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GEOMETRY OF THE GENUS 9 FANO 4-FOLDS

by Frédéric HAN

Abstract. — We study the geometry of a general Fano variety of dimension
four, genus nine, and Picard number one. We compute its Chow ring and give an
explicit description of its variety of lines. We apply these results to study the geom-
etry of non quadratically normal varieties of dimension three in a five dimensional
projective space.

Résumé. — On étudie la géométrie d’une variété générale de Fano de dimension
quatre, de genre neuf, et de nombre de Picard un. On calcule son anneau de Chow,
et l’on donne une description simple et explicite de sa variété des droites. On
utilise alors ces résultats pour étudier des propriétés géométriques de variétés de
dimension 3 non quadratiquement normales dans un espace projectif de dimension
cinq.

Introduction:

Let W be a 6 dimensional vector space over the complex numbers en-
dowed with a non degenerate symplectic form ω. Let Gω be the Grass-
mannian of ω-isotropic 3-dimensional vector subspaces of W . We will also
denote by Pω the 13 dimensional projective space spanned by Gω in the
Plücker embedding. Considering this embedding, the intersection of Gω
with a generic codimension 2 linear subspace is the Mukai model of a
smooth Fano manifold of dimension 4, genus 9, index 2 and Picard num-
ber 1.

On a genus 9 Fano variety with Picard number 1, Mukai’s construction
gives a natural rank 3 vector bundle, but in dimension 4, another phenom-
ena appears. In the first part of this article, we will explain how to construct
on a general Fano 4-fold B of genus 9, a canonical set of four stable vector
bundles of rank 2, and prove that they are rigid. In next parts, we study
the consequences on the geometry of the 4-fold.

Keywords: Fano manifold, variety of lines, secant variety, quadratic normality, vector
bundles, virtual section, symplectic grassmannian.
Math. classification: 14J45, 14J35, 14J60, 14J30, 14M15, 14M07.
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Indeed, this “four-ality” (cf [12]) is also present in the geometry of the
lines included in this Fano 4-fold, and also in its Chow ring. In section 2,
we show explicitly that the variety of lines in B is a hyperplane section of
IP1 × IP1 × IP1 × IP1. Then in section 3, we compute the Chow ring of B
which appears to have a rich structure in codimension 2.

The four bundles can embed B in a Grassmannian G(2, 6), and the link
with the order one congruence of lines discovered by E. Mezzetti and P.
de Poi in [14] is explained in section 4. In particular we prove that the
generic Fano variety of genus 9 and dimension 4 can be obtained by their
construction, and explain the choices involved. We also describe in this part
the normalization of the non quadratically normal variety they constructed,
and also its variety of plane cubics.

Acknowledgements. I would like to thank L. Gruson for his constant
interest in this work, and also F. Zak and C. Peskine for fruitful discussions.
I would like also to thank K. Ranestad and A. Kuznetsov for pointing out
to me and explaining their works. I’m also grateful to the referee for careful
reading and many useful comments.

Notations. — In all the paper but section 4.1, B will be a general double
hyperplane section of Gw. For any u in Gw, the corresponding plane of
IP(W ) will be noted πu. Furthermore, the restriction of a hyperplane H in
Pw to Gw will be noted H̄.

1. Construction of rank 2 vector bundles on B

This part is devoted to the construction of a canonical set of four stable
and rigid rank two vector bundles on B using a classical technique of mod-
ification. Those bundles were already known to A. Iliev and K. Ranestad
in [8] where they are constructed by projection. They described the link
between some moduli spaces of vector bundles in terms of linear sections of
the dual variety of Gw, with main application to the genus 9 Fano threefold
case. Note also that many of the results of this section are obtained in a
universal way in derived categories by A. Kuznetsov in [11], but we detail
this short description to use it in the next sections.

Let’s first recall some classical geometric properties of Gw (cf [6]). The
union of the tangent spaces to Gw is a quartic hypersurface of Pw, so a
general line of Pw has naturally 4 marked points. Dually, as the variety B
is given by a pencil L of hyperplane sections of Gw, there are in this pencil,
four hyperplanes H1, . . . ,H4 tangent to Gw. Denoting by ui the unique
contact point of Hi with Gw, we will first construct a rank two sheaf on Hi∩
Gw with singular locus ui, and its restriction to B will be a vector bundle.

ANNALES DE L’INSTITUT FOURIER
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1.1. Data associated to a tangent hyperplane section

Let u ∈ Gw, and H be a general hyperplane tangent to Gw at u. We
consider the following hyperplane section of Gw:

H̄u = {v ∈ Gw, πv ∩ πu 6= ∅}.

The following lemma is proved in [6]:

Lemma 1.1. — There exists a conic C in πu such that v ∈ H ∩ H̄u ⇐⇒
πv ∩ C 6= ∅. For H general containing the tangent space of Gw at u, C
is smooth. Furthermore, H ∩ H̄u contains the tangent cone TuGw ∩Gw =
{v ∈ Gw|dim(πv ∩ πu) > 1} which is embedded in Pw as a cone over a
Veronese surface.

Consequently, we will assume that H is such that C is smooth. Now, we
consider the following incidence variety:

ZH = {(p, v) ∈ C × H̄|p ∈ πv}

and denote by q1 and q2 the projections from C ×Gw to C and to Gw.

Corollary 1.2. — The incidence variety ZH is smooth.

The previous lemma implies that for any point p of C the fiber q−1
1 (p)

consist of all the isotropic planes containing p, so q−1
1 (p) is a smooth 3-

dimensional quadric (cf [6] proposition 3.2). So ZH is a fibration in smooth
quadratic threefolds over IP1.

Notations. — Let σ be the class of a point of C, and denote by L be
the vector space H0OC(σ) viewed as SL2-representation. In all the paper,
we will identify L with its dual, and denote by SiL the symmetric power
of order i of L.

For any integers a and b, the sheaf q∗1OC(a.σ)⊗ q∗2(OGw(b)) on ZH will
be denoted OZH (a, b).

Let K and Q be the tautological(1) bundles of rank three on Gw, such
that the following sequence is exact:

0→ K →W ⊗OGw → Q→ 0.

Proposition 1.3. — For i > 0 we have Riq2∗OZH (1, 0) = 0, and the
resolution of q2∗OZH (1, 0) as a OGw -module is given by the following exact
sequence:

(1.1) 0→ S3L⊗OGw(−1)→ L⊗
2∧
Qv → L⊗OGw → q2∗OZH (1, 0)→ 0

(1) Remark that on Gw the bundles Q and Kv are isomorphic

TOME 60 (2010), FASCICULE 4
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Proof. — We consider the injection from q∗1(OC(−2σ)) to W ⊗ OC×Gw
given by the conic C. The incidence ZH is the locus where the map from
q∗1(OC(−2σ))⊕ q∗2K to W ⊗OC×Gw is not injective, hence ZH is obtained
in C ×Gw as the zero locus of a section of the bundle OC(2σ) �Q.

Let K. be the Koszul complex
i∧
(OC(−2σ) �Qv) of this section. We ob-

tain proposition 1.3 from the Leray spectral sequence applied to K. twisted
by OC×Gw(σ). �

Restricting the above surjection L⊗OGw → q2∗OZH (1, 0) to the hyper-
plane section H̄, we obtain:

Proposition 1.4. — The sheaf E on H̄ defined by the following exact
sequence:

0→ E → L⊗OH̄ → q2∗OZH (1, 0)→ 0
is reflexive of rank 2, has c1(E) = −1 and is locally free outside u.

Proof. — From lemma 1.1 we have q2(ZH) = H ∩ H̄u. So set theo-
retically the support of q2∗OZH (1, 0) is H ∩ H̄u, and E has rank 2 on
H̄. The exact sequence (1.1) in proposition 1.3 proves that the OGw -
module q2∗OZH (1, 0) has local projective dimension 2. So we obtain from
the Auslander-Buchsbaum formula that its local depth is 4. Therefore, this
module is locally Cohen-Macaulay and E is reflexive from [5] Corollary
1.5. We also deduce from the sequence (1.1) that the Chern polynomial of
q2∗OZH (1, 0) at order 2 is: 1 − 2c2(Q). But on Gw we have the relation
2c2(Q) = (c1(Q))2, so c1(E) = −1 and the support of q2∗OZH (1, 0) is the
reduced scheme H ∩ H̄u. As the equation of H annihilates q2∗OZH (1, 0),
we can also consider this sheaf as a OH̄ -module with the same local depth.
Remarking that H̄ − {u} is smooth of dimension 5, we obtain from the
Auslander-Buchsbaum formula, that the OH̄,x-module (q2∗OZH (1, 0))x has
projective dimension 1 for every closed point x of H̄ − {u}, so E is locally
free outside u. �

Furthermore, we deduce from Bott’s theorem on Gw the following:

Corollary 1.5. — We have the following equality L=H0(OZH (1, 0))=
H0(q2∗OZH (1, 0)), and for i > 0, all the groups Hi(OZH (1, 0)) and
Hi(q2∗OZH (1, 0)) are zero. For i > 0 all the groups Hi(q2∗OZH (1,−1))
and Hi(q2∗OZH (1,−1)) are zero.

Proof. — We will prove that, on the isotropic Grassmannian Gw, all

the cohomology groups of the bundles
i∧
Qv and (

i∧
Qv)(−1) vanish for

i ∈ {1, 2, 3}. Indeed, with the notations of [18] 4.3.3 and 4.3.4, they corre-
spond to the partitions (0, 0,−1), (0,−1,−1), (−1,−1,−1), (−1,−1,−2),

ANNALES DE L’INSTITUT FOURIER
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(−1,−2,−2), (−2,−2,−2). Now recall that the half sum of positive roots
is ρ = (3, 2, 1), so α + ρ either contains a 0 or is (2, 1,−1). So in all cases
α+ρ is invariant by a signed permutation, and the sheaves have zero coho-
mology. The corollary is now a direct consequence of these vanishing and
of proposition 1.3 and its proof. �

Corollary 1.6. — We have: ∀i > 0, hi(E) = hi(E(−1)) = 0. The vec-
tor space V = H0(E(1)) has dimension 6 and hi(E(1)) = 0 for i > 0.
Furthermore, E(1) is generated by its global sections.

Proof. — The vanishing of the cohomology of E and E(−1) is a direct
consequence of the definition of E and of the previous corollary.

To prove the second assertion, we restrict the sequence (1.1) to the hy-
perplane section H̄, and we obtain the following monad(2) :

0→ S3L⊗OH̄(−1)→ L⊗
2∧
Qv
H̄
→ E → 0

whose cohomology is T or1(q2∗(OZH (1, 0)),OH̄) which is equal to
q2∗(OZH (1,−1)) because we proved in proposition 1.4 that its support
is a subscheme of H, so the multiplication by the equation of H from
q2∗(OZH (1, 0))⊗OGw(−1) to q2∗(OZH (1, 0))⊗OGw is the zero map. Twist-
ing this monad byOH̄(1) and using corollary 1.5, we obtain thatH0(E(1)) is

the quotient of L⊗W by S3L⊕L becauseW = H0(QH̄) andQ = (
2∧
Qv)(1).

