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OBSTRUCTIONS TO DEFORMING CURVES
ON A 3-FOLD, II: DEFORMATIONS OF

DEGENERATE CURVES ON A DEL PEZZO 3-FOLD

by Hirokazu NASU (*)

Abstract. — We study the Hilbert scheme HilbscV of smooth connected
curves on a smooth del Pezzo 3-fold V . We prove that any degenerate curve C,
i.e. any curve C contained in a smooth hyperplane section S of V , does not de-
form to a non-degenerate curve if the following two conditions are satisfied: (i)
χ(V, IC(S)) > 1 and (ii) for every line ` on S such that `∩C = ∅, the normal bun-
dle N`/V is trivial (i.e. N`/V ' OP1⊕2). As a consequence, we prove an analogue
(for HilbscV ) of a conjecture of J. O. Kleppe, which is concerned with non-reduced
components of the Hilbert scheme HilbscP3 of curves in the projective 3-space P3.

Résumé. — Nous étudions le schéma de Hilbert HilbscV des courbes lisses
connexes sur une variété de del Pezzo lisse V de dimension 3. Nous montrons qu’au-
cune courbe C dégénérée, c’est-à-dire, aucune courbe C contenue dans une section
hyperplane S de V , se déforme en une courbe non-dégénérée, si les deux conditions
suivantes sont satisfaites : (i) χ(V, IC(S)) > 1 et (ii) pour chaque droite ` sur S
telle que ` ∩ C = ∅, le fibré normal N`/V de ` dans V est trivial. Par conséquent,
nous prouvons un analogue (pour HilbscV ) d’une conjecture de J. O. Kleppe, qui
concerne les composantes non-réduites du schéma de Hilbert HilbscP3 des courbes
dans l’espace projectif P3 de dimension 3.

1. Introduction

This paper is a sequel to a joint work [13] with Shigeru Mukai. In [13] the
embedded deformations of smooth curves C on a smooth projective 3-fold
V have been studied under the presence of a smooth surface S such that
C ⊂ S ⊂ V , especially when V is a uniruled 3-fold. In this paper, the same
subject is studied in detail especially when V is a del Pezzo 3-fold.

Keywords: Hilbert scheme, infinitesimal deformation, del Pezzo variety.
Math. classification: 14C05, 14H10, 14D15.
(*) Supported in part by the 21-st century COE program “Formation of an International
Center of Excellence in the Frontiers of Mathematics and Fostering of Researchers in
Future Generations”.
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It is known that even if the deformations of C in S and the deformations
of S in V behave well, those of C in V behave badly in general. For example,
even if HilbV and HilbS are nonsingular of expected dimension χ(NS/V )
and χ(NC/S) at [S] and [C] respectively, HilbV can be generically non-
reduced along some component passing through [C] (cf. Mumford’s example
in [14]). Such non-reduced components of the Hilbert scheme Hilbsc V of
smooth connected curves on V have been constructed for many uniruled 3-
folds V in [13]. The non-reducedness is originated from the non-surjectivity
of the restriction map

(1.1) H0(S,NS/V ) |C−→ H0(C,NS/V
∣∣
C

).

We say that C is stably degenerate if every small global deformation of C
in V is contained in a deformation S′ of S in V (cf. Definition 4.1). If (1.1)
is surjective, then C is stably degenerate (cf. Proposition 4.3). However if
it is not surjective, then there exists a first order deformation C̃ of C in V
which is not contained in any first order deformation S̃ of S. In this paper,
we consider the following problem raised by Mukai:

Problem 1.1. — Suppose that (1.1) is not surjective and χ(V, IC(S)) >
0. Then (1) Is C stably degenerate? (2) Is Hilbsc V singular at [C]?

Here IC denotes the ideal sheaf of C in V and IC(S) := IC ⊗ OV (S).
J. O. Kleppe [8] and Ph. Ellia [2] considered Problem 1.1 for the case where
V is the projective 3-space P3, S is a smooth cubic surface in P3 and C is
a smooth connected curve of degree d lying on S. Kleppe gave a conjecture
(cf. Conjectures 5.1), which can be reformulated as follows:

Conjecture 1.2. — Let C ⊂ S ⊂ P3 be as above and assume that
χ(P3, IC(3)) > 1. Then:

(1) If C is linearly normal, then every small global deformation C ′ of
C in P3 is contained in a cubic surface S′ ⊂ P3, i.e., C is stably
degenerate, and

(2) Suppose that C is general and d > 9. Then Hilbsc P3 is nonsingular
at [C] if and only if H1(P3, IC(3)) = 0.

As a testing ground of his conjecture, we consider Problem 1.1 for the
case where V is a smooth del Pezzo 3-fold (cf. §2.2), S is a smooth member
of the class |H| of the polarization H of V , i.e., a smooth del Pezzo surface
in V , and C is a smooth connected curve on S. The following theorem is
an analogue of Kleppe’s conjecture.

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.3. — Let C ⊂ S ⊂ V be as above and assume that χ(V,
IC(S)) > 1. If every line ` on S such that C ∩ ` = ∅ is a good line on V
(i.e., the normal bundle N`/V of ` in V is trivial), then:

(1) C is stably degenerate, and
(2) Hilbsc V is nonsingular at [C] if and only if H1(V, IC(S)) = 0.

If χ(V, IC(S)) < 1, then it follows from a dimension count that C is
not stably degenerate (Proposition 4.7). If some ` is a bad line on V
(i.e., N`/V 6' OP1

⊕2) then C is not necessarily stably degenerate (Proposi-
tion 5.4). As a corollary to Theorem 1.3, we give a sufficient condition for
a maximal family W of degenerate curves on V to become an irreducible
component of the Hilbert scheme Hilbsc V and determine whether Hilbsc V
is generically non-reduced along W or not (Theorem 4.14).

One of the main tools used in this paper is the infinitesimal analysis of
the Hilbert scheme developed in [13]. As is well known, every infinitesimal
deformation C̃ of C in V of the first order (i.e., over Spec k[t]/(t2)) de-
termines a global section α ∈ H0(NC/V ) and a cohomology class ob(α) ∈
H1(NC/V ) (called the obstruction) such that C̃ lifts to a deformation over
Spec k[t]/(t3) if and only if ob(α) = 0 (cf. §2.3). Let πC/S : NC/V →
NS/V

∣∣
C

be the natural projection. In [13] Mukai and Nasu studied the ex-
terior component of α and ob(α), i.e., the images of α and ob(α) by the
induced maps Hi(πC/S) : Hi(NC/V ) → Hi(NS/V

∣∣
C

) (i = 0, 1), respec-
tively. They proved that if there exists a curve E on S such that (E2)S < 0
(e.g. (−1)-P1 on S) and the exterior component of α lifts to a global sec-
tion v ∈ H0(NS/V (E)) \H0(NS/V ), then the exterior component of ob(α)
is nonzero provided that certain additional conditions on E, C and v hold
(see [13, Theorem 2.2]). Such a rational section v of NS/V admitting a pole
along E is called an infinitesimal deformation with a pole. In §3 we see that
an infinitesimal deformation with a pole along E induces an obstructed in-
finitesimal deformation of the open surface S◦ := S \ E in the open 3-fold
V ◦ := V \ E (Theorem 3.1). By using this fact, we prove Theorem 1.3 in
§4. In §5 we give some examples of generically non-reduced components of
the Hilbert scheme of curves on a del Pezzo 3-fold as an application.

Acknowledgements. I should like to express my sincere gratitude to
Professor Shigeru Mukai. He showed me the example of non-reduced com-
ponents of the Hilbert scheme of canonical curves in §5.2 as a simplification
of Mumford’s example of a non-reduced component of Hilbsc P3. This mo-
tivated me to research the topic of this paper. Throughout this research, he
made many suggestions which are useful for obtaining and improving the
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proofs. According to his suggestion, I studied the deformation theory of an
open surface in an open 3-fold and organized §3. I am grateful to Professor
Jan Oddvar Kleppe for giving me useful comments on Hilbert-flag schemes
and for finding a gap in the proof of Lemma 4.8 in a earlier version. I should
like to thank the referee, who showed me a straight proof of Proposition 4.3
and led me to a simplification of §4.1 and §4.2. According to his/her rec-
ommendation, I give the classes of non-reduced components of the Hilbert
scheme explicitly in Proposition 5.5.

Notation and Conventions. We work over an algebraically closed field
k of characteristic 0. Let V be a scheme over k and let X be a closed
subscheme of V . Then IX denotes the ideal sheaf of X in V and NX/V
denotes the normal sheaf (IX/IX2)∨ of X in V . For a sheaf F on V , we
denote the restriction map Hi(V,F)→ Hi(X,F

∣∣
X

) by
∣∣
X

. We denote the
Euler-Poincaré characteristic of F by χ(V,F) or χ(F). Hilbsc V denotes
the open subscheme of the Hilbert scheme HilbV whose point corresponds
to a smooth connected curve on V .

