
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Wojciech KUCHARZ & Santiago R. SIMANCA

Codimension two transcendental submanifolds of projective space
Tome 60, no 4 (2010), p. 1479-1488.

<http://aif.cedram.org/item?id=AIF_2010__60_4_1479_0>

© Association des Annales de l’institut Fourier, 2010, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2010__60_4_1479_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
60, 4 (2010) 1479-1488

CODIMENSION TWO TRANSCENDENTAL
SUBMANIFOLDS OF PROJECTIVE SPACE

by Wojciech KUCHARZ & Santiago R. SIMANCA

Abstract. — We provide a simple characterization of codimension two sub-
manifolds of Pn(R) that are of algebraic type, and use this criterion to provide
examples of transcendental submanifolds when n > 6. If the codimension two sub-
manifold is a nonsingular algebraic subset of Pn(R) whose Zariski closure in Pn(C)
is a nonsingular complex algebraic set, then it must be an algebraic complete in-
tersection in Pn(R).

Résumé. — Nous fournissons une caractérisation simple des variétés de codi-
mension deux de Pn(R) qui sont de type algébrique, et employons ce critère pour
fournir des exemples des sous-variétés transcendantales quand n > 6. Si la sous-
variété de codimension deux est un sous-ensemble algébrique non singulier de Pn(R)
dont la fermeture de Zariski dans Pn(C) est un ensemble algébrique complexe non
singulier, alors ce doit être une intersection algébrique complète dans Pn(R).

1. Introduction

Let us denote by Pn(R) and by Pn(C) the real and complex projective
n-spaces, respectively. We regard the first of these as a subset of the second.
A compact smooth (of class C∞) submanifold M of Pn(R) is said to be
of algebraic type if it is isotopic, in Pn(R), to the set of real points of a
nonsingular complex algebraic subset of Pn(C) defined over R. A subman-
ifold M of Pn(R) that is not of algebraic type is said to be transcendental.
Any M ⊂ Pn(R) such that either codimM = 1, or 2 dimM + 1 6 n,
is of algebraic type in Pn(R). Precisely, there exists a smooth embedding
e : M → Pn(R), arbitrarily close in the C∞ topology to the inclusion map
M ↪→ Pn(R), such that e(M) is the set of real points of a nonsingular
complex algebraic subset of Pn(C) defined over R [11, Remark 1.2] (in the
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case when 2 dimM + 1 6 n, this assertion is highly nontrivial and relies
on a projective version of the Nash-Tognoli theorem [14, 16] proven in [9],
and on Hironaka’s resolution of singularities [7]). In particular, any M such
that dimM 6 1 is always of algebraic type in Pn(R).

It is known, but in no way obvious, that transcendental submanifolds
exist. The first of their examples were obtained by Akbulut and King [2]
(see also [1] for the preliminary results required in [2]). A substantially
simpler and explicit construction is contained in [11].

In the present article, we characterize the codimension 2 compact smooth
submanifolds of algebraic type in Pn(R) for n > 6; the cases n = 4 and
n = 5 remain mysterious.

Let us recall that a codimension 2 compact smooth submanifold M of
Pn(R) is said to be a complete intersection if it can be expressed as M =
M1 ∩M2, where M1 and M2 are compact smooth hypersurfaces in Pn(R)
that meet transversally. As usual, we denote the first Stiefel-Whitney class
of a smooth manifold N by w1(N). It is a standard fact that N is orientable
if, and only if, w1(N) = 0.

Theorem 1.1. — Let M be a codimension 2 compact smooth subman-
ifold of Pn(R). Then the following two conditions are equivalent:

(a) w1(M) is in the image of the restriction homomorphism

H1(Pn(R); Z/2)→ H1(M ; Z/2).

(b) M is a complete intersection in Pn(R).
These conditions imply

(c) M is of algebraic type in Pn(R).
If n > 6, all three conditions (a), (b), and (c) are equivalent.

We postpone the proof until §2. An attractive feature of Theorem 1.1
is that conditions (b) and (c) have an obvious geometric flavor, while the
algebraic condition (a) is verifiable directly in many cases.

Corollary 1.2. — Each codimension 2 compact orientable smooth
submanifold of Pn(R) is a complete intersection, and hence, of algebraic
type in Pn(R).