Furthermore, the right part of the monad gives a sujection from L ⊗ QH̄
to E(1). Since L⊗QH̄ is generated by its global sections, so is E(1).

The vanishing of hi(E(1)) for i > 0 is a corollary of the vanishing of
hi(q2∗(OZH (1, 0)), hi(QH̄) and hi(OH̄) for i > 0. �

Remark 1.7. — The two vector spaces V and W of dimension 6 have
different roles. More precisely, the conic C gives a marked subspace of W
so that we have the following SL2-equivariant sequences:

0→ S2L→W → S2L→ 0 and 0→ L→ V → S3L→ 0

1.2. The 4 rank 2 vector bundles on B

The pencil of hyperplanes defining B contains the 4 tangent hyperplanes
Hi, so we can apply the previous construction to construct a rank 2 sheaf Ei
on each of the H̄i, and define by Ei the restriction of Ei to B. Because B is
smooth, it doesn’t contain the contact points ui, so Ei is locally free on B.
(2) A monad is a complex of vector bundles given by an injection followed by a surjection
(cf [15])

TOME 60 (2010), FASCICULE 4
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Corollary 1.8. — All the cohomology groups of the vector bundles Ei
vanish. In particular, the rank 2 vector bundles Ei are stable. The vector
space H0(Ei(1)) has dimension 6, and we have Hj(Ei(1)) = 0 for j > 0.
The bundles Ei(1) are generated by their global sections.

Proof. — It is a direct consequence of corollary 1.6, because B is a hyper-
plane section of H̄i. (Note that the stability condition for Ei is equivalent
to h0(Ei) = 0, because c1(Ei) = −1 and Ei has rank 2). �

1.3. The restricted incidences

Now, for each of the 4 hyperplanes Hi containing B and tangent to Gw
at the point ui, let Ci be the conic of the projective plane πui constructed
in 1.1. Consider the restriction of the incidence variety ZHi to B. In other
words, let Zi, Z ′i be:

Zi = {(p, v) ∈ Ci ×B|p ∈ πv}, Z ′i = {(p, v) ∈ Zi|dim(πv ∩ πui) > 0}

and still denote by q1 and q2 the projections from Ci ×Gw to Ci and Gw.

Lemma 1.9. — Let p be a fixed point of Ci. The scheme
Zi,p = q2(q−1

1 (p) ∩ Zi) is a 2 dimensional irreducible quadric in Pw. For
a general choice of p on Ci, the quadric Zi,p is smooth. The restriction of
q2 to Z ′i is a double cover of a Veronese surface Vi = q2(Z ′i).

Proof. — In fact, we already mentioned that {v ∈ Gw|p ∈ πv} is a
smooth quadric of dimension 3 (cf [6] prop 3.2), so it doesn’t contain planes.
This scheme is included in Hi, so Zi,p is just a hyperplane section of this
smooth quadric, so it is always irreducible, and for a general p it is smooth
because B is also general. Consider the cone {v ∈ Gw|dim(πui ∩ πv) > 0}
described in lemma 1.1. As ui /∈ B, the surface Vi is the intersection of
this cone with a hyperplane which doesn’t contain the vertex ui, so it’s a
Veronese surface. �

Notations. — We denote by σi the class of a point on Ci, and by h3 the
class of a hyperplane in Pw (the Plücker embedding of Gw).

Proposition 1.10. — Let Π be the following projective bundle, and h
be the class of OΠ(1). The incidence Zi is a divisor of class 2h in

Π = Proj(OCi(2σi)⊕ S2L⊗OCi).

Furthermore we have h3 ∼ h+ 2σi and σi is also the class of the fiber of a
point on the base of the fibration Π . The divisor Z ′i of Zi is equivalent to
the restriction to Zi of h− 2σi.

ANNALES DE L’INSTITUT FOURIER
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Proof. — Denote by ei the vector bundle image of the map from
OCi(−2σi) to W⊗OCi associated to the embedding of Ci in πui , and by e⊥i
its orthogonal with respect to ω. Choose an element φ′ of

3∧
Wv such that

kerφ′ gives a hyperplane section of Gw containing B and different from the
H̄i (i.e φ′(ui) 6= 0). We can remark that the incidence Zi is given over Ci by
the isotropic 2-dimensional subspaces l of e

⊥
i

ei
such that φ′(ei ∧ (∧2l)) = 0.

Indeed, the condition φi(ei∧(∧2l)) = 0 is already satisfied by the definition
of Ci and lemma 1.1 (here φi denotes a trilinear form of kernel Hi).

The bundle e⊥i is isomorphic to S2L⊗OCi⊕L⊗OCi(−σi), and the trivial
factor S2L corresponds to the plane πui . So the bundle e

⊥
i

ei
is isomorphic

to L ⊗ OCi(σi) ⊕ L ⊗ OCi(−σi) where those factors are isotropic for the
symplectic form induced by ω. We can take local basis s0, s1 and s2, s3
of each factors such that the form induced by ω is p0,2 + p1,3 where pj,k
denotes the Plücker coordinates associated to the sj .

So the relative isotropic Grassmannian Gw(2, e
⊥
i

ei
) is the intersection of

G(2, e
⊥
i

ei
) with IP(OCi(2σi)⊕OCi(−2σi)⊕S2L⊗OCi) in IP(

2∧ e⊥i
ei

), and the
factor OCi(2σi) still corresponds to s0 ∧ s1.

Now we need to compute the kernel of the map ei ⊗
2∧

( e
⊥
i

ei
) φ

′

→ OCi . But
the assumption φ′(ui) 6= 0 proves that it is OCi(−4σi)⊕L⊗L⊗OCi(−2σi).

So we have an exact sequence:

0→ OCi(−2σi)⊕ S2L⊗OCi →
2∧

(e
⊥
i

ei
)

(ω
φ′ )−→ OCi ⊕ evi → 0

and Zi is a divisor of class 2h in Proj(OCi(2σi)⊕S2L⊗OCi). The relation

h3 ∼ h+ 2σi is given by the map ei ⊗
2∧

( e
⊥
i

ei
)→

3∧
W .

The divisor Z ′i of Zi is locally given by the vanishing of the exterior
product with s0 ∧ s1 so it is equivalent to (h− 2σi)|Zi . �

Corollary 1.11. — The two dimensional quadrics (Zi,p)p∈Ci are
smooth except in four cases where they are irreducible cones.

Proof. — From the definition of Zi,p in lemma 1.9, for any point p of Ci,
the quadric Zi,p is the image of q−1

1 (p) ∩Zi by the restriction of the linear
system |h3|. As the restriction of h3 and h to the fibers of q1 : Zi → Ci are
equivalent from the proposition 1.10, we just have to study the section of
OΠ(2h) found in the proposition 1.10. This section corresponds to a section
of S2(OCi(2σi)⊕ S2L⊗OCi), and the determinant of this quadratic form
is a section of OCi(4σi). Lemma 1.9 now implies that there are only four
irreducible cones. �

TOME 60 (2010), FASCICULE 4
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1.4. Rigidity of Ei

We will now study the relation between the conormal bundle of Zi in
Ci ×B and the bundle Ei.

Lemma 1.12. — We have the following exact sequence:

0→ OCi×B(−σi − h3)→ q∗2Ei → IZi(σi)→ q∗2(R1q2∗IZi)(−σi)→ 0

Proof. — Consider q2 as a fibration in IP1. The resolution of the diagonal
of IP1 × IP1 gives the relative Beilinson’s spectral sequence (cf [15] chap 2
§3):

E1
a,b = (

−a∧
ωq2(σi))⊗Rbq2∗(IZi((1 + a)σi)) =⇒ IZi(σi).

By the definition of Ei (cf prop 1.4) we have Ei = q2∗(IZi(σi)). Further-
more, the projection q2(Zi) is a hyperplane section of B, so q2∗IZi =
OB(−h3). Now remark that R1q2∗(IZi(σi)) = 0, because the restriction
of q2: Zi

q2|Zi−→ q2(Zi) has all its fibers of length at most 2. The non zero
terms in E1 are:

q∗2(R1q2∗IZi)(−σi)
OB(−σi − h3) Ei

6E1
0,.

- E1
.,0

and the spectral sequence ends at E2. The filtration of IZi(σi) is given by
the sequence:

0→ E2
0,0 → IZi(σi)→ E2

−1,−1 → 0.
So we obtain the lemma by the definition of E2 and the above values of
E1. �

NB: The support of R1q2∗IZi is the natural scheme structure (cf [3])
on the scheme of fibers of q2 intersecting Zi in length 2 or more. It is the
Veronese surface Vi = q2(Z ′i). So the previous lemma can now be translated
in the following:

Corollary 1.13. — The scheme q−1
2 (Vi) ∪ Zi is in Ci × B the zero

locus of a section of the bundle q∗2Ei(σi + h3).

This gives also a geometric description of the marked pencil of sections of
Ei(h3) given by the natural inclusion L ⊂ V found in remark 1.7. Indeed,
if we fix a point p on Ci, the restriction to q−1

1 (p) of the section obtained
in corollary 1.13 gives with the notations of lemma 1.9 the following:

Corollary 1.14. — For any point p on the conic Ci, the vector bundle
Ei(h3) has a section vanishing on Zi,p ∪ Vi.

ANNALES DE L’INSTITUT FOURIER
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We can now study the restriction of q∗2Ei to Zi.

Proposition 1.15. — The restriction q∗2Ei|Zi of the vector bundle q∗2Ei
to Zi fits into the following exact sequence:

0→ OZi(h3 − 3σi)→ q∗2Ei|Zi(h3)→ OZi(3σi)→ 0

Proof. — Fix a point p on Ci, and consider the corresponding section
of Ei(h3) constructed in corollary 1.14. Its pull back gives a section of
q∗2Ei(h3) vanishing on q−1

2 (Zi,p ∪Vi), so its restriction to Zi gives a section
of q∗2Ei|Zi(h3−σi−Z ′i). Now, using the computation of the class of Z ′i in Zi
made in proposition 1.10, namely that OZi(Z ′i) is OZi(h3 − 4σi), it gives a
section of (q∗2Ei)|Zi(3σi). We have to prove that it is a non vanishing section.
To obtain this, we compute the second Chern class of (q∗2Ei)|Zi(3σi). We
will show that its image in the Chow ring of Ci × B is zero. Denote by ai
the second Chern class of Ei. From lemma 1.13, we obtain the class of Zi
in Ci × B: [Zi] = ai + h3.σi − [Vi]. So we can compute [Zi].c2(q∗2Ei(3σi)).
It is (ai+h3.σi− [Vi]).(ai− 3h3σi), but we will compute in proposition 3.7
the Chow ring of B, and this class vanishes. �

Corollary 1.16. — The vector bundles Ei are rigid, in other words:
Ext1(Ei, Ei) = 0.