2. Preliminaries

The results in this section will be used in § 4. Proposition 2.4 and
Lemma 2.5 are important to our proof of Proposition 4.9 and 4.10, re-
spectively.

2.1. Del Pezzo surfaces

A del Pezzo surface is a smooth surface S whose anti-canonical divisor
−KS is ample. Every del Pezzo surface is isomorphic to P2 blown up at
fewer than 9 points or P1 × P1. We denote the blow-up of P2 at (9 − n)-
points by Sn. A curve ` ' P1 on Sn is called a line(1) if ` · (−KS) = 1.
Every (−1)-P1 on Sn is a line and every line on Sn is a (−1)-P1. A curve q
on Sn is called a conic if q · (−KS) = 2 and q2 = 0.

Lemma 2.1. — Let D be a divisor on a del Pezzo surface S. If D is nef
and χ(S,−D) > 0, then H1(S,−D) = 0.

(1) There exists no line on P2 and on P1 × P1.

ANNALES DE L’INSTITUT FOURIER



OBSTRUCTIONS TO DEFORMING CURVES ON A 3-FOLD, II 1293

Proof. — If D2 > 0 then the assertion follows the Kawamata-Viehweg
vanishing. Since D is a nef divisor on a del Pezzo surface, we have D2 > 0.
Now we assume that D2 = 0. If S = Sn, then D is linearly equivalent to
a multiple mq (m > 0) of a conic q on S. By the Riemann-Roch theorem,
we have

χ(S,−D) = 1
2

(−mq) · (−mq −KS) + χ(OS)

= −m+ 1.

Thus we have m = 0 or 1 by assumption. This implies that H1(−mq) = 0.
If S = P1 × P1, then D is of bidegree (m, 0) or (0,m) with m > 0. Again
by the Riemann-Roch theorem, we have χ(−D) = −m + 1 > 0. Thus
H1(OP1×P1(−D)) = 0. �

Lemma 2.2. — Let D be an effective divisor on a del Pezzo surface S.
Then the lines ` such that D · ` < 0 are mutually disjoint. The fixed part(2)

Bs |D| of the linear system |D| on S is equal to

−
∑
D·`<0

(D · `)`.

Proof. — We prove the two assertions at the same time. It is clear that
any line ` satisfying D · ` < 0 is contained in Bs |D|. On the other hand,
except for lines on S every irreducible curve C on S can move on S by
the linearly equivalence since χ(C) > 2 and H2(C) = 0. Hence |D| is
decomposed into the sum

|D| = |D′|+
k∑
i=1
mi`i,

of a linear system |D′| on S such that Bs |D′| = ∅ and some lines `i on S
with coefficients mi ∈ Z>0 (1 6 i 6 k). If `i ∩ `j 6= ∅ for some i 6= j, then
`i + `j is a (reducible) conic on S and can move on S by χ(`i + `j) = 2.
Thus `i’s are mutually disjoint. Now we prove that D · `i < 0 for any i.
Since mi = (D′ − D) · `i > 0, it suffices to show that D′ · `i = 0. Since
D′ is nef, we have (D′)2 > 0. Since −KS is ample, so is D′ −KS . Hence
we have H1(D′) = H1((D′ −KS) +KS) = 0 by the Kodaira vanishing. If
D′ · `i > 1, then it follows from the exact sequence

0 −→ OS(D′) −→ OS(D′ + `i) −→ OS(D′ + `i)
∣∣
`i
−→ 0

that h0(D′ + `i) > h0(D′). Thus we have D′ · `i = 0. �

(2) the base locus of dimension one

TOME 60 (2010), FASCICULE 4



1294 Hirokazu NASU

Lemma 2.3. — Let E be a disjoint union of m lines (m > 0) on a del
Pezzo surface S and let ε : S → F be the blow-down of E from S. If a
divisor D on F satisfies h0(F,D) > m, then we have the following:

(1) h0(S, ε∗D − E) = h0(F,D)−m, and
(2) If H1(S, ε∗D) = 0, then H1(S, ε∗D − E) = 0.

Proof. — (1) Let `i (1 6 i 6 m) be the disjoint lines on S and let
E :=

∑m
i=1 `i. We put Dj := ε∗D −

∑
16i6j `i. Since the image of `i on F

is a point, we have h0(Dj) > h0(D) − j for every 1 6 j 6 m. Moreover
since Dj−1 · `j = 0, Lemma 2.2 shows that `j is not contained in Bs |Dj−1|.
Hence dim |Dj | decreases one by one as j increases. Therefore we have
h0(ε∗D − E) = h0(Dm) = h0(D)−m.

(2) An exact sequence 0 → OS(ε∗D − E) → OS(ε∗D) → OE → 0 on S
induces an exact sequence

H0(S, ε∗D) ρ−→ H0(E,OE) −→ H1(S, ε∗D − E) −→ H1(S, ε∗D)

of cohomology groups. Then ρ is surjective by (1) and H1(S, ε∗D) = 0 by
assumption. Hence we have H1(S, ε∗D − E) = 0. �

Let C be a smooth connected curve on a del Pezzo surface S. We consider
the restriction to C of the anti-canonical linear system | −KS | on S. The
restriction map H0(−KS) → H0(−KS

∣∣
C

) is not surjective in general. Let
`i (1 6 i 6 m) be the lines on S disjoint to C. Let us define an effective
divisor E on S by the sum

E :=
m∑
i=1
`i

and we put E := 0 if there exists no such `i. If C is neither a line nor
a conic, then the `i’s are mutually disjoint: indeed if `i ∩ `j 6= ∅ for some
i 6= j, then q := `i+`j is a conic on S and hence C intersects q by C ·q > 0.

Proposition 2.4. — Assume that C is irrational and χ(S,−KS−C) >
0. Then we have H1(S,−KS + E − C) = 0 and the restriction map

(2.1) H0(S,−KS + E) |C−→ H0(C,−KS
∣∣
C

)

is surjective. If C is not elliptic either, then the map (2.1) is an isomorphism.

Proof. — It suffices to show that H1(−KS + E − C) = 0 by the exact
sequence

(2.2) 0 −→ OS(−KS+E−C) −→ OS(−KS+E) −→ OS(−KS)
∣∣
C
−→ 0.

Claim. Put D1 := C +KS − E. Then D1 is nef.

ANNALES DE L’INSTITUT FOURIER
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Since S is regular (i.e., H1(KS) = 0), the restriction map
∣∣
C

: H0(C +
KS)→ H0(KC) is surjective. Since C 6' P1, the linear system |C +KS | on
S is non-empty. Let l be a line on S. Since C is not a line, we have C · ` > 0
and hence (C +KS) · ` > −1. By Lemma 2.2, ` is contained in Bs |C +KS |
if and only if C ∩ ` = ∅. Thus we have E = Bs |C +KS | and |D1| does not
have base components. In particular, D1 is nef.

It follows from the exact sequence
(2.3)
0 −→ OS(−KS − C) −→ OS(−KS + E − C) −→ OS(−KS + E)

∣∣
E︸ ︷︷ ︸

'OE

−→ 0

that χ(−D1) = χ(−KS − C) + χ(OE) > 0. Hence we have H1(−D1) = 0
by Lemma 2.1.

Now we assume that C is not elliptic. Then KC 6∼ 0 and hence C+KS 6∼
E by adjunction. Thus D1 6∼ 0 and H0(−D1) = 0. Therefore (2.1) is
injective. �

Lemma 2.5. — If C is not rational nor elliptic and χ(S,−KS −C) > 0,
then the map

H1(S,−KS + 3E) |C−→ H1(C,−KS
∣∣
C

)
induced by (2.2) ⊗OS(2E) is injective.

Proof. — It suffices to show that H1(−KS+3E−C) = 0. Let ε : S → F
be the blow-down of E from S. Then there exists a divisor D2 on F such
that ε∗D2 ∼ C + 2KS − 2E. By the Serre duality, it suffices to show that
H1(ε∗D2 − E) = 0.
Claim. Hi(S, ε∗D2) = 0 for i = 1, 2.

By (2.3)⊗OS(E), there exists an exact sequence

H1(S,−KS+E−C) −→ H1(S,−KS+2E−C) −→ H1(E, (−KS+2E)
∣∣
E

).

Since H1((−KS + 2E)
∣∣
E

)'H1(OE(E))= 0 and H1(−KS+E − C) = 0 by
Proposition 2.4, we have H1(−KS + 2E−C) = 0. By the Serre duality, we
have H1(ε∗D2) = 0. Similarly by the Serre duality, we have H2(ε∗D2) '
H0(KS−ε∗D2)∨. Since C is not rational nor elliptic, we have (KS−ε∗D2) ·
C = (−KS−C) ·C = −degKC < 0. Hence we have H2(ε∗D2) = 0 because
C is nef. Thus the claim has been proved.

