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WEAK MIXING AND PRODUCT RECURRENCE

by Piotr OPROCHA

Abstract. — In this article we study the structure of the set of weakly product
recurrent points. Among others, we provide necessary conditions (related to topo-
logical weak mixing) which imply that the set of weakly product recurrent points
is residual. Additionally, some new results about the class of systems disjoint from
every minimal system are obtained.

Résumé. — Dans cet article nous étudions la structure de l’ensemble des points
faiblement produit-récurrents. Nous donnons entre autres des conditions suffisantes
(en rapport avec le mélange topologique faible) qui impliquent que l’ensemble des
points faiblement produit-récurrents est résiduel. De plus, nous obtenons certains
résultats nouveaux concernant la classe des systèmes disjoints de tous les systèmes
minimaux.

1. Introduction

The notion of recurrence is one of the most important properties in the
study of dynamical systems. Generally speaking, a point is recurrent if its
orbit returns arbitrarily close to the initial state. An interesting question
about the dynamics of such a point is whether its returns can be synchro-
nized with returns of another recurrent point. It leads to the notion of
product recurrence.

By a dynamical system we mean a pair consisting of a continuous map
f : X → X and a compact metric space (X, d) on which the map f acts
on. Recall that a point x is said to be recurrent if x ∈ ω(x, f) and product
recurrent if given any recurrent point y in any dynamical system g and
any neighborhoods U of x and V of y, the return time sets R(x,U, f) and
R(y, V, g) intersect nontrivially. This definition was originally stated for
homeomorphism, however since it relies only on the future of the orbit,

Keywords: Product recurrence, weak mixing, minimal system, disjointness.
Math. classification: 37B20, 37B05.



1234 Piotr OPROCHA

it can be stated the same way for arbitrary continuous map. Which is
more important, most of properties of recurrent points which are valid for
homeomorphisms, transfer to the more general setting of not necessary
invertible maps. In particular, a point x is product recurrent if and only
if it is a distal point (namely, because IP-sets are subsets of N and so [8,
Thm. 9.11] has the same proof in the context of continuous maps).

A more mild condition, than product recurrence is the so-called weak
product recurrence introduced by Haddad and Ott in [10]. We say that a
point x ∈ X is weakly product recurrent if given any uniformly recurrent
point y in any dynamical system g and any neighborhoods U of x and V of
y, the sets R(x,U, f) and R(y, V, g) intersect nontrivially. In particular, any
product recurrent point is weakly product recurrent, since we consider a
smaller class of possible points y in that definition. Haddad and Ott prove
in [10] the following fact:

Theorem 1.1. — A point x ∈ X is weakly product recurrent if it has
the following property: for every neighborhood V of x there exists n such
that if S ⊂ N is any finite set satisfying |s− t| > n for all distinct s, t ∈ S,
then there exists l ∈ N such that l + s ∈ R(x, V, f) for every s ∈ S.

It is rather hard to verify this condition, so in practice it is much more
natural to use the following condition, also introduced in [10] (see [10, Cor.
3.2]).

Theorem 1.2. — A point x ∈ X is weakly product recurrent if the
following conditions hold:

(1) The orbit of x is dense in X.
(2) For any neighborhood V of x there exists N such that for any k ∈ N,

if ni > N for 1 6 i 6 k, then the intersection

V ∩ f−n1(V ) ∩ . . . ∩ f−(n1+...+nk)(V ) 6= ∅.

That way, the authors of [10] answer in negative a long standing problem,
stated in [1, p. 232] whether every weakly product recurrent point must be
a distal point(1) . Namely, it is easy to verify that every topologically exact
map or map which verifies specification property fulfil assumptions of The-
orem 1.2 (later we show in Theorem 3.2 that if assumptions of Theorem 1.2
are fulfilled then f must be at least mixing). But consider a map which ad-
mits a periodic decomposition, say X = A0 ∪ A1, f(Ai) = Ai+1(mod 2),
and A0 ∩A1 = ∅. Certainly such a map doesn’t fulfill sufficient conditions

(1) The authors write in [1]: "Another question (even for Z or N actions): If (x, y) is
recurrent for all almost periodic points y, is x necessarily a distal point?"
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WEAK MIXING AND PRODUCT RECURRENCE 1235

from [10] (it is easy to verify that if the space admits a periodic decom-
position into disjoint pieces then assumptions of Theorems 1.1 or 1.2 can’t
be fulfilled). But there can be a high degree of mixing in the system, e.g.
f2|Ai can be mixing. Furthermore, a single periodic orbit serves as an ex-
ample of a distal systems, thus it is product recurrent (and so it is also
weakly product recurrent). This suggests that there should exist sufficient
conditions inducing weak product recurrence for maps admitting regular
periodic decompositions (e.g. relatively mixing maps [2] or more generally,
maps with weakly mixing subsets [4]).

The main question we try to answer is the following:

Question 1. — When a continuous map admits a weakly product re-
current point which is not product recurrent (and how large the set of such
points can be)?

It is noteworthy that the solution to the above mentioned question by
Auslander and Furstenberg stated in [1, p. 232] can be deduced from pa-
per by Huang and Ye [11] published three years before [10], or even from
Furstenberg paper from 1967 [7] (we will comment on it later in Section 4),
however due to different terminology and different motivation it is not
immediate to realize that the answer is really contained there. While The-
orems 1.1 and 1.2 are essentially included in results of [11] (but not in [7]),
techniques used in the proofs are completely different (the main technique
in [10] is the van der Waerden theorem, while [11] relies on properties of
disjoint systems and transitivity). It is also interesting, that results in [11]
(and so also the present paper) are related to another question stated by
Furstenberg many years before [1], about the structure of the set of systems
disjoint from every minimal or distal system (see [7]).

In this paper we will provide sufficient conditions for weak product recur-
rence, much more general that these provided by Theorem 1.2. In particu-
lar, our condition works well for totally transitive maps with dense periodic
points, while, as we show, assumptions of Theorem 1.2 imply that the map
must be at least mixing (see Theorem 3.2). Our results do not give the
full answer on Question 1 (which is a variation of [10, Question 5.1]), how-
ever some insight into the structure of maps with weakly product recurrent
points is obtained and in a large class of transitive systems these points
are successfully localized (e.g. in any totally transitive system with dense
periodic points every point with dense orbit is weakly product recurrent
but not product recurrent). As a consequence of our work, some small step
towards the full characterization of the class of systems disjoint from any
minimal system is also made (see Theorem 4.4).

TOME 60 (2010), FASCICULE 4



1236 Piotr OPROCHA

2. Preliminaries

2.1. Sets of integers and recurrence

Let N = {0, 1, . . .} denote the set of natural numbers. The cardinality of
a set A is denoted #A. A set A ⊂ N is syndetic if there exists a positive
integer k such that

{i, i+ 1, . . . , i+ k} ∩A 6= ∅.

for every i ∈ N. We say that A is thick if for every n ∈ N there is i such
that

{i, i+ 1, . . . , i+ n} ⊂ A.

