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A NEW LAGRANGIAN DYNAMIC REDUCTION IN
FIELD THEORY

by François GAY-BALMAZ & Tudor S. RATIU (*)

Abstract. — For symmetric classical field theories on principal bundles there
are two methods of symmetry reduction: covariant and dynamic. Assume that the
classical field theory is given by a symmetric covariant Lagrangian density defined
on the first jet bundle of a principal bundle. It is shown that covariant and dynamic
reduction lead to equivalent equations of motion. This is achieved by constructing
a new Lagrangian defined on an infinite dimensional space which turns out to be
gauge group invariant.

Résumé. — Considérons une théorie des champs décrite par une densité la-
grangienne définie sur le fibré des jets d’ordre 1 d’un fibré principal. Si la densité
est invariante sous l’action du groupe de structure du fibré il y a deux approches
possibles pour réduire le système : l’approche covariante et l’approche dynamique.
Dans cet article nous montrons que ces deux approches produisent les mêmes équa-
tions réduites. Afin d’obtenir ce résultat, nous construisons, à partir de la densité
lagrangienne, un nouveau lagrangien défini sur un espace de dimension infinie et
invariant sous l’action du groupe des transformations de jauge.

1. Introduction

The solution of an evolutionary partial differential equation can be viewed
either as a curve in an infinite dimensional space or as a section of a bundle
over spacetime. These two points of view lead to the two classical geomet-
ric approaches for the study of these partial differential equations and lead
either to dynamical systems in infinite dimensions or to the evolution of
sections in jet bundles of finite dimensional manifolds.
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In the case of conservative evolutionary equations there is additional
structure that plays a fundamental role. Such equations have Lagrangian
and Hamiltonian formulations. Regarding the solutions as curves in infi-
nite dimensional spaces leads to the dynamic point of view which presents
the equations as Lagrangian or Hamiltonian vector fields on the tangent
and cotangent bundles of an infinite dimensional configuration manifold,
respectively. In the Lagrangian formulation, the equations are obtained
from the usual variational principle for a real valued Lagrangian function
on the tangent bundle. Interpreting the solutions as sections of a bundle
over spacetime leads to the covariant point of view. In this approach, the
equations appear as the Euler-Lagrange equations of a Lagrangian density
defined on the first jet bundle of a given fiber bundle with values in the den-
sities over spacetime. It is well known that the covariant approach admits
a dynamic formulation by choosing a slicing of the configuration bundle
over spacetime (see e.g. [10], [9] and references therein for the details of
this construction).

Assume that a field theoretical Lagrangian density admits a Lie group of
symmetries. Then covariant reduction can be performed if the configuration
bundle is principal and the symmetry is a subgroup of the structure group
(see [5], [1], [4]). The theory for general covariant Lagrangian reduction is
still in development and the principal bundle case mentioned before is the
only one which is completely understood. In the dynamic approach, if the
Lagrangian has a symmetry group, one can apply the usual reduction pro-
cedures from classical mechanics. Thus, given a symmetric field theoretical
Lagrangian density, the question naturally arises if one can construct an
associated dynamic Lagrangian admitting also a symmetry and if yes, how
are the two reduction procedures (covariant and dynamic) related.

In this paper we propose a new approach to dynamic reduction of classi-
cal field theories on principal bundles. Let P → X be a right principal G-
bundle and L : J1P → Λn+1X a Lagrangian density, where dimX = n+1.
For simplicity, we assume that the spacetime X admits a standard slic-
ing X = R × M for some manifold M and that P = R × PM , where
PM → M is a principal G-bundle. To the density L we associate a family
of time-dependent Lagrangians LLΓ0

: TGau(PM ) → R, where Gau(PM ) is
the gauge group of the G-principal bundle PM →M and Γ0 is a connection
on PM . This gives a function LL : TGau(PM )×Conn(PM )→ R if we think
of Γ0 as a variable; here Conn(PM ) denotes the space of connections on the
bundle PM → M . Remarkably, if L is G-invariant, it turns out that LL
is Gau(PM )-invariant. This is reminiscent of the Utiyama trick by which
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one defines a gauge invariant Lagrangian from a G-invariant Lagrangian by
substituting the derivatives by covariant derivatives. Thus the affine Euler-
Poincaré reduction, introduced in [8] in order to deal with symmetry reduc-
tion for complex fluids, can be applied to LL to yield a reduced Lagrangian
lL : gau(PM ) × Conn(PM ) → R together with the associated reduced
equations of motion and variational principle on gau(PM ) × Conn(PM ),
where gau(PM ) denotes the Lie algebra of Gau(PM ). In this context, the
reduced Euler-Lagrange equations are called affine Euler-Poincaré equa-
tions. Concerning the covariant description, since the Lagrangian density
L is G-invariant, one can perform covariant reduction leading to a La-
grangian density ` : (J1P )/G → Λn+1X together with the equations of
motion and variational principle on (J1P )/G. In this context, the reduced
Euler-Lagrange equations are called covariant Euler-Poincaré equations.
The main result of the paper states that the equations obtained by covari-
ant reduction of the density L are equivalent to the affine Euler-Poincaré
equations obtained by dynamical reduction of the Lagrangian LL. Thus,
our results show that the underlying geometry of this new dynamical re-
duction is identical to the one usually employed in rigid body dynamics or
continuum mechanics.

It should be noted that there is a main difference between the covariant
and the dynamic reduction processes. A solution of the covariantly reduced
system, that is, a connection σ on P → X, is the projection of a solution
of the original system if and only if σ is flat. In the dynamic approach
no additional condition is imposed to reconstruct solutions. It is shown
that the advection equation in the affine Euler-Poincaré system in the dy-
namic approach is equivalent to the flatness of the connection, which is the
compatibility condition for reconstruction in the covariant approach.

We note that our construction is different from the one in [2]. They
associate to L a time dependent instantaneous Lagrangian L : TΓ(PM )→
R obtained by the classical procedure (see e.g. [10], [9]), where Γ(PM )
denotes the space of local sections of the principal G-bundle PM → M .
If L is G-invariant then the construction of L implies that it is also G-
invariant and hence, by Lagrange-Poincaré reduction, one obtains a reduced
Lagrangian l : (TΓ(PM ))/G→ R and the corresponding Lagrange-Poincaré
equations (see [3] for details of this construction). In [2] it is shown that
the evolution equations determined by ` : (J1P )/G → Λn+1X and l :
(TΓ(PM ))/G→ R are equivalent. As before, the reconstruction of solutions
from the covariantly reduced system necessitates the flatness of the solution
connection whereas the reconstruction of the dynamically reduced system
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1128 François GAY-BALMAZ & Tudor S. RATIU

does not need any additional hypotheses. This difference is only apparent
since, in the dynamic approach, the configuration manifold Γ(PM )/G is
interpreted as the space of flat connections and hence the compatibility
condition appearing in covariant reduction is built into dynamic reduction.

The paper is structured in the following way. It begins with a presenta-
tion of the covariant Euler-Poincaré reduction in Section 2. All formulas
are explicitly computed in the case of a trivial bundle over spacetime. In
Section 3 the affine Euler-Poincaré reduction in the formulation useful to
the theory of spin systems is recalled; in particular the bundle is trivial. The
passage from covariant to dynamical reduction in the case of trivial prin-
cipal bundles and the equivalence of the reduced equations is presented in
Section 4. Affine Euler-Poincaré reduction for non-trivial principal bundles
is formulated in Section 5. Section 6 contains the main result of the pa-
per: the passage from covariant to dynamic reduction for general principal
bundles and the equivalence of the two reduced systems.

2. Covariant Euler-Poincaré reduction

In this section we present all the background material for covariant re-
duction of principal bundle field theories. We begin by recalling the general
covariant Lagrangian reduction procedure and work out in detail all for-
mulas for trivial bundles which are needed in later sections.

2.1. The general case

Let X be a (n + 1) dimensional manifold and let π : P → X be a right
principal bundle over X, with structure group G. For U ⊂ X an open
subset, we will denote by πU : PU → U the restricted principal bundle
over U .

The first jet bundle is the affine bundle J1P → P over P whose fiber at
p is

J1
pP = {γp ∈ L(TxX,TpP ) | Tpπ ·γp = idTxX},

where x = π(p) and L(TxX,TpP ) denotes the linear maps γp : TxX → TpP .
Given a local section s : U ⊂ X → PU , the first jet extension of s is the
section j1s of the fiber bundle J1PU → U ⊂ X defined by j1s(m) := Tms.

ANNALES DE L’INSTITUT FOURIER
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A global section exists if and only if the bundle is trivial. The structure
group G acts naturally on J1P , the action being given by

γp 7→ TΦg ·γp := TΦg ◦ γp.

The resulting quotient space J1P/G is an affine bundle over X, whose
sections can be identified with principal connections on P .

A Lagrangian density is a smooth bundle map L : J1P → Λn+1X over
X, where n+ 1 = dimX. It is said to be G invariant if

L(TΦg ·γp) = L(γp),

for all g ∈ G. In this case, L induces a reduced Lagrangian density ` :
J1P/G→ Λn+1X. For simplicity, we suppose that X is orientable and we
fix a volume form µ on X. In this case we can write L = L̄µ, and ` = ¯̀µ,
where

L̄ : J1P → R, ¯̀ : J1P/G→ R.

Given a principal connection A on P and denoting by V P the vertical
subbundle of TP , we have an affine bundle isomorphism over P defined by

(2.1) FA : J1P → L(TX, V P ), FA(γp) := γp −HorAp ,

where L(TX, V P ) → P denotes the vector bundle whose fiber at p is
L(TxX,VpP ) and HorAp denotes the horizontal lift with respect to A. Note
that for δp ∈ L(TxX,VpP ) we have

FA(γp + δp) = FA(γp) + δp.