By this claim, we have h0(F,D2) = h0(S, ε∗D2) = χ(S, ε∗D2). Then
an easy calculation shows that χ(ε∗D2) = χ(−KS − C) + χ(OE). Since
χ(−KS − C) > 0, we have h0(F,D2) = χ(S, ε∗D2) > m, where m is the
number of components of E. Since H1(ε∗D2) = 0, Lemma 2.3 (2) shows
that H1(ε∗D2 − E) = 0. �

TOME 60 (2010), FASCICULE 4



1296 Hirokazu NASU

Let S be a smooth projective surface and let L be a line bundle on S.

Lemma 2.6. — Let E be a disjoint union of irreducible curves Ei (i =
1, . . . ,m) on S such that E2

i < 0 and let ι : S◦ := S \ E ↪→ S be the open
immersion. If deg(L

∣∣
Ei

) 6 0 for every i, then the map

H1(S,L)→ H1(S◦, L
∣∣
S◦

)

induced by the sheaf inclusion L ↪→ L⊗ ι∗OS◦ is injective.

The proof is similar to that of [13, Lemma 2.5] and we omit it here.
Lemma 2.6 allows us to identify H1(S,L(nE)) (n > 0) with their images
in H1(S◦, L

∣∣
S◦

). As a result, under the identification we obtain a natural
filtration

H1(S,L) ⊂ H1(S,L(E)) ⊂ H1(S,L(2E)) ⊂ · · · ⊂ H1(S◦, L
∣∣
S◦

)

on H1(S◦, L
∣∣
S◦

).

2.2. Del Pezzo threefolds

A del Pezzo threefold is a pair (V,H) consisting of a (smooth) irreducible
projective variety V of dimension 3 and an ample Cartier divisor H on V
such that −KV = 2H. HereH is called the polarization of V and sometimes
omitted. The self-intersection number n := H3 is called the degree of V .
It is known that the linear system |H| on V determines a double cover
ϕ|H| : V → P3 if n = 2, and an embedding ϕ|H| : V ↪→ Pn+1 if n > 3. If S
is a smooth member of |H|, then the pair (S,H

∣∣
S

) is a del Pezzo surface
of degree n. Every smooth del Pezzo 3-fold is one of Vn (1 6 n 6 8) or V ′6
in Table 2.1, in which L(i) denotes a linear subspace of dimension i, and
n and ρ respectively denote the degree and the Picard number of Vn (and
of V ′6) (cf. [4],[5],[6]). It is known that a smooth 3-fold V ⊂ Pn+1 (n > 3)
is a del Pezzo 3-fold of degree n if a linear section [V ⊂ Pn+1] ∩H1 ∩H2
with two general hyperplanes H1,H2 ⊂ Pn+1 is an elliptic normal curve in
Pn−1.

We briefly review the basics of the Hilbert scheme of lines on a del Pezzo
3-fold. We refer to Iskovskih ([6],[7]) for the details. Let (V,H) be a smooth
del Pezzo 3-fold of degree n. By a line on (V,H), we mean a reduced
irreducible curve ` on V such that (` ·H)V = 1 and ` ' P1. If n 6 7 then
V contains a line `. Then there are only the following possibilities for the

ANNALES DE L’INSTITUT FOURIER
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Table 2.1. Del Pezzo 3-folds

del Pezzo 3-folds n ρ
V1 = (6) ⊂ P(3, 2, 1, 1, 1) 1 1 a weighted hypersurface of degree 6
V2 = (4) ⊂ P(2, 1, 1, 1, 1) 2 1 a weighted hypersurface of degree 4 (a)

V3 = (3) ⊂ P4 3 1 a cubic hypersurface
V4 = (2) ∩ (2) ⊂ P5 4 1 a complete intersection of two quadrics

V5 = [Gr(2, 5)
Plücker
↪→ P9] ∩ L(6) 5 1 a linear section of Grassmannian

V6 = P1 × P1 × P1 Segre
↪→ P7 6 3

V ′6 = [P2 × P2 Segre
↪→ P8] ∩ L(7) 6 2

V7 = Blpt P3 ⊂ P8 7 2 the blow-up of P3 at a point (b)

V8 = P3 Veronese
↪→ P9 8 1 the Veronese image of P3

(a) Another realization of V2 is a double cover of P3 branched along a quartic surface.
(b)V7 is realized as the projection of V8 ⊂ P9 from one of its points.

normal bundle N`/V of ` in V :

(0,0): N`/V ' OP1
⊕2 (i.e., trivial),

(1,-1): N`/V ' OP1(−1)⊕OP1(1),
(2,-2): N`/V ' OP1(−2)⊕OP1(2) (only if n = 1 or 2),
(3,-3): N`/V ' OP1(−3)⊕OP1(3) (only if n = 1).

In this paper, ` is called a good line if N`/V is trivial, and called a bad line
otherwise. If n > 3, then every line on V is of type (0, 0) or (1,−1). The
Hilbert scheme Γ of lines on V is called the Fano surface of V , and in fact
every irreducible (non-embedded) component of Γ is of dimension two. Let
Γi ⊂ Γ be an irreducible component and let Si be the universal family of
lines on V over Γi. Then there exists a natural diagram

Si
p−−−−→ Vyπ

Γi.

By [7, Chap. III, Proposition 1.3 (iv)], if n > 3 then we have either
(a) p is surjective; in this case a general line in Γi is a good line; or
(b) p(Si) ' P2 is a plane on V ⊂ Pn+1; in this case every line in Γi is

a bad line.
We have either (a) or (b) also when n 6 2. (See the proof(3) in [7], which
works for n 6 2.) If n 6= 7 then every irreducible component of Γ is of
type (a). If n = 7 then Γ consists of two irreducible components Γi '
P2(i = 0, 1), one of which is of type (a), while the other is of type (b).
Consequently, we have

(3) In the proof, the assumption that char k = 0 is used.

TOME 60 (2010), FASCICULE 4



1298 Hirokazu NASU

Lemma 2.7 (Iskovskih). — Every smooth del Pezzo 3-fold of degree
n 6= 8 contains a good line.

Lemma 2.8. — Let (V,H) be a smooth del Pezzo 3-fold of degree n and
let S be a general member of |H|. If n 6= 7 then every line on S is good. If
n = 7 then there exist three lines `0, `1, `2 on S forming the configuration
in Figure 2.1. Then `0 is bad, while `1 and `2 are good.

`1 `2

`0

Figure 2.1. (−1)-P1’s on S7

Proof. — There exists no line on V8. If n 6= 7, then the locus B of bad
lines in the Fano surface Γ is of dimension one. Let pi denote the projection
of {

(`, S)
∣∣ ` ⊂ S} ⊂ Γ× |H|

to the i-th factor. Since the fiber of p1 is of dimension n−1, p2(p−1
1 (B)) is a

proper closed subset of |H| ' Pn+1. Hence every line on a general member
S of |H| is a good line.

Suppose that V = V7, i.e., the blow-up of P3 at a point. Then S is
a del Pezzo surface S7, i.e., a blow-up of P2 at two distinct points, and
hence there exist three lines `0, `1, `2 on S as in Figure 2.1. Here `0 is
distinguished by the fact that it intersects both of the other lines. Let P be
the exceptional divisor of the blow-up V7 → P3. Then P ' P2 is a unique
plane on V7 and `0 is the intersection of S with P (cf. [7, Chap. II, §1.4]).
Since N`0/P ' OP1(1), `0 is a bad line on V7. On the other hand, `1 and `2
are good lines on V7 since S is general. �

2.3. Infinitesimal deformations and obstructions

Let V be a smooth variety and let X be a smooth closed subvariety
of V . An (embedded) first order infinitesimal deformation of X in V is a
closed subscheme X̃ ⊂ V × Spec k[t]/(t2) which is flat over Spec k[t]/(t2)
and whose central fiber is X. It is well known that there exists a one to one
correspondence between the group of homomorphisms α : IX → OX and
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the first order infinitesimal deformations X̃ of X in V . In what follows, we
identify X̃ with α and abuse the notation. The standard exact sequence

(2.4) 0 −→ IX −→ OV −→ OX −→ 0

induces δ : Hom(IX ,OX) → Ext1(IX , IX) as a coboundary map. Then
α ∈ Hom(IX ,OX) (i.e., X̃) lifts to a deformation over Spec k[t]/(t3) if and
only if

ob(α) := δ(α) ∪ α ∈ Ext1(IX ,OX)

is zero, where ∪ is the cup product map

Ext1(IX , IX)×Hom(IX ,OX) ∪−→ Ext1(IX ,OX).

(We refer to [11, Chap. I §2]. See also [15], [1], [3] and [10].) Then ob(α)
is called the obstruction of α (i.e., X̃). Since both X and V are smooth,
ob(α) is contained in H1(X,NX/V ) ⊂ Ext1(IX ,OX) (cf. [11, Chap. I,
Prop. 2.14]). Since Hom(IX ,OX) ' H0(NX/V ), we regard α as a global
section of NX/V from now on.