A set A ⊆ N is called an IP-set if there exists a sequence {pi}∞i=1 ⊆ N such
that A consists exactly of numbers pi together with all finite sums (k ∈ N):

pn1 + pn2 + . . .+ pnk with n1 < n2 < . . . < nk.

Let (X, d) be a compact metric space and let f : X → X be a continuous
map. For every x ∈ X we denote by Orb+(x, f) the set {fn(x) : n ∈ N}
and call it the (positive) orbit of x. The ω-limit set (or positive limit set)
of a point x is the set ω(x, f) of all limit points of positive orbit of x
regarded as a sequence. By the set of return times of a point x to its open
neighborhood U we mean the set

R(x,U, f) =
{
i ∈ N : f i(x) ∈ U

}
.

We also define the set of hitting times (V is an arbitrary open set):

N(x, V, f) =
{
i ∈ N : f i(x) ∈ V

}
.

When the map can be easily deduced from the context, we will simply write
R(x,U) and N(x,U).

If U is an open neighborhood of x then N(x,U, f) = R(x,U, f), however
we decided to use both symbols because sometimes it is very convenient
to stress the fact that we deal with recurrence, by putting R(·) instead of
N(·). We will also write N(U, V, f) =

{
i ∈ N : f−i(V ) ∩ U 6= ∅

}
.

A subset M of X is minimal if it is closed, nonempty, invariant (that is
f(M) ⊂ M) and contains no proper subset with these three properties. It
is well known that if a set M ⊂ X is minimal then the orbit of every point
of M is dense in M . A point x is called uniformly recurrent (or minimal)
if it belongs to a minimal set. It is also well known that if x is uniformly
recurrent, then R(x,U) is syndetic for any open neighborhood U of x.

ANNALES DE L’INSTITUT FOURIER
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Definition 2.1. — Two points x and y in X are said to be proximal
if there exists an increasing sequence {nk}∞k=0 such that limk→∞ d(fnk(x),
fnk(y)) = 0.

Definition 2.2. — A point x ∈ X is said to be distal if x is not proxi-
mal to any point in its orbit closure Orb+(x, f) other than itself.

The following fact is well known (see [8, Thm. 9.11]). We state it for
the readers convenience (note that if x is distal then it must be uniformly
recurrent):

Theorem 2.3. — A point x is product recurrent if and only if it is
uniformly recurrent distal point.

2.2. Symbolic dynamics and odometers

Let Σ = {0, 1} and denote Σ+
2 = ΣN. By a word, we mean any element of

the free monoid Σ∗ with the set of generators equal Σ. If x ∈ Σ+
2 and 0 6

i < j then by x[i,j] we mean the sequence xi, xi+1, . . . , xj . We may naturally
identify x[i,j] with the word x[i,j] = xixi+1 . . . xj ∈ Σ∗. For simplicity, we
use the following notation x[i,j) = x[i,j−1].

We endow Σ+
2 with a compact metric ρ defined by

ρ(x, y) = 2−k, where k = min
{
m > 0 : x[0,m] 6= y[0,m]

}
if x 6= y and ρ(x, y) = 0 otherwise.

If a1 . . . am ∈ Σ∗ then we define the so-called cylinder set:

[a1 . . . am] =
{
x ∈ Σ+

2 : x[0,m) = a1 . . . am
}
.

It is well known that cylinder sets form a neighborhood basis for the space
Σ+

2 .
By 0∞ we denote the sequence x ∈ Σ+

2 such that xi = 0 for all i ∈ N.
The usual map on Σ+

n is the shift map σ defined by σ(x)i = xi+1 for all i.
Dynamical system (Σ+

2 , σ) is called the full (one-sided) shift over 2 symbols.
If X ⊂ Σ+

2 is closed and invariant (i.e. σ(X) ⊂ X) then we say that X
(together with the map σ = σ|X) is a shift or subshift. For simplicity we
write CX [u] = [u] ∩X where u ∈ Σ∗.

Let s = {sm}∞m=1 be a sequence of positive integers such that sm divides
sm+1. We call such a sequence a scale. If we endow the cyclic group Zn with
the discrete topology, and define πm : Zsm+1 → Zsm by πm(z) = z (mod sm)
then the inverse limit

Gs = lim←−{Zsm , πm} = {{xn}∞n=1 : πm(xm+1) = xm}

TOME 60 (2010), FASCICULE 4



1238 Piotr OPROCHA

is well defined, compact subset of the countable Cartesian product of Zsm
with the product topology. Denote 0 = (0, 0, . . .) and 1 = (1, 1, . . .). By
the odometer on scale s we mean Gs together with the map R1 : Gs → Gs
defined by R1(j) = j + 1, where the addition is coordinatewise, modulo sm
on each coordinate m.

3. Non-minimal weakly mixing maps

We recall that f is transitive if for any pair of nonempty open sets
U, V ⊂ X there exists n > 0 such that fn(U) ∩ V 6= ∅; is totally transitive
if fk is transitive for k = 1, 2, . . .; is (topologically) weakly mixing if f × f
is transitive on X×X; is (topologically) mixing if for any pair of nonempty
open sets U, V ⊂ X there exists N > 0 such that fn(U) ∩ V 6= ∅ for all
n > N ; is (topologically) exact if for every nonempty open set U there is
n > 0 such that fn(U) = X. Since we do not consider measure theoretic
analogues of the above properties, the word ”topologically” will be usually
omitted. It is easy to verify that mixing implies weak mixing which implies
transitivity and that exactness is stronger than (i.e. implies) mixing.

It is also well known that if f is transitive then the set of points with
dense orbits is residual in X. Another fact is that if there is x such that
ω(x, f) = X then f is transitive. In particular, this condition holds when
x is a recurrent point with dense orbit. In other words, if assumptions of
Theorem 1.2 are fulfilled then the map is transitive (using the assumptions
one can easily show, that x is recurrent). As the first result (Theorem 3.2),
we show that the dynamics must be much more complicated in the case of
maps fulfilling the assumptions of Theorem 1.2.

Before we proceed further, we need one more definition. In [13] we in-
troduced the following property, when studying conditions sufficient for
spectral decomposition (a generalization of Smale’s spectral decomposition
theorem [14]).

Definition 3.1. — Let f be a continuous map acting on a compact
metric space (X, d). We say that f has the property (P) if for any nonempty
open set U there are a point x ∈ U and an integer K > 0 such that

fnK(x) ∈ U for all n ∈ N.

The property (P) is closely related to dense periodicity. In fact, the
Reader can check that the condition (P) holds if and only if the map f̄

induced (by the formula f̄(A) = f(A)) on the hyperspace of nonempty

ANNALES DE L’INSTITUT FOURIER
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compact subsets of X has dense periodic points (this result was recently
announced by Héctor Méndez Lango at VII Iberoamerican Conference on
Topology and its Applications (Valencia, June 2008) [12]).

Theorem 3.2. — Assume that there is a point x ∈ X such that the
following conditions hold:

(1) The orbit of x is dense in X.
(2) For any neighborhood V of x there exists N such that for any k ∈ N,

if ni > N for 1 6 i 6 k, then the intersection

V ∩ f−n1(V ) ∩ . . . ∩ f−(n1+...+nk)(V ) 6= ∅.

