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ON THE LINEAR INDEPENDENCE OF p-ADIC
L-FUNCTIONS MODULO p

by Bruno ANGLÈS & Gabriele RANIERI

Abstract. — Let p > 3 be a prime. Let n ∈ N such that n > 1, let χ1, . . . , χn be
characters of conductor d not divided by p and let ω be the Teichmüller character.
For all i between 1 and n, for all j between 0 and (p− 3)/2, set

θi,j =
{
χiω

2j+1 if χi is odd;
χiω

2j if χi is even.

Let K = Qp(χ1, . . . , χn) and let π be a prime of the valuation ring OK ofK. For all
i, j let f(T, θi,j) be the Iwasawa series associated to θi,j and f(T, θi,j) its reduction
modulo (π). Finally let Fp be an algebraic closure of Fp. Our main result is that
if the characters χi are all distinct modulo (π), then 1 and the series f(T, θi,j) are
linearly independent over a certain field Ω that contains Fp(T ).

Résumé. — Soit p > 3 un nombre premier. Soit n ∈ N tel que n > 1, soient
χ1, . . . , χn des caractères de conducteur d premier à p ; notons ω le caractère de
Teichmüller. Pour tout i entre 1 et n et pour tout j entre 0 et (p− 3)/2, on pose

θi,j =
{
χiω

2j+1 si χi est impair ;
χiω

2j si χi est pair.

Soit K = Qp(χ1, . . . , χn) et soit π un premier de l’anneau de valuation OK de K.
Pour tout i, j notons f(T, θi,j) la série d’Iwasawa associée à θi,j et f(T, θi,j) sa
réduction modulo (π). Finalement soit Fp une clôture algébrique de Fp. Nous mon-
trons que si les caractères χi sont distincts modulo (π), alors 1 et les séries f(T, θi,j),
sont linéairement indépendantes sur un certain corps Ω qui contient Fp(T ).

Keywords: p-adic L-functions, p-adic Leopoldt transform, Iwasawa theory, irrationality.
Math. classification: 11R23, 11R18, 11S80, 11J72.
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1. Introduction

Let p be an odd prime. Let n ∈ N such that n > 1, let χ1, . . . , χn be char-
acters of conductor d not divided by p and let ω be the Teichmüller char-
acter. For all i between 1 and n and j such that 0 6 j 6 (p− 3)/2, set

θi,j =

{
χiω

2j+1 if χi is odd;
χiω

2j if χi is even.

Observe that, by definition, θi,j is an even character for all i, j.
Set κ0 = 1 + dp and K = Qp(χ1, . . . , χn) (i.e. the extension of Qp gen-

erated by all the images of χi for all i). Let π be a prime of the valuation
ring OK of K and let Fq be OK/πOK . For all i between 1 and n and j
between 0 and (p − 3)/2, set f(T, θi,j) the Iwasawa power series attached
to the p-adic L-function Lp(s, θi,j) (see [4, Theorem 7.10]) and f(T, θi,j)
its reduction modulo (π).

Let Fp be an algebraic closure of Fp. For F (T ) ∈ Fp[[T ]], we say that
F (T ) is a pseudo-polynomial if and only if there exist r ∈ N, a1, . . . , ar ∈ Zp
and c1, . . . , cr ∈ Fp such that

F (T ) =
r∑
i=1
ci(T + 1)ai .

Then the set of the pseudo-polynomials is a ring which we denote by A.
Moreover we denote by Ω the quotient field of A. The elements of Ω are
called pseudo-rational functions. Anglès (see [1, Theorem 4.5]) shows that
for all non-trivial even character of the first kind θ, f(T, θ) is not a pseudo-
rational function. We shall prove the following generalisation of this result:

Theorem 1. — Suppose that the characters χi are all distinct mod-
ulo (π) (i.e. for all integer i 6= j there exist a ∈ (Z/dZ)∗ such that
χi(a) 6≡ χj(a) mod (π)). Then the elements of the set

{1, f(T, θi,j), 1 6 i 6 n, 0 6 j 6 (p− 3)/2}

are linearly independent over Ω.

