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THE MONODROMY CONJECTURE FOR ZETA
FUNCTIONS ASSOCIATED TO IDEALS

IN DIMENSION TWO

by Lise VAN PROEYEN & Willem VEYS (*)

Abstract. — The monodromy conjecture states that every pole of the topolog-
ical (or related) zeta function induces an eigenvalue of monodromy. This conjecture
has already been studied a lot. However in full generality it is proven only for zeta
functions associated to polynomials in two variables.

In this article we work with zeta functions associated to an ideal. First we work
in arbitrary dimension and obtain a formula (like the one of A’Campo) to compute
the “Verdier monodromy” eigenvalues associated to an ideal. Afterwards we prove
a generalized monodromy conjecture for arbitrary ideals in two variables.

Résumé. — La conjecture de la monodromie prédit que chaque pôle de la fonc-
tion zêta topologique (ou analogue) induit une valeur propre de la monodromie.
Cette conjecture a déjà beaucoup été étudiée ; toutefois elle est prouvée en général
seulement pour des fonctions zêta associées à un polynôme en deux variables. Dans
cet article nous traitons des fonctions zêta associées à un idéal. En dimension quel-
conque nous obtenons une formule (semblable à celle d’A’Campo) qui calcule les
valeurs propres de la “monodromie de Verdier”. Pour des idéaux en deux variables,
nous prouvons ensuite une conjecture généralisée de la monodromie.

1. Introduction

Classically the invariants called topological, motivic and p-adic Igusa
zeta function are associated to one polynomial f over C, over an arbitrary
field of characteristic zero and over a p-adic field, respectively. There are
fascinating conjectures relating their poles with the roots of the Bernstein-
Sato polynomial (also called b-function) of f and with the eigenvalues of

Keywords: Zeta functions for ideals, Verdier monodromy, monodromy conjecture.
Math. classification: 14E15, 32S40, 14H20.
(*) The research was partially supported by the Fund of Scientific Research - Flanders
(G.0318.06).
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the local Milnor monodromy of f in points of {f = 0}, up to now proven
in full generality only for polynomials in two variables.

One associates similarly in a natural way all these functions to several
polynomials or to an ideal. Not so obvious is the notion of Bernstein-Sato
polynomials associated to several polynomials or an ideal. There is a con-
struction of Sabbah [24] and more recently also of Budur, Mustaţǎ and
Saito [5]. Concerning monodromy, the classical construction of local Mil-
nor fibre does not generalize to arbitrary maps (f1, . . . , fr). However, there
is a notion of “Verdier monodromy” in this general context [26].

In this paper we prove a relation between the poles of these zeta func-
tions associated to an arbitrary ideal in two variables and the “Verdier
monodromy eigenvalues” of this ideal, generalizing the result for one poly-
nomial.

We now provide more details, focussing on the topological zeta function.
Let I = (f1, . . . , fr) be a nontrivial ideal in C[x1, . . . , xn] and Y = V(I)
its associated subscheme of AnC. We assume that Y contains the origin.

We first fix notation to define the topological zeta function. Take a prin-
cipalization ψ : X̃ → An of I. By this we mean that ψ is a proper birational
map from a nonsingular variety X̃ such that the total transform ψ∗I is a
principal ideal with support a simple normal crossings divisor, and more-
over that the exceptional locus of ψ is contained in the support of ψ∗I. If
I has components of codimension one, we can write this total transform
as a product of two (principal) ideals: the support of the first one is the
exceptional locus, where the support of the second one is formed by the
irreducible components of the total transform that are not contained in the
exceptional locus. This second ideal is the “weak transform” of I.

Note that we use the word “principalization”, where other authors may
also use log-principalization, log-resolution or monomialization.