In that case f has the property (P) and is mixing.

Proof. — Fix any open set U . There is s > 0 such that fs(x) ∈ U . There
is an open neighborhood V of x such that fs(V ) ⊂ U and there is K > 0
such that

(3.1) V ∩ f−K(V ) ∩ f−2K(V ) ∩ . . . ∩ f−nK(V ) 6= ∅

for every n ∈ N. Given n ∈ N, denote by xn a point in this intersec-
tion. We may assume that {xn}∞n=1 is a convergent sequence. Denote x∗ =
limn→∞ xn and observe that fnK(x∗) ∈ V for every n ∈ N. But if we
denote y = fs(x∗) then

fnK(y) = fs(fnK(x∗)) ∈ U.

We have just proved that f has the property (P). It remains to prove that
f is mixing.

Fix any two nonempty open sets U,W . There are U ′ ⊂ U and s > 0
such that fs(U ′) ⊂ W . There is also an open neighborhood V of x and
m > 0 such that fm(V ) ⊂ U ′ (because x has dense orbit). Let N be a
constant given by the assumptions for V . Put K = N + s > 0 and observe
that n − s > N for every n > K. In particular, for every n > K there is
y = y(n) ∈ X such that y ∈ V ∩ f−n+s(V ). Denote z = fm(y) and observe
that z ∈ U ′ ⊂ U and

fn(z) = fs+m(fn−s(y)) ∈ fs+m(V ) ⊂ fs(U ′) ⊂W.

Indeed, f is topologically mixing and the proof is finished. �

In [11] Huang and Ye introduced the following definition.

Definition 3.3. — Let f be a continuous map acting on a compact
metric space (X, d). We say that f has dense small periodic sets if and
only if for any nonempty open set U there exists nonempty compact set
A ⊂ U and k such that A is invariant for fk.

TOME 60 (2010), FASCICULE 4
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It follows just by the definition that every map with dense small periodic
sets also has the property (P) and by [11, Prop. 3.2] we get the converse
implication, thus these notions are equivalent.

We remark here that the property (P) (or equivalently density of small
periodic sets) is much more general than dense periodicity. There is known
an example of a weakly mixing systems with the property (P) but without
periodic points [11, Example 3.7], however the construction is quite com-
plex. Such systems can be constructed in a much simpler way even with a
higher degree of mixing. The idea of this construction comes from [9].

Fix any n > 0 and consider words u = 0n1, v = 0n+11 over the alphabet
{0, 1}. Let K be the set of all infinite sequences obtained as all (infinite)
concatenations of words u, v in any possible order. Denote

Λn =
∞⋃
i=0

σi(K) =
n+1⋃
i=0

σi(K).

It is easy to verify that σ|Λn has dense periodic points, however period of
any periodic point in Λn is greater than n. Additionally σ|Λn is mixing
(or even exact), since there is no restriction on concatenations in K and
|v| = |u|+ 1.

Example 3.4. — Consider the infinite Cartesian product Λ =
∏∞
n=1 Λn

endowed with the product metric d(x,y) =
∑∞
n=1 2−nρ(xn,yn), and the

map F : Λ → Λ defined by F (x)n = σ(xn). It is easy to verify that Λ is
compact and F is continuous. It is also easy to see that F is mixing and
has the property (P) (or even dense regularly recurrent points), e.g. see
[9, Lemma 3]. Finally, it obvious that F has no periodic point, as n-th
coordinate cannot have period n.

In [4] the authors introduced a local analogue of the definition of weak
mixing.

Definition 3.5. — A set A ⊂ X, #A > 1 is called a weakly mixing set
if for anym ∈ N, any choice of nonempty open subsets V1, . . . , Vm, U1, . . . , Um
of X with A ∩ Ui 6= ∅, A ∩ Vi 6= ∅, i = 1, 2, . . . ,m, there exists k ∈ N such
that fk(Vi ∩A) ∩ Ui 6= ∅ for each 1 6 i 6 m.

In fact Definition 3.5 is an equivalent condition to the original definition
of weakly mixing set stated in [4] (see [4, Prop. 4.2.]). But the advantage
of the above formulation is that it is immediately seen, that if f is weakly
mixing and #X > 1, then X is a weakly mixing set (by Furstenberg theo-
rem [7], if f × f is transitive, then so does any finite product f × . . .× f).

ANNALES DE L’INSTITUT FOURIER



WEAK MIXING AND PRODUCT RECURRENCE 1241

We also stress the fact that weakly mixing sets are always perfect, i.e. they
cannot contain isolated points (see comments at the top of page 287 in [4]).

In the same fashion, we can also state a local version of the property
(P).

Definition 3.6. — We say that a set A ⊂ X has the property (P) if
for any nonempty open set U ⊂ X with U ∩ A 6= ∅ there exists a point
x ∈ U ∩A and K > 0 such that

fnK(x) ∈ U for all n ∈ N.

The following lemma is only a slight extension of [2, Thm 1.1] (namely,
density of periodic points is replaced by the property (P)).

Proposition 3.7. — If f has the property (P) and is totally transitive
then it is weakly mixing.

Proof. — Fix two nonempty open sets U, V . There isK such that fnK(U)
∩U 6= ∅ for every n > 0. The map fK is transitive, so there is m such that
fmK(U)∩V 6= ∅. If we put s = mK then fs(U)∩U 6= ∅ and fs(U)∩V 6= ∅.
The result follows by [3, Thm. 4]. �

If we restrict our attention to transitive maps with the property (P)
then by Proposition 3.7 we see that in most cases such maps have a weakly
mixing set with the property (P) (it is enough to take any piece in the
terminal periodic decomposition if such a decomposition exists [2]). Maps
without weakly mixing subset behave similarly to odometers (see [2]) how-
ever they still can reveal complicated, nonminimal dynamics (e.g. see [4,
Ex. 5.4]).

Theorem 3.8. — Let A be a weakly mixing set and let U, V be open
sets intersecting A. For any K > 0 there is x ∈ U∩A such that fnK(x) ∈ V
for some integer n > 0.

Proof. — Fix arbitrary open sets U, V such that U ∩A 6= ∅, V ∩A 6= ∅.
Fix an integer K > 0. There are a point x1 ∈ U ∩A and s1 > K such that
fs1(x1) ∈ V . If s1 = 0 (mod K) then we are done (n = s1), so suppose that
this does not hold. We will perform an inductive construction.

Assume that there are x1, . . . , xl ∈ U and positive integers s1, . . . , sl > K

such that fsj (xj) ∈ V and reminders rj = sj (mod K) form a strictly
increasing sequence 0 < r1 < . . . < rl. The map f is continuous and A

is a weakly mixing set, so there are W1, . . .Wl ⊂ U and m > 0 such that
fm(Wj∩A)∩Wj 6= ∅, fm(Wj∩A)∩V 6= ∅ and fsj (Wj) ⊂ V for j = 1, . . . , l.
If m 6= 0 (mod K) then reminders r′j = m + sj (mod K) are all different,

TOME 60 (2010), FASCICULE 4
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and are also different from m (mod K). The set A has no isolated points
(see [4]), so there is x′l+1 ∈W1∩(A \ {x1, . . . , xl}) such that fm(x′l+1) ∈ V .
By the same arguments we get points x′j ∈ f−m(Wj) ∩Wj ∩ A such that
x′j are distinct for distinct indices j. Put s′j = m+ sj , sl+1 = m, and then
renumerate the sequence s′j with respect to increasing values of reminders
r′j = s′j (mod K) (note that in our case numbers r′j form an increasing
sequence of positive integers).