Observe that in the statement of Theorem 1 it is necessary to suppose
that the characters χi are all distinct modulo (π). Indeed suppose that there
exist i 6= k between 1 and n such that χi and χk are congruent modulo (π).
Since p is odd this implies that χi and χk have the same parity. Then for
all 0 6 j 6 (p − 3)/2 we have that θi,j is congruent to θk,j modulo (π),
which implies f(T, θi,j) = f(T, θk,j). Thus in this case the series f(T, θi,j)
are dependent.
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LINEAR INDEPENDENCE OF p-ADIC L-FUNCTIONS 1833

Observe also that if the characters χi are distinct modulo (π), then for
all i, i′ between 1 and n, j, j′ between 0 and (p− 3)/2, θi,j is congruent to
θi′,j′ modulo (π) if and only if i = i′, j = j′. It is clear that i = i′ implies
j = j′ and j = j′ implies i = i′. Then suppose that i 6= i′, j 6= j′ and that
θi,j is congruent to θi′,j′ modulo (π). Moreover suppose that χi and χi′ are
even (the other case is identical). Hence there exists an integer a such that
ω2j(a) 6≡ ω2j′(a) mod (π). Since p does not divide d there exists an integer
c such that 1 + cd ≡ a mod (p). Then θi,j(1 + cd) ≡ ω2j(a) mod (π) and
θi′,j′(1+cd) ≡ ω2j′(a) mod (π). Since θi,j and θi′,j′ are equivalent modulo
(π), we get ω2j(a) ≡ ω2j′(a) mod (π), which is a contradiction.

As in the proof of [1, Theorem 4.5], the main ingredient in the proof
of Theorem 1 is a remarkable result due to Sinnott. Before the statement
of that result we must define the following equivalence relation: let a, b ∈
Zp − {0}. We say that a is equivalent to b mod (Q∗) (a ≡ b mod (Q∗)) if
and only if there exists c ∈ Q∗ such that ab−1 = c.

Proposition 1. — ([3, Proposition 1]) Let F be a finite field of charac-
teristic p and let r1(T ), . . . , rs(T ) ∈ F (T )∩F [[T ]]. Let c1, . . . , cs ∈ Zp−{0}
and suppose that

s∑
i=1
ri((T + 1)ci − 1) = 0.

Then for all a ∈ Zp, ∑
ci≡a mod (Q∗)

ri((T + 1)ci − 1) ∈ F.

Let’s describe briefly the strategy of the proof of Theorem 1. First (sec-
tion 2) we recall some properties of the p-adic Leopoldt transform (most
of them already proved in [1]) which we will often use.

Then (section 3) we consider the case d > 2. Some results about the
p-adic Leopoldt transform of [1] and Proposition 1 will allow us to reduce
the proof of Theorem 1 to the computation of the rank of a certain matrix
whose entries depend on the values of the characters χi (Lemma 4). After
such computation the proof of this case of the theorem will follow by some
simple remarks of linear algebra.

In section 4 we study the case d = 1. In that case we have to consider a
“perturbation” of the functions f(T, θi,j) to be able to apply Proposition 1.
Then the proof is not very different from the proof of the previous case
(actually it is simpler since it does not request a result similar to Lemma 4)
and some remarks of linear algebra will imply the assumption.
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1834 Bruno ANGLÈS & Gabriele RANIERI

Finally we give a link between Theorem 1 and Ferrero-Washington’s
heuristic (see [2]). Let i be an integer between 1 and (p− 3)/2. Write

f(T, ω2i) =
+∞∑
k=0
ak(ω2i)T k.

The λ-invariant of f(T, ω2i), denoted by λ(ω2i), is the least k such that
ak(ω2i) 6≡ 0 mod (p). We set

λ− =
(p−3)/2∑
i=1
λ(ω2i).

Ferrero and Washington make the following hypothesis to define a heuristic
to make previsions about possible bounds for λ−.

Ferrero-Washington’s hypothesis: Every coefficient of f(T, ω2i) is random
mod (p) and independent from the other coefficients.