The map FA drops to the quotient spaces and gives an affine bundle
isomorphism over X

ΨA : J1P/G→ L(TX, V P/G), ΨA([γp]) :=
[
γp −HorAp

]
.

Note that for [δp] ∈ L(TX, V P/G), we have

ΨA([γp + δp]) = ΨA([γp]) + [δp].

We denote by AdP := (P × g)/G the adjoint bundle and by [p, ξ]G an
element in the fiber (AdP )x, x = π(p). Recall that there is a vector bundle
isomorphism

σ : AdP → V P/G

over X, given by σx ([p, ξ]G) = [ξP (p)], where

(2.2) ξP (p) = d

dt

∣∣∣∣
t=0

Φexp(tξ)(p) ∈ VpP

TOME 60 (2010), FASCICULE 3



1130 François GAY-BALMAZ & Tudor S. RATIU

is the infinitesimal generator. The inverse of σ is given by σ−1
x [vp] =

[p,A(vp)]G. As a consequence, we can see ΨA as a bundle map over X
with values in L(TX,AdP ), given by

ΨA : J1P/G→ L(TX,AdP ), [γp] 7→ [p,A·γp]G,

where L(TX,AdP ) → X denotes the vector bundle whose fiber at x is
L(TxX,AdPx) and (A·γp)(up) := A(p) (γp(up)) for any up ∈ TpP .

The reduced Lagrangian density on L(TX,AdP ) is defined by ¯̀A :=
¯̀◦Ψ−1

A .

Remarks. — (1) The isomorphism ΨA is the analog, for J1P/G, of the
connection dependent vector bundle isomorphism

(2.3) TP/G→ TX ⊕X AdP, [up]→ (Tpπ(up), [p,A(up)]G) .

(2) Note that J1P/G is only an affine bundle. However the choice of a
connection A allows one to endow J1P/G with the structure of a vector
bundle, by pulling back the vector bundle structure of L(TX,AdP ). The
zero element in the fiber at x is

[
HorAp

]
.

(3) The fact that the affine bundle J1P/G has the vector bundle L(TX,AdP )
as underlying linear space reflects the fact that the sections of J1P/G are
principal connections and that the affine space Conn(P ) of all principal
connections on P has Ω1(X,AdP ) = Γ(L(TX,AdP )) as underlying vec-
tor space. Given a section σ of J1P/G, the associated principal connection
on P → X is denoted by Aσ and is determined by the condition

(2.4)
[
HorA

σ

p (vx)
]

= σ(x)(vx),

for all p ∈ P and all vx ∈ TxX,x = π(p).
(4) Note that if [γp]∈(J1P/G)x, x = π(p), then [p,A·γp]G∈L(TxX,AdPx).
Indeed, applying [p,A·γp]G to a vector vx ∈ TxX, we get the vector

[p,A(γp(vx))]G ∈ AdPx.

Given a local section s : U ⊂ X → PU , its reduced first jet extension is the
local section σ : U ⊂ X → J1PU/G defined by

σ(x) := [j1s(x)].

We will also define its reduced first jet extension associated to the connection
A given by the local section σA : U ⊂ X → L (TU,AdPU ) by

σA(x) := ΨA([j1s(x)]) = [s(x),A·Txs]G.

Note that a section of the vector bundle L (TU,AdPU ) → U ⊂ X can
be interpreted as a one-form on U ⊂ X taking values in the vector bundle
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A NEW LAGRANGIAN DYNAMIC REDUCTION IN FIELD THEORY 1131

AdPU , that is,

Γ (L (TU,AdPU )) = Ω1 (U,AdPU ) .

For example, we have σA ∈ Ω1(U,AdPU ).

We now state the covariant Euler-Poincaré reduction theorem, see [5].

Theorem 2.1. — Let π : P → X be a right principal G-fiber bundle
over a manifold X with volume form µ and let L : J1P → Λn+1X be a
G invariant Lagrangian density. Let ` : J1P/G → Λn+1X be the reduced
Lagrangian density associated to L. For a local section s : U ⊂ X → PU ,
let σ : U → J1PU/G be the reduced first jet extension of s and let σA :
U → L (TU,AdPU ) be defined as before, where A is a principal connection
on the bundle PU → U . Then the following are equivalent:

• The variational principle

δ

∫
U

L(j1s) = 0

holds, for vertical variations along s with compact support.
• The local section s satisfies the covariant Euler-Lagrange equa-

tions for L.
• The variational principle

δ

∫
U

`(σ) = 0

holds, using variations of the form

δσ = ∇Aη − [σA, η],

where η : U ⊂ X → AdPU is a section with compact support, and

∇A : Γ(AdPU )→ Ω1(U,AdPU )

denotes the affine connection induced by the principal connection
A on PU .
• The covariant Euler-Poincaré equations hold:

divA δ ¯̀
δσ

= −Tr
(

ad∗σA
δ ¯̀
δσ

)
,

where δ ¯̀
δσ

is the section of the vector bundle L (TU,AdPU )∗ =
L (T ∗U,AdP ∗U ) defined by

δ ¯̀
δσ

(ζx) := d

dt

∣∣∣∣
t=0

¯̀(σ(x) + tζx),

TOME 60 (2010), FASCICULE 3
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for ζx ∈ L(TxX,AdPx), x ∈ U , and where

divA : Γ(L(T ∗U,AdP ∗U )) = X(U,AdP ∗U )→ Γ(AdP ∗U ).

denotes the covariant divergence associated to the connection A,
defined by the condition

div(w·η) =
(
divA w

)
·η + w·∇Aη,

for all w ∈ X(U,AdP ∗) and η ∈ Γ(AdP ).

Remarks. — (1) One can also write the covariant Euler-Poincaré equa-
tions in terms of ¯̀A on L(TU,AdP ). Using the equality

δ ¯̀A

δσA
= δ ¯̀
δσ
,

the covariant Euler-Poincaré equations read

divA δ ¯̀A

δσA
= −Tr

(
ad∗σA

δ ¯̀A

δσA

)
.(2.5)

(2) Not any solution of the covariant Euler-Poincaré equations comes from
a solution of the original covariant Euler-Lagrange equations of L. An extra
equation, a compatibility condition, must be imposed. This condition simply
reads

dA
σ

Aσ = 0;

that is, the principal connection Aσ associated to the critical section σ

must be flat.

2.2. The case of a trivial principal bundle

Let us work out the previous theory in the case of a right trivial principal
G-bundle

π : P = X ×G→ X, π(p) = x,

where p = (x, g). The tangent map to the projection reads simply

Tπ : TX × TG→ TX, Tπ(ux, ξg) = ux.

The first jet bundle J1P → P can be identified with the vector bundle
L(TX, TG)→ P . More precisely, we have J1P(x,g) ' L(TxX,TgG). Indeed,
any γ(x,g) ∈ L(TxX,TxX × TgG) reads

γ(x,g)(ux) =
(
ax(ux), b(x,g)(ux)

)
,

ANNALES DE L’INSTITUT FOURIER
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where ax ∈ L(TxX,TxX) and b(x,g) ∈ L(TxX,TgG). Thus, the condition
Tπ(γ(x,g)(ux)) = ux reads

ax = idTxX .

As a consequence, any γ(x,g) ∈ J1P(x,g) is of the form

γ(x,g)(ux) = (ux, b(x,g)(ux)), b(x,g) ∈ L(TxX,TgG),

that is, we have γ(x,g) = idTxX × b(x,g), and we can identify γ(x,g) with
b(x,g). This proves that

J1P(x,g) ' L(TxX,TgG).

Concerning the reduction of the tangent bundle, the tangent lifted ac-
tion of G on TP reads (ux, ξh) 7→ (ux, TRgξh). Thus the class [ux, ξg] can
be identified with the element (ux, TRg−1ξg). More precisely, we have the
vector bundle isomorphism

TP/G→ TX × g, [ux, ξg] 7→ (ux, TRg−1ξg).

This isomorphism corresponds to the choice of the standard connection
A(x, g)(ux, ξg) = TLg−1ξg in the identification (2.3), that is, the horizontal
space H(x,g)P = TxX × {0}. In the case of a general connection A on P ,
the vector bundle isomorphism (2.3) reads

TP/G→ TX × g, [ux, ξg] 7→
(
ux,A(x)(ux) + TRg−1ξg

)
,

where A ∈ Ω1(X, g), denotes the local expression of A, that is,

A(x, g)(ux, ξg) = Adg−1
(
A(x)(ux) + TRg−1ξg

)
.

Concerning the reduction of the first jet bundle, the action of G on
γ(x,g) ∈ J1P ' L(TX, TG) reads

b(x,g) 7→ TRh ·b(x,g),

and we can identify the class [γ(x,g)] with the element (idTxX , TR−1
g ·b(x,g))

and we have the bundle isomorphism

J1P/G→ L(TX, g), [γ(x,g)] 7→ TR−1
g ·b(x,g).

This isomorphism corresponds to the choice of the standard connection for
ΨA. In general, the map ΨA reads

J1P/G→ L(TX, g), [γ(x,g)] 7→ A(x) + TRg−1 ·b(x,g),

TOME 60 (2010), FASCICULE 3
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since γ(x,g) = idTxX × b(x,g). Indeed,

ΨA
(
γ(x,g)

)
=
[
(x, g),A(x, g)·

(
idTxX , b(x,g)

)]
G

=
[
(x, g),Adg−1

(
A(x) + TRg−1 ·b(x,g)

)]
G

=
[
(x, e),A(x) + TRg−1 ·b(x,g)

]
G
.