The process described above provides a method to extend cardinality of
the sequence xj , as long as m 6= 0 (mod K). Since there are at most K
different reminders, we must get m = 0 (mod K) at some step. In that case
it is enough to take x ∈ f−m(V ) ∩A ∩W1 and put n = m/K. �

Theorem 3.9. — Let A be a weakly mixing set with the property (P).
In that case the set A contains a point which is not uniformly recurrent, in
particular f is not minimal.

Proof. — Assume that A is a weakly mixing set. There are nonempty
open sets U, V such that U ∩ V = ∅, U ∩ A 6= ∅, V ∩ A 6= ∅ (by the
definition #A > 1).

There are K and x ∈ A such that fnK(x) ∈ U for all n ∈ N. There is
also a point y ∈ A such that Orb+(y, f) ⊃ A. Assume that y is uniformly
recurrent. This implies that x is uniformly recurrent, since x ∈ Orb+(y, f).
In that case A ⊂ Orb+(x, f) = Orb+(y, f), in particular there is s1 > 0
such that fs1(x) ∈ V . We obtain that there are 0 < r1 < K and i1 > 0
such that s1 = i1K + r1 (if s1 = 0 (mod K) then fs1(x) ∈ U ∩ V which
contradicts the assumptions).

Assume that there are constructed sj = ijK + rj for j = 1, . . . , n such
that 0 < r1 < r2 < . . . < rn < K and fsj (x) ∈ V for all j. There is an
open neighborhood W of x such that fsj (W ) ⊂ V . By Theorem 3.8 there
is m such that fm(W ∩A) ∩ V 6= ∅ and m = 0 (mod K). Thus there is an
open set W ′ ⊂ W , W ′ ∩ A 6= ∅ and numbers a1, . . . , an+1, all ai different
modulo K, such that fai(W ′) ⊂ V for i = 1, . . . , n + 1 (namely aj = sj
for j 6 n and an+1 = m). But there is also l > 0 such that f l(x) ∈ W ′.
Numbers s′j = aj + l, j = 1, . . . , n+ 1 are also all different modulo K. Put
r′j = s′j (mod K) and sort these numbers, such that r′1 < r′2 < . . . < r′n+1.
Note that r′1 > 0 because otherwise s′1 = 0 (mod K) and so fs′1(x) ∈ U ∩V
which contradicts assumptions about U and V .

By the above inductive procedure we eventually construct a sequence
s1, . . . , sK . But then 0 < r1 < . . . < rK < K which is impossible. We have
just proved that y can’t be uniformly recurrent and the proof is finished. �
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It is not hard to prove, that if U, V are nonempty open sets and f is
weakly mixing then the set {n : fn(U) ∩ V 6= ∅} contains an IP-set. The
following theorem shows that a stronger property holds. Namely, an IP-set
can be induced by a point x ∈ U .

Theorem 3.10. — Let A be a weakly mixing set and let U, V be open
sets such that A ∩ U 6= ∅, A ∩ V 6= ∅. In that case there is x ∈ U ∩A such
that the set N(x, V, f) contains an IP-set.

Proof. — Fix any nonempty open sets U, V intersecting A. We claim
that there is a sequence of integers {pi}∞i=1 ⊂ N and sequences of points
{xi}∞i=1 ⊂ U ∩A, {yi}

∞
i=1 ⊂ V ∩A such that

fs(xn) ∈ V and fs(yn) ∈ V

for every s ∈ P (n) = {pj1 + . . .+ pjk : 1 6 j1 < . . . < jk 6 n}. To prove
the claim (and construct appropriate sets), we use the mathematical in-
duction.

To obtain p1, x1 and y1 we apply the definition of weakly mixing set. Now
assume that the desired sequences are constructed for i = 1, . . . , n. There
are open neighborhoods U ′ ⊂ U and V ′ ⊂ V of xn and yn respectively such
that

fs(U ′) ⊂ V and fs(V ′) ⊂ V

for every s ∈ P (n). Obviously U ′ ∩ A 6= ∅, V ′ ∩ A 6= ∅ and so we can
apply the definition of weakly mixing set, obtaining an integer k such that
fk(U ′ ∩A) ∩ V ′ 6= ∅ and fk(V ′ ∩A) ∩ V ′ 6= ∅. Put pn+1 = k and take any
xn+1 ∈ U ′ ∩A ∩ f−k(V ′) and yn+1 ∈ V ′ ∩A ∩ f−k(V ′). We obtain that

fs(xn+1) ∈ V and fs(yn+1) ∈ V

for every s ∈ P (n+ 1), because P (n+ 1) = {k} ∪ P (n) ∪ (k + P (n)).
Let x = limn→∞ xn (going to a subsequence, we may assume that this

limit exists). Then x ∈ U ∩ A and the set N(x, V , f) contains an IP-set
generated by the sequence {pi}∞i=1. The proof is finished, by the fact that
for every open set U ∩ A 6= ∅ there is an open set W ∩ A 6= ∅ such that
W ⊂ U . �

Theorem 3.11. — If A is a weakly mixing set with the property (P)
then weakly product recurrent points which are not product recurrent form
a residual subset of A.

Proof. — Let {Us}∞s=1 generate a countable basis of the topology of A
(i.e. Us are nonempty open sets such that {A ∩ Us}∞s=1 is a basis of the
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topology induced from X to A). By the property (P), for every s there are
Ks > 0 and xs ∈ Us ∩A such that f iKs(xs) ∈ Us for every i ∈ N.

For every s, n > 1 we define a set Asn ⊂ X in the following way: x ∈ Asn
if there is js > 0 such that

f (js+i)Ks(x) ∈ Us for i = 0, 1, . . . , n.

We claim that each set Asn is dense. Since f is continuous, we can find an
open set V 3 xs such that f iKs(V ) ⊂ Us for i = 0, 1, . . . , n. Now fix an
arbitrary open set U such that U ∩ A 6= ∅. By Theorem 3.8 there is js
such that f jsKs(U ∩ A) ∩ V 6= ∅. If we fix any x ∈ f−jsKs(V ) ∩ U ∩ A
then f (is+i)Ks(x) ∈ f iKs(V ) ⊂ Us. Consequently, x ∈ Asn, and since U was
arbitrary, the proof of the claim is finished.

But obviously Asn is also open, since f is continuous. Denote

D =

 ⋂
n,s>1

Asn

 ∩ Trans(f,A)

where Trans(f,A) ⊂ A consists of points with orbits dense in A, that is
A ⊂ Orb+(x, f) for every x ∈ Trans(f,A). Note that D is residual in A

(the proof that Trans(f,A) is residual in A is the same as the proof that
the set of points with dense orbits is residual for every transitive map),
and if x ∈ D then it is not product recurrent (A ⊂ Orb+(x, f) and so by
Theorem 3.9 the point x is not uniformly recurrent, while product recurrent
points are always uniformly recurrent by Theorem 2.3).