Let Ẽ =
∑
i∈J NiEi denote the divisor of ψ∗I, i.e., its irreducible com-

ponents are the Ei, i ∈ J, occurring with multiplicity Ni. (Alternatively,
one can say that ψ−1Y = Ẽ.) Let the relative canonical divisor of ψ
be
∑
i∈J(νi − 1)Ei, i.e., νi − 1 is the multiplicity of Ei in the divisor

of ψ∗(dx1 ∧ . . . ∧ dxn). Finally put E◦I := (∩i∈IEi)\(∪l 6∈IEl) for I ⊂ J ;
these E◦I form a natural locally closed stratification of X̃. (Note that
E◦∅ = X̃\ ∪l∈J El.) The (local) topological zeta function of I at 0 is

Ztop,I(s) :=
∑
I⊂J

χ(E◦I ∩ ψ−1{0})
∏
i∈I

1
νi + sNi

∈ Q(s).

There is a global version replacing E◦I ∩ ψ−1{0} by E◦I .

ANNALES DE L’INSTITUT FOURIER
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When r = 1, Denef and Loeser showed in [8] that the expression above
does not depend on the chosen principalization (which for r = 1 is just an
embedded resolution) by writing it as a limit of p-adic Igusa zeta functions.
Alternatively, they obtained it later in [9] as a specialization of the motivic
zeta function. This can be generalized to arbitrary r, see e.g. [29, (2.4)].
Still another possibility for arbitrary r is to use the Weak Factorization
Theorem of Włodarczyk et al. [1] to compare two principalizations. At any
rate, observe that a complete list of possible poles of Ztop,I(s) is given by
the − νiNi , i ∈ J.

For r = 1, say I = (f), there are the following intriguing conjectures [8].
(They were originally formulated for the p-adic Igusa zeta function, which
is a certain p-adic integral, and partially motivated by analogous state-
ments that are true for a similar complex integral. See [16], in particular
section 5.4.)

Conjecture 1.1. — If s0 is a pole of Ztop,f (s), then s0 is a root of the
(local) Bernstein-Sato polynomial bf,0(s) of f.

Conjecture 1.2 (Monodromy Conjecture). — If s0 is a pole of Ztop,f(s),
then e2πis0 is an eigenvalue of the local monodromy action on some coho-
mology group of the Milnor fibre of f at some point of {f = 0} close to 0.

Note that Conjecture 1.1 implies Conjecture 1.2 since for any root s0
of bf,0(s) we have that e2πis0 is such a monodromy eigenvalue [21]. For
n = 2 Conjecture 1.1 was proved by Loeser [19]. He also verified it for
non-degenerate polynomials satisfying extra assumptions [20]. (There is a
more elementary proof of Conjecture 1.2 for n = 2 by Rodrigues [22].)
Concerning Conjecture 1.2, there are various partial results, mainly for
n = 3, by Artal, Cassou-Noguès, Luengo and Melle [3], [4], and Lemahieu,
Rodrigues and the second author [27], [23], [28], [17], [18].

Budur, Mustaţǎ and Saito introduced a Bernstein-Sato polynomial as-
sociated to an arbitrary ideal I = (f1, . . . , fr) ⊂ C[x1, . . . , xn]. (Their
polynomial coincides with a polynomial that appears in [13].)

Still for arbitrary r, the notion of local Milnor fibre is in general not
well-defined. There is however the following construction of Verdier. To any
constructible complex of sheaves F• on An, he associates a similar complex
on CY An, the normal cone of Y = V(I) in An. This complex is called the
specialization of F•. It is moreover equipped with a “canonical monodromy
operator”. In particular when I = (f) it turns out that this specialization
of C• is in some sense equivalent to the usual complex of nearby cycles on
Y = V(f), and that the two monodromy notions essentially correspond.

TOME 60 (2010), FASCICULE 4
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A nice feature of the Bernstein-Sato polynomial of [5] is that for any of
its roots s0, we have that e2πis0 is a “Verdier monodromy eigenvalue”, see
[5, Corollary 2.8]. This thus generalizes the implication for r = 1 mentioned
above.

It is natural to ask also for arbitrary I if poles of the topological zeta
function of I are always roots of its Bernstein-Sato polynomial, remember-
ing of course that this question turned out to be very difficult already for
r = 1. In the special case of a monomial ideal I this was verified in [15]
by Howald, Mustaţǎ and Yuen (for the p-adic Igusa zeta function). Maybe
more accessible, do the poles of the topological zeta function of an arbitrary
ideal I induce monodromy eigenvalues in the sense of Verdier? The main
result of this paper is to provide an affirmative answer to the last question
for arbitrary ideals in two variables.

