one can prove that

(1.8) WmL
n−d
m ,1(Rn) (Wm,

n−d
m (Rn) if n− d

m
> 1,

whereas

(1.9) WmL1,1(Rn) =Wm,1(Rn).

Relations (1.8) and (1.9) continue to hold if all the Sobolev spaces are
replaced by their local versions.

Theorem 1.1. — Assume that n > 2, 1 6 m < n and 1 6 d 6 n−m.
Then any function from WmlocL

n−d
m ,1(Rn) admits a trace on Rd. Moreover,

L
n−d
m ,1

loc (Rn) is the optimal (largest) rearrangement-invariant space enjoy-
ing this property, in the sense that if X(Rn) is another r.i. space such
that any function from WmlocX(Rn) admits a trace on Rd, then, necessarily,
Xloc(Rn) ⊂ L

n−d
m ,1

loc (Rn).

In an analogy with the classical situation described in (1.3)–(1.4), we es-
tablish a trace embedding for WmLn−dm ,1(Rn). In fact, we find the optimal
(smallest) range space in the class of Lorentz spaces for trace embeddings of
WmL

n−d
m ,1(Rn). Interestingly enough, the optimal range space in this end-

point trace embedding turns out to be the plain Lebesgue space Ln−dm (Rd),
and not the (strictly smaller) genuine Lorentz space Ln−dm ,1(Rd) as one
would expect in the light of other known optimal Sobolev embeddings such
as those treated in [13, 15, 3, 10] (see [6, 9] for the optimality), and trace
embeddings ([5]).

Theorem 1.2. — Assume that n > 2, 1 6 m < n and 1 6 d 6 n−m.
Then

(1.10) Tr: WmL
n−d
m ,1(Rn)→ L

n−d
m (Rd).

In particular, a constant C = C(n,m, d) exists such that

(1.11) ‖Tru‖
L
n−d
m (Rd)

6 C ‖∇mu‖
L
n−d
m
,1(Rn)

for every u ∈ WmLn−dm ,1(Rn). Moreover, Ln−dm (Rd) is optimal on the left-
hand side of (1.11) among all Lorentz spaces.

Let us mention that a result on a related topic has recently been es-
tablished in [8], where a characterization of Sobolev inequalities involving
general measures and Lorentz norms is given in terms of isocapacitary in-
equalities.

ANNALES DE L’INSTITUT FOURIER
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Remark 1.3. — Embedding (1.10) continues to hold provided that the
whole of Rn is replaced by any extension domain Ω (see e.g. [1, 4, 16, 19]
for a definition). Of course, Rd has to be replaced by Ω ∩ Rd in this case.

Another generalization of embedding (1.10) concerns the case when traces
on d-dimensional subspaces are replaced by (suitably defined – see e.g. [4])
traces on smooth d-dimensional Riemannian submanifolds of Rn.

2. Proofs

We begin with the proof of Theorem 1.2, to which the first part of the
proof of Theorem 1.1 will be reduced. The proof of Theorem 1.2 involves
two main ingredients: a sharp endpoint Sobolev inequality into the space of
essentially bounded functions, and a boundedness result for integral prod-
uct operators between Lorentz spaces.

The relevant Sobolev inequality is a refinement of a classical result and
involves a Lorentz-Sobolev space. It states that, if 1 6 m < n, then a
constant C = C(n,m) exists such that

(2.1) ‖u‖L∞(Rn) 6 C‖∇mu‖
L
n
m
,1(Rn)

for every u ∈ WmL nm ,1(Rn). We are not able to trace back to the original
proof of inequality (2.1), although it is certainly related to a result of [17].
Anyway, inequality (2.1) with m = 1 can be found in [18] and [6]. The case
when m > 1 can be derived from this one, via a (sub-limiting) Sobolev
inequality in Lorentz spaces, which tells us that