If X is a hypersurface of V , i.e., of codimension one in V , then ob(α)
becomes a simple cup product. Let δ1 : H0(X,NX/V )→ H1(V,OV ) be the
coboundary map of the exact sequence 0 → OV → OV (X) → NX/V → 0.
Let us define a map(4)

(2.5) dX : H0(X,NX/V ) −→ H1(X,OX)

by the composition of δ1 and the restriction map H1(OV ) |X−→ H1(OX).
Then we have

Lemma 2.9. — Let X be a smooth hypersurface of V . Then ob(α) for
α ∈ H0(NX/V ) is equal to the cup product dX(α) ∪ α, where ∪ is the cup
product map

H1(X,OX)×H0(X,NX/V ) ∪−→ H1(X,NX/V ).

Proof. — Since IX ' OV (−X) is a line bundle on V , we have Exti(IX ,
OX) ' Hi(NX/V ) (i = 0, 1) and Ext1(IX , IX) ' H1(OV ). Hence the
coboundary map δ appearing in the definition of ob(α) is nothing but the
coboundary map δ1 of (2.4)⊗OV (X). Since α is a cohomology class on X,
the cup product map H1(OV ) → H1(NX/V ) with α factors through the
restriction map

∣∣
X

. �

(4) The map dX is equal to the map dX,OV (X) defined in [13, §2.1 (2.3)].
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We recall the definition of exterior component introduced in [13]. Let X
be a smooth closed subvariety of V and let Y be a smooth hypersurface of
V containing X. Then the natural projection πX/Y : NX/V → NY/V

∣∣
X
'

OX(Y ) of normal bundles induces the maps Hi(πX/Y ) : Hi(NX/V ) →
Hi(NY/V

∣∣
X

), where i = 0, 1, of their cohomology groups. Let α be a global
section of NX/V .

Definition 2.10. — πX/Y (α) and obY (α) denote the images of α and
ob(α) by the maps H0(πX/Y ) and H1(πX/Y ), respectively. They are called
the exterior components of α and ob(α), respectively.

Roughly speaking, πX/Y (α) is the projection of the normal vector α of
X in V onto the normal directions to Y in V . Then obY (α) represents the
obstruction to deforming X into this direction. We recall a basic fact on
exterior components.

Lemma 2.11 ([13, Lemma 2.4]). — Let πX/Y (α) and obY (α) be the
exterior components of α and ob(α), respectively. If there exists a global
section v of NY/V whose restriction v

∣∣
X

to X coincides with πX/Y (α), then
we have

obY (α) = ob(v)
∣∣
X

where ob(v)
∣∣
X
∈ H1(X,NY/V

∣∣
X

) is the restriction of ob(v) ∈ H1(Y,NY/V )
to X.

Lemma 2.11 together with Lemma 2.9 shows that obY (α) = dY (v)
∣∣
X
∪

πX/Y (α), where dY is the map (2.5) for Y and ∪ is the cup product map

(2.6) H1(X,OX)×H0(X,NY/V
∣∣
X

) ∪−→ H1(X,NY/V
∣∣
X

).

Let E be an effective divisor of Y disjoint to X (i.e., X ∩ E = ∅). Let
Y ◦ and V ◦ denote the two complements of E in Y and V , respectively.
Every rational section v of NY/V ' OY (Y ) having poles only along E
determines a global section v◦ of the normal bundleNY ◦/V ◦ of Y ◦ in V ◦ and
hence the obstruction ob(v◦) ∈ H1(NY ◦/V ◦) to deforming Y ◦ in V ◦. Let
ι denote the open immersion of Y ◦ ↪→ Y . Then a natural homomorphism
ι∗NY ◦/V ◦ → NY/V

∣∣
X

(= [ι∗OY ◦ → OX ]⊗NY/V ) of sheaves on Y induces

a map H1(NY ◦/V ◦)
|X−→ H1(NY/V

∣∣
X

). Since ob(α) is (and hence obY (α)
is) determined by a neighborhood of X, we have the following variant of
Lemma 2.11.

Lemma 2.12. — Let α be a global section of NX/V . If there exists a ra-
tional section v of NY/V whose only poles are along E and whose restriction
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to X coincides with πX/Y (α), then we have

obY (α) = ob(v◦)
∣∣
X
,

where ob(v◦)
∣∣
X

is the image of ob(v◦) by the map H1(Y ◦, NY ◦/V ◦)
|X−→

H1(X,NY/V
∣∣
X

).

3. Infinitesimal deformations with a pole

Let V be a smooth projective 3-fold, S a smooth surface in V , E a
smooth connected curve on S. We put V ◦ := V \ E and S◦ := S \ E, the
complementary open subvarieties. In this section, we study the first order
infinitesimal deformations of S◦ in V ◦, when the self-intersection number
of E on S is negative. We are interested in a rational section v of NS/V
having a pole only along E and of order one, that is, v ∈ H0(NS/V (E)) \
H0(NS/V ). Let ι : S◦ ↪→ S be the open immersion. Then ι∗OS◦ contains
OS(nE) as a subsheaf for any n > 0. Hence the natural sheaf injection
NS/V (nE) ↪→ ι∗NS◦/V ◦ induces H0(S,NS/V (nE)) ↪→ H0(S◦, NS◦/V ◦) for
each n. Therefore v determines a first order infinitesimal deformation of S◦
in V ◦. The main theorem of this section is the following.

Theorem 3.1. — Let v be as above and assume that E2 < 0 and
detNE/V :=

∧2
NE/V is trivial. If the exact sequence

(3.1) 0 −→ NE/S −→ NE/V −→ NS/V
∣∣
E
−→ 0

does not split, then the first order infinitesimal deformation of S◦ ⊂ V ◦
determined by v does not lift to a deformation over Spec k[t]/(t3).

Let n be a non-negative integer. In what follows, we identify H0(NS/V
(nE)) with its image in H0(NS◦/V ◦). We shall prove that the obstruction
ob(v) is nonzero in H1(NS◦/V ◦). Let dS◦ denote the map (2.5) for X = S◦.
Then by Lemma 2.9, ob(v) is equal to the cup product dS◦(v) ∪ v, where
∪ is the cup product map

H1(S◦,OS◦)×H0(S◦, NS◦/V ◦)
∪−→ H1(S◦, NS◦/V ◦).

The inclusion OS(nE) ↪→ ι∗OS◦ of sheaves induces a map H1(S,OS(nE))
→ H1(S◦,OS◦) of cohomology groups. Suppose that E2 < 0. Then this
map is injective by Lemma 2.6. Hence we identify H1(OS(nE)) with its
image in H1(S◦,OS◦). Under this identification, there exists a natural fil-
tration

H1(S,OS) ⊂ H1(S,OS(E)) ⊂ H1(S,OS(2E)) ⊂ · · · ⊂ H1(S◦,OS◦)
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on H1(S◦,OS◦). Suppose now that detNE/V is trivial. Then under similar
identifications, there exists a natural filtration

H1(S,NS/V (E)) ⊂ H1(S,NS/V (2E)) ⊂ · · · ⊂ H1(S◦, NS◦/V ◦)

on H1(S◦, NS◦/V ◦), because we have degNS/V (nE)
∣∣
E

= deg(detNE/V ) +
(n − 1)E2 = (n − 1)E2 6 0 for n > 1. Then it follows from [13, Propo-
sition 2.6 (1)] that the image of dS◦ over H0(NS/V (E)) is contained in
H1(OS(2E)). By the commutative diagram

H1(OS◦) × H0(NS◦/V ◦)
∪−→ H1(NS◦/V ◦)⋃ ⋃ ⋃

H1(OS(2E)) × H0(NS/V (E)) ∪−→ H1(NS/V (3E)),

the image of the obstruction map ob over H0(NS/V (E)) is contained in
H1(NS/V (3E)). The following lemma is essential to the proof of Theo-
rem 3.1. Let dS denote the restriction of the map dS◦ to H0(S,NS/V (E)).

Lemma 3.2 ([13, Proposition 2.6 (2)]). — Let ∂ : H0(NS/V (E)
∣∣
E

) →
H1(OE(2E)) ' H1(NE/S(E)) be the coboundary map of the exact se-
quence (3.1)⊗OS(E). Then the diagram

H0(S,NS/V (E)) dS−−−−→ H1(S,OS(2E))y|E y|E
H0(E,NS/V (E)

∣∣
E

) ∂−−−−→ H1(E,OE(2E))
is commutative.

Proof of Theorem 3.1. It suffices to show that the image ob(v)
∣∣
E
∈

H1(NS/V (3E)
∣∣
E

) of ob(v) ∈ H1(NS/V (3E)) is nonzero. By the definition of
v, we have v

∣∣
E
6= 0 in H0(NS/V (E)

∣∣
E

). Then the line bundle NS/V (E)
∣∣
E
'

detNE/V on E is trivial. Since (3.1) does not split by assumption, we have
∂(v
∣∣
E

) 6= 0. Hence by Lemma 3.2, we conclude that

ob(v)
∣∣
E

= dS◦(v)
∣∣
E
∪ v
∣∣
E

= ∂(v
∣∣
E

) ∪ v
∣∣
E
6= 0. �

If E is a (−1)-P1 on S with detNE/V ' OP1 , then the exact sequence
(3.1) does not split if and only if NE/V is trivial.