Thus, using the identification of Ω1(U,AdPU ) with Ω1(U, g) valid in the
trivial case, we can identify ΨA(γ(x,g)) with

A(x) + TRg−1 ·b(x,g).

A local section s : U ⊂ X → P reads simply s(x) = (x, s̄(x)) where s̄ ∈
F(U,G), and its first jet extension is j1s(x)(ux)=Txs(ux)=(ux, Txs̄(ux))∈
J1P(x,s̄(x)) which can be identified with Txs̄(ux)=j1s̄(x)∈L(TxX,Ts̄(x)G).

The reduced first jet extension σ := [j1s] reads

σ(x) = [idTxX , Txs̄],

and this class can be identified with σ̄(x) = TR−1
s̄(x) ·Txs̄. As before, this

corresponds to the choice of the standard connection for ΨA. Note that, by
(2.4), the principal connection associated to σ is

Aσ(x) = −TRs̄(x)−1 ·Txs̄ = −σ̄(x).

For a general connectionA, the reduced first jet extension σA∈Ω1(U,AdPU )
associated to A can be written

σA(x) : = ΨA([j1s(x)]) = [s(x),A·Txs]G
= [(x, s̄(x)),A·(idTxX , Txs̄)]G
=
[
(x, s̄(x)),Ads̄(x)−1

(
A(x) + TRs̄(x)−1 ·Txs̄

)]
G

=
[
(x, e),A(x) + TRs̄(x)−1 ·Txs̄

]
G

=:
[
(x, e), σ̄A(x)

]
G
.

Thus, using the identification Ω1(U,AdPU ) ' Ω1(U, g) valid in the case of
a trivial bundle, we can identify σA with σ̄A given by

σ̄A(x) = A(x) + TRs̄(x)−1 ·Txs̄ = A(x) + σ̄(x) ∈ L(TX, g).

As a consequence, in the trivial case, the covariant Euler-Poincaré equa-
tions

divA δ ¯̀
δσ

= − ad∗σA
δ ¯̀
δσ
,

read

divA δ ¯̀
δσ̄

= − ad∗A+σ̄
δ ¯̀
δσ̄
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or, equivalently,

div δ ¯̀
δσ̄

= − ad∗σ̄
δ ¯̀
δσ̄

or div−σ̄ δ
¯̀
δσ̄

= 0.

Similarly, the constrained variations

δσ̄ = dAη − [σ̄A, η]

become
δσ̄ = dη − [σ̄, η].

In the case of a trivial principal bundle, the covariant Euler-Poincaré re-
duction theorem can be stated as follows.

Theorem 2.2. — Let π : P = X × G → X be a trivial right principal
bundle, with structure group G, over a manifold X endowed with a volume
form µ. Let L : J1P → Λn+1X be a G invariant Lagrangian density.
Let ` : J1P/G ' L(TX, g) → Λn+1X be the reduced Lagrangian density
associated to L. For a local section s̄ : U ⊂ X → G, let σ̄, σ̄A : U →
L(TU, g) be defined by

σ̄(x) = TRs̄(x)−1 ·Txs̄ and σ̄A(x) = A(x) + TRs̄(x)−1 ·Txs̄ ∈ L(TU, g),

where A is a principal connection on the bundle PU = U ×G → U . Then
the following are equivalent:

• The variational principle

δ

∫
U

L(j1s) = 0

holds, for vertical variations along s with compact support.
• The local section s satisfies the covariant Euler-Lagrange equa-

tions for L.
• The variational principle

δ

∫
U

`(σ̄(x)) = 0

holds, using variations of the form

δσ̄ = dAη −
[
σ̄A, η

]
= dη − [σ̄, η] ,

where η : U ⊂ X → g has compact support, and

dA : F(U, g)→ Ω1(U, g), dAη = df +
[
A, f
]

is the covariant differential on trivial principal bundles.

TOME 60 (2010), FASCICULE 3
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• The covariant Euler-Poincaré equations hold:

(2.6) divA δ ¯̀
δσ̄

= −Tr
(

ad∗σ̄A
δ ¯̀
δσ̄

)
,

where δ ¯̀
δσ̄

is the section of the vector bundle L(TU, g)∗ = L(T ∗U, g∗)
defined by

δ ¯̀
δσ̄

(ζx) := d

dt

∣∣∣∣
t=0

¯̀(σ̄(x) + tζx),

for ζx ∈ L(TxX, g), x ∈ U , and where

divA : Γ(L(T ∗U, g∗))=X(U, g∗)→ F(U, g∗), divA w=divw − Tr
(
ad∗A w

)
is the covariant divergence (for a trivial principal bundle) associated
to the connection A.

3. Affine Euler-Poincaré for spin systems

We now recall from [8] the process of affine Euler-Poincaré reduction as
it applies to spin systems. This general procedure explains the geometric
structure of many complex fluid models. The key idea of this method is to
introduce new advection equations containing affine terms.

Given a manifold M and a Lie group G, we can form the group F(M,G)
of G-valued maps on M .

• Assume that we have a Lagrangian

L : TF(M,G)× Ω1(M, g)→ R

which is right invariant under the affine action of Λ ∈ F(M,G)
given by

(χ, χ̇, γ) 7→ (χΛ, χ̇Λ, θΛ(γ)), θΛ(γ) := Λ−1γΛ + Λ−1dΛ.

• For a fixed γ0 ∈ Ω1(M, g), we define the Lagrangian

Lγ0 : TF(M,G)→ R

by Lγ0(χ, χ̇) := L(χ, χ̇, γ0). Then Lγ0 is right invariant under the
lift to TF(M,G) of the right action of F(M,G)γ0 on F(M,G),
where F(M,G)γ0 denotes the isotropy group of γ0 with respect to
the affine action θ.
• Right invariance of L permits us to define the reduced Lagrangian

l = l(ν, γ) : F(M, g)× Ω1(M, g)→ R.
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• For a curve χ(t) ∈ F(M,G), let ν(t) := χ̇(t)χ(t)−1 ∈ F(M, g) and
define the curve γ(t) as the unique solution of the following affine
differential equation with time dependent coefficients

γ̇ + dγν = 0,

where dγν = dν+ adγ ν and with initial condition γ0. The solution
can be written as

γ(t) = θχ(t)−1γ0 = χ(t)γ0χ(t)−1 + χ(t)dχ(t)−1.

Theorem 3.1. — With the preceding notations, the following are equiv-
alent:

• With γ0 held fixed, Hamilton’s variational principle

δ

∫ t2

t1

Lγ0(χ(t), χ̇(t))dt = 0,

holds, for variations δχ(t) of χ(t) vanishing at the endpoints.
• χ(t) satisfies the Euler-Lagrange equations for Lγ0 on F(M,G).
• The constrained variational principle

δ

∫ t2

t1

l(ν(t), γ(t))dt = 0,

holds on F(M, g)× Ω1(M, g), upon using variations of the form

δν = ζ̇ − [ν, ζ], δγ = −dγζ,

where ζ(t) ∈ F(M, g) vanishes at the endpoints.
• The affine Euler-Poincaré equations hold on F(M, g)×Ω1(M, g):

∂

∂t

δl

δν
= − ad∗ν

δl

δν
+ divγ δl

δγ
.

Note that this reduction process generalizes easily to the case of a time
dependent Lagrangian.

In order to formulate the affine Euler-Poincaré equations above, one has
to choose spaces in (weak) nondegenerate duality with the spaces F(M, g)
and Ω1(M, g), relative to a pairing 〈 , 〉. The associated functional derivative
is defined by 〈

δl

δν
, ζ

〉
= d

dt

∣∣∣∣
t=0

l(ν + tζ).

It will be convenient to choose as dual spaces F(M, g∗) and X(M, g∗),
respectively, where the duality pairing is given by contraction followed by
integration over M , with respect to a fixed volume form on M .
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4. Covariant to dynamical reduction for trivial bundles

In this section we work exclusively with trivial principal bundles. We
introduce a new dynamical Lagrangian associated to a symmetric field
theoretic Lagrangian density and show that it is gauge group invariant.
Covariant and dynamic reduction is performed and it is shown that the
resulting reduced equations are equivalent.

Given a manifold M we consider the manifold X = R×M which plays
the role of spacetime. For simplicity we suppose that M is orientable, with
volume form µM , and we endow X with the volume form µ = dt ∧ µM .
Given a Lie group G, we consider the trivial principal bundles

πM : PM := M ×G→M and π : PX := X ×G→ X.

Recall the we have the vector bundle isomorphisms

J1PM → L(TM,TG)

and
J1PX → L(TX, TG) = L(TR, TG)×PX L(TM,TG)

over PM and PX respectively. Note that every element b(x,g) ∈ J1P '
L(TX, TG) reads

(4.1) b(x,g) =
(
b(t,g), b(m,g)

)
,

where b(t,g) ∈ L(TtR, TgG) and b(m,g) ∈ L(TmM,TgG).
We consider a G invariant Lagrangian density L : J1PX → Λn+1X.

Using the decomposition (4.1), we can write

L(b(x,g)) = L
(
b(t,g), b(m,g)

)
.

We are now ready to define the main object of this paper.

Definition 4.1. — Let L : J1PX → Λn+1X be a G-invariant La-
grangian density. The instantaneous Lagrangian is defined by

LL = LL(t, χ, χ̇, γ) : I × TF(M,G)× Ω1(M, g)→ R,

(4.2) LL(t, χ, χ̇, γ) :=
∫
M

L(t, χ̇(m),dχ(m)− χ(m)γ(m))µM .