Theorem 1 implies that

1, f(T, ω0), f(T, ω2), . . . , f(T, ωp−3)

are linearly independent over Ω. Thus our result seems to confirm Ferrero-
Washington’s hypothesis.

2. Preliminaries

In this section we shall list some properties of the p-adic Leopoldt trans-
form that will be very important in the proof of Theorem 1. Let L be
a finite extension of Qp, OL its valuation ring and Fq′ its residue field.
Let κ a topological generator of 1 + pZp and, for all a ∈ Z∗p, set ω(a) the
unique (p− 1)th root of unity in Zp congruent to a mod (p). Following [1]
for all δ ∈ Z/(p − 1)Z we define p-adic Leopoldt transform Γδ the unique
continuous OL-linear endomorphism of OL[[T ]] such that for all a ∈ Zp,

Γδ((T + 1)a) =

ωδ(a)(T + 1)
logp(a)
logp(κ) if a ∈ Z∗p;

0 otherwise

(see [1, Sections 2., 3.] for the proof of the fact that Γδ is well-defined and
unique). In an obvious way we can define a similar Fq′ -linear continuous
endomorphism of Fq′ [[T ]] that we denote by Γδ. Observe that if a ∈ Z∗p we
have a ≡ ω(a) mod (p). Thus, for all a ∈ Z∗p, we have

Γδ((T + 1)a) = aδ(T + 1)
logp(a)
logp(κ) .

ANNALES DE L’INSTITUT FOURIER



LINEAR INDEPENDENCE OF p-ADIC L-FUNCTIONS 1835

In the proof of Theorem 1 we use other OL-linear endomorphisms of
OL[[T ]] already introduced by Anglès in [1]. Let us recall their definition.
Let µp−1 ⊆ Z∗p be the group of (p−1)th roots of unity. For all δ ∈ Z/(p−1)Z
and F (T ) ∈ OL[[T ]], we set

γδ(F (T )) = 1
p− 1

∑
η∈µp−1

ηδF ((T + 1)η − 1).

Observe that γδγδ′ = 0 for δ 6= δ′, γ2
δ = γδ and

∑
δ∈Z/(p−1)Z γδ = IdOL[[T ]].

For F (T ) ∈ OL[[T ]] set

D(F (T )) = (T + 1) d
dT
F (T )

U(F (T )) = F (T )− 1
p

∑
ζ∈µp

F (ζ(T + 1)− 1) ∈ OL[[T ]].

In an obvious way we can define the Fq′ -linear endomorphism of Fq′ [[T ]]
γδ, D and U . Observe that:

• U2 = U ;
• DU = UD;
• γδU = Uγδ for all δ ∈ Z/(p− 1)Z;
• Dγδ = γδ+1D for all δ ∈ Z/(p− 1)Z;
• U = Dp−1.

In the following lemma we shall list some properties of Γδ whose we need
to prove Theorem 1.

Lemma 1. — Let δ ∈ Z/(p− 1)Z and F (T ) ∈ OL[[T ]]. Then
(1) Γδ(F (T )) = Γδγ−δ(F (T )) = Γδγ−δUF (T ).

(2) Suppose that Γδ(F (T )) is a pseudo-polynomial. Then γ−δU(F (T ))
is a pseudo-polynomial.

(3) Γδ+1(F (T )) = ΓδD(F (T )).

Proof. —
(1) See [1, Proposition 3.2(2)].
(2) The assumption immediately follows from [1, Proposition 3.1].
(3) Since Γδ is a Fq′ -linear continuous endomorphism of Fq′ [[T ]], it suffices

to prove that the assumption is true for F (T ) = (T + 1)a with a ∈ Zp. If p
divides a we have

0 = Γδ+1((T + 1)a) = Γδ(D((T + 1)a))

and the assumption is trivial.

TOME 60 (2010), FASCICULE 5



1836 Bruno ANGLÈS & Gabriele RANIERI

Suppose that p does not divide a. We have

Γδ(D((T + 1)a)) = Γδ(a(T + 1)a))

= aΓδ((T + 1)a)

= aδ+1(T + 1)
logp(a)
logp(κ)

= Γδ+1((T + 1)a).