Proof. — From corollary 1.13 we deduce an exact sequence on Ci ×B:

0→ q∗2Ei(−σi)→ q∗2(Ei)⊗ q∗2(Ei)(h3)→ q∗2Ei(h3 + σi)
→ (q∗2Ei(h3 + σi))|Zi∪q−1

2 (Vi) → 0

All the cohomology groups of the bundle q∗2Ei(−σi) are zero, and the corol-
lary 1.8 gives H0(q∗2Ei(h3 + σi)) = L⊗ V and H1(q∗2Ei(h3 + σi)) = 0. The
liaison exact sequence:

0→ Oq−1
2 (Vi)(−Z

′
i)→ OZi∪q−1

2 (Vi) → OZi → 0

twisted by q∗2(Ei(h3 + σi)) is:

0→ q∗2Ei(h3)⊗Oq−1
2 (Vi)(σi − Z

′
i)→ q∗2Ei(h3 + σi))|Zi∪q−1

2 (Vi)

→ q∗2Ei|Zi(h3 + σi)→ 0

As σi − Z ′i has degree −1 along the fibers of q2 : q−1
2 (Vi) → Vi, all the

cohomology groups of the bundle q∗2Ei(h3)⊗Oq−1
2 (Vi)(σi−Z

′
i) vanish, so the

cohomology of q∗2Ei(h3+σi))|Zi∪q−1
2 (Vi) can be computed from its restriction

to Zi. Propositions 1.15 and 1.10 show that H0(q∗2Ei|Zi(h3 + σi)) = S2L⊕
S2L⊕ S4L. In conclusion, we have the exact sequence:

0→ Hom(Ei, Ei)→ L⊗ V → S2L⊕ S2L⊕ S4L→ Ext1(Ei, Ei)→ 0

TOME 60 (2010), FASCICULE 4
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By corollary 1.8, the bundle Ei is stable, so it is simple, in other words we
have Hom(Ei, Ei) = C, and the above exact sequence gives
Ext1(Ei, Ei) = 0. �

2. The variety of lines in B

Remark 2.1. — Let δ be an isotropic line in IP(W ). The set of isotropic
planes of δ⊥ containing δ form a line in Gw(3,W ), and all the lines in
Gw(3,W ) are of this type for a unique element of Gw(2,W ). In other words,
the variety of lines in Gw(3,W ) is naturally isomorphic with Gw(2,W ).

Notations. — A point of Gw(2,W ) will be denoted by a lower case
letter, and its corresponding line in Gw(3,W ) by the associated upper case
letter. The Plücker hyperplane section of Gw(j,W ) will be noted hj , the
tautological subbundle by Kj , and the variety of lines included in B will
be denoted FB . Let I be the following incidence variety:

I=Proj
((

K⊥2
K2

)v

(h2)
)

= {(δ, p) ∈ FB×B|p ∈ ∆}⊂Gw(2,W )×Gw(3,W )

The projections from I to FB and B will be denoted by f1 and f2.
I Zi

↙f1 f2↘ ↙q2 q1↘
Gw(2,W ) ⊃ FB B ⊂ Gw(3,W ) Ci ' IP1

Lemma 2.2. — The variety FB is obtained in Gw(2,W ) as the zero
locus of a section of the bundle

(
K⊥2
K2

)v
(h2) ⊕

(
K⊥2
K2

)v
(h2). For a general

choice of B, FB is smooth and irreducible with ωFB = OFB (−h2).

Proof. — As B is a double hyperplane section of Gw(3,W ), we have
from the previous definition of I the equality: f1∗(f∗2OGw(3,W )(h3)) =(
K⊥2
K2

)v
(h2). So FB is the vanishing locus of a section of

(
K⊥2
K2

)v
(h2) ⊕(

K⊥2
K2

)v
(h2) and its dualising sheaf is OFB (−h2). The choice of a generic

2-dimensional subspace of H0(OGw(3,W )(h3)) corresponds to the choice of
a generic section of

(
K⊥2
K2

)v
(h2) ⊕

(
K⊥2
K2

)v
(h2). Hence, for a general choice

of B, the variety FB will be smooth because K⊥2 (h2) is globally generated,
and so is K

⊥
2
K2

(h2) '
(
K⊥2
K2

)v
(h2).

We obtain the vanishing of the first cohomology group of the ideal IFB
of FB in Gw(2,W ) from the exact sequence:

0→ OGw(2,W )(−h2)→
(
K⊥2
K2

)v

⊕
(
K⊥2
K2

)v

→ IFB → 0.
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So we have h0(OFB ) = 1 and FB is connected and smooth, so it is irre-
ducible. �

2.1. A morphism from FB to IP1 × IP1 × IP1 × IP1

Each of the four conics Ci will enable us to construct a morphism from
FB to IP1. We have the following geometric hint to expect at least a rational
map: a general element δ of FB gives an isotropic 2-dimensional subspace
Lδ of W . In general, the projectivisation of L⊥δ intersects the plane containg
Ci in a point p. There is at least an element m of ∆ such that p ∈ πm, so
m is in Hi ∩ H̄ui because it is in ∆ ⊂ B ⊂ Hi. Now, the definition of Hi
and lemma 1.1 prove that p must be on Ci.

But to show that this rational map is everywhere defined, we will use
the vector bundle Ei. We start by constructing line bundles on FB .

Lemma 2.3. — A line ∆ included in B intersects the Veronese surface
Vi if and only if it is included in the hyperplane section H̄ui = q2(Zi) of B.
Moreover, any such line is contained in a quadric Zi,pi for a unique point
pi of Ci. The set vi = {δ ∈ FB |∆ ⊂ H̄ui} is equal to f1(f−1

2 (Vi)) and it is
a divisor in FB .

Proof. — Let δ be an element of FB such that there is a point v in the
intersection ∆∩Vi. By lemma 1.9, the plane πv intersects πui in a line and
it contains the line IP(Lδ). So the intersection IP(Lδ) ∩ πui is not empty
and is included in πv′ for any point v′ of ∆. So ∆ is included in H̄ui .

Now if the line ∆ is included in H̄ui , we have from lemma 1.1 that for any
b ∈ ∆, the plane πb intersects the conic Ci. Let’s first prove that the line
IP(Lδ) must intersect Ci in some point pi. Indeed, if it was not the case, the
intersection of πb with Ci would cover Ci as b vary in ∆, so IP(Lδ) would
be orthogonal to Ci and it would be in the plane πui , but any line in this
plane intersects Ci.

So the line ∆ is in the quadric Zi,pi . Note that IP(Lδ)∩Ci can’t contain
another point because the line ∆ can’t be included in the Veronese surface
Vi. Furthermore, proposition 1.10 implies that Z ′i,pi is a plane section of
the quadric Zi,pi . As this section is irreducible because Vi doesn’t contain
lines, the intersection of ∆ and Vi is a single point. In conclusion we have
vi = f1(f−1

2 (Vi)) and the varieties vi and Vi have the same dimension, so
vi is a divisor in FB . �

Lemma 2.4. — For any point pi of Ci, the scheme f−1
2 (Zi,pi) has several

irreducible components of dimension 2, but some of these components are
contracted by f1 to a curve.
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Proof. — The components of f−1
2 (Zi,pi) corresponding to the lines in-

cluded in Zi,pi are contracted to curves. �

Notations. — Denote by Ai,pi the 2 dimensional part of f1(f−1
2 (Zi,pi)).

Proposition 2.5. — The sheaf f1∗f
∗
2Ei is a line bundle on FB . There

is a natural map µi from L ⊗ OFB to the dual bundle of f1∗f
∗
2Ei. The

image of µi is also a line bundle on FB , we will denote it by OFB (αi). By
construction, for any pi ∈ Ci, the divisor Ai,pi will be in the linear system
|OFB (αi)|, and we have f1∗f

∗
2Ei = OFB (−αi − vi).

Proof. — By corollary 1.8, the bundle Ei is a quotient of 6OB(−1) and by
proposition 1.4, it is a subsheaf of 2OB with c1(Ei) = −1. So its restriction
to any line ∆ included in B must be O∆ ⊕O∆(−1). As a consequence, we
have R1f1∗f

∗
2Ei = 0 and f1∗f

∗
2Ei is a line bundle. Denote this line bundle

by OFB (−α′i). Dualising and twisting the exact sequence defining Ei in
proposition 1.4, we obtain the following one:

(2.1) 0→ L⊗OB(−2h3)→ Ei(−h3)→ Li → 0

where Li is supported on the hyperplane section H̄ui , and is singular along
the Veronese surface Vi. As the incidence I is Proj

((
K⊥2
K2

)v
(h2)
)

(where
K2 is the tautological subbundle of W ⊗OGw(2,W )), the relative dualising
sheaf ωf1 is OI(2h2−2h3). So we have R1f1∗(f∗2Ei(−h3)) = OFB (α′i−2h2).
Therefore the base locus of the map:

L⊗OFB (−2h2)→ OFB (α′i − 2h2)

is the support of R1f1∗f
∗
2 (Li). We will now prove that this sheaf is a line

bundle on the divisor vi defined in lemma 2.3.
The morphism f1 defined at the beginning of section 2, is projective

of relative dimension 1, and the sheaf f∗2Ei(−h3) is flat over FB . So by
base change (cf [4] 11.2 and 12.11), for any point δ of FB , the fiber
(R1f1∗f

∗
2Ei(−h3))δ is H1(Ei(−h3)⊗O∆), where ∆ is the line in B corre-

sponding to δ. The restriction of the sequence (2.1) to ∆ gives the surjec-
tion:

(2.2) 2O∆(−2)→ O∆(−1)⊕O∆(−2)→ Li ⊗O∆ → 0

When the line ∆ is not in the hyperplane section H̄ui , the sheaf Li⊗O∆ is
supported by the point H̄ui ∩∆, so in this case we have h1(Li ⊗O∆) = 0.
Now, when the line ∆ is in H̄ui , the sheaf Li⊗O∆ has generic rank 1 because
the Veronese surface Vi can’t contain the line ∆. We have proved in lemma
2.3 that ∆ intersects Vi, hence for any element of L, the corresponding
section of Ei(h3) vanishes on ∆. So the map 2O∆(−2)→ O∆(−2) induced
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by the sequence (2.2) is zero, and for any δ in vi, we have h1(Li⊗O∆) = 1,
therefore R1f1∗f

∗
2 (Li) is a line bundle on vi.

So our pencil of sections of (f1∗f
∗
2Ei)v can now be interpreted as a base

point free pencil of sections of (f1∗f
∗
2Ei)v(−vi). In other words, the image

of µi is the line bundle OFB (αi) = (f1∗f
∗
2Ei)v(−vi). By definition Ai,pi

is the closure of {δ ∈ FB |length(∆ ∩ Zi,pi) = 1} which was identified set
theoretically with an element of the linear system |αi|, so we conclude the
proof with the following lemma 2.6 �

Lemma 2.6. — For a generic choice of a point pi on Ci, the support
of the sheaf R1f1∗(f∗2 IZi,pi∪Vi(−h3)) represents the class α′i, and all its
irreducible components are reduced.