The Lagrangian LL has the remarkable property to be invariant under
the affine action of F(M,G). This is stated in the following theorem.
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Theorem 4.2. — Consider aG invariant Lagrangian density L : J1P →
Λn+1X and its associated Lagrangian LL defined in (4.2). Then for all
Λ ∈ F(M,G), we have

LL(t, χΛ, χ̇Λ,Λ−1γΛ + Λ−1dΛ) = LL(t, χ, χ̇, γ).

Proof. — We have

LL(χΛ, χ̇Λ,Λ−1γΛ +Λ−1dΛ) =
∫
M

L(t, χ̇Λ,d(χΛ)−χΛ(Λ−1γΛ +Λ−1dΛ))

=
∫
M

L(t, χ̇Λ,dχΛ + χdΛ− χγΛ− χdΛ)

=
∫
M

L(t, χ̇Λ, (dχ− χγ)Λ)

=
∫
M

L(t, χ̇,dχ− χγ)

= LL(t, χ, χ̇, γ).

�

Recall that given an affine invariant, possibly time dependent, Lagrangian
L on TF(M,G) × Ω1(M, g) and a fixed γ0 ∈ Ω1(M, g) we can reduce the
Euler-Lagrange equation for Lγ0 and obtain the affine Euler-Poincaré equa-
tions

(4.3) ∂

∂t

δl

δν
= − ad∗ν

δl

δν
+ divγ δl

δγ
,

where ν = χ̇χ−1 and γ = χγ0χ
−1 + χdχ−1.

On the other hand, since the Lagrangian density L on J1P is invariant,
we can reduce the covariant Euler-Lagrange equations for L and obtain the
covariant Euler-Poincaré equations for the reduced Lagrangian density `.
Using that X = R ×M , we obtain that the jet bundle J1P is isomorphic
to the vector bundle L(TR, TG)×L(TM,TG). Thus, given a local section
s̄ = s̄(t,m) ∈ F(U,G) of P , where U = I × V ⊂ R ×M = X, its first jet
extension reads

T s̄ = ( ˙̄s,ds̄).
Similarly, the fiber (J1P/G)x of the reduced jet bundle is isomorphic to
the vector space

L(TxX, g) = L(TtR, g)× L(TmM, g), x = (t,m).

Thus, the reduced first jet bundle extension σ̄A ∈ Ω1(I × V, g) reads

σ̄A = (σ̄1, σ̄2),

and we have σ̄1
t := σ̄1(t,_ ) ∈ F(M, g) and σ̄2

t := σ̄2(t,_ ) ∈ Ω1(M, g).
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Note that a principal connection A on PU reads

A(x, g)(u, um, ξg) = Adg−1

(
A1(x)u+A2(x)(um) + TRg−1ξg

)
,

x = (t,m) ∈ U = I × V.
Thus, we obtain that σ̄A = (σ̄1, σ̄2) is given by

σ̄1(x) = A1(x) + TRs̄(x)−1 ˙̄s(x), σ̄2(x) = A2(x) + TRs̄(x)−1ds̄(x)

Choosing the standard connection (TL−1
g ξg) on P , the covariant Euler-

Poincaré equations (2.6) become in this case

∂

∂t

δ ¯̀
δσ̄1 + div δ ¯̀

δσ̄2 = − ad∗σ̄1
δ ¯̀
δσ̄1 − Tr

(
ad∗σ̄2

δ ¯̀
δσ̄2

)
,

which can be rewritten as

(4.4) ∂

∂t

δ ¯̀
δσ̄1 = − ad∗σ̄1

δ ¯̀
δσ̄1 + div(−σ̄2)

(
− δ ¯̀
δσ̄2

)
,

for
σ̄1 = TRs̄−1 · ˙̄s and σ̄2 = TRs̄−1 ·ds̄.

Note the remarkable fact that equations (4.3) and (4.4) are identical! In-
deed, it suffices to set ν(t)(m) = σ̄1(x), χ(t)(m) = s̄(x), γ(t)(m) = −σ̄2(x),
and γ0 = 0. This fact is explained in the following theorem, which is the
main result of this section.

Note that, in (4.3) and (4.4), the functional derivatives of ¯̀ and l belong
to the same space in spite of the fact that the Lagrangians ¯̀ and l are
defined on different spaces. This is explained by the fact that the respective
functional derivatives are defined differently. The functional derivatives of
¯̀are simply fiber derivatives whereas the functional derivatives of l involve
integration.

Theorem 4.3. — Consider a local section s̄ = s̄(x) : U = I×V → G of
the trivial principal bundle X×G→ X, where X = R×M and x = (t,m),
and its reduced first jet extension σ̄ = (σ̄1, σ̄2) ∈ Ω1(I × V, g).

Define the curve χ(t) ∈ F(V,G) by χ(t)(m) := s̄(x), and the curves
ν(t) := χ̇(t)χ(t)−1 and γ(t) := −dχ(t)χ(t)−1 ∈ Ω1(V, g). Thus we have

ν(t)(m) = σ̄1(x) and γ(t)(m) = −σ̄2(x).

Consider a Lagrangian density L : J1P → Λn+1X and define the associ-
ated time dependent Lagrangian LLγ0

: I × TF(V,G)→ R by

Lγ0(t, χ, χ̇) :=
∫
V

L(t, χ̇,dχ− χγ0)µV ,

for all γ0 ∈ Ω1(V, g).
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Then the corresponding reduced Lagrangians verify the relation

l(t, ν, γ) =
∫
V

¯̀(t, ν,−γ)µV

and the following are equivalent:
(i) Hamilton’s variational principle

δ

∫ t2

t1

L0(t, χ(t), χ̇(t))dt = 0,

holds for variations δχ(t) of χ(t) vanishing at the endpoints.
(ii) The curve χ(t) satisfies the Euler-Lagrange equations for L0 on
F(V,G).

(iii) The constrained variational principle

δ

∫ t2

t1

l(t, ν(t), γ(t))dt = 0,

holds on F(V, g)× Ω1(V, g), upon using variations of the form

δν = ζ̇ − [ν, ζ], δγ = −dγζ,

where ζ(t) ∈ F(V, g) vanishes at the endpoints.
(iv) The affine Euler-Poincaré equations hold on F(V, g)×Ω1(V, g):

∂

∂t

δl

δν
= − ad∗ν

δl

δν
+ divγ δl

δγ
.

(v) The variational principle

δ

∫
U

L(j1s) = 0

holds, for variations with compact support.
(vi) The section s satisfies the covariant Euler-Lagrange equations

for L.
(vii) The variational principle

δ

∫
U

`(σ̄(x)) = 0

holds, using variations of the form

δσ̄ = dη − [σ̄, η],

where η : U ⊂ X → g has compact support, and d denotes the
derivative on X.
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(viii) The covariant Euler-Poincaré equations hold:

div δ ¯̀
δσ̄

= −Tr
(

ad∗σ̄
δ ¯̀
δσ̄

)
.

where div denotes the divergence on X.

Proof. — The statements (i)− (iv) are equivalent by the affine Euler-
Poincaré reduction theorem. The statements (v)− (viii) are equivalent by
the covariant Euler-Poincaré reduction, where the trivial connection has
been chosen. As we have seen before, equations (iv) and (viii) are equiva-
lent since σ̄1(x) = ν(t)(m) and σ̄2(x) = −γ(t)(m). �

One can also check that the constrained variational principles (iii) and
(vii) are identical. Indeed, if η(x) = ξ(t)(m), we have dη = ζ̇∂t + dζ and
[σ̄, η] = [ν, ζ]∂t − [γ, ζ], thus δσ̄ = dη − [σ̄, η] is equivalent to

δν = ζ̇ − [ν, ζ] and δγ = −dγζ.

Compatibility condition. As we have mentioned before, the covariant
Euler-Poincaré equations are not sufficient for reconstructing the solution
of the original variational problem. One must impose the additional com-
patibility condition given by the vanishing of the curvature:

dA
σ

Aσ = 0,

where Aσ is the connection associated to the reduced jet extension σ. Recall
the in the case of a trivial principal bundle, we have

Aσ(x) = −σ̄(x) = −(ν(t)(m),−γ(t)(m)) = (−ν(t)(m), γ(t)(m)).

and we get

dA
σ

Aσ ⇔ d−σ̄(−σ̄) = 0⇔
{

dγγ = 0
γ̇ + dγν = 0

The compatibility condition of the covariant point of view is equivalent to
the affine advection equation γ+dγν = 0 of the connection γ together with
the vanishing of the curvature dγγ = 0 valid in the particular case γ0 = 0

5. Affine Euler-Poincaré reduction on a principal bundle

We now generalize the theory developed in Section 3 to the case of a not
necessarily trivial right principal bundle PM →M with structure group G.
We begin by recalling our conventions and the necessary facts used in the
subsequent sections; for details and more information see [7].
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The group of gauge transformations of PM is the group Gau(PM ) of all
diffeomorphisms ϕ of PM such that πM ◦ϕ = πM and ϕ◦Φg = Φg ◦ϕ. The
Lie algebra gau(PM ) of Gau(PM ) consists of all G-invariant and vertical
vector fields U on PM . Thus gau(PM ) can be identified with the Lie algebra
FG(PM , g) of all equivariant maps U : PM → g, that is, we have

U(Φg(p)) = Adg−1 U(p), for all g ∈ G.