It remains to prove that each point x ∈ D is weakly product recurrent. To
see this, take arbitrary minimal system g : Y → Y , a (uniformly recurrent)
point y ∈ Y and its open neighborhood V 3 y. Fix any open neighborhood
U of x. There is l such that x ∈ Ul ⊂ U . Let p be a periodic point with
the prime period Kl (in the trivial odometer T ). Obviously p is uniformly
recurrent distal point, and so by [8, Thm. 9.11] the pair (p, y) is uniformly
recurrent point for the product map T × g. In particular R(y, V, gKl) is
syndetic. But x ∈

⋂
n>1 A

l
n which implies that the set N(x,Ul, fKl) ⊂

R(x,U, fKl) is thick. This immediately implies that

R(x,U, f) ∩R(y, V, g) 6= ∅.

�

If the assumptions of Theorem 1.2 are fulfilled then every point with
dense orbit is weakly product recurrent. Theorems 3.11 says only that there
exists a residual subset of weakly product recurrent points (in particular,
we can’t exclude the situation that there is a point with dense orbit which
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is not weakly product recurrent). Theorem 3.13 is another generalization
of Theorem 1.2. First observe that we can extend the statement of Theo-
rem 3.8 when weak mixing is global.

Theorem 3.12. — Assume that f is weakly mixing, U is a nonempty
open set and K > 0. There is a nonempty open set V ⊂ U and positive
integers j0, . . . , jK−1 such that ji (mod K) = i and f ji(V ) ⊂ U .

Proof. — Denote V0 = U . The map f is weakly mixing, so there is k > 0
such that

f−k−i(U) ∩ U 6= ∅
for i = 0, . . . ,K. In particular there is j0 > 0 such that j0 (mod K) = 0
and

V1 = f−j0(V0) ∩ V0 6= ∅.
By the same argument, for any nonempty open set Vi ⊂ U , where i < K

there is ji > 0 such that ji (mod K) = i and

Vi+1 = f−ji(Vi) ∩ Vi 6= ∅.

This provides an inductive procedure for the construction of a sequence of
sets

V = VK ⊂ VK−1 ⊂ . . . ⊂ V1 ⊂ V0 = U

and times j0, . . . , jK−1 such that ji (mod K) = i and f ji(Vi+1) ⊂ Vi. But
then f ji(V ) ⊂ f ji(Vi+1) ⊂ Vi ⊂ U . �

Theorem 3.13. — If f is weakly mixing ang has the property (P) then
every point with dense orbit is weakly product recurrent.

Proof. — There are a basis of the topology {Us}∞s=1 of X, positive inte-
gers Ks and points xs ∈ Us such that f iKs(xs) ∈ Us for every i ∈ N.

By the proof of Theorem 3.11 it remains to show that if a point x ∈ X
has dense orbit then for every s, n > 1 there is j > 0 such that

f (j+i)Ks(x) ∈ Us for i = 0, 1, . . . , n.

First note that there is an open set Vn 3 xs such that f (j+i)Ks(Vn) ⊂ Us
for i = 0, 1, . . . , n and some j > 0. By Theorem 3.12 there is V ⊂ Vn
and integers ki such that fki(V ) ⊂ Vn and ki (mod Ks) = i, where i =
0, . . . ,Ks − 1. For technical reasons denote kKs = k0. There are integers
0 6 r < Ks and l > 0 such that f l(x) ∈ V and l (mod Ks) = r (the orbit
of x is dense in X). But then, if we put t = l+ kKs−r then t = 0 (mod Ks)
and f t(x) ∈ V ⊂ Vn. We may write t = t′Ks for some positive integer t′.
Then by the definition of Vn we obtain that

f (j+i+t′)Ks(x) ∈ Us for i = 0, 1, . . . , n
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and the proof is completed. �

4. Systems disjoint from every minimal system

It is interesting that questions about weak product recurrence are closely
related to questions about disjointness of systems (the notion of (topolog-
ical) disjointness was introduced by Furstenberg in [7] and next widely
studied by many other authors). Before going further we have to recall
some basic definitions.

Let f, g be two continuous surjective maps acting on compact metric
spaces X and Y respectively. We say that a nonempty closed set J ⊂ X×Y
is a joining of (X, f) and (Y, g) if it is invariant (for the product map
f × g) and its projections on the first and second coordinate are X and Y

respectively. If each joining is equal to X × Y then we say that (X, f) and
(Y, g) are disjoint and denote this fact by (X, f)⊥(Y, g) or simply by f⊥g.

Let M be the collection of all possible minimal systems. We denote by
M⊥ the collection of all systems disjoint from any minimal system.

Proposition 4.1. — Let f be a continuous map and let x be a recurrent
point. Denote Λ = Orb+(x, f). If (Λ, f |Λ) ∈M⊥ then x is weakly product
recurrent.

Proof. — If x is periodic then we are done, so assume that it is not the
case. Then, by the definition of recurrent point, x is not isolated in Λ. Let
(Y, g) be a minimal system and fix any y ∈ Y . Then, if we take the closure J
of the orbit of the point (x, y) under the product map f×g then projection
of J onto the first and second coordinate are Λ and Y respectively. But
then J is a joining and so J = Λ × Y since f ⊥ g. This implies that the
orbit of (x, y) is dense in Λ×Y , and since x is not isolated in Λ we see that
(x, y) is recurrent. �

In [11, Theorem 3.4] the authors proved the following fact:

Theorem 4.2. — If a continuous map f acting on a compact metric
space (X, d) is totally transitive and has dense small periodic sets then
(X, f) ∈M⊥.

Note that by Proposition 3.7, assumptions of Theorem 4.2 actually imply
that f is weakly mixing. Additionally, by Proposition 4.1 we see that all
points with dense orbit are weakly product recurrent, while they are not
product recurrent by Theorem 3.9 provided that #X > 1.
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There are two essential consequences of the above observations. First of
all, by Theorem 3.2, they show that the main result of [10] is essentially
contained in [11]. Secondly, theorem proved by Furstenberg in 1967 in [7]
saying that every totally transitive (in fact, weakly mixing) system with
dense periodic points is in M⊥ answers the question stated later in [1,
p. 232]. Namely, it is enough to take any mixing map on the unit interval.
We also see that Theorem 4.2 provides another proof of Theorem 3.13,
however from a completely different point of view.

Before we go further, we should justify that results of Theorem 3.11 cover
an essentially wider class of systems that these covered by Theorem 4.2.
The simplest example is to take a non-mixing but relatively mixing map on
an infinite space. Such a map is not disjoint from any system defined by pe-
riodic point whose period is a multiple of the length of the terminal regular
periodic decomposition defining relatively mixing system. Another exam-
ple, which essentially involves the idea of weakly mixing set and property
(P) is the following.