Proof. — First notice that the point pi on Ci gives from the corollary
1.13 a section of Ei(h3), so the exact sequence:

0→ OB(−2h3)→ Ei(−h3)→ IZi,pi∪Vi(−h3)→ 0.

Applying f∗2 and f1∗ to the previous sequence, we obtain a section of
OFB (α′i) vanishing on the support of the sheaf R1f1∗(f∗2 IZi,pi∪Vi(−h3)).
But this is the definition in [3] of the scheme structure on the set of lines
included in B and intersecting Zi,pi ∪ Vi. So to show that this scheme
structure is reduced on each component, we have to prove that Zi,pi and
Vi are not contained in the ramification locus of the morphism: f2 : I → B.
We will do those two cases simultaneously by taking a general point m on
Zi,pi∩Vi. Such a point is the intersection of Zi,pi and another quadric Zi,p′

i
,

so there pass four distinct lines through m, and from lemma 2.3 there are no
other lines in B through m because m is only on two element of (Zi,p)p∈Ci .
So the point m is not in the ramification of the morphism f2 : I → B

because it is of degree four (cf lemma 3.1, or remind that the tangent cone
of Gw(3,W ) is a cone over a Veronese surface). �

2.2. Description of the morphism

Denote by µ̃i the morphisms from FB to Ci given by the surjections
µi : H0(OCi(σi))v ⊗OFB →→ OFB (αi) constructed in the previous section.
In the following, we prove that the morphism from FB to C1×C2×C3×C4 is
an embedding for a generic B, and that its image is a hyperplane(3) section.

As we need to allow cases where a point and a line do not generate a
plane, we will sometimes work in affine spaces.

(3) with respect to |OC1×C2×C3×C4 (σ1 + σ2 + σ3 + σ4)|

TOME 60 (2010), FASCICULE 4



1414 Frédéric HAN

Notations. — Let CB be the affine cone over B. A vector corresponding
to a point of a projective space will be denoted by the same letter with a
tilde. For a point pi of the conic Ci, we consider:

Fpi = {δ ∈ Gw(2,W )|δ̃ ∧ p̃i ∈ CB}

Unfortunately, we have to remark that µ̃i−1(pi) is not exactly Fpi ∩ FB :

Lemma 2.7. — The intersection Fpi ∩FB is equal to Gw(2, p⊥i )∩FB . It
contains µ̃i−1(pi) and residual curves corresponding to the lines included
in the quadric Zi,pi .

Proof. — If δ be an element of Fpi , then we have the inclusion < Lδ, pi >

⊂< Lδ, pi >
⊥. So δ is in Gw(2, p⊥i ) and Fpi ⊂ Gw(2, p⊥i ).

Now, let δ be an element of Gw(2, p⊥i ) ∩ FB . We have from remark 2.1:

f1(f−1
2 (Zi,pi)) = {δ ∈ FB |∃v ∈ B, IP(Lδ) ⊂ πv ⊂ IP(L⊥δ ) and pi ∈ πv}.

Furthermore, this remark also implies that any isotropic plane of IP(W )
containing IP(Lδ) is an element of the line ∆, so the vector δ̃∧p̃i is either 0 or
corresponds to an element of B. So we have δ̃∧p̃i ∈ CB . So Gw(2, p⊥i )∩FB ⊂
Fpi ∩ FB .

Now remark that in Gw(2,W ), the scheme Gw(2, p⊥i ) is the zero locus
of a section of Kv

2. The restriction of this section to FB vanishes on the
divisor Ai,pi defined in proposition 2.5, so FB ∩ Fpi contains a divisor of
class αi and the zero locus of a section of (Kv

2)|FB (−αi) corresponding to
the lines included in Zi,pi . �

Nevertheless, we have the following:

Lemma 2.8. — For the generic double hyperplane section B of
Gw(3,W ), we can find points pi (resp. pj) in the conics Ci (resp. Cj) such
that Fpi ∩Fpj is a smooth conic in Gw(2,W ). Furthermore, this conic is in
FB and represents the class αi.αj .

Proof. — We can choose pi and pj respectively in Ci and Cj such that,
pi is not in p⊥j . So, for any element δ of Fpi ∩ Fpj , the vectors δ̃ ∧ p̃i and
δ̃ ∧ p̃j are different from 0 and give two distinct points of ∆ ∩ B. This
implies that ∆ is in B, and that the intersection Fpi ∩Fpj is automatically
included in FB . We also deduce from the assumption pi /∈ p⊥j that the
isotropic Grassmannian Gw(2, p⊥i ∩p⊥j ) is a smooth 3-dimensional quadric.

Denote by φk the equation of the hyperplane Hk. Among the four equa-
tions (φk(δ̃∧p̃l) = 0)k,l∈{i,j} defining the intersection Fpi∩Fpj inGw(2, p⊥i ∩
p⊥j ), the following two are automatically satisfied: (φk(δ̃ ∧ p̃k) = 0)k∈{i,j}.
Indeed, recall that the vectors δ̃ ∧ p̃i and δ̃ ∧ p̃j are in the affine cone over
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Gw because d ∈ Gw(2, p⊥i ∩ p⊥j ). Then conclude with lemma 1.1 because pi
is in Ci and pj is in Cj . Consequently, the intersection Fpi ∩ Fpj is defined
in Gw(2, p⊥i ∩ p⊥j ) by the two equations φi(δ̃ ∧ p̃j) = 0 and φj(δ̃ ∧ p̃i) = 0.

Let Lδ be the intersection of p⊥j and the 3 dimensional vector space Ui
represented by the contact point ui of Hi. The corresponding point δ is an
element ofGw(2, p⊥i ∩p⊥j ) such that φj(p̃i∧δ̃) 6= 0 (because p̃i∧δ̃ corresponds
to ui, and B is smooth), but recall from lemma 1.1 that φi(p̃j ∧ δ̃) = 0. So
Fpi ∩Fpj is defined by two independent hyperplane sections of a smooth 3
dimensional quadric. So it is a (may be singular) conic.

Note that from the genericity of B we could also assume that IP(p⊥i ) ∩
Cj = {a1, a2} and IP(p⊥j ) ∩ Ci = {b1, b2} are 4 distinct points. According
to lemma 1.1, the lines (pi, a1), (pi, a2), (pj , b1), (pj , b2) define points of
Fpi ∩ Fpj , but no three of those lines are in the same plane. So the conic
Fpi ∩ Fpj contains four points with no trisecant line, hence it must be
smooth. To conclude that this conic represent the class αi.αj , we just have
to prove that the residual curves of Fpi ∩ FB found in lemma 2.7 have
empty intersection with Fpj . But if δ is such that ∆ ⊂ Zi,pi , the line IP(Lδ)
contains the point pi which is not orthogonal to pj , so δ /∈ Fpj . �

Lemma 2.9. — When i, j, k are distinct, the morphism from FB to Ci×
Cj × Ck is dominant.

Proof. — According to lemma 2.8, for a generic choice of pi ∈ Ci and
pj ∈ Cj , the subvariety Fpi ∩Fpj of FB is a smooth conic, and we can also
assume that the line (pipj) doesn’t intersect Ck and that pi /∈ p⊥j .

If the induced map from Fpi ∩ Fpj to Ck is not dominant, then there is
a point pk ∈ Ck such that Fpi ∩ Fpj ⊂ Fpk . In that case, for any element
δ of Fpi ∩ Fpj the corresponding line IP(Lδ) is in IP(< pi, pj , pk >

⊥). As
pk /∈ (pipj), the vector space < pi, pj , pk >

⊥ has dimension 3, and it is
not isotropic because pi /∈ p⊥j . So the intersection Fpi ∩ Fpj is in the line
Gw(2, < pi, pj , pk >

⊥) and it is not a smooth conic.
So the projection from Fpi ∩ Fpj to Ck is dominant and therefore, the

map FB → Ci × Cj × Ck is dominant. �

At this point, we need more details about the embedding of FB in
Gw(2,W ). As Gw(2,W ) is a hyperplane section of G(2,W ), we will do
the computations in G(2,W ).

Remark 2.10. — Let c2 be the second Chern class of the rank two tau-
tological subsheaf K2. The Chow ring of G(2,W ) is

Q[h2, c2]/(h5
2 + 3h2c

2
2 − 4h3

2c2,−h4
2c2 + 3h2

2c
2
2 − c3

2).
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We obtain from this description of the Chow ring the following compu-
tations:

Lemma 2.11. — The class of FB in the Chow ring of Gw(2,W ) is 4.(h2
2−

c2)2, and FB has degree 24 in Gw(2,W ). In the Chow ring of FB , we have
the extra relation: h2

2 = 3c2.

Proof. — We just have to remark that K⊥2 is isomorphic to the dual of
the tautological quotient and obtain the class of FB from its description in
the lemma 2.2. �

Lemma 2.12. — In the Chow ring of FB we have α2
i = 0, αi.αj .h2 = 2

and αi.αj .αk = 1 when i, j, k are distinct.

Proof. — In proposition 2.5 we have proved that the map µi : 2OFB →
OFB (αi) is onto. So α2

i = 0 because it is the class of the support of the cok-
ernel of µi. The equality αi.αj .h2 = 2 is a direct consquence of lemma 2.8.

From lemma 2.9, for a generic choice of pi, pj , pk, the intersection Fpi ∩
Fpj ∩ Fpk is not empty. Furthermore, this intersection is included in the
smooth conic Fpi ∩ Fpj and the line Gw(2, p⊥i ∩ p⊥j ∩ p⊥k ). So it must be
a point because the intersection of a smooth conic and a line in the 3-
dimensional smooth quadric Gw(2, p⊥i ∩ p⊥j ) must be empty or a point. So
αi.αj .αk = 1. �

At this point we need more informations on the position of the conics.
We start with the following:

Lemma 2.13. — For any integer n, the union of four general IPn in
IP2n+1 has n+ 1 quadrisecant lines.

Proof. — Denote by Q̄ the tautological quotient of rank 2n on the Grass-
mannian G(2, 2n+ 2). The class of the lines intersecting a fixed IPn is the
special Schubert cycle cn(Q̄). Remark that (cn(Q̄))2 is a sum of n+ 1 dis-
tinct self-dual Schubert cycles. So its square is (n+1)c2n(Q̄) and the lemma
is proved. �

Lemma 2.14. — The rational map κ from G(2,H0(OGw(3,W )(1))) to the
symmetric product of order 4 ofGw(3,W ) defined by κ(B)={u1, u2, u3, u4}
is dominant. In particular for a generic B, the intersection πui∩πuj is empty
for i 6= j, and there is no line intersecting every Ci for i ∈ {1, . . . , 4}.

Proof. — The Grassmannian Gw(3,W ) is naturally embedded in Pw and

in its dual space because
3∧
W is self dual. Let (ui)i∈{1...4} be a generic

element of Gw(3, 6)4. The projectified tangent space to Gw(3, 6) at ui is
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six dimensional, but in Pv
w a set of four projective spaces of dimension six

has a quadrisecant line (cf lemma 2.13). Taking one of these lines for the
equations of B proves that κ is dominant.