The Lie algebra isomorphism is given by

U ∈ FG(PM , g) 7→ U ∈ gau(PM ), U(p) := (U(p))P (p),

where, for ξ ∈ g, ξP is the infinitesimal generator defined in (2.2). We can
also identify FG(PM , g) with the Lie algebra Γ(AdPM ) of sections of the
adjoint bundle, the identification being given by

U ∈ FG(P, g) 7→ Ũ ∈ Γ(AdPM ), Ũ(m) := [p,U(p)]G.

The dual space to gau(PM ) is given by

gau(PM )∗ =
{
α ∈ Γ ((V P )∗) | Φ∗gα = α

}
,

that is, for all p ∈ P , α(p) is a linear form on the vertical space VpP and
we have

α(Φg(p))(TΦg(up)) = α(p)(up), for all g ∈ G.

The duality pairing is given by integration, over M , of the function m 7→
α(p)·U(p), π(p) = m, that is

〈α,U〉 :=
∫
M

α(p)·U(p)µM

The dual space gau(PM )∗ can be identified with the spaces FG(PM , g∗)
and Γ(AdP ∗M ) as follows:

α ∈ gau(PM )∗ 7→ µ ∈ FG(PM , g∗), µ(p) := J(α(p)),

where J : T ∗P → g is the momentum map of the cotangent lifted action of
G on T ∗P , and

(5.1) µ : FG(PM , g∗) 7→ µ̃ ∈ Γ(AdP ∗M ), µ̃(m) := [p, µ(p)]G.

Denoting by Ω1
G(PM , g) the space of all g-valued one-forms on PM sat-

isfying the condition
Φ∗gω = Adg−1 ◦ω

and by XG(PM , g∗) the space of all g∗-valued vector fields on PM satisfying

Φ∗gX = Ad∗g ◦X,
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we have the L2 duality paring between XG(PM , g∗) and Ω1
G(PM , g) given

by

〈ω,X〉 =
∫
M

ω(p)·X(p)

We will consider the subspace Ω1(PM , g) ⊂ Ω1
G(PM , g), consisting of all

g-valued one-forms ω on PM such that

Φ∗gω = Adg−1 ◦ω and ω(ξP ) = 0, for all g ∈ G and ξ ∈ g,

and the subspace X(PM , g∗) ⊂ XG(PM , g∗), consisting of all g∗-valued vec-
tor fields X on PM such that

Φ∗gX = Ad∗g ◦X and X(p) ∈ L ([VpP ]◦, g∗) ,

where [VpP ]◦ := {αp ∈ T ∗pP | αp(ξP (p)) = 0 for all ξ ∈ g}. The L2 duality
pairing restricts to these subspaces.

The space Ω1(PM , g) is of special importance since it is the underlying
vector space of the affine space Conn(PM ) of all principal connections on
PM . Note that Ω1(PM , g) can be identified with the space Γ(L(TM,AdPM ))
of all sections of the vector bundle L(TM,AdPM ), the identification being
given by

ω ∈ Ω1(PM , g) 7→ ω̃ ∈ Γ(L(TM,AdPM )), ω̃(m)(vm) := [p, ω(p)(up)]G,

where up ∈ TpPM is such that Tπ(up) = vm. In a similar way, its dual
space X(PM , g∗) is identified with the space Γ(L(T ∗M,AdP ∗M )), the iden-
tification being given by
(5.2)
X ∈ X(PM , g∗) 7→ X̃ ∈ Γ(L(T ∗M,AdP ∗M )), X̃(m) := [p,X ◦ (Tpπ)∗]G

In the case of a general principal bundle PM → M , Theorem 3.1 gener-
alizes as follows.

• Assume that we have a Lagrangian

L : TGau(PM )× Conn(PM )→ R

which is right invariant under the action of ψ ∈ Gau(PM ) given by

(5.3) (ϕ, ϕ̇,Γ) 7→ (ϕ ◦ ψ, ϕ̇ ◦ ψ,ψ∗Γ).

• For a fixed Γ0 ∈ Conn(PM ), we define the Lagrangian

LΓ0 : TGau(PM )→ R

by LΓ0(ϕ, ϕ̇) := L(ϕ, ϕ̇,Γ0). Then LΓ0 is right invariant under the
lift to TGau(PM ) of the right action of Gau(PM )Γ0 on Gau(PM ),
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where Gau(PM )Γ0 denotes the isotropy group of Γ0 with respect to
the action (5.3).
• Right invariance of L permits us to define the reduced Lagrangian

l = l(U,Γ) : gau(PM )× Conn(PM )→ R.

• For a curve ϕt ∈ Gau(PM ), let Ut := ϕ̇t ◦ ϕ−1
t ∈ gau(PM ) and

define the curve Γt as the unique solution of the following affine
differential equation with time dependent coefficients

Γ̇ + dΓU = 0, Γ(0) = Γ0

where dΓU = dU + [Γ,U ] is the covariant derivative. The solution
can be written as

Γt = (ϕt)∗Γ0.

Below, the functional derivative δl/δU is interpreted as an element of
FG(PM , g∗) and δl/δΓ is interpreted as an element in X(PM , g∗). The co-
variant divergences

divΓ : X(PM , g∗)→ FG(PM , g∗)

and
divΓ : Γ(L(T ∗M,AdPM ))→ Γ(AdP ∗)

are defined as minus the L2 adjoint to the the covariant derivatives

dΓ : FG(PM , g)→ Ω1(PM , g) and ∇Γ : Γ(AdPM )→ Γ(L(TM,AdP )),

respectively.

Theorem 5.1. — With the preceding notations, the following are equiv-
alent:

• With Γ0 held fixed, Hamilton’s variational principle

δ

∫ t2

t1

LΓ0(ϕ, ϕ̇)dt = 0,

holds, for variations δϕ of ϕ vanishing at the endpoints.
• ϕ satisfies the Euler-Lagrange equations for LΓ0 on Gau(PM ).
• The constrained variational principle

δ

∫ t2

t1

l(U,Γ)dt = 0,

holds on Gau(PM )× Conn(PM ), upon using variations of the form

δU = ζ̇ − [U , ζ], δΓ = −dΓζ,

where ζ(t) ∈ FG(PM , g) vanishes at the endpoints.
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• The affine Euler-Poincaré equations hold on FG(PM , g)×
Conn(PM ):

(5.4) ∂

∂t

δl

δU
= − ad∗U

δl

δU
+ divΓ δl

δΓ
.

6. Covariant to dynamic reduction

This section contains the main results of the paper. Given a field theo-
retic Lagrangian density defined on the first jet bundle of a not necessarily
trivial principal bundle we construct a new family of real valued dynamic
Lagrangians on the tangent bundle of the gauge group depending para-
metrically on a connection. If the Lagrangian density is invariant under
the structure group of the principal bundle we will show that the dynamic
Lagrangian is gauge group invariant. We perform covariant and dynamic
reduction and show that the resulting reduced equations are equivalent.

6.1. Splitting of the covariant reduction

Let PM → M be a right principal bundle with structure group G. For
simplicity we suppose that M has a volume form µM . On the manifold X =
R×M we consider the volume form µ = dt∧µM and the principal bundle
PX := R× PM → X. Note that the first jet bundle J1PX is isomorphic to
the bundle V PM ×X J1PM . More precisely, each γ(t,p) ∈ J1P(t,p) reads
(6.1)
γ(t,p) : TtR×TmM → TtR×TpP, γ(t,p)((t, v), um) = ((t, v), apv+γp(um)),

where ap ∈ VpP and γp ∈ J1PM .
Consider a G invariant Lagrangian density L : J1PX → Λn+1X. Using

the previous notation, we can write

(6.2) L(γ(t,p)) = L(t, ap, γp).

In the same way, the reduced jet bundle J1PX/G can be identified with the
bundle (V PM/G) ×X

(
J1PM/G

)
. Recall that the vector bundle V PM/G

is canonically isomorphic to the adjoint bundle AdPM , the isomorphism
being given by the map σ defined by

[p, ξ]G ∈ (AdPM )x 7→ σx ([p, ξ]G) := [ξP (p)] ∈ (V PM/G)x .

Note that the inverse is

(6.3) σ−1
x [ap] = [p,A(ap)]G,
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where A is any principal connection. Note that the right hand side of
this formula does not depend on the connection A since ap is a vertical
vector. We denote by ` the reduced Lagrangian density on J1PX/G ∼=
(V PM/G)×X

(
J1PM/G

) ∼= (AdPM )×X
(
J1PM/G

)
.

Given a principal connection AM on PM , there is a bundle isomorphism
ΨAM : J1PM/G→ L(TM,AdPM ). Thus we get the connection dependent
isomorphism

J1PX/G ∼= (V PM/G)×X
(
J1PM/G

)
−→ (AdPM )×X L (TM,AdPM )

given by

(6.4) [γ(t,p)] ∼= ([ap], [γp]) 7−→
(
σ−1
x [ap], [p,AM ·γp]G

)
.

Note that the connection AM on PM naturally induces a connection A
on PX given by A(t, p)((t, v), up) := AM (p)(up). Using the connection
A, we have the bundle isomorphism ΨA : J1PX/G → L(TX,AdP ) ∼=
L(TX,AdPM ) over X. This isomorphism is equivalent to (6.4). Indeed,
using (6.1) and (6.3), given [γ(t,p)] ∈ J1PX/G and ((t, v), um) ∈ TxX, we
have

ΨA([γ(t,p)])((t, v), um) = [(t, p),A(t, p)((t, v), apv + γp(um))]G
= [p,AM (ap)v +AM (γp(um))]G
= σ−1

x [ap]v + [p,AM (γp(um))]G .