Example 4.3. — Let f be a mixing interval map and let g be a nontrivial
odometer (i.e. other than periodic orbit). Let F = f×g : I×Gs → I×Gs be
the product map and denote A = I ×{0}. Note that A is a weakly mixing
set, since f is mixing and the set

{
i : dist(F i(A), A) < δ

}
is syndetic for

any δ > 0 (or even more, it contains an infinite progression). It is also
easy to verify, that for any periodic point p ∈ I and open neighborhood
U 3 (p,0) there is k (which is a multiple of the prime period of p) such
that kN ⊂ N((p,0), U, F ). In particular, A has the property (P).

The property (P) is somehow related to a special class of distal points:
periodic points or more generally odometers. If we extend the rate of mixing
in the system, then we are no more restricted to this particular class of distal
points in Theorem 3.11. We can prove even more, that is a result analogous
to Theorem 4.2.

Theorem 4.4. — If f is weakly mixing and distal points are dense in
X then (X, f) ∈M⊥.

Proof. — If #X = 1 then we are done, so assume that #X > 1. In
particular, it implies that X is perfect [4].

The proof is similar to the proof of Theorem 3.11. Fix a countable basis
{Us}∞s=1 of the topology of X and choose a distal point xs ∈ Us for every
s ∈ N. For every s, n > 1 we define a set Asn ⊂ X by

Asn =
{
y : d(f i+j(y), f i+j(xs)) <

1
n

for some i ∈ N and j = 0, . . . , n
}
.
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It is easy to verify that every set Asn is open. We will show that they are
also dense.

Fix n, s > 0 an let U be an open neighborhood of xs such that d(f j(x),
f j(y)) 6 1

n for every x, y ∈ U and j = 0, 1, . . . , n. Fix any open set V . If
f is weakly mixing, then a finite Cartesian product of copies of f is also
transitive [7]. In particular there is î > 0 such that f−î−l(U) ∩ V 6= ∅ for
l = 0, . . . ,m, where m is as large as we want (and î = î(m), i.e. î depends
on U , V and m). But xs is uniformly recurrent, so for some m > 0 the
set R(xs, U)∩ {k, k + 1, . . . , k +m} 6= ∅ for every k ∈ N. This implies that
there is 0 6 ĵ 6 m such that f î+ĵ(xs) ∈ U . By the definition of î there is
also y ∈ V such that f î+ĵ(y) ∈ U . It is enough to put i = î + ĵ and then
d(f i+j(y), f i+j(xs)) < 1

n for j = 0, . . . , n. This proves that Asn∩V 6= ∅ and
so Asn is dense, since V was chosen arbitrary.

This immediately implies that if we denote

D =

 ⋂
n,s>1

Asn

 ∩ Trans(f)

then D is a residual subset of X (Trans(f) = Trans(f,X) is the set of
points with dense orbits). But then D is dense, since X is perfect.

Fix any minimal system (Y, g) ∈ M and let J ⊂ X × Y be a joining.
Additionally, fix any x ∈ D and let z be such that (x, z) ∈ J . Let U be
a neighborhood of x, and let V ⊂ Y be any nonempty open set. There is
k > 0 and an open neighborhood V ′ of z such that fk(V ′) ⊂ V . There
are also an open set W (W 6= X) and an integer s such that xs ∈ W and
fk(W ) ⊂ U . There is an open set W ′ 3 xs such that W ′ ⊂W .

The point xs is distal and so the pair (xs, z) is uniformly recurrent (see [8,
Thm. 9.11]). This implies that the set R(xs,W ′, f)∩R(z, V, g) is syndetic.
But x ∈ D which implies that for every n there is in such that if m ∈
R(xs,W ′, f) ∩ {in, . . . , in + n} then d(fm(xs), fm(x)) < 1

n . Note that if
n is large enough (in particular 1

n < dist(W ′, X \W )), then fm(x) ∈ W
and also R(xs,W ′, f)∩R(z, V ′, g)∩{in, . . . , in + n} 6= ∅. This implies that
N(x,W, f)∩R(z, V ′, g) 6= ∅ and as a consequence N(x,U, f)∩N(z, V, g) 6=
∅. In other words Orb+((x, z), f × g) ∩ (U × V ) 6= ∅ which immediately
implies that J = X × Y , since the orbit of x is dense in X. Indeed, f ⊥ g
and so the proof is finished. �

Remark 4.5. — Note that if the system in the assumptions of The-
orem 4.4 is nontrivial (i.e. X is not singleton) then it is not minimal.
Namely, any nontrivial weakly mixing system contains at least one pair
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of distinct proximal points. In particular, all points with dense orbits are
weakly product recurrent but not product recurrent.

We don’t know any example of a map which fulfills the assumptions
of Theorem 4.4 and does not fulfill the assumptions of Theorem 4.2. It
is noteworthy that every system in M⊥ has dense minimal points by [11,
Theorem 4.3], which makes the problem even harder. We state the following
question as a problem for further research:

Question 2. — Does there exist a weakly mixing map with dense distal
points but without the property (P)?

In our opinion, even an example of a weakly mixing map with dense
distal points but without regularly recurrent points would be interesting
(recall that a point x is regularly recurrent if for every U , the set R(x,U)
contains an infinite arithmetic progression).

It would be also nice to state an extended version of Theorem 4.4 in terms
of weakly mixing sets (similarly to Theorem 3.11), obtaining another, (more
general than Theorem 4.4) condition for weak product recurrence. However,
in that case sets N(U, V ) are no longer thick, while it is the main tool used
in the proof for synchronization with return times of distal points. In other
words, presently we don’t know how to prove that sets Asn are dense when
weak mixing is replaced by weakly mixing set.

5. Semicocyle extensions with one point of discontinuity

In [10] the authors provided an example of a uniformly recurrent point x
which is not weakly product recurrent. In their example there was a point
y ∈ Orb+(x) such that (x, y) was not recurrent. The aim of this section
is to show that such a situation is to some extent common. We adopt a
technique from [6] (see also [5]).

Let us consider a metric space (X, d) without isolated points and a con-
tinuous map f : X → X. Assume that x0 is a point with dense orbit and
denote Θ = Orb+(x0, f). There is a natural bĳection N 3 n→ fn(x0) ∈ Θ,
so we can identify Θ with N and endow (both spaces) with the topology
induced from X.

Definition 5.1. — Let K be a compact metric space. Every continuous
function φ : Θ→ K is called a semicocycle on X.

According to the above mentioned identification of Θ, we may interpret
every semicocycle as a sequence φ ∈ KN. We endow KN with the Tychonov
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topology and define the shift map σ : KN → KN in the standard way,
putting σ(x)i = xi+1.

Definition 5.2. — By a semicocycle extension of f determined by a
semicocycle φ we will understand the orbit closure Xf of the pair (x0, φ)
under the product map f × σ, together with the map Tf = (f × σ) |Xf ,
that is the map Tf : Xf → Xf .

By the fiber of a point x we mean the set F (x) = {ξ ∈ K ; (x, ξ) ∈ Xf}.
The set of points with singleton fibers is denoted C = {x ∈ X : #F (x) = 1}.
The set C can be interpreted as the maximal set onto which φ can be ex-
tended continuously, while the set D = X \C is the set of ”discontinuities”
of φ.