So for a generic B, the four planes (πui)i∈{1,...,4} have empty intersection
two by two, and there are three lines intersecting all of them. We will prove
that none of those lines are isotropic by producing the following example:

Take an orthogonal decomposition of W into a sum of non isotropic

spaces of dimension 2: W =
2⊕
i=0

Li and chose a basis (ei, e′i) of Li. Con-

sider the projectivisation of < (ei)i∈{0...2} >, < (e′i)i∈{0...2} >, < (ei +
e′i)i∈{0...2} >, < ((i+ 1)ei+ e′i)i∈{0...2} >. The lines IP(Li) are not isotropic
and intersect the four spaces, so we have to show that the union of these
four spaces has a finite number of 4-secant lines. Let A and B be the points∑2
i=0 ai.(ei + e′i) and

∑2
i=0 bi.((i+ 1)ei + e′i). The line (AB) intersects the

first space if and only if (ai)i∈{0...2} and (bi)i∈{0...2} are proportional, and it
intersects the second space if and only if (ai)i∈{0...2} and ((i+ 1)bi)i∈{0...2}
are proportional, so it intersects the four spaces if and only if it is one of
the IP(Li). From this example, the open set of Gw(3,W )4 corresponding to
union of four planes with exactly three non isotropic 4-secant lines is not
empty.

Now we claim that for a generic B, none of the 4-secant lines to
4⋃
i=1

πui

intersects every Ci. Indeed, if l is such a line, suppose that it meets Ci
at pi. As l is not isotropic, the intersection l⊥ ∩ πu1 is a line D such that
p1 /∈ D. By lemma 1.1 the planes < D, p2 > and < D, p3 > are two distinct
elements of B. This implies that < D, p1 > is also in B because it is linearly
dependent with < D, p2 > and < D, p3 >. So B is not smooth because this
plane is u1. �

Notations. — Let F̄ be the image of FB in C1×C2×C3×C4 and denote
by ψ the morphism:

ψ : FB → F̄ .

Lemma 2.15. — The variety F̄ is a smooth divisor in C1×C2×C3×C4
of class

∑4
i=1 σi and ψ is a birational morphism.

Proof. — We deduce from lemma 2.12 that the composition of ψ with
the projection on C1 × C2 × C3 is birational. So ψ is also birational, and
F̄ is a divisor in C1 × C2 × C3 × C4. Let i, j, k, l be four distinct ele-
ments of {1, . . . , 4}. We obtain the coefficient of σl in [F̄ ] from the relation
ψ∗([F̄ ].σi.σj .σk) = αi.αj .αk and lemma 2.12.
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First, we prove that F̄ is normal. As a divisor in a smooth variety satisfies
Serre’s property S2, we just have to prove the regularity in codimension
1. So consider a general double hyperplane(4) section Γ̄ of F̄ . Let Γ be
ψ−1(Γ̄). Apply Bertini’s theorem to the smooth variety FB to obtain that
Γ is a smooth curve. So Γ is the normalisation of Γ̄. Now compute their
arithmetic genus. The curve Γ̄ is a triple hyperplane section of C1 × C2 ×
C3 × C4, so its dualising sheaf is ωΓ̄ = OΓ̄(

∑4
i=1 σi), and it has degree

(
∑4
i=1 σi)4 = 24. From the adjunction formula and the lemma 2.2, we have

ωΓ = OΓ(−h2 + 2.
∑4
i=1 αi). So we obtain the degree of ωΓ by computing

(−h2 + 2.
∑4
i=1 αi).(

∑4
i=1 αi)2 on FB . So the degree of ωΓ is also 24 by

lemma 2.12. Therefore the normalisation Γ of Γ̄ has the same arithmetic
genus as Γ̄, so they are isomorphic (cf [4] IV.1 ex 1.8). In conclusion F̄ is
regular in codimension 1, so it is normal.

We are now able to prove that F̄ is smooth. Assume that the element
(p1, . . . , p4) of C1 × · · · × C4 is a singular point of F̄ . The normality of F̄
and the smoothness of FB imply that the fiber ψ−1(p1, . . . , p4) is not finite.
Recall that it is a subset of Gw(2, p⊥1 ∩· · ·∩p⊥4 ), so p1, . . . , p4 are in a single
projective plane π (cf lemma 2.14). As F̄ is a hyperplane section singular at
(p1, . . . , p4), the 4 lines of C1×C2×C3×C4 containing (p1, . . . , p4) are in F̄ .
We can assume that one of the 4 points (say p1), is such that the following
linear spans < p1, p2, p3 >, < p1, p2, p4 >, < p1, p3, p4 > are equal to π.
Remark that the pull back of the 3 distinct curves {p1}×{p2}×{p3}×C4,
{p1}×{p2}×C3×{p4}, {p1}×C2×{p3}×{p4} by ψ are 3 distinct varieties
of dimension strictly positive in Gw(2, π⊥). So π is an isotropic plane, since
otherwise Gw(2, π⊥) would be a line. So from lemma 1.1 π is an element
of B. In that situation, any of these three varieties gives a two-dimensional
cone included in B with vertex π. So B is not smooth at π because the
tangent cone at a smooth point of a double hyperplane section of Gw(3,W )
is described in the following lemma 2.16.

Lemma 2.16. — The tangent cone CB,m of B at a smooth point m is
either the cone over a scheme of length 4 or the union of a line with a cone
over a smooth conic.

Proof. — Recall that the tangent cone to Gw(3,W ) is a cone over a
Veronese surface. As the variety B is smooth at m, the basis of CB,m is
the intersection of this Veronese surface by two independent hyperplanes.
Their restriction on IP2 gives two independent conics. So their intersection
is either a scheme of length 4 or the union of a point with a line. This proves

(4) with respect to the embedding of C1 × C2 × C3 × C4 by O(
∑4
i=1 σi)
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the lemma because the basis of CB,m is the image of this intersection by
the Veronese embedding of IP2 in IP5. �

This concludes the proof of lemma 2.15. �

Lemma 2.17. — The map ψ is an isomorphism, and the hyperplane
section h2 of FB is linearly equivalent to α1 + α2 + α3 + α4.

Proof. — The smoothness of F̄ gives a non zero map ψ∗(ωF̄ ) → ωFB .
From lemma 2.11, this section of ωFB ⊗ (ψ∗(ωF̄ ))v vanishes on an effective
divisor of class α1 +α2 +α3 +α4−h2 in the Picard group of FB . To obtain
the result, we show that its intersection with h2

2 is zero. Computations on
FB with lemma 2.11 give h3

2 = 24. So the proof will be finished after the
following lemma: �

Lemma 2.18. — The image of the class αi in the Chow ring of Gw(2,W )
is h2.c2.2(h2

2 − c2), and in the Chow ring of FB we have αi.h2
2 = 6.

Proof. — First, choose a hyperplane H ′ such that B = Gw(3,W )∩H ′ ∩
Hi. Let FH′ and FHi be the varieties of lines included respectively in H̄ ′ and
H̄i, and denote by Y the Grassmannian Gw(2, p⊥i ). We proved in lemma
2.7 that αi is represented by the 2-dimensional part of Y ∩ FB for some
point pi on the conic Ci. From the definition of B, we have FB = FH′∩FHi .
The varieties FH′ and FHi represent the class c2

((
K⊥2
K2

)v
(h2)
)

in the Chow
ring of Gw(2,W ), but the intersection Y ∩ FHi has codimension one in Y .
Indeed, for any l in Y the point < pi, l > of Gw(3,W ) is already in H̄i. The
restriction of the sheaf (K2)⊥ to Y has a section given by pi, and the inter-
section Y ∩FHi is the vanishing locus of a section of K⊥2|Y

OY ⊕K2|Y
(h2). Remark

that Y represents the class c2 in Gw(2,W ) to conclude that the class αi is
equivalent to h2.c2.c2

((
K⊥2
K2

)v
(h2)
)

in the Chow ring of Gw(2,W ).
With remark 2.10, we obtain the equality h2

2.αi = 6. This ends the proof
of lemma 2.18, and also of lemma 2.17. �

In conclusion, lemmas 2.15 and 2.17 give the following:

Theorem 2.19. — The variety of lines included in a generic double
hyperplane section of Gw(3,W ) is a smooth hyperplane section of IP1 ×
IP1 × IP1 × IP1.

3. The Chow ring of B

We keep the notations of section 2. We study here the Chow ring of B.
The codimension 2 part of the Chow ring of B will appear to be surprisingly
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bigger than the codimension 2 part of the Chow ring of Gw(3,W ). To
understand this ring, we will compare it to the Chow ring of I via the
projection f2 : I → B.

Lemma 3.1. — The variety B contains 16 quadric cones of dimension
2. For any point m different from the 16 vertices of these cones, the fiber
f−1

2 ({m}) has length 4.

Proof. — We proved in lemma 2.16 that the tangent cone of B is either
four lines (with multiplicity) or the union of a line with a two-dimensional
quadric cone with smooth basis. So if m is not the vertex of a two-dimen-
sional quadric cone, the fiber f−1

2 ({m}) has length 4.
Now, let Γ be such a quadric cone included inB, lemma 3.5 of [6] says that

there is a point e of IP(W ) included in all the planes πu for u in Γ. So Γ is
the intersection of the 3-dimensional quadric Qe = {v ∈ Gw(3,W )|e ∈ πv}
with the pencil of hyperplanes containing B. This proves that one of them
contains Qe. We deduce from proposition 3.3 of [6] that this hyperplane
must be one of the Hi defined in section 1 and that e is on one of the four
conics Ci. But we proved in the lemma 1.11 that there are only four cones
for each Ci. �

Notations. — In the sequel, we will denote the Chow ring over Q of
a variety X by AX . Let c′1 = h3, c′2 and c′3 be the Chern classes of the
tautological quotient Q3 of W ⊗OGw(3,W ). Denote by h′3 the class f∗2h3 in
AI , and let ai be the second Chern class of the bundle Ei.

First, we deduce from the section 2 and lemma 2.2, that the Chow ring
of the incidence variety I is:

Lemma 3.2. — The Chow ring of I is

AI = AFB [h′3]
(h′23 − 2.h2.h′3 + 4

3 .h
2
2)

At this point, we need to get more informations about FB .

Lemma 3.3. — Let i, j, k, l be four distinct elements of {1, . . . , 4}. The
variety FB can be naturally identified with the blow up of Cj ×Ck ×Cl in
an elliptic sextic curve, and vi is the exceptional divisor h2 − 2.αi.