Example 3.3. — Let Vn be a smooth del Pezzo 3-fold of degree n 6= 8 and
let E be a good line on Vn, i.e., NE/Vn is trivial (cf. §2.2). If Sn is a smooth
hyperplane section of Vn containing E, then there exists an obstructed
infinitesimal deformation of S◦n := Sn \ E in V ◦n := Vn \ E . Indeed, let
ε : Sn → Sn+1 be the blow-down of E from Sn. Since NSn/Vn ' −KSn ,
NSn/Vn(E) ' ε∗(−KSn+1), and h0(−KSn+1) > h0(−KSn), there exists a
global section v ∈ H0(NSn/Vn(E)) \ H0(NSn/Vn). Then by Theorem 3.1,
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the first order infinitesimal deformation of S◦n in V ◦n determined by v is
obstructed.

In the rest of this section, we discuss a generalization of Theorem 3.1,
which will be used in the proof of Theorem 1.3. Let E be a disjoint union
of smooth connected curves Ei (i = 1, . . . ,m) on S such that E2

i < 0
and detNEi/V is trivial. By the same symbol E we also denote the divisor∑m
i=1Ei on S. Let us define V ◦ and S◦ as above and identify H0(NS/V (E))

with its image inH0(NS◦/V ◦). We compute the restriction toH0(NS/V (E))
of the obstruction map ob : H0(NS◦/V ◦)→ H1(NS◦/V ◦). Lemma 2.6 allows
us to regard H1(OS(2E)) and H1(NS/V (3E)) as subgroups of H1(OS◦)
and H1(NS◦/V ◦), respectively. Then an argument similar to [13, Proposi-
tion 2.6 (1)] shows that the image of H0(NS/V (E)) by dS◦ is contained in
H1(OS(2E)). Therefore we conclude that

Lemma 3.4. — The image of H0(NS/V (E)) by ob is contained in
H1(NS/V (3E)) ⊂ H1(NS◦/V ◦).

Let v and v′ be any global sections of NS/V (E) and NS/V , respectively.
Then we have ob(v+v′)

∣∣
E

= ob(v)
∣∣
E

in H1(NS/V (3E)
∣∣
E

). Indeed it follows
from the definition of dS◦ (cf. (2.5)) that dS◦(v′) is contained in H1(OS)
and hence

ob(v + v′) = (dS◦(v) + dS◦(v′)) ∪ (v + v′)
= ob(v) + dS◦(v) ∪ v′ + dS◦(v′) ∪ v + dS◦(v′) ∪ v′︸ ︷︷ ︸

contained in H1(NS/V (2E))

.

Therefore the obstruction map ob induces a map

(3.2) ob : H0(NS/V (E))
/
H0(NS/V ) −→ H1(NS/V (3E)

∣∣
E

).

Proposition 3.5. — If H1(NS/V ) = 0 and the exact sequence

(3.3) 0 −→ NEi/S −→ NEi/V −→ NS/V
∣∣
Ei
−→ 0

does not split for every i, then ob is injective.

This is an immediate consequence of the next lemma.

Lemma 3.6. — Under the assumption of Proposition 3.5, ob is equiva-
lent to the quadratic map

km −→ kn, (a1, . . . , am) 7−→ (a2
1, . . . , a

2
m, 0, . . . , 0)

of diagonal type, where n = dimH1(NS/V (3E)
∣∣
E

).
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Proof. — Since H1(NS/V ) = 0, the source of the map ob is isomorphic to
H0(NS/V (E)

∣∣
E

). Moreover there exist global sections vi of NS/V (Ei) such
that vi

∣∣
E
6= 0 in H0(NS/V (Ei)

∣∣
Ei

) for all i. Since Ei’s are mutually disjoint,
we have NS/V (E)

∣∣
E
'
⊕m
i=1NS/V (Ei)

∣∣
Ei
'
⊕m
i=1OEi . Then there exists

a commutative diagram

0 → H0(NS/V ) → H0(NS/V (E)) → H0(NS/V (E)
∣∣
E

) → 0xa1

xa2

xa3

0 →
⊕
iH

0(NS/V ) →
⊕
iH

0(NS/V (Ei)) →
⊕
iH

0(NS/V (Ei)
∣∣
Ei

) → 0,

where the two horizontal sequences are exact and ai (1 6 i 6 3) are
defined by addition. Since a1 and a3 are surjective, so is a2. Hence every
element v ∈ H0(NS/V (E)) is written as a k-linear combination

∑m
i=1 civi

of vi ∈ H0(NS/V (Ei)) and the expression is unique modulo H0(NS/V ). By
the commutative diagram

H1(OS(2E)) × H0(NS/V (E)) ∪−→ H1(NS/V (3E))y|E y|E y|E⊕
iH

1(OEi(2Ei)) ×
⊕
iH

0(NS/V (Ei)
∣∣
Ei

) ∪−→
⊕
iH

1(NS/V (3Ei)
∣∣
Ei

),

we have

ob(v)
∣∣
E

= (dS◦(v) ∪ v)
∣∣
E

= dS◦(v)
∣∣
E
∪ v
∣∣
E

=
∑
i

c2i dS◦(vi)
∣∣
Ei
∪ vi
∣∣
Ei
.

By Lemma 3.2, dS◦(vi)
∣∣
Ei

is equal to ∂i(v
∣∣
Ei

) in H1(OEi(2Ei)), where ∂i
is the coboundary map of (3.3). Since (3.3) does not split by assumption,
we have ∂i(v

∣∣
Ei

) 6= 0 and hence dS◦(vi)
∣∣
Ei
6= 0 for any i. As a result,

dS◦(vi)
∣∣
Ei
∪ vi
∣∣
Ei

(1 6 i 6 m) form a sub-basis of H1(NS/V (3E)
∣∣
E

). �

Suppose now that Ei is a (−1)-P1 on S and NEi/V is trivial for every
1 6 i 6 m. Then Proposition 3.5 shows that

Corollary 3.7. — Let v ∈ H0(NS/V (E)) \ H0(NS/V ) be a global
section. If H1(NS/V ) = 0, then we have ob(v) 6= 0 in H1(NS/V (3E))
(⊂ H1(NS◦/V ◦)).

4. Obstructions to deforming curves

Let V be a smooth projective 3-fold. In this section we study the defor-
mation of smooth curves C on V under the presence of smooth surface S
such that C ⊂ S ⊂ V .
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4.1. S-normal curves and S-maximal families

In what follows, we assume that HilbV is nonsingular at [S]. Then there
exists a unique irreducible component US of HilbV passing through [S].
We use the following convention.

Definition 4.1.
(1) C is said to be stably degenerate if there exists an (Zariski) open

neighborhood U ⊂ HilbV of [C] such that for any member [C ′] ∈ U ,
there exists a deformation S′ of S in V such that C ′ ⊂ S′ and
[S′] ∈ US .

(2) C is said to be S-normal if the restriction map (1.1) is surjective.

Let
V × US ⊃ S

p2−→ US
be the universal family of US . Let us denote the Hilbert scheme of smooth
connected curves in S by Hilbsc S, which is the relative Hilbert scheme of
S/US . Hilbsc S is regarded as an open subscheme of the Hilbert-flag scheme
of V (see [8] for the definition), which parametrizes all flat families of pairs
(C,S) of a curve C and a surface S in V such that C ⊂ S. The projection
p1 : S → V induces a natural morphism

(4.1) pr1 : Hilbsc S −→ Hilbsc V,

which is the forgetful morphism (C,S) 7→ C. Then by definition C is
stably degenerate if and only if pr1 is surjective in a neighborhood of
[C] ∈ Hilbsc V .

The next lemma plays an important role in our proof of Theorem 1.3
later (cf. § 4.3).

Lemma 4.2. — Assume that H1(C,NC/S) = 0. Then:
(1) The kernel and the cokernel of the tangential map

(4.2) κC,S : H0(C,NC/S) −→ H0(C,NC/V ).

of pr1 at (C,S) are isomorphic to those of the restriction map (1.1),
respectively.

(2) Hilbsc S is nonsingular at (C,S).

For the proof we refer to [13, Lemma 3.1] for (1) and [9, Lemma 1.10]
for (2). We can also prove (1) by using the “fundamental exact sequence
relating Ai(C ⊂ S) and Hi−1(NC/V )” in [9].

In what follows, we assume that H1(C,NC/S) = 0. If C is S-normal,
then κC,S is surjective by Lemma 4.2 (1). Then by (2) of the same lemma,
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Hilbsc V is nonsingular at [C] and furthermore pr1 is surjective in a neigh-
borhood of [C]. In fact, if C is S-normal, then the morphism pr1 is smooth
at (C,S) (cf. [8, Lemma A10]). Thus we conclude that

Proposition 4.3 (cf. [8],[9]). — If C is S-normal, then C is stably
degenerate and Hilbsc V is nonsingular at [C].

We recall the S-maximal family introduced in [13, §3.2]. By the smooth-
ness of Hilbsc S, there exists a unique irreducible component WS,C of
Hilbsc S containing (C,S).