Proof. — The assertion follows by Theorem 1.1 since condition (a) is
satisfied. �

Remark 1.3. — It is plausible that each codimension 2 compact smooth
submanifold of either P4(R) or P5(R) is of algebraic type. However, in these
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dimensions we are able to show only that condition (c) in Theorem 1.1 is
not equivalent to conditions (a) and (b):

(1) Suppose that n = 4. The mapping

ε : P2(C)→ P4(C)

defined by

ε((y1 : y2 : y3)) =
(
y2

1 + y2
2 + y2

3 : y1y2 : y1y3 : y2y3 : y2
1 + 2y2

2 + 3y2
3
)
,

is an algebraic embedding (see [11, Lemma 3.2] if desired). Hence ε(P2(C))
is a nonsingular complex algebraic subset of P4(C) defined over R. The set
M = ε(P2(R)) of real points of ε(P2(C)) is a smooth submanifold of P4(R)
contained in the affine part R4 of P4(R). Since M is nonorientable, condi-
tion (a) in Theorem 1.1 is not satisfied, and hence neither is condition (b).
Obviously, M is of algebraic type in P4(R).

(2) Suppose that n = 5. Let

ϕ : P1(C)× P2(C)→ P5(C)

be the Segre embedding

ϕ ((x1 : x2), (y1 : y2 : y3)) = (x1y1 : x1y2 : x1y3 : x2y1 : x2y2 : x2y3).

The set ϕ(P1(R) × P2(R)) of real points of ϕ(P1(C) × P2(C)) is a smooth
submanifold M of P5(R). Note that condition (a) in Theorem 1.1 is not
satisfied, and so neither is condition (b). Indeed, given a positive inte-
ger k, let us denote by vk the unique generator of the cohomology group
H1(Pk(R); Z/2) ∼= Z/2. We define the mappings j1 : P1(R)→ P1(R)×P2(R)
and j2 : P2(R)→ P1(R)× P2(R) by

j1 ((x1 : x2)) = ((x1 : x2), (1 : 0 : 0)) ,
j2 ((y1 : y2 : y3)) = ((1: 0), (y1 : y2 : y3)) .

If ψ : P1(R)× P2(R)→ P5(R) is the restriction of ϕ, then

j∗1 (ψ∗(v5)) = (ψ ◦ j1)∗(v5) = v1,

and
j∗2 (ψ∗(v5)) = (ψ ◦ j2)∗(v5) = v2,

and, therefore, ψ∗(v5) = v1 × 1 + 1× v2, where 1 denotes the unit element
in H0(−; Z/2), and × stands for the cross product in cohomology. Thus,
ψ∗(v5) is not equal to w1(P1(R)×P2(R)) = 1×v2. Consequently, condition
(a) in Theorem 1.1 is not satisfied. By construction, M is of algebraic type
in P5(R).
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1482 Wojciech KUCHARZ & Santiago R. SIMANCA

Clearly, Theorem 1.1 with n > 6 gives a characterization of codimension 2
transcendental submanifolds of Pn(R). The following observation, which
for emphasis we state as a corollary, provides numerous examples of such
submanifolds.

Corollary 1.4. — Let N be a compact nonorientable smooth surface,
and let Sd denote the unit d-sphere in Rd+1. Assume that n > 6. Then the
manifold N ×Sn−4 embeds in Rn ⊂ Pn(R) and is transcendental in Pn(R).

Proof. — Let us identify Rn with a subset of Pn(R) via the mapping
(x1, . . . , xn)→ (1 : x1 : · · · : xn). IfM is any codimension 2 compact nonori-
entable smooth submanifold of Pn(R) that is contained in Rn, then condi-
tion (a) in Theorem 1.1 is not satisfied. Consequently, if n > 6, any such M
is a transcendental submanifold of Pn(R). If N is a compact nonorientable
smooth surface, then the manifold N × Sn−4 can be smoothly embedded
in Rn. This is so since N can be embedded in R4, and Sn−4 × R4 can be
identified with the total space of the normal bundle of Sn−4 in Rn, where
we regard Rn−3 as a subset of Rn−3 × R3 = Rn. �

We now examine a different aspect of the problem addressed by Theo-
rem 1.1. A codimension 2 nonsingular algebraic subset X of Pn(R) is said to
be an algebraic complete intersection if it can be expressed as X = X1∩X2,
where X1 and X2 are nonsingular algebraic hypersurfaces in Pn(R) that
meet transversally. Clearly, if X is an algebraic complete intersection in
Pn(R) then, when it is regarded as a smooth submanifold of Pn(R), X is a
complete intersection. It turns out that the converse is also true.