Proof. — In the previous section, we proved that FB is the vanishing lo-
cus of a section of OCi×Cj×Ck×Cl(

∑4
a=1 σa). This section gives an inclusion

of (H0(OCi(σi)))v into H0(OCj×Ck×Cl(σj + σk + σl). So we can consider
Ci as a marked pencil of hyperplane sections of Cj ×Ck×Cl such that FB
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is the incidence variety:

{(x, h)|x ∈ Cj × Ck × Cl, h ∈ Ci, h(x) = 0}

In other words, the variety FB is identified with the blow up of Cj ×Ck ×
Cl in the intersection of this Segre threefold with the marked pencil of
hyperplanes. The contraction is given by the linear system |h2 − αi| and
the class of the exceptional divisor is h2 − 2αi. By the adjunction formula,
this intersection is an elliptic sextic curve.

We will now prove that vi is the exceptional divisor. Let a, b be distinct
elements of {j, k, l}. Choose a point pa on Ca and another one pb on Cb
such that IP(p⊥a ∩ p⊥b ) ∩ Ci = ∅. The divisor vi was constructed in lemma
2.3 as the set of lines included in the hyperplane section H̄ui of B. So any
element δ of vi has its corresponding line ∆ in H̄ui . Consequently the line
IP(Lδ) intersects Ci. So IP(Lδ) can’t be in IP(p⊥a ∩ p⊥b ), and we have the
relation αa.αb.vi = 0. Now, lemma 2.17 implies (h2 − αi)2.vi = 0, so set
theoretically, vi is the exceptional divisor. But we proved in lemma 2.6 that
vi is reduced. �

Lemma 3.4. — The projection f1∗(f∗2 ai) of the second Chern class of
f∗2Ei to AFB is h2 − αi. Furthermore, we have in AI the equality: f∗2 ai =
h′3.(h2 − αi) + h2(2αi − h2)

Proof. — From lemma 3.3 and proposition 2.5, the first Chern class of
f1∗(f∗2Ei) is −αi − vi = αi − h2. We will obtain the first assertion from
Riemann-Roch-Grothendieck’s theorem:

We have from the description of I at the beginning of section 2 the
equality ωf1 = OI(2h2 − 2h′3). So the Todd class of the relative tangent
bundle and the Chern character of f∗2 (Ei) are at order two:

td(Tf1) = 1 + (h′3−h2) + (h′3 − h2)2

3
, ch(f∗2 (Ei)) = 2−h′3 + h′23 − 2f∗2 (ai)

2
.

From lemma 3.2, their product modulo terms of order two is: 2 + h3 −
f∗2 (ai)+P (h2) (where P (h2) is a polynomial in h2). But we obtained in the
proof of proposition 2.5 the vanishing of R1f1∗f

∗
2Ei, so the first Chern class

of f1∗f
∗
2Ei is from Riemann-Roch-Grothendieck’s theorem −f1∗f

∗
2 (ai), and

we have the equality f1∗f
∗
2 (ai) = h2 − αi.

To obtain the second assertion, we will study the cokernel of the evalua-
tion map f∗1 f1∗f

∗
2Ei → f∗2Ei. Again remark the vanishing of R1f1∗(f∗2Ei).

So the relative Beilinson’s spectral sequence (cf proof of lemma 1.12) ends
at the first level and we have the following exact sequence:

0→ f∗1 f1∗f
∗
2Ei → f∗2Ei → ωf1(h′3)⊗ f∗1R1f1∗(f∗2 (Ei(−h3)))→ 0.
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From the propositions 2.5 and 3.3, the sheaf f1∗f
∗
2Ei is OFB (αi− h2). But

we have already obtained in the proof of proposition 2.5 that
R1f1∗(f∗2 (Ei(−h3)) is a line bundle on FB , so the previous sequence is
the following extension:

(3.1) 0→ OI(f∗1αi − f∗1h2)→ f∗2Ei → OI(f∗1h2 − f∗1αi − h′3)→ 0,

and the computation of f∗2 ai follows. �

Lemma 3.5. — Let γ ∈ A2
B . The class f∗2 γ can be written in AI by

h′3.γ0 + γ1 for some elements γi in the vector space generated in Ai+1
FB

by
hi2α1, . . . , h

i
2α4. Moreover, we have: 2h2.γ0 + γ1 ∈ Q.h2

2.

Proof. — We can first find classes γi in Ai+1
FB

such that f∗2 γ = h′3.γ0 +γ1.
Then remark that A3

B is one dimensional. Indeed, the Picard group of B
is Z/ , the family of rational curves I is unsplit, and from lemma 2.16 B is
covered by these curves because the tangent cone at any point of B is never
empty. From the proposition 1.1 of [1], B is rationally chain connected for
I, and from the proposition 3.13.3 of [10] A1(B) is one dimensional.

So h3.γ is proportional to h3
3. But from the relation h′23 = 2.h2.h

′
3− 4

3 .h
2
2,

the class f1∗h
′3
3 is proportional to h2

2. So the class f1∗f
∗
2 (γ.h3) is also in

Q.h2
2, and we have 2h2.γ0 + γ1 ∈ Q.h2

2. We can now conclude that γ1 is
in the vector space generated by h2α1, . . . , h2α4 because the description of
FB in lemma 3.3 says that γ0 and h2 are in the vector space generated by
α1, . . . , α4. �

Lemma 3.6. — For all i in {1, . . . , 4}, the class ai is in the affine space
1
2 .f2∗(h2αi) + Q.h2

3. Moreover, we have in AB the relation 2(a1 + a2 + a3 +
a4) = 3h2

3, and the classes (a1, a2, a3, a4) form a basis of the vector space
A2
B .

Proof. — Denote by V the union of the vertices of the cones described
in the lemma 3.1. The codimensions of V in B and of f−1

2 (V) in I are
respectively 4 and 3. So we have the isomorphism: A2

B ' A2
B−V , and A2

I '
A2
I−{f−1

2 (V)}. From lemma 3.1, the map f2 : (I − {f−1
2 (V)}) → (B − V) is

flat and finite of degree 4. Therefore the restriction of f2∗f
∗
2 to A2

B is by
the projection formula 4.idA2

B
.

So, by lemma 3.5, A2
B is generated by the set of classes

{f2∗(h′3.αi), f2∗(h2αi)}i=1...4. As the Picard group of B is generated by
h3, we obtain from the projection(5) formula that all the classes f2∗(h′3.γ0)
are proportional to h2

3. Now, we use the relation 4
3 .h

2
2 = 2.h2.h

′
3 − h

′2
3 to

(5) recall that h′3 is by definition f∗2 (h3)
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eliminate h2
2 in the expression of f∗2 ai found in lemma 3.4. Consequently

ai is in the affine space 1
2 .f2∗(h2αi) + Q.h2

3.
So we have proved that A2

B is generated by h2
3, a1, a2, a3, a4. Moreover,

we have f1∗f
∗
2 ai = h2 − αi and (h2 − αi)i={1,...,4} is a free family in A1

FB
,

so the family (a1, . . . , a4) is free in A2
B .

To obtain the relation with h2
3, we substitute the expression of f∗2 ai of

lemma 3.4 in the relation found in lemma 2.17. We eliminate h′3.h2 with

the relation 4
3 .h

2
2 + h

′2
3 = 2.h2.h

′
3, and we obtain:

4∑
i=1

f∗2 ai = 3
2h
′2
3 . �

So we are now ready to describe the Chow ring of B.

Proposition 3.7. — The Chow ring of B is Q[h3, a1, a2, a3, a4]/I
where I is generated by 3h2

3 − 2.
∑4
i=1 ai, (8h3.ai − 3h3

3)i∈{1,...,4},
(8.ai.aj − h4

3)i 6=j,(i,j)∈{1,...,4}2 . (The class of a point is a1.a2
2 , the class of

the Veronese surface Vi is 2ai − 1
2h

2
3, and [Vi]2 is 4 points).

Proof. — As AiB is known to be one dimensional for i ∈ {0, 1, 3, 4}, we
just need to find the relations. This is done by computing degrees because
we have found the structure of A2

B in lemma 3.6. The relations (8h3.ai−3h3
3)

are consequences of the facts that the degree of Gw(3, 6) is 16 and that
ai can be represented by the union of a quadric Zi,pi and the Veronese
surface Vi.

We have from lemma 3.5 the equality f∗2 [Vi] = h′3.vi+γ1 for some element
γ1 of h2

2.Q + h2αi.Q. Moreover, by lemma 3.3 vi is h2 − 2αi, so we obtain
from lemma 3.6 that [Vi] is in the vector space generated by h2

3 and ai and
[Zi,pi ] also. From the degrees of these varieties, we have: [Vi] = 2ai − 1

2h
2
3

and [Zi,pi ] = 1
2h

2
3 − ai. The last relations are deduced from the equalities

[Vi].[Vj ] = 0 for i 6= j. �

4. Application to quadratic normality

In this part, we explain the link of our construction with the congru-
ence of lines found in [14]. They start with the intersection of G(2, 6) by
a very particular IP11. Denote by Γ this five dimensional intersection. Re-
call that the choice of this IP11 is proved in [13] to be unique up to the
action of GL6. After that, they choose a general quadric containing a fixed
subscheme(6) of Γ to obtain a reducible intersection with Γ. Then they
check with Macaulay2 that one of these irreducible components is smooth
of degree 16 and sectional genus 9.

(6) This particular subscheme contains the singular locus of Γ.
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Here we prove that the generic Fano 4-fold of genus 9 with Picard number
1 can be obtained by their construction, and that the choice we need to
do is generically finite. More precisely, the choice of Γ corresponds to the
choice of a tangent hyperplane H to Gw(3, 6), and the choice of the quadric
corresponds to the choice of a generic element in the twelve dimensional
linear system |OH̄(h3)|.

Proposition 4.1. — For any i in {1, 2, 3, 4}, the bundle Ei(h3) gives
an embedding of the Fano manifold B in the Grassmannian G(2, 6) as the
congruence of lines constructed in theorems 8,9,10 of [14].

Proof. — Their description of the congruence is in terms of equations, so
we need to make an adapted choice of coordinates to get the link. Choose
a basis w0, . . . , w5 of W such that ωv = w0 ∧ w3 + w1 ∧ w4 + w2 ∧ w5.
Let A and B be the vector spaces generated respectively by w0, w1, w2 and
w3, w4, w5. Note that the form ω gives an identification between Av and

B. The decomposition W = A ⊕ B gives a decomposition of
3∧
W . We

can represent an element of
3∧
W as in [6] by (a,X, Y, b), with a ∈ ∧3A,

b ∈ ∧3B, X ∈ Hom(A,B), Y ∈ Hom(B,A). The equations of G(3, 6) are
∧2X = aY , ∧2Y = bX, Y X = ab.I3, and to obtain Gw(3, 6) we add the

linear relations X = tX and Y = tY . So take X =

 x0 x1 x2
x1 x5 x3
x2 x3 x4

 and

Y =

 y0 y1 y2
y1 y5 y3
y2 y3 y4

.