Theorem 5.3. — Every minimal system f : X → X acting on a Cantor
set X (i.e. X is homeomorphic to the standard middle-third Cantor set) has
a minimal extension Tf which is the orbit closure of a uniformly recurrent
point which is not weakly product recurrent (or even more, this point in
pair with some other point in its orbit closure is not recurrent for Tf ×Tf ).

Proof. — For simplicity assume that X is the middle third Cantor set
on [0, 1]. For i = 0, 1, . . . denote Ai =

(
1/3i+1, 1/3i

]
∩ X. Note that each

set Ai is a compact set with nonempty interior and that
∞⋃
i=0

Ai = X \ {0} .

Denote A =
⋃∞
i=0 A2i, B =

⋃∞
i=0 A2i+1. These sets form a decomposition

of the set X \ {0} with additional property that the sets A ∩ (0, ε) and
B ∩ (0, ε) have nonempty interior for every ε > 0.

Now, fix any x0 ∈ X such that 0 6∈ Orb+(x0, f). Such a point exists,
since X is infinite; orbit of x is dense in X because f is minimal. Denote
Θ = Orb+(x0, f) and define a map φ : Θ → {0, 1} by φ(y) = 0 if y ∈ A
and φ(y) = 1 if y ∈ B. It is easy to verify that φ is continuous (thus is
a semicocycle) and that the set of singleton fibers equals C = X ∩ (0, 1].
The semicocycle extension Tf defined by φ is a minimal map because f is
minimal (see [6, Thm. 3.3]). Observe that #F (0) > 1, because there are
increasing sequences ni, ki such that limi→∞ fni(x0) = limi→∞ fki(x0) = 0
and fni(x0) ∈ A, fki(x0) ∈ B. The set X has no isolated points, so it
contains no periodic orbit. In particular fn(0) ∈ (0, 1] for every n > 0 and
so, if we fix any z1, z2 ∈ F (0) then Tnf (z1) = Tnf (z2) for every n > 0.

Take any distinct z1, z2 ∈ F (0). By the above arguments the pair (z1, z2)
is not recurrent for the product system Tf × Tf and so none of the points
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z1, z2 is weakly product recurrent (both points are uniformly recurrent).
The proof is finished, since every semicocycle extension of a minimal system
is minimal [6, Theorem 3.3] �

6. A weakly mixing minimal system

In this section we provide an example of a minimal weakly mixing dy-
namical system without weakly product recurrent points. It shows, that if
a map is weakly mixing then assumptions of Theorem 3.11 cannot be weak-
ened too much, that is there must be a degree of nonminimality included
in the dynamics.

The main aim of this section is to show that there exists a subshift
X ⊂ Σ+

2 such that:
(6.1) σ = σ|X is a weakly mixing minimal map
(6.2) for every y ∈ X there is z ∈ X and j > 0 such that if y[i,i+j] = y[0,j]

then z[i,i+j] 6= z[0,j] for all i > 0.
Note that condition 6.2 implies that (y, z) is not recurrent in the product
system σ × σ. The point z is minimal, thus y is not a weakly product
recurrent point (and so there is no product recurrent point in X). In fact
we obtain much more than we need to prove that x is not weakly product
recurrent. It is not even ’internally’ product recurrent, that is additional
assumption in the definition of weak product recurrence that f = g and
y ∈ X does not change anything.

Now we can start our construction. For every n we will construct a set of
words Pn obtaining a sequence {Pn}∞n=1 and next use it to define a point x.
Finally, the shift X will be obtained as the closure of the orbit of x under
σ.

Denote a = 001101, b = 001011, c = 001111, d = 00101101, and observe
that the set C = {a, b, c, d} is a code, that is if a word u is a concatenation
of a sequence of words form C, then a decomposition of u into elements of
C is unique. Additionally, if u is a concatenation of words of C and there
are words v, v′ such that u = vav′ then v and v′ are also concatenations of
words from C. Generally speaking, the word a can appear in u only as an
element of the decomposition (cannot appear as a subword of vw for some
v, w ∈ C). It is because the word 001 can appear only as a prefix of a word
from C.

Given a number n let D(n) = {1, 2, . . . , n+ 1}. Denote P0 = C and
Q0 = {uvw : u, v, w ∈ C} = {q1, . . . , qs} where s = 43 = 64.
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We will construct sets Pn, Qn for n > 0 inductively. Given Pn we always
define Qn by putting Qn = {uvw : u, v, w ∈ Pn}, so the only problem is
to construct the set Pn. The main aim of the construction is that each Pn
has the following properties (n > 0):

(6.3) There is k > 0 and there are ui ∈ Pn such that |ui| = k + i for
i = 0, 1, . . . , n,

(6.4) Assume that Qn−1 = {q1, . . . , qs}. Then u ∈ Pn if and only if there
is an onto map π : D(s) → D(s − 1) such that u = qπ(1)qπ(2) . . . ,

qπ(s+1).
(6.5) Assume that u ∈ Pn and that u = u1 . . . um is its unique decomposi-

tion into elements of C. Fix arbitrary index i such that ui = a. There
are words v = v1 . . . vm, w = w1 . . . wm ∈ Pn, where vi, wi ∈ C,
|ui| = |vi| = |wi| and such that:
(a) vi = b and if j 6= i and uj = a then vj 6= b,
(b) if vj = a then wj 6= b and if wj = a then vj 6= b for every j,
(c) if uj = a then wj 6= b and if wj = a then uj 6= b for every j.

To start the construction we have to define a set P1 which has all the
properties specified above. Let F0 be the set of all surjections D(64) →
D(63). Note that every function η ∈ F0 can be defined in the following
way. First we assign η(j) ∈ D(63) for some j ∈ D(64), and next define a
bĳection between the sets D(64) \ {j} and D(63).

In the first step of our inductive procedure, we put

P1 = {f(D(64)) : f ∈ F0} .

We have to check that P1 has all the properties we claimed. This will finish
the first step of induction. Conditions 6.3 and 6.4 follow just from the
definition of F0, because |aaa|+1 = |aad| and q1 . . . qsaaa, q1 . . . qsaad ∈ P1,
where Q0 = {q1, . . . , qs}.

To prove that also condition 6.5 holds, fix any u ∈ P1. There is a function
π ∈ F0 such that

u = qπ(1)qπ(2) . . . , qπ(s+1).

The unique decomposition of u into elements of C is induced by the decom-
position of each qπ(i). Fix any j such that qπ(j) = axy for some x, y ∈ C

(the proof for the cases xay and xya is the same). There are k, l such that
qπ(k) = bxy and qπ(l) = cxy. Now,define two permutations ξ, ψ : D(s) →
D(s) by putting

ξ(i) = j, ξ(j) = k, ξ(k) = i, ψ(i) = k, ψ(k) = i

and the identity everywhere else. Permutations ξ and ψ define two new
elements η, θ ∈ F0 by η = π ◦ ξ and θ = π ◦ ψ. We use these two maps
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to define words v = qη(1)qη(2) . . . , qη(s+1) and w = qθ(1)qθ(2) . . . , qθ(s+1).
Observe that v, w ∈ P1. We will show that these words (together with u)
fulfill the condition 6.5. The only difference between symbols in u, v, w can
appear along words qπ(i), qπ(j) and qπ(k) because all other elements in the
decomposition are the same for all that three words u, v, w. Assume for
simplicity, that i < j < k. Then we see the following

u = . . . qπ(i) . . . qπ(j) . . . qπ(k) . . . = . . . axy . . . bxy . . . cxy . . .

v = . . . qη(i) . . . qη(j) . . . qη(k) . . . = . . . bxy . . . cxy . . . axy . . .

w = . . . qθ(i) . . . qθ(j) . . . qθ(k) . . . = . . . cxy . . . bxy . . . axy . . .