Definition 4.4. — We define the S-maximal family of curves contain-
ing C to be the image of WS,C in Hilbsc V and denote it by WS,C .

By Proposition 4.3, if C is S-normal then WS,C is an irreducible compo-
nent of Hilbsc V and Hilbsc V is generically smooth along WS,C .

4.2. Deformation of curves on a del Pezzo 3-fold

Let V be a smooth del Pezzo 3-fold with the polarization H, S a smooth
member of |H|, and C a smooth connected curve on S. Let n denote the
degree of V and let d and g denote the degree (:= (C ·H)V ) and the genus
of C, respectively.

By adjunction we have NS/V ' −KV
∣∣
S

+KS and NC/S ' −KS
∣∣
C

+KC .
Since −KV and −KS are ample, we have H1(NS/V ) = H1(NC/S) = 0.
Hence HilbV and HilbS are nonsingular at [S] and [C], respectively. Thus if
C is S-normal, then by Proposition 4.3, C is stably degenerate and Hilbsc V
is nonsingular at [C]. Because H1(NS/V ) = 0, it follows from the exact
sequence

(4.3) 0 −→ NS/V (−C) −→ NS/V −→ NS/V
∣∣
C
−→ 0

that C is S-normal if and only ifH1(NS/V (−C)) = 0. There exists a natural
exact sequence

(4.4) 0 −→ NC/S −→ NC/V
πC/S−→ NS/V

∣∣
C
−→ 0.

Since H1(NC/S) = 0, we have H1(NC/V ) ' H1(NS/V
∣∣
C

). Thus every ob-
struction to deforming C is contained in the cohomology groupH1(NS/V

∣∣
C

).
Since χ(NC/V ) = (−KV · C)V = 2d, we also have

Lemma 4.5. — If H1(NS/V
∣∣
C

) = 0, then Hilbsc V is nonsingular of
expected dimension 2d at [C].
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In particular, if C is rational (g = 0) or elliptic (g = 1), then the Hilbsc V
is nonsingular at [C] because H1(NS/V

∣∣
C

) ' H1(−KS
∣∣
C

) = 0.
Let WS,C be the S-maximal family WS,C of curves containing C. We

compute the dimension of WS,C . Let pr1 : Hilbsc S → Hilbsc V be the
morphism (4.1).

Lemma 4.6.
(1) Hilbsc S is nonsingular of dimension d+ g + n at (C,S).
(2) If g > 2 or d > n + 1, then pr1 is a closed embedding in a neigh-

borhood of (C,S) and dimWS,C = d+ g + n.

Proof. — (1) LetWS,C be the irreducible component of Hilbsc S contain-
ing (C,S). By the Riemann-Roch theorem on S, we have dim |OS(C)| =
d + g − 1. Then WS,C is birationally equivalent to Pd+g−1-bundle over an
open subset of |H| ' Pn+1. Hence we have dimWS,C = d+ g + n.

(2) By assumption, we have (−KS − C) · C = 2 − 2g < 0 or (−KS −
C) · (−KS) = n − d < 0. Since both C and −KS are nef, we have
H0(NS/V (−C)) ' H0(−KS − C) = 0. By Lemma 4.2 (1), pr1 is a closed
embedding near (C,S). Hence we have dimWS,C = dimWS,C . �

We denote by Hilbscd,g V the open and closed subscheme of Hilbsc V of
curves of degree d and genus g. It is known that the dimension of every
irreducible component of Hilbscd,g V is greater than or equal to the expected
dimension χ(NC/V ) = 2d (cf. [11, Chap. I, Theorem 2.8]).

Proposition 4.7. — If χ(V, IC(S)) < 1, then C is not stably degener-
ate, i.e., there exists a deformation C ′ of C in V which is not contained in
any deformation S′ of S in V .

Proof. — There exists an exact sequence [0 → IC → OV → OC →
0]⊗OV (S) on V . We see that χ(OC(S)) = d+1−g and χ(OV (S)) = n+2.
Hence χ(IC(S)) < 1 is equivalent to g < d− n. Then we have dimWS,C 6
dimWS,C = d + g + n < 2d. Hence there exists an irreducible component
W ′ ⊃ WS,C of Hilbsc V such that dimW ′ > dimWS,C . A general member
C ′ of W ′ \WS,C is such a deformation of C in V . �

4.3. Stably degenerate curves

We devote this subsection to the proof of Theorem 1.3. Notation is
the same as in the previous subsection. The following are equivalent: (i)
χ(V, IC(S)) > 1, (ii) χ(S,NS/V (−C)) > 0 and (iii) g > d − n. Indeed
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we have already seen in the proof of Proposition 4.7 that (i) and (iii) are
equivalent. Also (i) and (ii) are equivalent because we have χ(NS/V (−C)) =
χ(IC(S))− 1 by the exact sequence

(4.5) [0 −→ IS −→ IC −→ OS(−C) −→ 0]⊗OV (S).

Throughout this subsection, we assume one of (i),(ii) and (iii) (and hence
all).

Lemma 4.8. — If H1(C,NS/V
∣∣
C

) = 0 then C is S-normal.

Proof. — It suffices to show thatH1(NS/V (−C)) = 0. SinceH2(NS/V ) '
H2(−KS) = 0 and H1(NS/V

∣∣
C

) = 0, we obtain H2(NS/V (−C)) = 0 by
(4.3). Then by assumption, we have 0 6 χ(NS/V (−C)) = h0(NS/V (−C))−
h1(NS/V (−C)). Therefore if H0(NS/V (−C)) = 0, then we have H1(NS/V
(−C)) = 0. Suppose that H0(NS/V (−C)) 6= 0. There exists an effec-
tive divisor D on S such that NS/V (−C) ' OS(D). If D = 0, then
H1(NS/V (−C)) = 0. Suppose that D 6= 0. Let h be a general member
of | − KS |. Then h is a smooth elliptic curve on S. Since −KS is ample,
we have degOS(D)

∣∣
h

= D · (−KS) > 0 and hence H1(OS(D)
∣∣
h
) = 0.

Since C is connected, we obtain H1(D− h) ' H1(−C) = 0 from the exact
sequence 0 → OS(−C) → OS → OC → 0. Therefore it follows from the
exact sequence

0 −→ OS(D − h) −→ OS(D) −→ OS(D)
∣∣
h
−→ 0

that H1(NS/V (−C)) ' H1(D) = 0. �

Let E1, . . . , Em be lines on S disjoint to C. We define an effective divisor
E on S by E :=

∑m
i=1Ei. If C is not S-normal, then E is responsible for

the abnormality.

Proposition 4.9. — Suppose that C is not rational nor elliptic.

(1) The restriction map H0(S,NS/V (E)) |C−→ H0(C,NS/V
∣∣
C

) is an iso-
morphism.

(2) C is S-normal if and only if there exists no line ` such that C∩` = ∅
(i.e., E = 0).

Proof. — (1) Since NS/V ' −KS , we have the assertion by Proposi-
tion 2.4.

(2) The “if” part follows from (1). We prove the “only if” part. Suppose
that there exist such lines on S. Let ε : S → F be the blow-down of E
from S. Then F is also a del Pezzo surface and ε∗(−KF ) = −KS + E.
Since degF > degS, we have h0(−KF ) > h0(−KS). Hence it follows from
NS/V ' −KS that NS/V (E) has more global sections than NS/V . Hence
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we have h0(NS/V
∣∣
C

) = h0(NS/V (E)) > H0(NS/V ) by (1). Therefore C is
not S-normal. �

Let κC,S : H0(NC/S)→ H0(NC/V ) denote the tangential map (4.2).

Proposition 4.10. — Suppose that C is not S-normal. If every Ei
is a good line on V , then the obstruction ob(α) is nonzero for any α ∈
H0(C,NC/V ) \ im κC,S .

Proof. — Let πC/S(α) ∈ H0(NS/V
∣∣
C

) and obS(α) ∈ H1(NS/V
∣∣
C

) be
the exterior component of α and ob(α), respectively (cf. Definition 2.10).
We compute obS(α) instead of ob(α) itself. Since C is not S-normal, by
Lemma 4.8, we have H1(NS/V

∣∣
C

) 6= 0. In particular, C is not rational nor
elliptic. By Proposition 4.9 (1), there exists a global section v of NS/V (E)
whose restriction v

∣∣
C
∈ H0(NS/V

∣∣
C

) to C coincides with πC/S(α). Since
α is not contained in the image of κC,S , πC/S(α) is not contained in the
image of (1.1) by Lemma 4.2 (1). Hence v is not a global section of NS/V ,
in other words, an infinitesimal deformation with a pole (cf. §3).