The plan of the paper is as follows. We work over the base field of complex
numbers. In §2 we explain the construction of the specialization functor of
Verdier. In arbitrary dimension we show in §3 a formula for the “Verdier
monodromy eigenvalues” of an ideal I in terms of a principalization of the
ideal, in the same spirit as A’Campo’s formula [2] for the eigenvalues of
one function f in terms of an embedded resolution of Y = V(f). Note that
this is a priori not obvious; for r = 1 the complex of nearby cycles lives on
Y but for r > 1 the specialized complex of Verdier lives not on Y but on
CY An. In §4 we prove the “generalized Monodromy Conjecture” for ideals
in two variables, and finally in §5 we provide some examples.

Acknowledgements: The authors want to thank J. Schürmann for the
interesting conversations and explanations.

2. The specialization functor of Verdier

Let I be a coherent ideal sheaf on a variety X. Consider the associated
subscheme Y = V(I) of X. We construct the blow-up π : B = BlY X → X

of X in Y and denote by E the inverse image π−1(Y ).
For every e ∈ E we want to study the zeta function of monodromy of the

ideal I. To define what monodromy is in this context, we will need notions
as the normal cone of Y in X and the specialization functor of Verdier.

The normal cone of Y in X is a cone over Y defined as

CYX = SpecOY (⊕n>0In/In+1) ,

see e.g. [12, B.6]. Interesting to notice is that the projectivization P (CYX)
of the normal cone is exactly the exceptional variety E of the blowing-up of

ANNALES DE L’INSTITUT FOURIER
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X in Y (with its non-reduced scheme structure). We can identify the “locus
of vertices” of this cone with Y . So we have an embedding j : Y → CYX

and a projection p : CYX → Y. These maps satisfy p ◦ j = IdY . Moreover,
we have an action of C∗ on the normal cone, coming from the graduation
on ⊕n>0In/In+1. The locus of vertices is the scheme of the fixed points
of the action and the morphisms j and p commute with it. Starting with a
point e ∈ (CYX)\Y, we define the ruler through e as the orbit of e under
the action of C∗ (with its reduced scheme structure), so every ruler can be
identified with C∗.

The construction of the normal cone is functorial in the following sense.
Suppose we have a map f : X ′ → X of schemes and two subschemes Y ⊂ X
and Y ′ ⊂ X ′ such that

Y ′ ↪→ X ′

↓ f |Y ′ ↓ f
Y ↪→ X

is a cartesian diagram, then we can associate a map C(f) : CY ′X ′ → CYX

to f. In particular, the map π : B → X has an associated map C(π) :
CEB → CYX. This last one has the following interesting properties which
we will use further on. If we restrict the map C(π) to the “punctured” cones,
C ′(π) : (CEB)\E → (CYX)\Y, this is an isomorphism. Likewise, the map
of projectivized cones C ′′(π) : P (CEB) → P (CYX) is well-defined and is
an isomorphism. Moreover, the following diagram is commutative.

(2.1)

E
∼←− P (CEB) ←− (CEB)\Ey π ◦ o

yC′′(π) ◦ o
yC′(π)

Y ←− P (CYX) ←− (CYX)\Y

The (canonical) deformation to the normal cone of Y in X is a scheme X̂
with a morphism π̂ : X̂ → A1 such that π̂−1(A1 \{0}) ∼= X×(A1 \{0}) and
the fibre over 0 ∈ A1 is the normal cone CYX. This construction can be
found in [12, Chapter 5]. So we obtain the following commutative diagram.

CYX −→ X̂
j
←↩ X × (A1 \ {0})y ◦

yπ̂ ◦
y

0 −→ A1 j0←↩ A1 \ {0}

TOME 60 (2010), FASCICULE 4
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We introduce now the specialization functor of Verdier that associates
(by means of the previous diagram) to a constructible complex of sheaves
F• on X a constructible complex of sheaves on CYX.