�

Let θ be a Dirichlet character of the first kind such that

θ = χωδ+1,

with δ ∈ Z/(p − 1)Z and χ a character of conductor d not divided by p.
Observe that κ0 = 1 + dp is a topological generator of 1 + pZp and from
now on set κ = κ0. Suppose that Qp(χ) ⊆ L. Set

Fχ(T ) =
d∑
a=1

χ(a)(T + 1)a

1− (T + 1)d

and Fχ(T ) ∈ Fq′(T ) its reduction modulo the maximal ideal of OL. In the
following lemma we list some properties of Fχ(T ) and we recall the relation
between Fχ(T ) and f(T, θ).

Lemma 2. — We have:
(1) If d > 2, then Fχ(T ) ∈ OL[[T ]].

(2) If d = 1, then γα(Fχ(T )) ∈ OL[[T ]] for all α ∈ Z/(p−1)Z and α 6= 1.

(3) If d > 2, then Fχ((T + 1)−1 − 1) = εFχ(T ) where ε = 1 if χ is odd
and ε = −1 if χ is even.

(4) If d = 1, then Fχ((T + 1)−1 − 1) = −Fχ(T )− 1.

(5) If d divides a positive integer g we have

Fχ(T ) =
∑g
a=1 χ(a)(T + 1)a

1− (T + 1)g
.

(6) Γδγ−δU(Fχ(T )) = f((T + 1)−1 − 1, θ).

Proof. —
For (1), (2), (3), (4), see [1, Lemma 4.1].

ANNALES DE L’INSTITUT FOURIER
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(5) We have:∑g
a=1 χ(a)(T + 1)a

1− (T + 1)g

=
d∑
a=1
χ(a)

∑
b≡a mod (d)

χ(b)(T + 1)b

1− (T + 1)g

=
d∑
a=1
χ(a) (T + 1)a + (T + 1)a+d + . . .+ (T + 1)a+g−d

1− (T + 1)g

=
∑d
a=1 χ(a)(T + 1)a(1− (T + 1)g)
(1− (T + 1)g)(1− (T + 1)d)

= Fχ(T ).

(6) Remember that Uγ−δ = γ−δU . Then apply [1, Lemma 4.4]. �

Consider the ring OL[[t]]. It acts over OL[[T ]] via:

(t+ 1)F (T ) = F ((T + 1)κ0 − 1) ∈ OL[[T ]],

for all F (T ) ∈ OL[[T ]].

Lemma 3. — Let H(T ) ∈ OL[[T ]]. Then for all F (T ) ∈ OL[[T ]] we have

H(T )Γδ(F (T )) = Γδ(H(t)F (T )).

Proof. — Since Γδ is OL-linear and continuous it suffices to prove the
assumption in the case P (T ) = (T + 1)a, where a ∈ Zp. By [1, Proposition
3.2(3)] for all b ∈ Z∗p we have

Γδ(F (T + 1)b − 1) = ωδ(b)(T + 1)
logp(b)
logp(κ) Γδ(F (T )).

Then we get

Γδ((t+ 1)aF (T )) = Γδ(F ((T + 1)κ
a
0 − 1)

= ωδ(κa0)(T + 1)
logp(κa0 )
logp(κ0) Γδ(F (T ))

= (T + 1)aΓδ(F (T )).

�

3. The case d > 2

The aim of this section is to prove Theorem 1 in the case where the
conductor d of the characters χi is > 2.

TOME 60 (2010), FASCICULE 5
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Proof of Theorem 1 in the case d > 2. — Let χ1, χ2, . . . , χn characters
of conductor d > 2 distinct modulo (π). Without loss of generality we can
suppose χ1, . . . , χr odd and χr+1, . . . , χn even for a certain integer r 6 n.
For all i between 1 and n and j between 0 and (p− 3)/2 set

(3.1) θi,j =

{
χiω

2j+1 if 1 6 i 6 r;
χiω

2j otherwise.