Let S◦ and V ◦ respectively denote the two complements S\E and V \E of
E. There exists a natural injection H0(S,NS/V (E)) ↪→ H0(S◦, NS◦/V ◦) of
cohomology groups. In what follows, we identify v ∈ H0(S,NS/V (E)) with
its image v◦ ∈ H0(S◦, NS◦/V ◦), i.e., a first order infinitesimal deformation
of S◦ in V ◦. Now we prove that the obstruction ob(v) ∈ H1(S◦, NS◦/V ◦) is
nonzero. By Lemma 3.4, ob(v) is contained in the subgroupH1(S,NS/V (3E))
of H1(S◦, NS◦/V ◦). Every component Ei of E is a (−1)-P1 on S and its
normal bundle NEi/V in V is trivial by assumption. Therefore by virtue of
Corollary 3.7, we have ob(v) 6= 0 in H1(S,NS/V (3E)).

Finally we show that obS(α) 6= 0 in H1(C,NS/V
∣∣
C

). There exists an
exact sequence

0 −→ NS/V (3E − C) −→ NS/V (3E) |C−→ NS/V
∣∣
C
−→ 0.

SinceNS/V '−KS , the restriction mapH1(S,NS/V (3E))→H1(C,NS/V
∣∣
C

)
is injective by Lemma 2.5. Therefore we have obS(α) = ob(v)

∣∣
C
6= 0 by

Lemma 2.12. �

Now we prove Theorem 1.3. Let C be as in the theorem. Then we have

Lemma 4.11. — Every small global deformation of C in V is contained
in the S-maximal family WS,C of curves containing C.

Proof. — Let CT ⊂ V × T be a small global deformation of C, i.e., a
flat family CT over a small open variety T , having a point 0 ∈ T with
C0 = C. Given an element of the Zariski tangent space of T at 0, we obtain
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a morphism Spec k[t]/(t2)→ T and a first order infinitesimal deformation
C̃ → Spec k[t]/(t2) of C by base extension. Then by Proposition 4.10 C̃
is contained in the image of the map κ(C,S). Hence there exists a first
order infinitesimal deformation S̃ of S such that S̃ ⊃ C̃. Since Hilbsc S
is nonsingular at (C,S), the first order infinitesimal deformation (C̃, S̃) of
(C,S) lifts to a global deformation (CT , ST ) over T . �

Therefore C is stably degenerate. The rest of the proof is as follows.
If C is S-normal, then Hilbsc V is nonsingular at [C] by Proposition 4.3.
Otherwise, there exists a first order infinitesimal deformation C̃ of C not
contained in the image of κ(C,S). Then Hilbsc V is singular at [C] by Propo-
sition 4.10. We have an isomorphism H1(S,NS/V (−C)) ' H1(V, IC(S)) by
the exact sequence (4.5) together with that Hi(V, IS(S)) = Hi(V,OV ) = 0
for i = 1, 2. Hence C is S-normal if and only if H1(V, IC(S)) = 0. The
proof of Theorem 1.3 has been completed.

Remark 4.12. — We give two remarks on Theorem 1.3.
(1) Suppose that V is not isomorphic to a blow-up V7 of P3 at a point.

If S ∈ |H| is general, then by Lemma 2.8, every line on S is a
good line on V . Hence every curve C on S is stably degenerate
by the theorem. Meanwhile there exists a non-stably degenerate
curve C on V7 which is contained in a general member S of |H| (cf.
Proposition 5.4).

(2) There exists no line on a del Pezzo 3-fold V8 ' P3. Hence if V = V8,
then the assumption of the theorem concerning lines ` on S such
that C ∩ ` = ∅ is empty. In fact, if g > d − 8 then every curve C
on V8 is S-normal and hence stably degenerate. This coincides with
the previous result [15, Appendix, Proposition 4.11], which proved
that every curve of degree e and genus p > 2e− 8 in P3 lying on a
smooth quadric surface Q2 ' P1 × P1 is stably degenerate.

The following proposition is more practical than Proposition 4.10 in
showing that Hilbsc V is singular at [C].

Proposition 4.13. — Suppose that C is not rational nor elliptic. If
there exists a good line ` on V such that ` ⊂ S and C ∩ ` = ∅, then
Hilbsc V is singular at [C].

The proofs of Proposition 4.10 and Proposition 4.13 are very similar.
Take a global section v ∈ H0(NS/V (`))\H0(NS/V ) and put α ∈ H0(NC/V )
as a lift of v

∣∣
C
∈ H0(NS/V ) by the surjective map πC/S : H0(NC/V ) �

H0(NS/V
∣∣
C

). Then it is enough to show that obS(α) 6= 0 in H1(NS/V
∣∣
C

)
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by reducing it to ob(v)
∣∣
`
6= 0 as in the proof of Proposition 4.10. We omit

the details.
The following is an analogue of Conjecture 5.1 due to Kleppe and Ellia.

Theorem 4.14. — Let C be the curve in Theorem 1.3. Then:
(1) The S-maximal family WS,C ⊂ Hilbsc V of curves containing C is

an irreducible component of (Hilbsc V )red.
(2) Hilbsc V is generically smooth alongWS,C if H1(V, IC(S)) = 0, and

generically non-reduced along WS,C otherwise.

Proof. — (1) By definitionWS,C is an irreducible closed subset of HilbscV.
By Lemma 4.11, WS,C is maximal among all such subsets.

(2) Let C ′ be a general member of WS,C . Then C ′ is contained in a
smooth surface S′ ∼ S in V . Since C ′ is general, so is S′ in |S|. Suppose
that H1(IC(S)) = 0. Then since (C ′, S′) is a generalization of (C,S), we
have H1(IC′(S′)) = H1(IC(S)) = 0 by the upper semicontinuity. Hence
Hilbsc V is nonsingular at [C ′] and hence generically smooth along WS,C .
Suppose that H1(IC(S)) 6= 0, i.e., C is not S-normal. Then Lemma 4.8
shows that H1(NS/V

∣∣
C

) 6= 0 and hence g > 2. By Proposition 4.9 (2),
there exists a line ` on S such that C ∩ ` = ∅. Since H1(OS) = 0, the
Picard group of S does not change under the smooth deformation of S and
hence PicS ' PicS′. Since H1(OS(`)) = 0, the line ` is deformed to a line
`′ on S′. Then we have C ′ ∩ `′ = ∅. Moreover since ` is a good line, so is `′.
Hence Hilbsc V is singular at [C ′] by Proposition 4.13. Since C ′ is a general
member of WS,C , Hilbsc V is everywhere singular along WS,C and hence
generically non-reduced along WS,C . �

5. Original motivation and examples

5.1. Kleppe’s conjecture

The original motivation of the present work was to show the following
conjecture due to Kleppe. We denote by Hilbscd,g P3 the open and closed
subscheme of Hilbsc P3 consisting of curves of degree d and genus g.

Conjecture 5.1 (Kleppe, Ellia). — Let W be a maximal irreducible
closed subset of Hilbscd,g P3 whose general member C is contained in a
smooth cubic surface. If

d > 14, g > 3d− 18, H1(P3, IC(3)) 6= 0 and H1(P3, IC(1)) = 0,

then W is a component of (Hilbsc P3)red and Hilbsc P3 is generically non-
reduced along W .
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In the original conjecture [8, Conjecture 4] of Kleppe, the assumption
of the linearly normality of C (i.e., H1(P3, IC(1)) = 0) was missing. How-
ever Ellia [2] pointed out that the conjecture does not hold for linearly
non-normal curves C by a counterexample, and suggested restricting the
conjecture to linearly normal ones. The most crucial part to prove this
conjecture is the proof of the maximality of W in (Hilbsc P3)red. Once we
prove thatW is a component of (Hilbsc P3)red, then the non-reducedness of
Hilbsc P3 along W naturally follows. Therefore Conjecture 5.1 follows from
Conjecture 1.2 (1), where the condition χ(P3, IC(3)) > 1 is equivalent to
g > 3d − 18. Recently it has been proved in [15] that Conjecture 5.1 is
true if h1(P3, IC(3)) = 1. Kleppe and Ellia gave a proof for the conjecture
under some other conditions, however the whole conjecture is still open.

5.2. Hilbert scheme of canonical curves

Let (V,H) be a polarized variety. We say that a curve C ⊂ V is canonical
if f∗H = KC , where f : C ↪→ V is the embedding, or equivalently C is
embedded into V by a linear subsystem of |KC |. We apply Theorem 4.14
to prove the following:

Proposition 5.2 (cf. [13]). — Let V be a smooth del Pezzo 3-fold of
degree n. If n 6 7 then the Hilbert scheme Hilbsc V of smooth connected
curves on V has a generically non-reduced component W , whose general
member is a canonical curve on V .