Now we need to choose a hyperplane H as in section 1.1. Consider the
hyperplane y5 = y2. It is tangent to Gw(3, 6) in [w0∧w1∧w2] and contains
[w3∧w4∧w5]. Moreover, the conic described in lemma 1.1 is parameterized
by λ2w0 + λµw1 + µ2w2, so the incidence ZH is given in IP1 × H̄ by the
equations:

a = 0, X.
(
λ2

λµ

µ2

)
=
(

0
0
0

)
,
(
−µ λ 0
0 −µ λ

)
.Y =

(
0 0 0
0 0 0

)
The 6 dimensional vector space H0(IZH (1, 1)) is generated by

(−a.λ,−a.µ, λy1 − µy0, λy2 − µy1, λy3 − µy2, λy4 − µy3).

The sheaf E constructed in proposition 1.4 is the image of the map:

6OH̄(−1)

(
a 0 y0 y1 y2 y3
0 a −y1 −y2 −y3 −y4

)
−−−−−−−−−−−−−−−−−−−−−−−−→ 2OH̄ .
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Now remark that it is exactly the map of [14], Theorem 9. A generic hy-
perplane section of Gw(3, 6) gives a linear relation between a, (xi), (yi), b.
As it is exactly the relation 29 of [14], we have obtained the identification
with their congruence of lines. �

4.1. Geometry of the focal locus of Mezzetti-de Poi’s congruence

Here we choose one of the 4 bundles, say E1.

Notations. — Denote by Ξ the projective bundle Proj(E1(h3)), by h

its relative hyperplane class, and by pB the projection from Ξ to its basis
B. We proved in corollary 1.8 that the linear system |h| gives a morphism
from Ξ to IP5. Denote it by r.

B
pB←− Ξ r−→ IP5

Lemma 4.2. — The morphism r : Ξ → IP5 is birational. The class of
the exceptional divisor R in Ξ is 4h− h3.

Proof. — The degree of r is given by the length of the degeneracy locus
of a generic map 5OB → E1(h3), so it is the fourth Segre class of E1. This
class is h4

3 − 3h2
3a1 + a2

1, and from proposition 3.7 we obtain the relations
h4

3 = 16, a1h
2
3 = 6, a2

1 = 3, so r is birational. As the canonical sheaf of B
is OB(−2h3), the canonical sheaf of Ξ is OΞ(−h3− 2h). So the class of the
exceptional divisor of r is 4h− h3. �

Notations. — Denote by X the locus r(R), often called the focal locus
of the congruence of lines B. Recall from [14] that X has dimension 3,
degree 6, and is singular along a rational smooth cubic curve C.

The manifold B gives the family LB = {r(IP(E1,u))|u ∈ B} of lines in
IP5. From lemma 4.2, any element of LB not included in X intersects X
in length 4. We can now describe easily the normalisation X̃ of X. We will
study its geometry to point out the analogies with the Palatini threefold.
To get a better comparison with the Palatini threefold, some proofs will be
valid in a more general setting (cf propositions 4.7, 4.10, 4.11). Take the
following:

Definition 4.3. — We will say that a variety B is “a congruence sat-
isfying (4.3)” if it is a smooth subvariety of G(2, 6) of dimension 4 such
that:

– The projection to r : Ξ → IP5 is birational, with an irreducible
exceptional divisor R contracted to a codimension 2 subvariety X

of IP5.
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– The canonical sheaf of B is the restriction of OG(2,6)(−2).
– The variety FB of lines included in B has pure dimension 3, and

the projection f2 is onto.
The restriction to B of the tautological rank two bundle will be denoted by
E1 and its determinant by OB(−h3). The incidence variety Proj(E1(h3))
will again be noted Ξ. The projections from Ξ to IP5 and B will be r and
pB . Still denote by I the incidence variety (point of B)/(line of B). The
projections from I to FB and B will be f1 and f2.

The congruences studied in the proposition 4.1 will be called “congru-
ences of type MdP”.

Example 4.4. — A generic codimension four linear section of G(2, 6) is
a congruence satisfying (4.3). It is the Mukai model for a genus 8 Fano 4-
fold. Its focal locus X is smooth and irreducible, it will be called a Palatini
threefold. In this example, the morphism f2 is also of degree four.

Proof. — Such a linear section of G(2, 6) is a smooth congruence of order
1. By push-forward from Ξ, we have the exact sequence:

0→ 4OIP5
w−→ Ω1

IP5
(2)→ IX(4)→ 0.

So, by the genericity of w, X is smooth and irreducible. The degree of f2 is
the number of lines included in B through a general point v of B. But the
tangent cone of G(2, 6) at v is a cone over IP1× IP3. So its intersection with
B is four lines. Therefore, the projection f2 is surjective and of degree 4
over B. The variety FB is embedded in the incidence variety F1,3 (point of
IP5)/(plane of IP5). Denote by j and j′ the projections from the incidence
variety point/line/plane to F1,3 and G(2, 6). The variety FB is defined in
F1,3 as the vanishing locus of a generic section of the globally generated

vector bundle
4
⊕
i=1

j∗(j′∗OG(2,6)(1)), so it has pure dimension 3. �

Remark 4.5. — The lemma 4.2 is true for any congruence satisfying
(4.3).

Proof. — By assumption r is birational, and the computation of the class
of R is the same because the canonical divisor of B is not changed. �

We should remark that a congruence of type MdP will satisfy (4.3) af-
ter the proof of the proposition 4.7 and its corollary 4.8. Before that, we
consider again the situation of a congruence of type MdP to obtain the
following:
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Lemma 4.6. — The restriction of f2 to f−1
1 (vi) is a morphism of degree

two from f−1
1 (vi) to H̄ui . We have the equalities f2∗f

∗
1 (αi) = h3 and 4h3 =

f2∗f
∗
1 (h2).

Proof. — The equality f2(f−1
1 (vi)) = H̄ui is just a corollary of lemma

2.3. To compute the degree of this morphism, we chose a generic point b of
H̄ui . From the definition of vi in lemma 2.3, this degree is the number of
lines included in H̄ui containing b. The lines of H̄ui are described in lemma
2.3 as the lines included in the quadrics (Zi,pi)pi∈Ci . As b is generic in H̄ui ,
it is not in the Veronese surface Vi, so there is only one point pi of Ci such
that b is in the quadric Zi,pi . So the only lines of H̄ui through b are the
two rulings of Zi,pi containing b. Therefore the restriction of f2 to f−1

1 (vi)
has degree two over H̄ui and we have f2∗f

∗
1 (vi) = 2h3.

The description of FB in lemma 3.3 as a blowup gives the relation vi =
h2−2.αi. So we have from lemma 2.17 the equality 8h3 =

∑4
i=1 f2∗f

∗
1 (vi) =

2f2∗f
∗
1 (h2) and we obtain f2∗f

∗
1 (αi) = h3. �

Proposition 4.7. — Let B be a congruence satisfying (4.3). The pro-
jective bundle Proj(f∗2 (E1(h3))) over I has a section ρ such that the restric-
tion of f∗2 (OΞ(h)) to ρ(I) is the line bundle (f∗1 (f1∗f

∗
2 (E1)))v. Moreover,

we have f2(ρ(I)) = R, and this equality remains true for any congruence
of type MdP.

Proof. — In the proof of lemma 3.4 we proved that the cokernel of the
evaluation map f∗1 f1∗f

∗
2E1 → f∗2E1 is a line bundle over I (cf the extension

(3.1)). We should point out here that it was obtained from the fact that the
restriction of E1 to any line ∆ of B is O∆⊕O∆(−1). In particular it is true
for any congruence of lines satisfying (4.3) because E1 is the tautological
bundle of rank two.

As the cokernel of f∗1 f1∗f
∗
2E1 → f∗2E1 is invertible, it must be the

line bundle (f∗1 f1∗f
∗
2E1)v(−h3). So we have a surjection from f∗2 (E1(h3))

to the line bundle (f∗1 f1∗f
∗
2E1)v. This defines a section ρ of the fibra-

tion Proj(f∗2 (E1(h3))) such that the restriction of f∗2 (OΞ(h)) to ρ(I) is
(f∗1 (f1∗f

∗
2 (E1)))v. As this bundle is the pull back of a line bundle of FB ,

the composition r◦f2◦ρ contracts the fibers of f1 : I → FB . So we have the
inclusion: f2(ρ(I)) ⊂ R. Therefore in the case of a congruence satisfying
(4.3), the equality follows from the irreducibility of R and the dimension
of FB .

Now consider a congruence of type MdP. From the proposition 2.5, the
class of ρ(I) in Proj(f∗2 (E1(h3))) is f∗2 (h − h3) + f∗1 (h2) − f∗1 (α1). The
projection formula gives f2∗([ρ(I)]) = 4(h − h3) + f2∗f

∗
1 (h2) − f2∗f

∗
1 (α1)
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and by the lemmas 4.6 and 4.2 we have f2∗([ρ(I)]) = 4h − h3 = [R]. This
achieve the proof of the equality f2(ρ(I)) = R for that case. �

Corollary 4.8. — The focal locus X of Mezzetti-de Poi’s congruence
is a projection of IP1×IP1×IP1 from a line(7) . The variety of pencils of lines
belonging to LB is IP1 × IP1 × IP1 blown up in the elliptic curve of degree
6 defined by the double cover of the cubic curve C via this projection.

Proof. — From the propositions 2.5 and 4.7, the restriction of f∗2 (h) to
ρ(I) is f∗1 (h2−α1), and by lemma 2.17, it is also f∗1 (α2+α3+α4). Moreover,
we have by proposition 4.7 the equalities r(f2(ρ(I))) = r(R) = X. So the
composition r ◦ f2 ◦ ρ is given by a linear subsystem of dimension five of
|f∗1 (α2+α3+α4)|. So the morphism r◦f2◦ρ from I to X can be decomposed
like this:

(4.1) r ◦ f2 ◦ ρ : I
f1−→ FB

r2−→ C2 × C3 × C4
r1−→ X,

where r2 is the contraction of the exceptional divisor v1, and r1 is the
projection of C2×C3×C4 from a line of IP(H0(OC2×C3×C4(σ2 +σ3 +σ4))v).

We will prove that the elliptic curves r2(v1) and r−1
1 (C) are the same.

Indeed, let p1 be generic in C1, and b be generic in Z1,p1 . Denote by δp1,b and
δ′p1,b

the two points of FB corresponding to the rulings of Z1,p1 containing
b. From lemma 2.3 and the genericity of p1 and b, we obtain that δp1,b and
δ′p1,b

are generic in v1.
From the decomposition (4.1) of r ◦ f2 ◦ ρ, the point r1(r2(δp1,b)) and

r ◦ f2 ◦ ρ(δp1,b, b) are equal. From the equality f2 = pB ◦ f2 ◦ ρ, this point
is on the line r(IP(p−1

B (b))) because the element (δp1,b, b) of I is mapped
by f2 to b. For the same reason, the point r1(r2(δ′p1,b

)) is also on the line
r(IP(p−1

B (b))). But from the genericity of b and p1, this line intersects the
curve r1(r2(v1)) in at most one point. So the two points r1(r2(δp1,b)) and
r1(r2(δ′p1,b

)) are equal. As b is generic in Z1,p1 we obtain that all the rulings
of Z1,p1 have the same image mp1 by r1◦r2. So the curve (r1◦r2)−1({mp1})
has two irreducible components, and mp1 is in the singular locus C of X.
Moreover this construction gives an identification between the cubic curve
C and C1.