Suppose that for all 1 6 i 6 n, 0 6 j 6 (p − 3)/2, there exist gi,j(T ) ∈ Ω
such that

n∑
i=1

(p−3)/2∑
j=0

gi,j(T )f(T, θi,j) ∈ Ω

and gi,j(T ) 6= 0 for some i, j. Set hi,j(T ) = gi,j(1/(T + 1) − 1) for all i, j.
Then we have

n∑
i=1

(p−3)/2∑
j=0

hi,j(T )f(1/(T + 1)− 1, θi,j) ∈ Ω

and hi,j(T ) 6= 0 for certain i, j. Observe that we can suppose that hi,j ∈ A
for all i, j and that

(3.2)
n∑
i=1

(p−3)/2∑
j=0

hi,j(T )f(1/(T + 1)− 1, θi,j) ∈ A.

By Lemma 2(6) and (3.1) for all i between 1 and n and j between 0 and
(p− 3)/2, we have:

(3.3) f

(
1
T + 1

− 1, θi,j
)

=

{
Γ2jγ−2j(Fχi(T )) if 1 6 i 6 r;
Γ2j−1γ−2j+1(Fχi(T )) otherwise.

Moreover by Lemma 1(3), for all δ ∈ Z/(p− 1)Z we have

Γδ+1γ−δ−1 = ΓδγδD.

Hence we can rewrite relation (3.2) in the following way:

r∑
i=1

(p−3)/2∑
j=0

hi,j(T )Γ0γ0(D2j
Fχi(T ))+

n∑
i=r+1

(p−3)/2∑
j=0

hi,j(T )Γ0γ0(D2j−1
Fχi(T )) ∈ A.
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By Lemma 1(1) this last relation implies that

(3.4)
r∑
i=1

(p−3)/2∑
j=0

hi,j(T )Γ0γ0U(D2j
Fχi(T ))+

n∑
i=r+1

(p−3)/2∑
j=0

hi,j(T )Γ0γ0U(D2j−1
Fχi(T )) ∈ A.

Applying Lemma 3 and 1(2) to (3.4) we get

(3.5)
r∑
i=1

(p−3)/2∑
j=0

hi,j(t)γ0U(D2j
Fχi(T ))+

n∑
i=r+1

(p−3)/2∑
j=0

hi,j(t)γ0U(D2j−1
Fχi(T )) ∈ A.

Set for all 1 6 i 6 n, 0 6 j 6 (p− 3)/2,

(3.6) Fi,j(T ) =

{
UD

2j(Fχi(T )) if 1 6 i 6 r;
UD

2j−1(Fχi(T )) otherwise.

Then we can rewrite relation (3.5) in the following way:

(3.7)
n∑
i=1

(p−3)/2∑
j=0

hi,j(t)γ0(Fi,j(T )) ∈ A.

Now recall that by Lemma 2(3), we have

Fχi((T + 1)−1 − 1) =

{
Fχi(T ) if 1 6 i 6 r;
−Fχi(T ) if r + 1 6 i 6 n.

Moreover observe that for all 1 6 i 6 n, 0 6 k 6 p− 2 we have

(UDkFχi)((T + 1)−1 − 1) = (−1)kUDk(Fχi((T + 1)−1 − 1)).

Let i be between 1 and r and j be between 0 and (p− 3)/2. Then

Fi,j((T + 1)−1 − 1) = (UD2j
Fχi)((T + 1)−1 − 1))

= (−1)2jUD
2j(Fχi((T + 1)−1 − 1))

= UD2j(Fχi(T ))
= Fi,j(T ).

With exactly the same computation we can prove that

Fi,j((T + 1)−1 − 1) = Fi,j(T )

TOME 60 (2010), FASCICULE 5



1840 Bruno ANGLÈS & Gabriele RANIERI

for all i, j, also in the case where r + 1 6 i 6 n. Then

(3.8) Fi,j((T + 1)−1 − 1) = Fi,j(T ), ∀i, j.