Proof. — Since n 6 7, there exists a good line ` on V by Lemma 2.7.
Let Sn be a smooth member of |H| containing `. We consider the complete
linear system Λ := | − 2KSn + 2`| on Sn. Let Sn+1 be the the blow-down
of ` from Sn, which is a del Pezzo surface of degree n + 1. Then Λ is
the pull-back of | − 2KSn+1 | ' P3n+3 on Sn+1. Since Λ is base point free,
every general member C of Λ is a smooth connected curve of degree d =
2n + 2 and genus g = n + 2. Therefore we have g = d − n and hence
χ(V, IC(S)) = 1. Then ` does not intersect C by (−2KSn+2`)·` = 2−2 = 0.
Moreover ` is the only such line on Sn. By Theorem 4.14 (1), WSn,C is an
irreducible component of (Hilbsc V )red. Since C∩` = ∅, C is not Sn-normal
by Proposition 4.9 (2). Therefore Hilbsc V is generically non-reduced along
WSn,C by Theorem 4.14 (2). By construction, C is the image of a canonical
curve C ′ ∼ −2KSn+1 on Sn+1 by the projection Sn+1 · · · → Sn from a point
p ∈ Sn+1 \ C ′. �
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Remark 5.3. — The dimension of the irreducible component WSn,C is
equal to d + g + n = 4n + 4 by Lemma 4.6 (2). The tangential dimension
of Hilbsc V at a general point [C] of WSn,C is equal to h0(NC/V ) = 4n+ 5.
Indeed the exact sequence (4.4) is

0 −→ OC(2KC) −→ NC/V −→ OC(KC) −→ 0,

since NS/V
∣∣
C
' −KS

∣∣
C
' KC . Hence we have

h0(NC/V ) = h0(2KC) + h0(KC) = (3n+ 3) + (n+ 2) = 4n+ 5.

The next example shows that the curve C in Theorem 1.3 is not neces-
sarily stably degenerate if there exists a bad line ` on S such that C∩` = ∅.

Let V7 ⊂ P8 be a smooth del Pezzo 3-fold of degree 7, S7 a smooth
hyperplane section of V7. Let `0, `1, `2 be the three lines on S7 explained
in Lemma 2.8, i.e., `0 is bad and `1 and `2 are good. Consider a general
member C of Λ := | − 2KS7 + 2`0|. Then C is a smooth connected curve of
degree 16 and genus 9 = 16− 7 and not S7-normal by C ∩ `0 = ∅.

Proposition 5.4. — Let C be as above. Then there exists a smooth
deformation C ′ ⊂ V7 of C not contained in any hyperplane section. In other
words, C is not stably degenerate.

Proof. — Recall that V7 is isomorphic to the blow-up of P3 at a point p.
It is realized as the projection of the Veronese image V8 ⊂ P9 of P3 from
p ∈ V8 (cf. §2.2). Then S7 is the image by the projection of a hyperplane
section Q2 ' P1 × P1 of V8 containing p. Hence we have a diagram

(5.1)
S7 ' Bl2pts P2 ⊂ V7 ' Blp P3 ⊂ P8yx yπp xΠp

x
Q2 ' P1 × P1 ⊂ V8 ' P3 ⊂ P9,

where the down arrows (resp. the up arrows) are the blow-up morphisms
at (resp. the projections from) p ∈ Q2 ⊂ V8 ⊂ P9. Let P ' P2 denote the
exceptional divisor of πp. Then its intersection with S7 is equal to the bad
line `0.

Since C∩`0 = ∅ and C ·`i = 4 for each i = 1, 2, πp maps C isomorphically
onto a curve of bidegree (4, 4) onQ2. LetQ′2 be a general hyperplane section
of V8. Then Q′2 ' P1 × P1 is mapped isomorphically onto a surface Q′′2 on
V7 by Πp. Here Q′′2 is linearly equivalent to S7 + P as a divisor of V7 and
contains a smooth deformation C ′ of C. Then there exists no hyperplane
section of V7 containing C ′. Suppose that there exists such a hyperplane
section S′7. Then the image πp(C ′) is contained in the intersection of two
hyperplane sections πp(S′7) and Q′2 of V8. Hence the pull-back of πp(C ′)
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in P3 by the Veronese embedding is contained in a complete intersection
of two quadrics. This is impossible since the degree of the inverse image is
equal to 8 > 4. �

5.3. Non-reduced components of the Hilbert scheme

In this subsection, we give the classes of irreducible components of the
Hilbert scheme of del Pezzo 3-folds which are non-reduced by Theorem 4.14
more precisely (cf. Proposition 5.5).

Let Vn be a smooth del Pezzo 3-fold of degree n 6 7 and let S ⊂ Vn be a
smooth member of the class |H| of the polarization of Vn, i.e., a del Pezzo
surface. Put r := 9− n (> 2). Then S is isomorphic to a P2 blown up at r
points in general position, i.e., no three are on a line, no six are on a conic
and any cubic containing eight points is smooth at each of them. The class
of the pullback l of a line in P2 and the r exceptional curves ei (1 6 i 6 r)
form a free Z-basis of the Picard group PicS ' Zr+1 of S. Thus given a
divisor D on S, we obtain a (r + 1)-tuple (a; b1, . . . , br) of integers as the
coefficients of the divisor class D = al−

∑r
i=1 biei. On the other hand, for

each r > 2 there exists a Weyl group Wr ⊂ Aut(PicS). Here Wr is the
subgroup generated by the permutations of ei (1 6 i 6 r) and (for r > 3)
by the additional Cremona element σ given by σ(l) = 2l − e1 − e2 − e3,
σ(e1) = l − e2 − e3, σ(e2) = l − e1 − e3, σ(e3) = l − e1 − e2 and σ(ei) = ei
for i 6∈ {1, 2, 3}. The root systems corresponding to the Weyl group Wr
(r = 2, 3, 4, 5, 6, 7, 8) are A1, A1 × A2, A4, D5, E6, E7, E8, respectively (See
[12] for the details). Every element of Wr induces a base change of PicS.
By virtue of the Weyl groups and this base change, given a divisor D on S
there exists a suitable blow-up S → P2 (in other words, a suitable choice
of r exceptional curves on S) such that we have

(5.2) b1 > · · · > br and a > b1 + b2 + b3 (only for r > 3).

When (5.2) holds, we say the basis {l, e1, . . . , er} of PicS is standard for D.
For the standard basis of PicS for D, the linear system |D| on S contains
a smooth connected curve C of degree > 2 if and only if a > b1 and br > 0
(and a > b1 + b2 for r = 2). The degree d and genus g of C is computed as

(5.3) d = 3a−
r∑
i=1
bi and g =

(
a− 1

2

)
−
r∑
i=1

(
bi
2

)
.

Let (d, g) be a pair of integers with d > 2 and let (a; b1, . . . , br) be a
(r + 1)-tuple of integers satisfying (5.2), (5.3), a > br and br > 0 (and
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a > b1 + b2 as well for r = 2). Then the linear system |al−
∑r
i=1 biei| on S

contains a smooth connected member C of degree d and genus g. Then we
denote by W(a;b1,...,br) the S-maximal family WS,C ⊂ Hilbscd,g Vn of curves
containing C (cf. Definition 4.4). By definition, W(a;b1,...,br) contains every
smooth connected curve C ′ on Vn such that C ′ is contained in a smooth
member S′ ∈ |H| and such that C ′ ∼ al′ −

∑r
i=1 bie

′
i on S′ for a standard

basis {l′, e′1, . . . , e′r} of PicS′ for C ′.

Proposition 5.5. — Suppose that g > 2 and g > d − n. If br = 0,
thenW(a;b1,...,br) is an irreducible component of (Hilbscd,g Vn)red of dimension
d+ g + n and Hilbscd,g Vn is generically non-reduced along W(a;b1,...,br).

Proof. — Let C denote a general member of W(a:b1,...,br). Then C is
contained in a smooth member S ∈ |H|. Since C is general, so is S in |H|.
By Lemma 2.8 every line on S is good except for the bad line `0 on V7. If
n = 7 then `0 is linearly equivalent to l− e1− e2. Since b2 = 0, C intersects
`0 by C · `0 = (al − b1e1) · `0 = a − b1 > 0. We recall that g > d − n
is equivalent to χ(V, IC(S)) > 1. Therefore W(a;b1,...,br) is an irreducible
component of (Hilbscd,g Vn)red by Theorem 4.14 (1), and of dimension d+g+n
by Lemma 4.6.

Since br = 0, the line er on S does not intersect C. Since g > 2, C is
not S-normal by Proposition 4.9 (2), and hence we have H1(V, IC(S)) 6=
0. Thus Hilbscd,g Vn is generically non-reduced along W(a;b1,...,br) by Theo-
rem 4.14 (2). �

The next example shows that for every integer d > 12 the Hilbert scheme
of smooth connected curves of degree d on a smooth cubic 3-fold V3 has a
generically non-reduced component.

Example 5.6. — Let λ ∈ Z>0 and let W be one of the S-maximal
families

W(λ+6;λ+1,1,1,1,1,0) ⊂ Hilbscd,2d−16 V3 (d = 2λ+ 13) and
W(λ+6;λ+2,1,1,1,1,0) ⊂ Hilbscd, 32d−9 V3 (d = 2λ+ 12).

ThenW is an irreducible component of (Hilbsc V3)red and Hilbsc V3 is gener-
ically non-reduced along W .

It was shown in [13, Theorem 1.4] that for many uniruled 3-folds V
the Hilbert scheme Hilbsc V has infinitely many generically non-reduced
components.
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