Note. By a constructible complex of sheaves (of C-vector spaces) G• on a
scheme Z we mean an object in the full subcategory Dbc(Z) of the derived
category D(Z); its cohomology sheaves Hn(G•) are thus constructible and
moreover zero for |n| >> 0. (A sheaf on Z is called constructible if there
is a Zariski-locally closed stratification of Zred such that the restriction of
the sheaf to each stratum is locally constant for the complex topology.)

In [26] the specialization of F• is defined as

SpY \X(F•) := ψπ̂(j! pr
∗
1 F•),

where π̂ and j are as before, pr1 is the projection of X × (A1 \ {0}) on the
first factor and ψπ̂ is the nearby cycle functor of Deligne [6] (see also [10,
section 4.2]). In [26, p.356-357], Verdier defines a canonical transformation
of monodromy on the complex of sheaves SpY \X(F•).

This specialization functor has a number of important properties, from
which we will give the ones that we need in this article. These properties
are stated in [26, sections 8 and 10].
(SP1) Monodromy. For every constructible complex of sheaves F•, the

complex SpY \X(F•) is monodromic. This means that SpY \X(F•)
is locally constant (with respect to the usual complex topology) on
every ruler of CYX.

(SP2) Proper direct image. Suppose we have a cartesian diagram

Y ′ ↪→ X ′

↓ ↓ f
Y ↪→ X

where f is proper. Let C(f) : CY ′X ′ → CYX be the morphism
associated to f. Then C(f) is proper and for each constructible
complex F• on X ′, the natural morphism

SpY \X(Rf∗F•)→ RC(f)∗(SpY ′\X′(F•))

is an isomorphism.
(SP6) Normalization. Suppose that Y is a principal divisor with equation

f = 0. Then the morphism p × C(f) : CYX → Y × A1 is an
isomorphism, where p : CYX → Y is the projection. Notice that
C{0}A1 = A1, so C(f) is indeed a map CYX → A1. With this

ANNALES DE L’INSTITUT FOURIER



MONODROMY CONJECTURE FOR IDEALS 1353

isomorphism, we can define a section for z ∈ C\{0} :

sz : Y → CYX

y 7→ (p× C(f))−1(y, z).

Then we have for each constructible complex of sheaves F• on X

an isomorphism

s∗z(SpY \X(F•))→ ψf (F•).

This isomorphism is compatible with the two monodromy opera-
tions defined on both sheaves on Y, in the sense that they are each
other’s opposite. (We refer to [6] or [10, section 4.2] for a description
of the ‘classical’ monodromy on ψf (F•).)

(SP7) Perversity. The specialization functor transforms perverse sheaves
into perverse sheaves.

3. The zeta function of monodromy

As we said before, Verdier defined a canonical transformation of mon-
odromy on the complex of sheaves SpY \X(C•X), which we will denote by
M. For each m ∈ Z and y ∈ (CYX)\Y, we have an automorphism Mmy on
the stalk Hm(SpY \X(C•X)y). Eigenvalues of monodromy are eigenvalues of
these vector space automorphisms.

We now define the zeta function of monodromy ZI,e(t) of I for a point
e ∈ E. Choose an arbitrary point e′ on (CYX)\Y that is mapped to e by
the projectivization. Then ZI,e(t) is the (finite) product

Z(SpY \X(C•X))(e′) :=
∏
m∈Z

det(Id−tMme′ )(−1)m .

Note that this is the usual notion of a zeta function for M and e′, and that,
by (SP1), this definition is independent of the choice of e′.

In the next section, we use the zeta function of monodromy to prove the
monodromy conjecture in dimension two. We will prove that a pole s0 of the
topological zeta function induces a zero or a pole e2πis0 of the monodromy
zeta function for some point e ∈ E. This implies that this number e2πis0 is
an eigenvalue of monodromy.

Remark 3.1. — Note that it is also true that each eigenvalue of mon-
odromy is a zero or a pole of the monodromy zeta function for some point
e ∈ E. Since we know from (SP7) that SpY \X(C•X) is a (shifted) perverse
sheaf, we can copy the proof of [7, Lemma 4.6] to obtain this result.