We recall that Fq is, by definition, the residue field of the smallest exten-
sion of Qp that contains all the images of the characters χi. Consider the
smallest field that contains Fq and all the coefficients of hi,j(T ) for all i, j.
Since hi,j(T ) ∈ A ⊆ Fp[[T ]], such field is a finite extension of Fq. Call it Fq1
and write hi,j(t) =

∑
b∈Zp ci,j,b(t + 1)b with ci,j,b ∈ Fq1 . Moreover observe

that since hi,j(T ) 6= 0 for certain integer i, j, there exist i, j, b such that
ci,j,b 6= 0. Let

Gb(T ) =
n∑
i=1

(p−3)/2∑
j=0

ci,j,bFi,j(T ).

By Lemma 2(1), Gb(T ) ∈ Fq1 [[T ]] ∩ Fq1(T ). Since

(t+ 1)b(Gb(T )) = Gb((T + 1)κ
b
0 − 1),

by (3.7) we have

(3.9) γ0

( ∑
b∈Zp

Gb((T + 1)κ
b
0 − 1)

)
∈ A.

Choose a subset of µp−1 whose elements represent all the classes of
µp−1/{−1, 1} and call it S. From (3.8) it follows that

(3.10) Gb(T ) = Gb((T + 1)−1 − 1)

for all b. Thus by (3.9) we get∑
η∈S

∑
b∈Zp

Gb((T + 1)ηκ
b
0 − 1) ∈ A.

Since Gb(T ) = 0 for all but finitely many b ∈ Zp, there exists a positive
integer u such that ∑

η∈S

u∑
k=1
Gbk((T + 1)ηκ

bk
0 − 1) ∈ A.

Moreover we set Gk(T ) = Gbk(T ). By Proposition 1 there exist an integer
l 6 u, b1, b2, . . . , bl ∈ Zp, bi 6= bj for i 6= j, η1, η2, . . . , ηl ∈ µp−1 with
ηiκ
bi
0 ∼Q∗ ηjκ

bj
0 for all i, j and ηiκbi0 6= ηjκ

bj
0 for i 6= j such that

(3.11)
l∑
k=1
Gk((T + 1)ηkκ

bk
0 − 1) ∈ A.

For all 1 6 k 6 l write

ηkκ
bk
0 = η1κb10 xk,

ANNALES DE L’INSTITUT FOURIER
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where xk ∈ Q∗ ∩ Z∗p and xi 6= xj if i 6= j. Recall that by (3.10), we have
Gk(T ) = Gk((T + 1)−1 − 1). Hence we can suppose that xk > 0 for all k.
By (3.11) we get

l∑
k=i
Gk((T + 1)xk − 1) ∈ A.

Therefore there exist some positive integers N1, N2, . . . , Nl not divided by p
such that 1 6 N1 < N2 < . . . < Nl and

l∑
k=i
Gk((T + 1)Nk − 1) ∈ A.

If we rewrite Gk(T ) as a combination of Fi,j(T ), we get
l∑
k=1

n∑
i=1

(p−3)/2∑
j=0

ci,j,kFi,j((T + 1)Nk − 1) ∈ A.

By [1, Lemma 3.5] if H(T ) ∈ Fq1(T ), then H(T ) ∈ A if and only if there
exists m ∈ N such that (T + 1)mH(T ) ∈ Fq1 [T ]. Since the denominator of
Fi,j((T + 1)Nk − 1) is relatively prime to (T + 1) for all i, j, k, we get

(3.12)
l∑
k=1

n∑
i=1

(p−3)/2∑
j=0

ci,j,kFi,j((T + 1)Nk − 1) ∈ Fq1 [T ].

Observe that, by Lemma 2(5), we have

Fχi(T ) =
dp∑
a=1

χi(a)(T + 1)a

1− (T + 1)dp
.

Then for all 1 6 i 6 n and 0 6 j 6 (p− 3)/2, we have

(3.13) Fi,j(T ) =

{∑dp−1
a=1,p-a

χi(a)a2j(T+1)a
1−(T+1)dp if 1 6 i 6 r;∑dp−1

a=1,p-a
χi(a)a2j−1(T+1)a

1−(T+1)dp otherwise.