We conclude the proof of the corollary with the remark that the pencils
of lines belonging to LB are (by definition) the lines included in B, so they
are parameterized by FB . �

Remark 4.9. — From the proposition 4.7, the corollary 4.8 and the
lemma 2.2, a congruence of type MdP satisfies (4.3).

(7) Note that we don’t prove that this line is generic.
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We can also obtain a description of the plane curves in X related to this
family of lines:

Proposition 4.10. — Let B be a congruence satisfying (4.3). Any
point of FB gives a plane in IP5 intersecting X in a point and a plane
cubic.

Moreover, if B is of type MdP, those plane cubics are singular in a point
of C. In that case, only 12 lines included in X are in LB.

Proof. — Let B be a congruence satisfying (4.3). Any point δ of FB
corresponds to a line ∆ included in B. The restriction of the tautological
bundle E1 to ∆ is O∆ ⊕O∆(−1). Lemma 4.2 implies that the intersection
of R with p−1

B (∆) is given by a section of (S4(E1))(3h3). This intersection
contains the exceptional divisor of Proj(O∆ ⊕O∆(1)) which is contracted
to a point by r. So the plane r(p−1

B (∆)) intersects X in a cubic curve and
a unique residual point included in all the lines (r(IP(E1,p)))p∈∆.

Now we assume that B is of type MdP. From the lemma 3.1, and the
equality f2(ρ(I)) = R of lemma 4.7, the projection R → B is finite of
degree four except over 16 points of B. To understand why the plane cubic
described above is singular, we first notice that it is the image of the follow-
ing curve T∆ of FB : The closure in FB of the lines included in B intersecting
∆ and different from ∆. A general ∆ intersects the hyperplane section H̄u1

in a single point b not lying on the Veronese V1. From corollaries 1.14 and
1.15, there is a single quadric Z1,p1 containing b. The two lines containing b
and included in this quadric are included in H̄u1 . So, from lemma 2.3, they
correspond in FB to two involutive points on the exceptional divisor v1 of
FB with respect to the degree two morphism described in lemma 4.6. In
conclusion, for a general ∆, the curve T∆ intersects the exceptional divisor
v1 in 2 points that have the same image by r1 ◦ r2. So the plane cubic is
singular at this point of C.

For the same reason, if b is one of the four vertices of the cones of H̄u1∩B,
the line IP(p−1

B (b)) is contracted by r to a point on the curve C. This is
why only twelve lines of X belong to the family LB. �

When a subvariety of IPn is not k-normal, there are ele-
ments of |OX(k)| that can’t be extended to a hypersurface
of IPn of degree k. Such a divisor will be called a virtual
section. The first example of non linearly normal variety,
is a Veronese surface in IP4. We can remark that this sur-
face has a natural duality, and also a marked virtual section
of O(1). In the case of a non 2-normal threefold of IP5 we
have shown above that we can expect some correspondence
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between points and plane cubics instead of a duality. We
point out here that there is also a naturally marked virtual
section of OX(2) associated to the construction and study
its geometry.

Proposition 4.11. — Let B be a congruence satisfying (4.3). The ram-
ification divisor DpB of the restriction of pB toR is the pullback of a virtual
section of OX(2).

Proof. — Locally DpB is defined in the projective bundle Ξ by the van-
ishing of the two partial derivatives of the equation of R relatively to pB .
So we define DpB in Ξ as the support of the cokernel of the polarization
map:

p∗B(E1(h3))v → OΞ(R− h).

Therefore, it is the vanishing locus of a section ζ of p∗B(E1)(h3 +R − h).
From the isomorphism E1 ' Ev

1(−h3), the Koszul complex of this section
is:

0→ ωv
pB (−2R)→ p∗B(E1)(h−R)

tζ−→ OΞ → ODpB → 0

where ωpB is the relative dualising sheaf of pB : Ξ → B. By the Euler
formula, the tautological map from OΞ(−R) to p∗B(E1)(h −R) composed
with tζ is the multiplication by the equation of R from OΞ(−R) to OΞ. So
we have the commutative diagram:
(4.2)

OΞ(−R) → OΞ → OR → 0
↓ ↓ ↓

0 → ωv
pB (−2R) → p∗B(E1)(h−R)

tζ−→ OΞ → ODpB → 0
↓ ↓

0 → ωv
pB (−2R) → ωv

pB (−R)

.

From the snake lemma, the kernel of the surjection from OR to ODpB is
ωv
pB (−R)⊗OR. So the ramification DpB is given on R by the vanishing of

a section of the line bundle ωpB (R)⊗OR. By lemma 4.2, this line bundle is
r∗(OX(2)). Let IDpB be the ideal of DpB in Ξ. We have the exact sequence:

0→ OΞ(−R)→ p∗B(E1)⊗ ωpB (h)→ IDpB ⊗ ωpB (R)→ 0.

ANNALES DE L’INSTITUT FOURIER



GEOMETRY OF THE GENUS 9 FANO 4-FOLD 1431

By the projection formula, all the sheaves RipB∗(p∗B(E1) ⊗ ωpB (h)) are
zero for i in {0, 1}. From lemma 4.2, the sheaf pB∗(OΞ(−R)) vanishes also.
So, by the Leray spectral sequence, the groups H0(p∗B(E1) ⊗ ωpB (h)) and
H1(p∗B(E1)⊗ ωpB (h)) are zero, and we have the equalities:

h0(IDpB ⊗ ωpB (R)) = h1(OΞ(−R)) = h0(R1pB∗(OΞ(−R))).

By relative duality, the sheaf R1pB∗(OΞ(−R)) is the dual of pB∗(ωpB (R)).
So we have the equalities:

h0(IDpB (2h)) = h0(S2(E1)) = h0(OΞ(2h− 2h3)).

Assume that the linear system |OΞ(2h − 2h3)| contains some element R′.
The restriction of R′ to any line ∆ included in B is twice the exceptional
divisor of Proj(O∆ ⊕O∆(1)). But this divisor is contracted to a point by
r, so R′ is in the exceptionnal divisor of r. But from lemma 4.2 and R
would be reducible. So the existence of R′ contradicts one of the properties
of definition 4.3. In conclusion we have h0(IDpB (2h)) = 0. So r(DpB ) is a
virtual section of OX(2). �

Now using properties that are strongly related to the geom-
etry of congruences of type MdP, we will obtain a more de-
tailled description of this virtual section. The corollary 4.8
gives a natural geometric relation between the marking of
a line in the following two projective spaces: The span of
the first and second variety of the third row of the extended
Freudenthal magic square (cf [7] p101). We should also point
out that the invariant algebra for the θ-group SL2⊗

∧3
Sp6

(cf [9] table III) is freely generated by polynomials of degree
2, 6, 8, 12. Moreover, the same result is true for the invariant
algebra of the semi direct product of (SL(2,C))⊗4 with the
permutation group σ4 (cf [16]). Is the following configura-
tion related to another case of the table of [9] with invariants
of the same degrees?

Proposition 4.12. — The ramification locus Rf2 of the morphism f2 :
I → B is f−1

1 (Σ) for some surface Σ in |OFB (h2)|. The canonical sheaf of
Σ is trivial, and Σ contains the 16 rational curves parameterizing the 16
cones of B. The image of Σ in X is the virtual section r(DpB ).

Proof. — The canonical divisor of I can be computed from §2, and we
get that Rf2 ∼ f∗1h2. The 16 contracted curves must be in Rf2 . We proved
in proposition 4.7 the equality f2(ρ(I)) = R. So we obtain the inclusion
(f2 ◦ ρ)−1(DpB ) ⊂ Rf2 from the equality f2 = pB ◦ f2 ◦ ρ. So the virtual
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section r(DpB ) is included in r2 ◦ r1(Σ). We obtain the last assertion from
the fact that r2 ◦ r1(Σ) is also in |OX(2)| by the lemma 3.3. �

4.2. A rank 2 reflexive sheaf on IP5

A general double hyperplane section of X is by corollary 4.8 a smooth
elliptic curve of degree 6. From Serre’s construction, it is the vanishing locus
of a section of a rank 2 vector bundle on IP3, unique up to isomorphism.
Curiously, there is a way to globalize this construction over IP5. In this
part we will construct an SL2-equivariant rank 2 reflexive sheaf on IP5
using classical techniques developed in mathematical instanton studies (cf
[2], [17]). Consider again vector spaces L and V of respective dimensions 2
and 6. This construction will be essentially unique up to the SL6 action.
Indeed, it could be constructed from a tangent hyperplane to Gw(3, 6) or
as follows:

Recall from [13] that S2L⊗
2∧
V has an SL2×SL6-orbit whose points cor-

respond to nets of alternating forms of constant rank 4. Let β ∈ S2L⊗
2∧
V

be an element of this orbit. This element was considered by E. Mezzetti and
P. de Poi in [14] to construct the special IP11 containing their congruence
of lines. For instance, take the following β:

0 u2 2uv v2 0 0
−u2 0 0 0 0 0
−2uv 0 0 0 0 u2

−v2 0 0 0 0 2uv
0 0 0 0 0 v2

0 0 −u2 −2uv −v2 0


We can remark that β viewed as an element of

2∧
(L ⊗ V ) has rank 6

because it can be represented by:

0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 1 0
−1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 −1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 −1 0 0 0 0
0 0 0 0 0 0 −1 0 0 −1 0 0


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Denote by W the six dimensional image of this map, we will identify W

with its dual via the induced alternating form. The inclusion W ⊂ L ⊗ V
gives a map β′ from W to L⊗OIP5(1), and we can construct a complex:

(4.3) L⊗OIP5(−1)
tβ′−→W ⊗OIP5

β′−→ L⊗OIP5(1)

with tβ′ injective, whose middle cohomology is a rank 2 reflexive sheaf K.
The right cohomology is a sheaf L, supported on a smooth rational cubic
curve C, isomorphic to OIP1(4). So we can compute from the complex (4.3)
some of the invariants of K:

Corollary 4.13. — The sheaf K has rank 2 and Chern numbers
c1(K) = 0, c2(K) = 2, c3(K) = 0, c4(K) = −15. Its singular locus
is the cubic curve C. We have H0(K(1)) = 0 and H0(K(2)) = 13, and
H1(K) = 1.

In particular, a section of K(2) vanishes on a 3-fold X ′ of degree 6 sin-
gular along C. From the exact sequence:

0→ OIP5(−2)→ K → IX′(2)→ 0,

we have the equalities h1(IX′(2)) = h1(K) = 1. Therefore X ′ is not
quadratically normal.

So we have constructed from a fixed Γ a linear family of projective dimen-
sion twelve of non quadratically normal varieties of degree 6 and singular
along the cubic curve C.
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