TOME 60 (2010), FASCICULE 4



1354 Lise VAN PROEYEN & Willem VEYS

Now we prove a generalization of the formula of A’Campo [2, Theorem
3] to the case of ideals.

Theorem 3.2. — Let I be a sheaf of ideals on a variety X. Let Y =
V(I) be the associated subscheme of X and suppose that Sing (X) ⊂ Y.

Let π : B = BlY X → X be the blow-up of X in Y and ψ : X̃ → X a
principalization of I. Define ϕ : X̃ → B as the unique morphism such that
ψ = π◦ϕ. We denote by E the inverse image π−1(Y ) and Ẽ = ψ−1(Y ). We
use Ei, i ∈ J, for the irreducible components of Ẽ and Ni for the according
multiplicities in Ẽ. Put E◦i = Ei \ ∪j∈J, j 6=iEj . For a point e ∈ E, the zeta
function of monodromy is equal to

ZI,e(t) =
∏
j∈J

(1− tNj )χ(E◦j ∩ϕ
−1(e)).

Remark 3.3. — (1) Note that the principalization ψ factorizes through
the blow-up π since the inverse image ψ−1(Y ) is a Cartier subscheme in
X̃.

(2) When I is principal we can consider π as the identity and thus
ψ = ϕ. Then ZI,e(t) is the usual hypersurface zeta function of monodromy
for e ∈ E = Y and we recover A’Campo’s formula.

Proof. — Fix e ∈ E and choose an element e′ ∈ (CYX)\Y that is
mapped to e by the projectivization map.

The restriction of π is an isomorphism B \ E → X \ Y, which implies
that Rπ∗C•B |X\Y = C•X |X\Y . Since SpY \X(F•)|(CYX)\Y only depends on
F|X\Y (see [26, p. 354]), we can deduce that

SpY \X(C•X)|(CYX)\Y = SpY \X(Rπ∗C•B)|(CYX)\Y

and
Z(SpY \X(C•X))(e′) = Z(SpY \X(Rπ∗C•B))(e′).

Because we have the cartesian diagram

E ↪→ B

↓ ↓ π
Y ↪→ X

we can use (SP2) to write that

SpY \X(Rπ∗C•B) ∼−→ RC(π)∗(SpE\B(C•B))

is an isomorphism, or that

Z(SpY \X(Rπ∗C•B))(e′) = Z(SpE\B(C•B))(C(π)−1(e′)).

ANNALES DE L’INSTITUT FOURIER
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(Note that the restriction of C(π) to (CEB)\E is an isomorphism, as said
in §2.)

There exists an open Ve around e such that E ∩ Ve is the zero locus
of one nonzerodivisor f. So we can use (SP6) to see that locally, we have
an isomorphism p × C(f) : CEB → E × A1. Take z ∈ C\{0} such that
(p × C(f))(C(π)−1(e′)) = (e, z). This is possible, using the commutative
diagram (2.1). We can conclude that we have an isomorphism

s∗z(SpE\B(C•B)) −→ ψf (C•B).

This isomorphism is “compatible” with the monodromy actions, so

Z(SpE\B(C•B))(sz(e)) = Z(ψf (C•B))(e).

The right hand side is the monodromy zeta function of the map f : Ve ⊂
B → C in the point e. Because we already have an embedded resolution of
E in B, namely the map ϕ : X̃ → B, we can use the formula of A’Campo [2,
Theorem 3]. (This formula was originally proven for functions on a smooth
variety. But one can check that for instance the proof that Dimca gives in
[10, Corollary 6.1.15] is still valid in this more general context where the
hypersurface contains the singular locus of the ambient variety.) We obtain

Z(ψf (C•B))(e) =
∏
j∈J

(1− tNj )χ(E◦j ∩ϕ
−1(e)).

For this last equality, we need that the multiplicities of the irreducible
components Ei of Ẽ in the divisor ϕ−1(E) are precisely the Ni. Indeed:

Ẽ =
∑
i∈J

NiEi = (π ◦ ϕ)−1(Y ) = ϕ−1(π−1Y ) = ϕ−1(E).