Theorem 1.5. — Let X be a codimension 2 nonsingular algebraic sub-
set of Pn(R). Then the following conditions are equivalent:

(a) X is an algebraic complete intersection in Pn(R).
(b) X, regarded as a smooth submanifold of Pn(R), is a complete

intersection.
(c) w1(X) is in the image of the restriction homomorphism

H1(Pn(R); Z/2)→ H1(X; Z/2).

The proof of Theorem 1.5 is given in §2.

Corollary 1.6. — Let X be a codimension 2 nonsingular algebraic
subset of Pn(R). If n > 6 and the Zariski closure of X in Pn(C) is a nonsin-
gular complex algebraic set, then X is an algebraic complete intersection
in Pn(R).
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Proof. — Obviously X, regarded as a smooth submanifold of Pn(R), is
of algebraic type. The result then follows by applying Theorems 1.1 and
1.5. �

As the reader may have noticed, Corollary 1.6 resembles Hartshorne’s
conjecture [6] on complete intersections in Pn(C), a conjecture that remains
open to this date.

2. Submanifolds and vector bundles

Throughout this section, we assume that submanifolds are closed subsets
of the ambient manifold.

Let P be a smooth manifold and let M be a smooth submanifold of P
of codimension r. In general, it is hard to decide whether or not there exist
a smooth real vector bundle E on P and a smooth section s : P → E such
that rankE = r, s is transversal to the zero section, and M is equal to the
zero locus Z(s) = {x ∈ P | s(x) = 0} of s. As it is well known, the case
r = 1 is exceptional: E and s always exist (this is, of course, a standard
fact, see [4, Remark 12.4.3] for example). For r = 2, we have the following
result.

Proposition 2.1. — Let P be a smooth manifold and let M be a codi-
mension 2 smooth submanifold of P . Then the following conditions are
equivalent:

(a) w1(M) is in the image of the restriction homomorphism

H1(P ; Z/2)→ H1(M ; Z/2).

(b) There exist a rank 2 smooth real vector bundle E on P and a
smooth section s : P → E, with s transversal to the zero section of
E and such that Z(s) = M .

If the normal bundle of M in P is assumed to be trivial, then the vector
bundle E in (b) can be chosen to be orientable.

Proof. — The equivalence of (a) and (b) is proved in [10, Lemma 2.3].
Suppose now that the normal bundle of M in P is trivial. By the classical
Pontryagin-Thom construction, there exist a smooth mapping f : P → S2

and a regular value y0 ∈ S2 of f with f−1(y0) = M (see [12] for details). We
regard S2 as P1(C), and readily find a rank 2 smooth real vector bundle F
over P1(C) and a smooth section u : P1(C)→ F such that u is transversal
to the zero section, and Z(u) = {y0}. The pullback vector bundle E = f∗F

TOME 60 (2010), FASCICULE 4
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on P and the pullback section s = f∗u of E satisfy condition (b). By
construction, the vector bundle E is orientable. �

Our next goal is the classification of rank 2 real vector bundles on Pn(R)
for n > 2.

We denote by Γ the universal real line bundle on Pn(R), and by R the
trivial real line bundle on Pn(R) with total space Pn(R)×R. We recall that
each real line bundle on Pn(R) is isomorphic to either R or Γ. Below, wi(E)
denotes the ith Stiefel-Whitney class of the bundle E.

We denote by vn the unique generator of the cohomology group
H1(Pn(R); Z/2) ∼= Z/2. Thus, vn = w1(Γ). The cohomology group
H2(Pn(R); Z/2) ∼= Z/2 is generated by the cup product vn ∪ vn.

Proposition 2.2. — Let E be a rank 2 real vector bundle on Pn(R).
(1) If E is orientable and n > 2, then E is isomorphic to either R⊕R

or Γ⊕ Γ.
(2) If E is nonorientable and n > 3, then E is isomorphic to Γ⊕R.