Then replacing in (3.12) using (3.13), we get
l∑
k=1

r∑
i=0

(p−3)/2∑
j=0

ci,j,k

dp∑
a=1,p-a

(
a2jχi(a)(T + 1)aNk

1− (T + 1)dpNk

)
+

+
l∑
k=1

n∑
i=r+1

(p−3)/2∑
j=0

ci,j,k

dp∑
a=1,p-a

(
a2j−1χi(a)(T + 1)aNk

1− (T + 1)dpNk

)
∈ Fq1 [T ].

(3.14)

To finish the proof we shall prove that (3.14) is satisfied only if ci,j,k = 0
for all i, j, k, obtaining a contradiction.

We need the following remark:
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Remark 1. — Let V be a vector space over a field F and W be a sub-
space of V . Moreover let φ be an endomorphism of V such that φ(W ) ⊆W .
We remark that if m is a positive integer and v1, v2, . . . , vm ∈ V are eigen-
vectors of φ with non-zero eigen-values λ1, λ2, . . . , λm such that λi 6= λj if
i 6= j and if

v1 + v2 + . . .+ vm ∈W,

then vi ∈W for all i.

If we apply Remark 1 in the particular case where F = Fq1 , V = Fq1(T ),
W = Fq1 [T ], m = p− 1, φ = D, λb = b for all 1 6 b 6 p− 1 and

vb = Vb(T ) =
l∑
k=1

r∑
i=0

(p−3)/2∑
j=0

ci,j,k
∑

aNk≡b mod (p)

(
a2jχi(a)(T + 1)aNk

1− (T + 1)dpNk

)
+

+
l∑
k=1

n∑
i=r+1

(p−3)/2∑
j=0

ci,j,k

dp∑
aNk≡b mod (p)

(
a2j−1χi(a)(T + 1)aNk

1− (T + 1)dpNk

)
,

by (3.14) we get Vb(T ) ∈ Fq1 [T ]. Multiply Vb(T ) by 1− (T + 1)dpNl . Then

(1− (T + 1)dpNl)Vb(T ) ∈ (1− (T + 1)dpNl)Fq1 [T ].

Let us recall that p does not divide Nk for all k. Observe that if ζ is a
primitive dNl-th root of unity, then ζ−1 is a root of (1−(T +1)dpNl)Vb(T ).
Since Nl > Nk for all k < l, ζ − 1 is a zero of

(1− (T + 1)dpNl)
l−1∑
k=1

r∑
i=0

(p−3)/2∑
j=0

ci,j,k

∑
aNk≡b mod (p)

(
a2jχi(a)(T + 1)aNk

1− (T + 1)dpNk

)
+

+ (1− (T + 1)dpNl)
l−1∑
k=1

n∑
i=r+1

(p−3)/2∑
j=0

ci,j,k

dp∑
aNk≡b mod (p)

(
a2j−1χi(a)(T + 1)aNk

1− (T + 1)dpNk

)
.
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Then we get

(3.15)
r∑
i=1

(p−3)/2∑
j=0

ci,j,l
∑

aNl≡b mod (p)

a2jχi(a)ζaNl

+
n∑

i=r+1

(p−3)/2∑
j=0

ci,j,l
∑

aNl≡b mod (p)

a2j−1χi(a)ζaNl = 0.

Observe that since p does not divide d, {a, p+a, . . . , p(d−1)+a} is a set of
representatives of all the classes modulo d. Moreover observe that, since ζ
is a primitive dNl-th root of unity, ζ ′ = ζNl is a primitive d-th root of unity.
Let k ∈ Z/pZ such that kNl ≡ b mod (p). We can rewrite (3.15) as

(3.16)
r∑
i=1

(p−3)/2∑
j=0

ci,j,lk
2j
d−1∑
h=0
χi(h)ζ ′h+

n∑
i=r+1

(p−3)/2∑
j=0

ci,j,lk
2j−1

d−1∑
h=0
χi(h)ζ ′h = 0.