As before, we denote by `A := ` ◦Ψ−1
A the reduced Lagrangian induced on

L (TX,AdPM ) ∼= L (TR,AdPM )×X L (TM,AdPM )
∼= AdPM ×X L (TM,AdPM )

by the map ΨA.
From now on, V ⊂M will denote an open subset of M and U is defined

by U := I × V ⊂ X, where I is an open interval. Given a local section
s : U ⊂ X → PX , we will use the identification

PX 3 s(x) = (t, st(m)) ∼= st(m) ∈ PM , x = (t,m)

and we shall regard st as a local time-dependent section of PM . Interpreted
this way, the first jet extension reads

j1s(x) = (ṡt(m), j1st(m)) ∈ Vs(x)PM × (J1PM )s(x),

where ṡ denotes the partial derivative with respect to the variable t, and
j1st denotes the first jet extension of the time-dependent section st of PM .
Note that the relation πM ◦ st = idM implies

TπM (ṡt(m)) = 0 and TπM ·j1st(m) = idTmM .
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The reduced first jet extension reads

σA(x) =ΨA
([
j1s(x)

])
= ΨA

([
ṡt(m), j1st(m)

])
=σ−1

x [ṡt(m)] +
[
st(m),AM ·j1st(m)

]
= :
(
σ1
t (m), σ2

t (m)
)
∈ (AdPM )m ×X L (TmM, (AdPM )m) .

Thus, the reduced jet extension σA(x) can be identified with the two time
dependent sections σ1

t and σ2
t of the vector bundles

AdPM →M and L (TM,AdPM )→M,

respectively. We can write the reduced Lagrangian as

`A(σ(x)) = `A(t, σ1
t (m), σ2

t (m)),

and we can identify the fiber derivative δ ¯̀A
δσA

with the time dependent sec-
tions

δ ¯̀A

δσ1 and δ ¯̀A

δσ2

of the vector bundles

AdP ∗M →M and L (T ∗M,AdP ∗M )→M,

respectively. Thus, the covariant Euler-Poincaré equations (2.5) reads

(6.5) ∂

∂t

δ ¯̀A

δσ1 + divAM δ ¯̀A

δσ2 = − ad∗σ1
δ ¯̀A

δσ1 − Tr
(

ad∗σ2
δ ¯̀A

δσ2

)
.

6.2. Definition and gauge invariance of the instantaneous
Lagrangian

Given a G-invariant Lagrangian density L : J1PX → Λn+1X, we write

L = L dt ∧ µM ,

and we have
i∂tL = LµM .

In order to define the instantaneous Lagrangian we shall need the following
Lemma.

Lemma 6.1. — Let (ϕ, ϕ̇) ∈ TGau(PM ), L : J1PX → Λn+1X be a G-
invariant Lagrangian density, and Γ be a principal connection on PM . Then
for all t, the map

p ∈ PM 7→ i∂tL
(
t, ϕ̇(p),Horϕ∗Γ

ϕ(p)

)
∈ ΛnM
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is well defined and G-invariant. Thus, it induces a map

m ∈M 7→ i∂tL
(
t, ϕ̇(p),Horϕ∗Γ

ϕ(p)

)
∈ ΛnM.

Proof. — To show that the map is well-defined, it suffices to see that(
ϕ̇(p),Horϕ∗Γ

ϕ(p)

)
∈ Vϕ(p)PM × J1

ϕ(p)PM
∼= J1

ϕ(p)PX .

Thus, it makes sense to evaluate the Lagrangian density L on it. Note that
for all g ∈ G, we have

L
(
t, ϕ̇(Φg(p)),Horϕ∗Γ

ϕ(Φg(p))

)
= L
(
t, TΦg(ϕ̇(p)), TΦg ·Horϕ∗Γ

ϕ(p)

)
= L
(
t, ϕ̇(p),Horϕ∗Γ

ϕ(p)

)
.

This proves that for all t, the map m 7→ L
(
t, ϕ̇(p),Horϕ∗Γ

ϕ(p)

)
, where π(p) =

m, is well-defined on M. �

We are now ready to states the main definition of this section.

Definition 6.2. — Let L : J1PX → Λn+1X be a G-invariant La-
grangian density. The instantaneous Lagrangian is defined by

LL = LL(t, ϕ, ϕ̇,Γ) : I × TGau(PM )× Conn(PM )→ R,

(6.6) LL(t, ϕ, ϕ̇,Γ) :=
∫
M

i∂tL
(
t, ϕ̇(p),Horϕ∗Γ

ϕ(p)

)
.

The Lagrangian L has the remarkable property to be invariant under the
right action of the gauge transformation group Gau(PM ). This is stated in
the following theorem which generalizes Theorem 4.3 to the case of non-
trivial principal bundles.

Theorem 6.3. — Consider aG-invariant Lagrangian density L : J1P→
Λn+1X and its associated Lagrangian defined in (6.6). Then LL is well
defined and for all ψ ∈ Gau(PM ) we have

LL(t, ϕ ◦ ψ, ϕ̇ ◦ ψ,ψ∗Γ) = LL(t, ϕ, ϕ̇,Γ).

Proof. — For all ψ ∈ Gau(PM ) we have

LL(t, ϕ ◦ ψ, ϕ̇ ◦ ψ,ψ∗Γ) =
∫
M

i∂tL
(
t, ϕ̇(ψ(p)),Hor(ϕ◦ψ)∗ψ∗Γ

ϕ(ψ(p))

)
=
∫
M

i∂tL
(
t, ϕ̇(ψ(p)),Horϕ∗Γ

ϕ(ψ(p))

)
.

Since ψ is a gauge transformation, we can write ψ(p) = Φτ(p)(p) where
τ : P → G is such that

τ(Φg(p)) = g−1τ(p)g, for all g ∈ G.
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We obtain
ϕ(ψ(p)) = ϕ(Φτ(p)(p)) = Φτ(p)(ϕ(p)),

and we have Horϕ∗Γ
ϕ(ψ(p)) = TΦτ(p) ·Horϕ∗Γ

ϕ(p). Similarly, we have

ϕ̇(ψ(p)) = TΦτ(p)(ϕ̇(p)),

thus, by invariance of the Lagrangian density L, we can write

LL(t, ϕ ◦ ψ, ϕ̇ ◦ ψ,ψ∗Γ) =
∫
M

i∂tL
(
t, TΦτ(p)(ϕ̇(p)), TΦτ(p)

(
Horϕ∗Γ

ϕ(p)

))
=
∫
M

i∂tL
(
t, ϕ̇(p),Horϕ∗Γ

ϕ(p)

)
= LL(t, ϕ, ϕ̇,Γ).

�

Recall from Theorem 5.1 that given a possibly time dependent gauge
invariant Lagrangian

L : I × TGau(PM )× Conn(PM )→ R

and a fixed connection Γ0 ∈ Conn(PM ), a curve ϕ ∈ Gau(PM ) is a solution
of the Euler-Lagrange equation for LΓ0 if and only if U := ϕ̇ ◦ ϕ−1 ∈
gau(PM ) and Γ := ϕ∗Γ0 are solutions of the affine Euler-Poincaré equations

∂

∂t

δl

δU
= − ad∗U

δl

δU
+ divΓ δl

δΓ
,

where l : I×gau(PM )×Conn(PM )→ R is the reduced Lagrangian induced
by L.

By G-invariance of L and L and i∂tL = LµM , we deduce that i∂t` = ¯̀µM .
Thus, in the case of LL, the reduced Lagrangian is given by

lL(t, U,Γ) =
∫
M

i∂tL
(
t, U(p),HorΓ

p

)
=
∫
M

¯̀
(
t, [U(p)],

[
HorΓ

p

] )
µM

=
∫
M

¯̀A
(
t, Ũ(m),

[
p,AM ·HorΓ

p

]
G

)
µM ,

where ¯̀ is the reduced Lagrangian density on J1PX/G ∼= (V PM/G) ×X(
J1PM/G

)
and ¯̀A := ` ◦ Ψ−1

A is the reduced Lagrangian density on
AdPM ×X L (TM,AdPM ). Recall that `A is defined with the help of a
fixed connection AM on PM . We will always choose

AM = Γ0,
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where Γ0 is the initial value of the connection in the affine Euler-Poincaré
picture. We thus have

lL(t, U,Γ) =
∫
M

¯̀Γ0
(
t, Ũ(m),

[
p,Γ0 ·HorΓ

p

]
G

)
µM .

6.3. Affine Euler-Poincaré formulation of covariant reduction

The situation described in the preceding two subsections can be summa-
rized in the following commutative diagram:

L : J1PX → Λn+1X //

reduction by G
��

LL : I × TGau(PM )× Conn(PM )→ R

reduction by Gau(PM )
��

` : J1PX/G→ Λn+1X // lL : I × gau(PM )× Conn(PM )→ R.

Given a G-invariant Lagrangian density L : J1PX → Λn+1X, we associate
the gauge invariant time dependent Lagrangian

LL(t, ϕ, ϕ̇,Γ0) :=
∫
M

i∂tL
(
t, ϕ̇(p),Horϕ∗Γ0

ϕ(p)

)
.

To the reduced Lagrangian density ` : J1PX/G→ Λn+1X we associate the
time dependent Lagrangian

(6.7)
lL(t, U,Γ) :=

∫
M

i∂t`
(
t, [U(p)],

[
HorΓ

p

])
=
∫
M

i∂t`Γ0
(
t, Ũ(m),

[
p,Γ0 ·HorΓ

p

]
G

)
.

Then lL is precisely the Lagrangian obtained by reduction of LL. In this
sense we say that the diagram commutes. We now show the link between
the functional derivatives of `Γ0 and lL. Recall from Section 5 that δlL

δU ∈
FG(PM , g∗) and δlL

δΓ ∈ X(PM , g∗). The functional derivatives of `Γ0 are
simply fiber derivatives.