‖∇u‖Ln,1(Rn) 6 C‖∇mu‖
L
n
m
,1(Rn)

for every u ∈WmL nm ,1(Rn) ([13, 15]).
The integral operators coming into play in our approach have the form

h(y) =
∫ ∞

0
f(y, s)g(s)ds

for measurable functions f : Rd× (0,∞)→ R and g : (0,∞)→ R. A special
case of [14, Theorem C] ensures that if p ∈ (1,∞), f ∈ Lp,1(Rd × (0,∞))
and g ∈ Lp′,∞(0,∞), then h ∈ Lp(Rd), and a constant C = C(p) exists
such that

(2.2) ‖h‖Lp(Rd) 6 C‖f‖Lp,1(Rd×(0,∞))‖g‖Lp′,∞(0,∞).

TOME 60 (2010), FASCICULE 3



944 Andrea CIANCHI & Luboš PICK

Proof of Theorem 1.2. — We shall prove that a constant C exists such
that

(2.3) ‖u(y, 0)‖
L
n−d
m (Rd)

6 C‖∇mu‖
L
n−d
m
,1(Rn)

for every u ∈ WmLn−dm ,1(Rn) ∩ C∞0 (Rn). Since this space is dense in
WmL

n−d
m ,1(Rn), as shown by a standard convolution argument, it will

follow via [4, Cor. 1, Chapt. 5] that the operator Tr is well defined in
WmL

n−d
m ,1(Rn) and that (1.10)–(1.11) hold.

Fix any u as above. Then,

(2.4) |∇mu| ∈ L
n−d
m ,1(Rn).

Consider the function U : Rd × (0,∞)→ [0,∞) given by

U(y, s) = |∇mu|(y, ·)∗(s) for (y, s) ∈ Rd × (0,∞).

It is easily seen, as a consequence of Fubini’s theorem, that

Ld+1({(y, s) ∈ Rd × (0,∞) : U(y, s) > t}
)

= Ln
(
{x ∈ Rn : |∇mu(x)| > t}

)
for t > 0.

Hence,

(2.5) U∗ = |∇mu|∗.

By (2.4) and (2.5),

(2.6) U ∈ L
n−d
m ,1

(
Rd × (0,∞)

)
.

Inequality (2.1), with n− d in place of n, entails that

(2.7) ‖w‖L∞(Rn−d) 6 C‖∇mw‖
L
n−d
m
,1(Rn−d)

for some constant C = C(n,m, d) and for every w ∈ WmLn−dm ,1(Rn−d).
From (2.7), applied to w(·) = u(y, ·) for each y ∈ Rd, we deduce that

|u(y, 0)| 6 ‖u(y, ·)‖L∞(Rn−d) 6 C‖∇mz u(y, ·)‖
L
n−d
m
,1(Rn−d)

(2.8)

6 C‖∇mu(y, ·)‖
L
n−d
m
,1(Rn−d)

= C
∫ ∞

0
U(y, s)s

m
n−d−1ds.

Here, ∇mz u denotes the vector of all the derivatives of u of order m with
respect to the z variables. The function s

m
n−d−1 belongs to L

n−d
n−d−m ,∞(0,∞),

ANNALES DE L’INSTITUT FOURIER
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and ‖s
m
n−d−1‖

L
n−d

n−d−m,∞(0,∞)
= 1. Thus, owing to (2.2) and (2.5), there

exists a constant C = C(n,m, d) such that∥∥∥∫ ∞
0
U(·, s)s

m
n−d−1ds

∥∥∥
L
n−d
m (Rd)

(2.9)

6 C‖U‖
L
n−d
m
,1(Rd×(0,∞))

‖s
m
n−d−1‖

L
n−d

n−d−m,∞(0,∞)

= C‖∇mu‖
L
n−d
m
,1(Rn)

.