Putting all these equalities of zeta functions together, proves our theorem.
�

4. The Monodromy Conjecture

From now on, we will work in dimension 2, but we will use the same
notation as before. So let I ⊂ C[x, y] be an ideal satisfying {0} ⊂ Supp I.
Put Y = V (I) the subscheme of X = C2 defined by I. Let π : B =
BlYX → X be the blowing-up of X in Y and ψ : X̃ → X be the minimal
principalization of I. The map ϕ : X̃ → B is defined such that ψ = π ◦ ϕ.
We denote E = π−1(Y ) as divisor on B, and Ẽ = ψ−1(Y ) =

∑
i∈J NiEi

as divisor on X̃. Here the Ei(Ni, νi) are the irreducible components of Ẽ,
together with their numerical data.

TOME 60 (2010), FASCICULE 4
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Theorem 4.1 (Generalized Monodromy Conjecture). — If − νN is a pole
of the local topological zeta function of an ideal I ⊂ C[x, y], then there
exists a point y ∈ E such that e−2πi νN is an eigenvalue of monodromy in y.

We first mention some results that will be useful in the proof.
For an ideal I = (f1, . . . , fr) ⊂ C[x, y] we can look at the linear system

{λ1f1 + . . .+ λrfr = 0 |λi ∈ C for i = 1, . . . , r}. A total generic curve of I
is a general element of this linear system. Now we determine whether there
are common components among the fi and put them together. So we can
write I = (h)(f ′1, . . . , f ′r), where (f ′1, . . . , f ′r) is a finitely supported ideal.
A generic curve of the ideal I is a general element of the linear system
{λ1f

′
1 + . . .+ λrf

′
r = 0 |λi ∈ C for i = 1, . . . , r}. Notice that the definition

of the (total) generic curve depends on the choice of generators we use to
represent the ideal.

Lemma 4.2. — If an irreducible component Ei of Ẽ is contracted by
ϕ, then there is no intersection between Ei and the strict transform of a
generic curve of the ideal I in X̃.

Proof. — If there is an intersection, the strict transform of a generic
curve of I in B contains the point ϕ(Ei). But if we denote f̃i for the strict
transform of f ′i in B, the linear system {λ1f̃1+. . .+λrf̃r = 0 |λi ∈ C for i =
1, . . . , r} should be base point free (see e.g. [14, Example 7.17.3]). �

Lemma 4.3. — Let (f1, . . . , fl) be an ideal in C[x, y] and E0(N, ν) an ex-
ceptional curve of the principalization (together with the numerical data).
Suppose E0 intersects n times the strict transform of a generic curve and
m times other components E1(N1, ν1), . . . , Em(Nm, νm) of the principal-
ization. Put αi = νi − ν

NNi for i = 1, . . . ,m. Then we have
(1)
∑m
i=1 αi = m−2+ νnN , where the left hand side is zero when m = 0,

and
(2) −1 6 αi < 1 for i ∈ {1, . . . ,m}. Moreover, αi = −1 only occurs

when m = 1.

The first equality can be found in [25, §3]. It is a reformulation of the
relation between the numerical data proved by Loeser in [19]. The second
statement is [25, Proposition 3.1].

In [25], we gave a complete list of five conditions in which a candidate pole
is indeed a pole of the local topological zeta function of an ideal in dimension
two. Using Lemma 4.3, it is not difficult to see that the conditions given
in numbers 2, 3 and 4 of [25, Theorem 4.2] are equivalent to the condition
of being intersected by the strict transform of a generic curve. So we can
reformulate this theorem as follows.

ANNALES DE L’INSTITUT FOURIER
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Theorem 4.4. — Let I ⊂ C[x, y] be an ideal satisfying 0 ∈ Supp (I)
and ψ : X̃ → C2 the minimal principalization of I in a neighbourhood of
0. Let E•(N•, ν•) be the components of the support of the total transform
ψ∗I with their associated numerical data.