Lemma 6.4. — Consider the Lagrangian lL and `Γ0 as defined in (6.7).
Then we have the relations

δ̃lL

δU
= δ`Γ0

δσ1 and δ̃lL

δΓ
= −δ`

Γ0

δσ2 ,

where we use the isomorphisms ˜ defined in (5.1) and (5.2), respectively.
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Proof. — We have∫
M

δ̃lL

δU
(m)·Ṽ(m)µM =

∫
M

δlL

δU
(p)·V(p)µM = d

dε

∣∣∣∣
ε=0

lL(t, U + εV,Γ)

= d

dε

∣∣∣∣
ε=0

∫
M

`Γ0
(
t, Ũ(m) + εṼ(m),

[
p,Γ0 ·HorΓ

p

]
G

)
µM

=
∫
M

δ`Γ0

δσ1 (m)·Ṽ(m)µM ,

this proves the first equality. We will use the formula

d

dε

∣∣∣∣
ε=0

HorΓ+εω
p (vm) = −

(
ω ·HorΓ

p (vm)
)
P

(p) ∈ VpPM ,

valid for all ω ∈ Ω1(PM , g), the tangent space to Conn(PM ). We have∫
M

δ̃lL

δΓ
(m)·ω̃(m)µM =

∫
M

δlL

δΓ
(p)·ω(p)µM = d

dε

∣∣∣∣
ε=0

lL(t, U,Γ + εω)

= d

dε

∣∣∣∣
ε=0

∫
M

`Γ0
(
t, Ũ(m),

[
p,Γ0 ·HorΓ+εω

p

]
G

)
µM

=
∫
M

δ`Γ0

δσ2 (m)· d
dε

∣∣∣∣
ε=0

[
p,Γ0 ·HorΓ+εω

p

]
G
µM

= −
∫
M

δ`Γ0

δσ2 (m)·
[
p,Γ0

((
ω ·HorΓ

p (vm)
)
P

(p)
)]

G
µM

= −
∫
M

δ`Γ0

δσ2 (m)·
[
p, ω ·HorΓ

p (vm)
]
G
µM

= −
∫
M

δ`Γ0

δσ2 (m)·ω̃(m)µM .

This proves the second equality. �

Note that the correspondence of the various Lagrangians holds globally,
that is, on the whole base manifolds X and M . The situation is different
for the dynamics, since a principal bundle admits only local sections unless
the bundle is trivial.

Therefore, from now on, we need to fix an open subset V ⊂ M and an
equivariant map ξ0 : PV → G such that

ξ0(Φg(p)) = ξ0(p)g.

This is equivalent to the choice of a preferred local section s0 : V → PV ,
given by

s0(m) = Φξ0(p)−1(p),

ANNALES DE L’INSTITUT FOURIER



A NEW LAGRANGIAN DYNAMIC REDUCTION IN FIELD THEORY 1153

where p is such that π(p) = m. To the map ξ0 we associate the principal
connection Γ0 on PV → V by

Γ0 = TLξ−1
0
Tξ0.

We choose an open subset I ⊂ R and define U := I × V ⊂ X. In order to
prove the main result of this section, we will need the following technical
lemma.

Lemma 6.5. — Let ξ0 : PV → G be an equivariant map and Γ0 be the
associated principal connection as defined above. Let s : U ⊂ X → PU ⊂
PX be a local section and ϕt a curve in Gau(PV ), and suppose that they
verify the relation

st(m) = Φξ0(p)−1(ϕt(p)).
Then we have

ṡt(m) = TΦξ0(p)−1 (ϕ̇t(p)) and j1st(m) = TΦξ0(p)−1 ·Hor(ϕt)∗Γ0
ϕt(p) .

The second equality can be rewritten as

j1st(m) = TΦτt(p)ξ0(p)−1

(
HorΓ0

p +
(
TRτt(p)−1Tpτt ·HorΓ0

p

)
P

(p)
)
,

where the curve τt ∈ FG(PV , G) is defined by

ϕt(p) = Φτt(p)(p).

Define the reduced objects σΓ0 = (σ1
t , σ

2
t ), U , and Γ by

σ1
t (m) = σ−1

x [ṡt(m)], σ2
t (m) =

[
st(m),Γ0 ·j1st(m)

]
G
, Ut = ϕ̇t ◦ ϕ−1

t ,

and
Γt = (ϕt)∗Γ0.

Then, we have the relations

σ1
t (m) = σ−1

x [Ut(p)] = Ũt(m) and σ2
t (m) =

[
p,Γ0 ·HorΓt

p

]
G
.

The second equality can be rewritten as

σ2
t (m) =

[
p, TRτt(p)−1Tτt ·HorΓ0

p

]
G
.

Proof. — The first equality is clearly true. For the second, by differenti-
ating the relation st ◦ π = Φξ−1

0
◦ ϕt we get

Tst(Tπ(vp)) = TΦξ0(p)−1
(
Tϕt(vp)−

(
TLξ0(p)−1Tξ0(vp)

)
P

(p)
)

= TΦξ0(p)−1
(
Tϕt(vp)− (Γ0(vp))P (p)

)
.

By choosing vp = HorΓ0
p (vm) where vm ∈ TmM , we obtain

Tst(vm) = TΦξ0(p)−1

(
Tϕt

(
HorΓ0

p (vm)
))

= TΦξ0(p)−1

(
Hor(ϕt)∗Γ0

ϕt(p) (vm)
)
.
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To obtain the third equality we note that

Hor(ϕt)∗Γ0
ϕt(p) = Tϕt·HorΓ0

p = TΦτt(p)·
(

HorΓ0
p +
(
TRτt(p)−1Tτt ·HorΓ0

p

)
P

(p)
)
.

Concerning the reduced objects, we have

σ1
t (m) = σ−1

x [ṡt(m)] = σ−1
x

[
TΦξ0(p)−1(ϕ̇t(p))

]
= σ−1

x [Ut(ϕt(p))]

= σ−1
x

[
Ut(Φτt(p)(p))

]
= σ−1

x

[
TΦτt(p)Ut(p)

]
= σ−1

x [Ut(p)] = Ũt(m)

and

σ2
t (m) =

[
st(m),Γ0 ·j1st(m)

]
G

=
[
Φξ0(p)−1(ϕt(p)),Γ0 ·TΦξ0(p)−1 ·HorΓ

ϕt(p)

]
G

=
[
Φτt(p)ξ0(p)−1(p),Γ0 ·TΦτt(p)ξ0(p)−1 ·HorΓ

p

]
G

=
[
p,Γ0 ·HorΓ

p

]
G
.

For the last equality, we note that

σ2
t (m) =

[
st(m),Γ0 ·j1st(m)

]
G

=
[
Φτt(p)ξ0(p)−1(p),Γ0 ·TΦτt(p)ξ0(p)−1

(
HorΓ0

p +
(
TRτt(p)−1Tτt ·HorΓ0

p

)
P

(p)
)]

G

=
[
p, TRτt(p)−1Tτt ·HorΓ0

p

]
G
.

�

We are now ready to state the main result of the paper.

Theorem 6.6. — Consider a right principal G-bundle PM → M and
define the principal G-bundle PX := R×PM → X := R×M over spacetime.

Let L : J1PX → Λn+1X be a G-invariant Lagrangian density. Define
the associated reduced Lagrangian ` and the associated Lagrangians LL
and lL.

Let s : U = I × V → PU = R × PV be a local section, choose an
equivariant map ξ0 ∈ FG(V,G), define the curve

ϕt := Φξ0 ◦ st ◦ π ∈ Gau(PV ),

and consider the reduced quantities

σ1
t = σ−1

x [ṡt], σ2
t = [st,Γ0 ·j1st]G

Ut = ϕ̇t ◦ ϕ−1
t , Γ = (ϕt)∗Γ0,

where Γ0 := TLξ−1
0
Tξ0.

Then the following are equivalent.
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(i) Hamilton’s variational principle

δ

∫ t2

t1

LLΓ0
(t, ϕt, ϕ̇t)dt = 0,

holds, for all variations δϕ of ϕ vanishing at the endpoints.
(ii) The curve ϕt satisfies the Euler-Lagrange equations for LΓ0 on the

gauge group Gau(PV ).
(iii) The constrained affine Euler-Poincaré variational principle

δ

∫ t2

t1

lL(t, Ut,Γt)dt = 0,

holds on gau(PV )× Conn(PV ), upon using variations of the form

δU = ζ̇ − [U , ζ], δΓ = −dΓζ,

where ζt ∈ FG(PV , g) vanishes at the endpoints.
(iv) The affine Euler-Poincaré equations hold on gau(PV )×

Conn(PV ):

∂

∂t

δlL

δU
= − ad∗U

δlL

δU
+ divΓ δl

L

δΓ
.

(v) The variational principle

δ

∫
U

L(j1s) = 0

holds, for variations with compact support.
(vi) The local section s satisfies the covariant Euler-Lagrange equa-

tions for L.
(vii) The variational principle

δ

∫
U

`(σ) = 0

holds, using variations of the form

δσ = ∇Γ0η −
[
σΓ0 , η

]
,

where η : U ⊂ X → AdPU is a section with compact support, and

∇Γ0 : Γ(AdPU )→ Γ (L (TU,AdPU ))

is the covariant derivative associate to the connection Γ0, viewed as
a connection on PU .

(viii) The covariant Euler-Poincaré equations hold:

divΓ0 δ
¯̀
δσ

= −Tr
(

ad∗σΓ0

δ ¯̀
δσ

)
,
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where divΓ0 is the covariant divergence associated to the connection
Γ0 viewed as a connection on PU .