Coupling (2.8) and (2.9) yields (2.3).
In order to demonstrate the sharpness of Ln−dm (Rd) as a range space, we

begin by observing that an inequality of the form

‖Tru‖Lp,q(Rd) 6 C‖∇mu‖
L
n−d
m
,1(Rn)

can hold for some p and q only if p = n−d
m . This follows by a scaling

argument, on replacing u(x) by u(λx) for λ > 0.
Thus, it suffices to exhibit a function u ∈ WmLn−dm ,1(Rn) such that

Tru /∈ Ln−dm ,q(Rd) if q ∈ [1, n−dm ). We shall produce, in fact, a compactly
supported function u ∈ WmLn−dm ,1(Rn) such that Tru /∈ L

n−d
m ,q

loc (Rd) if
q ∈ [1, n−dm ). Pick any number α such that

(2.10) 1 + m

n− d
< α 6 1 + 1

q
.

Let ϕ : (0, 1)× (0, 1)→ [0,∞) be the function given by

ϕ(r, %) = 1
rn(m−1)+ dm

n−d %
(
log er%

)α for r, % ∈ (0, 1)× (0, 1).

Let u be the function defined as

(2.11) u(y, z) =
∫ |y|n
|z|n−d

ϕ(|y|, %)(|y|n − %)m−1dt if |z|n−d 6 |y|n < 1,

and u(y, z) = 0 if |y|n < |z|n−d and |y| < 1. This function can be easily
continued to a compactly supported function defined on the whole of Rn,
still denoted by u, in such a way that ‖u‖

WmL
n−d
m
,1(Rn)

< ∞ if

‖u‖
WmL

n−d
m
,1({|y|<1})

<∞. We begin by showing that, given any q∈[1, n−dm ),

(2.12) Tru /∈ L
n−d
m ,q

loc (Rd).

TOME 60 (2010), FASCICULE 3



946 Andrea CIANCHI & Luboš PICK

One has that

Tru(y) = u(y, 0) =
∫ |y|n

0
ϕ(|y|, %)(|y|n − %)m−1d%(2.13)

>
1

2m−1

∫ |y|n
2

0
ϕ(|y|, %)|y|n(m−1)d%

= C|y|−
dm
n−d

(
log e

|y|1+n

)1−α

for some constant C. Thus, there exists a constant C such that

(Tru)∗(s) > Cs−
m
n−d

(
log e
s

)1−α
for small s,

and (2.12) follows by the second inequality in (2.10).
We conclude by proving that u ∈WmLn−dm ,1(Rn). It is easily verified that
u is m-times weakly differentiable. Thus, since u is compactly supported,
thanks to a general Poincaré-type inequality (see e.g. [6, Lemma 4.2]), it
suffices to show that

(2.14) |∇mu| ∈ L
n−d
m ,1(Rn).

An induction argument on the order of differentiation yields the following
estimate for the norm of the vector ∇my u of all partial derivatives of u, of
order m, with respect to the y-variables only:

(2.15)
∣∣∇my u∣∣ 6 C|y|− nmn−d(log C

|y|

)1−α
,

for some constant C, if |z|n−d 6 |y|n < 1. Thus, on defining ζ : (0, 1] →
[0,∞) as

ζ(s) = Cs−
m
n−d

(
log C
s

)1−α
for s ∈ (0, 1],

with a suitable choice of C, one has that ζ is decreasing in (0, 1], and, for
every t > 0,

Ln
({

(y, z) ∈ Rn : |y| < 1, |∇my u| > t
})

6 Ln
({

(y, z) ∈ Rn : |z|n−d 6 |y|n < 1, ζ(|y|n) > t
})

6
∫
{|y|6(ζ−1(t))1/n}

(∫
{|z|6|y|n/(n−d)}

dz

)
dy

= C ′
∫
{|y|6(ζ−1(t))1/n}

|y|n dy = C ′′
(
ζ−1(t)

) d
n+1

for some constants C ′ and C ′′. Hence, there exists a constant C such that

(2.16)
∣∣∇my u∣∣∗ (s) 6 Cs−

nm
(n+d)(n−d)