Proof. — We prove the two cases separately:
(1) Since the vector bundle E is orientable, its structure group can be

reduced to SO(2) ∼= U(1). Hence, there exists a complex line bundle L on
Pn(R) with LR isomorphic to E, where the notation LR is used to indi-
cate that L is regarded as a real vector bundle by restricting the scalars
from C to R. As it is well known [8], L is determined up to isomorphism
by its first Chern class c1(L) ∈ H2(Pn(R); Z) ∼= Z/2. The homomor-
phism ρ : H2(Pn(R); Z) → H2(Pn(R); Z/2) induced by the epimorphism
Z → Z/2 is an isomorphism. Since ρ(c1(L)) = w2(LR) [13], it follows that
E is determined up to isomorphism by its second Stiefel-Whitney class
w2(E) ∈ H2(Pn(R); Z/2). Clearly, w2(R⊕R) = 0 and w2(Γ⊕Γ) = vn∪vn.
This completes the proof of this case.

(2) Let M be a closed manifold. Then the groups of isomorphism classes
of real line bundles over M and H1(M ; Z/2) are isomorphic. Thus, each real
line bundle on Pn(R) is isomorphic to one of either R or Γ, and in order
to prove the stated result, it suffices to show that the nontrivial vector
bundle E has a nowhere zero section. Equivalently, we have to prove that
the S1-bundle S(E) determined by E has a section.

Obstruction theory can be applied to decide whether or not S(E) has a
section. Accordingly, we are required to use cohomology of Pn(R) with co-
efficients in the local system {πk(S(E)x)} consisting of the kth homotopy
group πk(S(E)x) for each fiber S(E)x of S(E) over x, as x varies in Pn(R).
Since S(E)x ∼= S1, we have that π1(S(E)x) ∼= Z and πk(S(E)x) = 0 for

ANNALES DE L’INSTITUT FOURIER
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k > 2. Hence, the only nonzero local system is {π1(S(E)x)}, which is the
local system Zvn of integer coefficients Z twisted by vn = w1(E). We con-
sider the usual CW decomposition of Pn(R) with i-skeleton Pi(R) ⊂ Pn(R)
for 0 6 i 6 n. By a basic result in obstruction theory [15, Theorem 34.2],
it follows that if the S1-bundle S(E) has a section over the 2-skeleton of
Pn(R), then it has a section over Pn(R), which is what we need. By [15,
Theorem 35.4], there is only one obstruction to the existence of a section
of S(E) over the 2-skeleton, and this obstruction is given by a cohomology
class in H2(Pn(R); Zvn). We assert that H2(Pn(R); Zvn) = 0, so the ob-
struction vanishes, the section exists over the 2-skeleton, and the desired
result follows.

The group H2(Pn(R); Zvn) depends on the 3-skeleton of Pn(R) only.
Hence, by naturality, the groups H2(Pk(R); Zvk), k > 3, are all isomorphic.
Since v4 = w1(P4(R)), by Poincaré duality (see for example [5, Theorem
5.7]), we have that H2(P4(R); Zv4) ∼= H2(P4(R); Z), and the latter group is
trivial. The assertion follows. �

Proof of Theorem 1.1. — We first show that (a) is equivalent to (b).
Suppose that (a) holds. By Proposition 2.1, there exist a rank 2 smooth real
vector bundle E on Pn(R) and a section s : Pn(R)→ E that is transversal
to the zero section of E and is such that Z(s) = M . If n = 2, we may
assume that E is orientable. Notice that in such a case, the manifold M is
a finite set.

By Proposition 2.2, we may assume that E = E1 ⊕E2 is the direct sum
of two smooth line bundles E1 and E2, and hence, s = s1 ⊕ s2, where
si : Pn(R) → Ei is a smooth section of Ei, i = 1, 2. Notice that si is
transversal to the zero section of Ei at each point of M . Consequently,
there exists a smooth section ui : Pn(R)→ Ei, arbitrarily close in the C∞
topology to si, such that ui = si on M and ui is transversal to the zero
section of Ei. We get M = Z(u1) ∩ Z(u2), and the smooth hypersurfaces
Z(u1) and Z(u2) in Pn(R) intersect transversally. Therefore, (b) is satisfied.