Proof. — The statements (i) − (iv) are equivalent by the affine Euler-
Poincaré reduction theorem. The statements (v) − (viii) are equivalent
by covariant Euler-Poincaré reduction. We now prove that (iv) and (viii)
are equivalent. In §6.1, we have shown that the covariant Euler-Poincaré
equation (viii) can be rewritten as

∂

∂t

δ ¯̀Γ0

δσ1 + divΓ0 δ
¯̀Γ0

δσ2 = − ad∗σ1
δ ¯̀Γ0

δσ1 − Tr
(

ad∗σ2
δ ¯̀Γ0

δσ2

)
.

Using Lemma 6.4 and 6.5, this equation can be rewritten as

(6.8) ∂

∂t

δlL

δU
− divΓ0 δl

L

δΓ
= − ad∗U

δlL

δU
+ Tr
(

ad∗σ2
δlL

δΓ

)
.

Let ρ be a section of the adjoint bundle. It can be written as ρ(m) =
[p, f(p)]G where f ∈ FG(PV , g). We have

∇Γ0
vms = [p,df(p)(up) + [Γ0(up), f(p)]]G ,

∇Γ
vms = [p,df(p)(up) + [Γ(up), f(p)]]G ,

[σ2, s](vm) =
[
p,
[
Γ0

(
HorΓ

p (vm)
)
, f(p)

]]
G
,

where up is such that Tπ(up) = vm. By choosing up = HorΓ
p (vm) we obtain

the equality
∇Γ0s = ∇Γs+ [σ2, s],

thus, by duality, we get

−divΓ0 δl
L

δΓ
= −divΓ δl

L

δΓ
+ Tr
(

ad∗σ2
δlL

δΓ

)
.

Using this equality, equation (6.8) can be rewritten as
∂

∂t

δlL

δU
= − ad∗U

δlL

δU
+ divΓ δl

L

δΓ
,

which is exactly the affine Euler-Poincaré equation (iv). �

7. Examples: sigma models and spin glasses

In this section we apply the theory developed in this paper to sigma
models over non-trivial principal bundles, that is, the case of a Lagrangian
density of the form

L(γp) = 1
2
‖γp‖2µX , γp ∈ J1

pP,
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where the norm is associated to a right invariant bundle metric K on
J1P over P . In doing this we have used the affine bundle isomorphism
FA : J1P → L(TX, V P ) covering P given in (2.1) and the vector bun-
dle structure of L(TX, V P ) → P . This metric can be constructed using a
pseudo-Riemannian metric g on X, an adjoint invariant inner product γ
on g, and a connection A on P as follows

K(γ1
p , γ

2
p) := Trg

(
γ
(
A·γ1

p ,A·γ2
p

))
,

where Trg is the trace of a bilinear form with respect to the metric g.
Assuming that we have the trivial slicing X = R ×M and P = R × PM ,
we can choose the pseudo-Riemannian metric g = dt2− gM , where gM is a
Riemannian metric on M , and the connection A((t, v), up) := AM (up) as
before. In this case, the Lagrangian density reads

L(ap, γp) = 1
2
(
‖ap‖2 − ‖γp‖2

)
dt ∧ µM ,

where the first norm is associated to the metric induced on V PM by γ and
the second norm is associated to gM , γ, and AM . The reduced Lagrangian
density `A : AdPM ×X L (TM,AdPM )→ Λn+1X is

(7.1) `A
(
σ1
x, σ

2
x

)
= 1

2
(
‖σ1

x‖2 − ‖σ2
x‖2
)
dt ∧ µM .

Note that, a priori, two principal connections are needed for this example.
The first one appears in the expression of the norm in L and is part of the
physical problem. The second is needed to identify the reduced jet bundle
with the bundle AdPM ×X L (TM,AdPM ) through the map ΨA. We have
of course chosen the same connection in both places. In this case, even if the
Lagrangian `A is constructed from the connection dependent isomorphism
ΨA, its expression does not depend on the connection, since the norms
only involve the metric gM and the inner product γ. The covariant Euler-
Poincaré equation (6.5) associated to the reduced Lagrangian density (7.1)
for sigma models becomes

(7.2) d

dt
σ1 − divAM σ2 = Tr

(
ad∗σ2 σ2) .

Recall that σ1
t and σ2

t are time-dependent local sections of the vector
bundles AdPM and L (TM,AdPM ) respectively. In writing this equation
we have made certain obvious identifications using the metrics on the
bundles involved in the computation of the functional derivatives. Thus
δ`A/δσ1 ∈ AdP ∗M but we interpret it as an element of AdPM by using the
bundle metric induced by γ on AdPM . A direct computation then shows
that δ`A/δσ1 is identified with σ1. Similarly, δ`A/δσ2 ∈ L (T ∗M,AdP ∗M )
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is identified with an element of L (TM,AdPM ) by using the bundle metric
on L (TM,AdPM ) induced by γ and gM . A direct computation then shows
that δ`A/δσ2 is identified with −σ2.

According to Definition 6.2, the instantaneous Lagrangian associated to
L is

LL(t, ϕ, ϕ̇,Γ) = 1
2

∫
M

(
‖ϕ̇(p)‖2 − ‖Horϕ∗Γ

ϕ(p) ‖
2
)
µM .

From the general theory we know that this Lagrangian is gauge invariant
and that the reduced Lagrangian is given by

lL(U,Γ) = 1
2

∫
M

(
‖Ũ(m)‖2 − ‖[p,AM ·HorΓ

p ]G‖2
)
µM .

The affine Euler-Poincaré equations (5.4) become

(7.3) d

dt
Ut = −divΓt

(
AM ·horΓt

p

)
,

since we have
δlL

δΓ
= −AM ·horΓ

p ∈ Ω1(PV , g),

where horΓ denotes the horizontal part with respect to the connection
Γ. Recall that here Ut and Γt are time dependent curves in FG(PV , g)
and Conn(PV ), respectively. Here we made the same identifications using
various bundle metrics in the calculations of the functional derivatives.

In order to apply the general theory developed previously, we suppose
that the connection AM appearing in the norm of the sigma model is of the
form AM = TLξ−1

0
Tξ0, where ξ0 is an equivariant map in FG(PV , G) and

we apply the affine Euler-Poincaré reduction to the Lagrangian LΓ0 , where
Γ0 = AM . By Theorem 6.6, the covariant and dynamic reduced equations
(7.2) and (7.3) for sigma models are equivalent.

Remarkably, in the case of a trivial bundle, we recover the theory of spin
glasses as described in [6]. In particular, we obtain the motion equations
via covariant Euler-Poincaré reduction and the dynamic approach agree
with that described in [8] in the case of general spin systems. We indicate
briefly how the Lagrangians simplify in the case of a trivial bundle.

Consider the trivial principal bundle P = X×G→ X and the Lagrangian
density L(j1s) := ‖T s̄‖2, where the norm is associated to the right invariant
bundle metric on J1P constructed from a spacetime metric g = dt2 − gM
on X = R×M and an adjoint-invariant inner product γ on g. We use the
trivial connection on the principal bundle P = X × G → X. Employing
the notations of Section 4, we can write L(j1s) := (‖ ˙̄s‖2 − ‖ds̄‖2)/2 and
the reduced Lagrangian density reads `(σ̄1, σ̄2) = (‖σ̄1‖2 − ‖σ̄2‖2)/2.
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The corresponding instantaneous Lagrangian LL and its reduced expres-
sion lL are

LL(χ, χ̇, γ) = 1
2

∫
M

(
‖χ̇‖2 − ‖dχ− χγ‖2

)
µM ,

lL(ν, γ) = 1
2

∫
M

(
‖ν‖2 − ‖γ‖2

)
µM .

Thus we have recovered the spin glasses Lagrangian lL considered in [6].
The motion equations can be obtained either from LL by dynamic reduc-
tion, or from L by covariant reduction. The covariant and dynamic reduced
equations are

˙̄σ1 + div σ̄2 = −Tr
(
ad∗σ̄2 σ̄2) and ν̇ = divγ γ,

respectively. One can directly see that these equations are equivalent by
recalling the relations

σ̄1
t = νt σ̄2

t = −γt,

between the covariant and dynamic reduced variables. Recall that the com-
patibility condition for the first equation (obtained by covariant reduction)
is equivalent to the advection equation γ̇+ dγν = 0 and dγγ = 0 that need
to be added to the second equation (obtained by dynamic reduction) to
complete the system. All the considerations above can of course be gener-
alized to arbitrary Lagrangians. In this case, the covariant reduced equation
reads

∂

∂t

δ ¯̀
δσ̄1 + div δ ¯̀

δσ̄2 = − ad∗σ̄1
δ ¯̀
δσ̄1 − Tr

(
ad∗σ̄2

δ ¯̀
δσ̄2

)
,

together with the compatibility condition. The dynamic reduced equation
is

∂

∂t

δlL

δν
= − ad∗ν

δlL

δν
+ divγ δl

L

δγ
,

together with the advection equation γ̇ + dγν = 0 and the vanishing of
curvature dγγ = 0.

If M = R3 and G = SO(3), these systems of equations appear in the
macroscopic description of spin glasses, see equations (28) and (29) in [6].
See also equations (3.9), (3.10) in [11], or system (1) in [12] and references
therein for an application to magnetic media and the expression of more
general Lagrangians. In this context, the variable ν is interpreted as the
infinitesimal spin rotation, δlL/δν is the spin density, and the curvature
dγγ is the disclination density.
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