(
log C
s

)1−α
for small s.
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Next, an induction argument again shows that the norm of the vector∇my,zu
of all m-th order partial derivatives of u involving also differentiation along
the z variables admits the bound:

(2.17)
∣∣∇my,zu∣∣ 6 C|y|− dm

n−d |z|−m
(

log C
|y||z|

)−α
,

for some constant C, if |z|n−d 6 |y|n < 1. Hence, if we define σ : (0, 1] →
[0,∞) as

σ(s) = Cs−
m
n−d

(
log C
s

)−α
for s ∈ (0, 1],

then, for a suitable choice of C, the function σ is decreasing in (0, 1], and,
for every t > 0,

Ln
({

(y, z) ∈ Rn : |y| < 1, |∇my,zu| > t
})

6 Ln
({

(y, z) ∈ Rn : |z|n−d 6 |y|n < 1, σ(|y|d|z|n−d) > t
})

6 Ln
({

(y, z) ∈ Rn : |y| 6 1, |z| 6 1, |z| <
(σ−1(t)
|y|d

)1/(n−d)
})

=
∫
{(σ−1(t))1/d6|y|61}

(∫
{|z|6(σ

−1(t)
|y|d

)1/(n−d)}
dz

)
dy

+
∫
{|y|<(σ−1(t))1/d}

(∫
{|z|61}

dz

)
dy

= C ′
(∫{

(σ−1(t))1/d6|y|61
} σ−1(t)
|y|d

dy +
∫{
|y|<(σ−1(t))1/d

} dy)

6 C ′′
(
σ−1(t) log

( 1
σ−1(t)

)
+ σ−1(t)

)
,

for some constants C ′ and C ′′. Hence, there exists a constant C such that

(2.18)
∣∣∇my,zu∣∣∗ (s) 6 Cs−

m
n−d

(
log e
s

) m
n−d−α for small s.

From (2.16) and (2.18) one deduces that

|∇mu|∗ (s) 6 Cs−
m
n−d

(
log e
s

) m
n−d−α for small s,

whence (2.14) follows. �

We conclude with the proof of Theorem 1.1.
Proof of Theorem 1.1. — Let u ∈WmlocL

n−d
m ,1(Rn). Then, given any ball

B centered on Rd, we have that u ∈WmLn−dm ,1(B). An extension theorem
for Sobolev spaces built upon arbitrary r.i. spaces (see [7]) ensures that u
admits an extension ũ on Rn such that ũ ∈ WmLn−dm ,1(Rn). By Theorem

TOME 60 (2010), FASCICULE 3
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1.2, ũ admits a trace on Rd, and hence, owing to the arbitrariness of B, u
admits a trace on Rd as well.

As far as the optimality of the space WmlocL
n−d
m ,1(Rn) is concerned, as-

sume that X(Rn) is an r.i. space such that every function from WmlocX(Rn)
has a trace on Rd. We have to show that

(2.19) Xloc(Rn) ⊂ L
n−d
m ,1

loc (Rn).

If n−dm = 1, then L
n−d
m ,1

loc (Rn) = L1
loc(Rn), and hence (2.19) holds as a

consequence of a basic property of r.i. spaces.
Assume now that n−dm > 1. We shall show that, if

(2.20) Xloc(Rn) r L
n−d
m ,1

loc (Rn) 6= ∅,

then there exists a function

(2.21) u ∈WmlocX(Rn)

such that, for every v ∈ L1
loc(Rd),

(2.22) lim
z→0
‖u(·, z)− v(·)‖L1(Bd) =∞.

Here, Bd denotes the unit ball in Rd centered at 0. By (2.20), there exists
a decreasing function f : (0,∞)→ [0,∞) such that

(2.23) fχ(0,ωn−d) ∈ X(0,∞),

but

(2.24) fχ(0,ωn−d) /∈ L
n−d
m ,1(0,∞).