The first step of our construction is done.
Now assume that the set Pn has already been defined. Define Pn+1 to

consists of all the words which follow the scheme of 6.4 (and denote by
Fn the set of all maps π : D(s) → D(s − 1), where s = |Qn|). To be
consistent with the previous considerations, assume that Qn = {q1, . . . , qs}
(note that qi and s here are different from qi and s in the first step). There
is an integer k and words ui ∈ Pn such that |ui| = k + i, i = 0, . . . , n.
It is enough to put u′i = q1 . . . qsu0u0ui ∈ Pn+1 for i = 0, . . . , n, and
u′n+1 = q1 . . . qsu0u1un ∈ Pn+1. Simple calculations show immediately that
|u′i| = |u′0|+ i for i = 0, . . . , n+ 1 which gives 6.3.

To prove that also 6.5 holds it is enough to follow the same rule as in
the first step. Namely, if u decomposes into u = qπ(1)qπ(2) . . . , qπ(s+1), then
decomposition of u into elements of C must agree with it, i.e. it induces (the
unique) decomposition of each qj . But then, if we chose any occurrence of a
in u then it must fall into some qπ(i), let say at a position l. As previously,
we may assume that qπ(i) = AXY , A,X, Y ∈ Pn and that this ”special”
occurrence of a is placed somewhere in A. Now we use condition 6.5 for
A and a at position l (the word A is an element of Pn so condition 6.5 is
guaranteed by the induction) obtaining words B,C ∈ Pn. Words A,B,C
decompose into elements of C in the same way (i.e. if we considers words
from C in the decomposition of A,B or C then the number of words and
their lengths are the same which follows directly from 6.5). We can arrange
the words from decompositions into pairs. If we consider A and B then
the pair (a, b) can be seen exactly once as l-th pair. If we consider A,C or
B,C (or these words in reverse order) then the pair (a, b) never appears
(see 6.5). Now it is enough to follow the same rule as in the first step. The
only difference is that we should put AXY in the place of axy, BXY in
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the place of bxy etc., e.g.
u = . . . AXY . . . BXY . . . CXY . . .

v = . . . BXY . . . CXY . . . AXY . . .

w = . . . CXY . . . BXY . . . AXY . . .

The construction is finished.
Now, we can return to our main goal: the construction of a special mini-

mal dynamical system. Fix any u1 ∈ P1. If un ∈ Pn is defined, then by the
condition 6.4 there is un+1 ∈ Pn+1 such that un is its prefix. Denote

x = lim
n→∞

un0∞ and X = Orb+(x, σ).

Theorem 6.1. — The shift map σ = σ|X is minimal and weakly mixing.

Proof. — Note that for every i, n ∈ N, if u ∈ Pn+i+1 then u is a con-
catenation of words from Pn+1 (it is a consequence of 6.4). But each word
in Pn+1 contains all the words from Pn, which proves that occurrences of
un in x are syndetic, which is equivalent to the fact that x is uniformly
recurrent.

If we fix any three open sets U, V,W ⊂ X, then there are n > 1 and
words u, v, w ∈ Pn such that CX [u] ⊂ U , CX [v] ⊂ V , CX [w] ⊂ W . Denote
l = |v| and observe that uvw ∈ Qn. Fix any k > l and any word A ∈ Pk.
Since k > l the word uvw is present somewhere in A. There are also words
B0, . . . , Bl ∈ Pk such that |Bi| = |B0| + i and words x, y such that A =
xuvwy. Let zi be an element of X which has ABiA as a prefix. Note that
σ|x|(zi) ∈ U for all i = 0, . . . , l. Now, denote s = |A| + |B0| + |x| + |u| + l

and observe that w is a prefix of σs(z0), while σs(zl) has v as its prefix.
This implies that σs(z0) ∈ W and σs(zl) ∈ V . Since σ|x|(z0), σ|x|(zl) ∈ U
we obtain that σ−s+|x|(V )∩U 6= ∅, σ−s+|x|(W )∩U 6= ∅. Sets U, V,W were
arbitrary, thus the map σ|X is weakly mixing (see [3, Thm. 4]). �

Theorem 6.2. — For every y ∈ X there is z ∈ X such that the pair
(y, z) is not recurrent in the product system σ × σ. In particular there is
no weakly product recurrent point in X.

Proof. — Fix any y ∈ X. There is an increasing sequence nk, such that
limk→∞ σnk(x) = y. For every k there are words Ak, Bk ∈ Pk and indices
ik, jk, lk, such that x[ik,jk) = Ak, x[jk,lk) = Bk, where jk = ik + |Ak|,
lk = jk + |Bk| and ik 6 nk < jk. Now, assume that the first occurrence of
word a in y starts at the position s, i.e. y[s,s+|a|) = a and s is the minimal
number with this property. The word y[s,s+|a|) is rewritten somewhere in
word x[nk,jk) or x[jk,lk) and furthermore it is exactly an element of the
decomposition of one of this words into words from C (the word 001 can
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appear only as a prefix of a word in C). For simplicity assume that a is a
subword of x[nk,jk). This fix a word a in the decomposition of Ak, let say
Ak = u1 . . . um and up = a. By 6.5 there is a word A′k ∈ Pk such that
Ak = v1 . . . vm, vp = b (where |vi| = |ui| for all i) and if ui = a then vi 6= b

for i 6= p. Generally speaking, if we write Ak over A′k then we can see a
over b only once.

Put zk = σnk−ik(A′kBk0∞) and let z = limk→∞ zk (we go to a subse-
quence if necessary). Note that z ∈ X because limk→+∞ |Bk| = +∞. But
again, if we write y over z then we can see a over b only at one position.
This implies, that there is an open set U (defined by a sufficiently large
prefix of y) and an open neighborhood V of z, such that if σn(y) ∈ U and
n > 0 then σn(z) 6∈ V . This immediately implies that the pair (y, z) is not
recurrent (for σ × σ) and so y is not weakly product recurrent. �

When a minimal point x is not weakly product recurrent, there is a point
y such that the pair (x, y) is not recurrent in a product system. However it
does not immediately imply that y belongs to the same system that x does,
i.e. it may happen that x × X is recurrent in the product system f × f .
So even, if [10, Question 5.3] has positive answer, that is weak product
recurrent point which is uniformly recurrent must be distal (in particular
cannot belong to a weakly mixing system), the presented construction goes
a step further. Presented system is not even ’internally’ product recurrent
in the sense, that every point x ∈ X has its counterpart y ∈ X making the
pair (x, y) not recurrent for f × f .
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