The rational number s0 is a pole of the local topological zeta function of
I if and only if at least one of the following conditions is satisfied:

(1) s0 = − 1
N for a component E0(N, ν) of the support of the weak

transform of I;
(2) s0 = − νN for E0(N, ν) an exceptional curve that has non-empty

intersection with the strict transform of a generic curve of the ideal
I;

(3) s0 = − νN for E0(N, ν) an exceptional curve that intersects at least
three times other components.

Now we are ready to prove the monodromy conjecture for ideals in di-
mension 2. We were inspired by [22], where Rodrigues gives an elementary
proof of the monodromy conjecture for curves on normal surfaces.

Proof of Theorem 4.1. — Choose a pole s0 of the local topological zeta
function of the ideal I and take a, d ∈ Z satisfying s0 =−ad and gcd(a, d)=1.

Suppose that there exists an irreducible component Em(Nm, νm) with
d | Nm that is not contracted to a point by ϕ : X̃ → B. Choose a point
y ∈ ϕ(E◦m) such that ϕ−1(y) is a finite set of points. Then there exists for
every j ∈ J a nonnegative integer kj (with km 6= 0) such that

ZI,y(t) =
∏
j∈J

(1− tNj )kj ,

from which we see that e2πis0 is a zero of the zeta function of monodromy
in y, so it is an eigenvalue of monodromy.

On the other hand, suppose that every Ei(Ni, νi) that satisfies d | Ni is
contracted to a point by ϕ. This implies (by using Lemma 4.2 and The-
orem 4.4) that there exists an index m ∈ J, with s0 = − νmNm , such that
Em is exceptional and Em intersects at least three times other compo-
nents of Ẽ. Fix such a m and take y = ϕ(Em). Define T ⊂ J such that
ϕ−1{y} = ∪i∈TEi. To prove that e2πis0 is a zero or a pole of the zeta
function of monodromy in y, it is enough to show that∑

i∈T, d|Ni

χ(E◦i ) < 0.

First notice that the strict transform of a generic curve intersects at
least one exceptional component, so not every exceptional curve can be
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contracted and it is impossible that d divides Ni for every i ∈ J. We define

M̃ :=
⋃

i∈T, d|Ni

Ei.

Every connected component of M̃ contains at least one irreducible com-
ponent that intersects a component Ek(Nk, νk) outside M̃ . If d | Nk, then
Ek is contracted by ϕ and since Ek has a non-empty intersection with M̃,

this also implies that k ∈ T . So d - Nk. Moreover, the irreducible component
of M̃ that intersects Ek needs to intersect a second component Ek′(Nk′ , νk′)
with d - Nk′ . We can deduce this from the formula κNl =

∑r
i=1 Ni, where

El is an exceptional curve intersecting r times other components Ei, for
i = 1, . . . , r, and where −κ denotes the self-intersection number of El.

Every connected component
⋃
i∈I0 Ei of M̃ satisfies∑

i∈I0

χ(E◦i ) 6 0.

Because such a component has at least two external intersections, this is
a direct consequence of the following fact: if

⋃r
i=1 Ei is a tree consisting

of rational curves, then
∑r
i=1 χ(Ei\(∪j=1,...,r, j 6=iEj)) = 2. See e.g. [22,

Lemma 2.2].
Now fix the connected component M =

⋃
i∈IM Ei of M̃ that contains

Em. For this one, we prove the strict inequality∑
i∈IM

χ(E◦i ) < 0.

If this sum would equal 0, then M is a tree of rational curves that intersects
precisely two times with components Ej outside M̃. From a previous argu-
ment, we know that these intersections are on one curve Es with s ∈ IM .
There are two possibilities.

Es = Em: The component Em will intersect at least one other curve
Ej(Nj , νj). This curve belongs to M, so d | Nj and the number
νj − adNj is an integer. The only possibility is 0 (see Lemma 4.3),
so this implies that − νjNj = −ad . We know that Ej is contracted
to a point, so it is not intersected by the strict transform of a
generic curve. From the relations between the numerical data (see
also Lemma 4.3), we can deduce that Ej intersects at least one
other component of M and we can repeat this process infinitely
many times. This leads to a contradiction.