Here, ωn−d denotes the measure of Bn−d, and χ(0,ωn−d) stands for the
characteristic function of (0, ωn−d). Define w : Rn−d → [0,∞) as

w(z) =
∫ ωn−d
ωn−d|z|n−d

f(s)s−m(1− 1
n−d )(s− ωn−d|z|n−d)m−1

ds, if |z| 6 1

and w(z) = 0 otherwise, and u : Rn → [0,∞) as

u(y, z) = ξ(y)w(z) for (y, z) ∈ Rn,

where ξ ∈ C∞0 (Rd), 0 6 ξ 6 1, ξ(y) = 1 for y ∈ Bd. By (2.24),

lim
z→0
w(z) =∞,

and hence
lim
z→0
u(y, z) =∞

uniformly as y ∈ Bd. Thus, (2.22) follows.
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We next prove (2.21). One can easily verify that w and u are m times
weakly differentiable, and

(2.25)
m∑
k=0
|∇ku(y, z)| 6 φ(y)

m∑
k=0
|∇kzw(z)| for (y, z) ∈ Rn,

for some nonnegative function φ ∈ C∞0 (Rd). Define g : (0,∞)→ [0,∞) as

(2.26) g(s) =
m−1∑
k=1
sk−

m
n−d

∫ ∞
s

χ(0,ωn−d)(r)f(r)r−k+
m
n−d−1dr for s > 0,

and h : (0,∞)→ [0,∞) as
h = f + g.

An induction argument on the order of differentiation (see also [11, proof
of Theorem A, p. 563]) shows that there exists a constant C such that, for
k = 0, . . . ,m,

(2.27) |∇kzw(z)| 6 Ch(ωn−d|z|n−d) if z ∈ Bn−d,

and ∇kzw(z) = 0 otherwise. Thus, there exist constants C and C ′ such that,
for k = 0, . . . ,m,

Ln
(
{x ∈ Rn : |∇ku| > t}

)
(2.28)

6 Ln
(
{(y, z) ∈ Rn : φ(y)

m∑
k=0
|∇kzw(z)| > t}

)
6 Ln

(
{(y, z) ∈ suppφ×Bn−d : Ch(ωn−d|z|) > t}

)
6 C ′Ln−d

(
{z ∈ Bn−d : Ch(ωn−d|z|) > t}

)
for t > 0. Hence, a constant C exists such that, for k = 0, . . . ,m,

|∇ku|∗(s) 6 C
(
hχ(0,ωn−d)

)∗(s/C)
(2.29)

6 C
(
(fχ(0,ωn−d))∗(s/(2C)) + (gχ(0,ωn−d))∗(s/(2C))

)
for s > 0.

Note that in the last inequality we have made use of the fact that, by
a property of the operation of decreasing rearrangement, (f + g)∗(s) 6
f∗(s/2) + g∗(s/2) for s > 0 (see [2, Chapter 2, Proposition 1.7]). By (2.29)
and by the boundedness of the dilation operator in any rearrangement
invariant space (see [2, Chapter 3, Proposition 5.11]),

‖∇ku‖X(Rn) = ‖|∇ku|∗‖X(0,∞)(2.30)

6 C
(
‖fχ(0,ωn−d)‖X(0,∞) + ‖gχ(0,ωn−d)‖X(0,∞)

)
,

for some constant C and for k = 0, . . . ,m. On the other hand, it is easy
to see that the Hardy-type operators appearing on the right-hand side
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of (2.26) are bounded on L1(0,∞) and on L∞(0,∞), and hence, by an
interpolation theorem of Calderón ([2, Chapter 3, Theorem 2.12]), they
are also bounded on any rearrangement invariant space on (0,∞). Hence,
‖g‖X(0,∞) 6 C‖fχ(0,ωn−d)‖X(0,∞) < ∞ for some constant C and (2.21)
follows from (2.30) and (2.23). �
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