Conversely, suppose that (b) holds. Then M can be expressed as M =
M1 ∩M2, where M1 and M2 are compact smooth hypersurfaces in Pn(R)
that intersect transversally. Let Li be a smooth line bundle on Pn(R), and
let σi : Pn(R)→ Li be a smooth section of Li such that σi is transversal to
the zero section, and Z(σi) = Mi for i = 1, 2. The section σ1⊕σ2 : Pn(R)→
L1⊕L2 is transversal to the zero section and Z(σ1⊕σ2) = M . By Proposi-
tion 2.1, (a) is satisfied. The proof of the equivalence of conditions (a) and
(b) is complete.

It follows by [3, Theorem 7.1] that (b) implies (c).

TOME 60 (2010), FASCICULE 4
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Now suppose that (c) holds and that n > 6. It remains to prove that
(a) is satisfied. This can be done as follows. There exists a nonsingular
complex algebraic subset V of Pn(C), defined over R, such that M is iso-
topic in Pn(R) to the set V (R) of real points of V . Clearly, (a) holds if,
and only if, w1(V (R)) is in the image of the restriction homomorphism
r : H1(Pn(R); Z/2)→ H1(V (R); Z/2). Since V is defined over R, the canon-
ical line bundle κ on V is also defined over R. Let us denote by κ(R) the
real line bundle on V (R) determined by κ. According to [11, Lemma 2.1],
w1(κ(R)) is in the image of r (the assumption n > 6 is used here). The
proof is complete since w1(κ(R)) = w1(V (R)). �

In order to treat algebraic complete intersections in Pn(R) we make use
of algebraic vector bundles. Following the terminology used in [4], by an
algebraic vector bundle on an algebraic subset Y of Rp we mean an algebraic
subbundle of the trivial bundle on Y with total space Y × Rq for some q.

Lemma 2.3. — Let Y be a compact nonsingular algebraic subset of Rp
and let X be a nonsingular algebraic subset of Y . Let E be an algebraic
vector bundle on Y and let s : Y → E be a smooth section with X ⊂ Z(s).
Then there exists an algebraic section u : Y → E, arbitrarily close in the
C∞ topology to s, such that X ⊂ Z(u).

Proof. — By [4, Theorem 12.1.7], there exists an algebraic vector bundle
F on Y such that the direct sum E ⊕ F is an algebraically trivial vector
bundle. If 0: Y → F is the zero section, then the smooth section σ =
s ⊕ 0: Y → E ⊕ F satisfies X ⊂ Z(σ). The section σ corresponds to
a smooth mapping f : Y → Rq with X ⊂ f−1(0), where q is the rank
of E ⊕ F . By the Weierstrass relative approximation theorem [4, Lemma
12.5.5], there exists a regular mapping f : Y → Rq that is arbitrarily close
in the C∞ topology to f and satisfies X ⊂ f

−1(0). The algebraic section
σ : Y → E ⊕ F determined by f is close in the C∞ topology to σ, and
X ⊂ Z(σ). Hence the algebraic section u : Y → E that is given by the
composition of σ and the canonical projection E⊕F → E has the required
properties. �

It is well known that Pn(R) can be regarded as an algebraic subset of
Rp for some p [4, Theorem 3.4.4], and hence Lemma 2.3 is applicable to
sections of algebraic vector bundles on Pn(R).

Proof of Theorem 1.5. — By Theorem 1.1, it suffices to prove that (b)
implies (a). Suppose that (b) holds and that X = M1 ∩M2, where M1 and
M2 are compact smooth hypersurfaces in Pn(R) that intersect transversally.
Let Li be a smooth real line bundle on Pn(R) and let si : Pn(R) → Li
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be a smooth section such that si is transversal to the zero section and
Mi = Z(si) for i = 1, 2. We know that Li is isomorphic to either R or Γ,
and hence we may assume that Li is an algebraic line bundle on Pn(R),
i = 1, 2. By Lemma 2.3, there exists an algebraic section ui : Pn(R) → Li,
arbitrarily close in the C∞ topology to si, withX ⊂ Z(ui) for i = 1, 2. Since
si is transversal to the zero section, then so is ui. Hence Z(u1) and Z(u2) are
nonsingular algebraic hypersurfaces in Pn(R) that intersect transversally,
and X = Z(u1) ∩ Z(u2). This means that condition (a) is satisfied. �

Acknowledgement. — We are indebted to Ed Miller for discussions on
cohomology with coefficients in a local system, and its use in the argument
leading to the proof of Proposition 2.2.
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