Es 6= Em: Now we can start for each of the (at least three) components
that intersect Em the same procedure of constructing a series of
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curves in M. Only one of these can eventually stop, because there
is only one of these series that has intersections outside of M.

This ends the proof. �

Remark 4.5. — Theorem 4.1 is also true for the motivic and the Hodge
zeta function of I, and for p-adic Igusa zeta functions associated to several
polynomials in two variables, because the necessary condition of [25, The-
orem 4.2] to be a pole is still valid for these zeta functions. We refer to [25,
§6] for definitions and more explanation.

5. Some examples

(1) I = (x3y, x6 + y4) ⊂ C[x, y]. The intersection diagram of the princi-
palization X̃ is as in Figure 5.1, where the dashed line denotes the strict
transform of a generic curve.

Figure 5.1. Intersection diagram of the principalization of (x3y, x6 + y4).

We see that the poles of the local topological zeta function are − 1
2 and − 2

3 .

The blowing-up B = BlY C2 is given by

Proj C[x, y][A,B]
(Ax3y −B(x6 + y4))

,

see e.g. [11, Section IV.2.1]. The exceptional variety consists of only one
irreducible curve, say E. The map ϕ : X̃ → B contracts E2 to a point
a on E. It maps E1 and E3 surjectively on E. The restriction to E3 is
one-to-one, but the restriction to E1 is three-to-one.

For a point e on E different from a, we compute that the monodromy
zeta function is

ZI,e(t) = (1− t4)3(1− t6).
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We can immediately check that e−πi and e− 4πi
3 are zeroes of this function.

Since − 1
2 and − 2

3 were the only poles of the local topological zeta function,
this illustrates the monodromy conjecture.

(2) I = (x4, xy2, y3) ⊂ C[x, y]. The intersection diagram of the principal-
ization (with numerical data) is given in Figure 5.2. We can easily deduce
that the poles of Ztop,I(s) are − 2

3 and − 5
8 .

Figure 5.2. Intersection diagram of the principalization of (x4, xy2, y3).

The blowing-up B = BlY A2 is given by

B = Proj C[x, y][A,B,C]
(y2A+ x3B, xC + yB,B3x+AC2)

and the exceptional variety E consists of two projective lines E′ and E′′.

The map ϕ : X̃ → B maps E1 and E3 one-to-one onto E′ and E′′, respec-
tively. It contracts E2 to a point a on E′′.

We choose a point x ∈ E′◦ and a point y ∈ E′′◦\{a}. For these points
the monodromy zeta functions are

ZI,x(t) = 1− t3, ZI,y(t) = 1− t8.

So we conclude that the two poles of the topological zeta function induce
two eigenvalues of monodromy e− 4πi

3 and e−
5πi

4 .

Remark 5.1. — Note that this example is a monomial ideal. As men-
tioned in the introduction, the monodromy conjecture had already implic-
itly been verified in this case.

(3) I = (x3y, x3 − y2) ⊂ C[x, y]. In Figure 5.3 we can see that Ztop,I(s)
has poles in − 5

6 and − 8
9 .

We know that

B = BlYX = Proj C[x, y][A,B]
(A(x3 − y2)−Bx3y)

.
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E1(2, 2) E2(3, 3)

E3(6, 5)

E4(7, 6)

E5(8, 7)

E6(9, 8)

Figure 5.3. Intersection diagram of the principalization of (x3y, x3 − y2).

The blowing-up has one irreducible exceptional component E. The map
ϕ : X̃ → B maps E6 surjectively on E and all the other exceptional
components of the principalization are contracted to a point a on E. We
fix a point x ∈ E◦, x 6= a, and look at the following two monodromy zeta
functions:

ZI,a(t) = (1− t2)(1− t3)
1− t6

, ZI,x(t) = 1− t9.

We can see that the two poles of the topological zeta function − 5
6 and − 8

9
give rise to eigenvalues of monodromy e− 5πi

3 and e−
16πi

9 .
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