Then for all primitive d-th root of unity, (3.16) must be satisfied.
Set

xi,k =

{∑(p−3)/2
j=0 ci,j,lk

2j , if 1 6 i 6 r;∑(p−3)/2
j=0 ci,j,lk

2j−1 otherwise

and let
{ζ1, ζ2, . . . , ζφ(d)}

be the set of primitive d-th roots of unity in Fp (recall that p does not
divide d). Then by (3.16) we have

(3.17)
n∑
i=1
xi,k

d−1∑
h=0
χi(h)ζhc = 0

for all 1 6 c 6 φ(d). Hence we have a system of n unknows (x1,k, . . . , xn,k)
and φ(d) equations (one for all primitive d-th root of unity). Observe that
n < φ(d). Indeed by definition n is less than the number of the characters
of conductor d > 2 distinct mod (π). Since we have only φ(d) characters
whose conductor divides d and since the trivial character has conductor
1 6= d, we have n 6 φ(d)−1. Thus the number of equations of the system is
greater then the number of its unknowns. We shall prove that the system
has the unique solution (0, 0, . . . , 0).
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Let B be the matrix associated to the system (3.17). Then

B =


∑d−1
h=0 χ1(h)ζh1

∑d−1
h=0 χ2(h)ζh1 · · ·

∑d−1
h=0 χn(h)ζh1∑d−1

h=0 χ1(h)ζh2
∑d−1
h=0 χ2(h)ζh2 · · ·

∑d−1
h=0 χn(h)ζh2

...
...

. . .
...∑d−1

h=0 χ1(h)ζhφ(d)
∑d−1
h=0 χ2(h)ζhφ(d) · · ·

∑d−1
h=0 χn(h)ζhφ(d)

 .
Observe that B = CE, where

C =


1 ζ1 · · · ζd−1

1
1 ζ2 · · · ζd−1

2
...

...
. . .

...
1 ζφ(d) · · · ζd−1

φ(d)

 ,

E =


χ1(0) χ2(0) · · · χn(0)
χ1(1) χ2(1) · · · χn(1)

...
...

. . .
...

χ1(d− 1) χ2(d− 1) · · · χn(d− 1)

 .
In the following lemma we will prove that ker(B) is equals to {(0, 0, . . . , 0)},
which implies x1,k = x2,k = . . . = xn,k = 0.

Lemma 4. — We have:

(1) The rank of C is φ(d).

(2) The set

B = {(1, ζ, . . . , ζd−1), ζ ∈ µd, ζ not primitive}

is a basis of ker(C).

(3) ker(B) = {(0, 0, . . . , 0)}.

Proof. — (1) Let C ′ be the matrix whose columns coincide with the
first φ(d) columns of the matrix C. Then C ′ is a square matrix equals to

C ′ =


1 ζ1 · · · ζφ(d)−1

1
1 ζ2 · · · ζφ(d)−1

2
...

...
. . .

...
1 ζφ(d) · · · ζ

φ(d)−1
φ(d)

 .
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Observe that C ′ is a Vandermonde matrix. Thus its determinant is equals
to ∏

16r<s6φ(d)

(ζr − ζs).

Since p does not divide d, we have

ζr 6= ζs.

Thus the determinant of C ′ is non-zero. Therefore C has rank φ(d), since
its square φ(d)× φ(d) sub-matrix C ′ has non-zero determinant.

(2) Since C has rank φ(d), the dimension of ker(C) is d− φ(d). Observe
that B has d − φ(d) elements. Hence B is a basis of ker(C) if and only if
B ⊆ ker(C) and the elements of B are linearly independent.

First let us prove that B ⊆ ker(C). Let ζ ∈ µd be a d-th root of unity
that is not primitive. Observe that (1, ζ, . . . , ζd−1) ∈ ker(C) if and only if

d−1∑
h=0
ζhi ζ
h = 0

for all i. Since

ζiζ

d−1∑
h=0
ζhi ζ
h =

d−1∑
h=0
ζhi ζ
h

and ζiζ 6= 1 because p does not divide d, it follows that
d−1∑
h=0
ζhi ζ
h = 0.

Thus (1, ζ, . . . , ζd−1) ∈ ker(C) for all non primitive d-th root of unity ζ.
Then B ⊆ ker(C).

Denote still by ζ an element of µd whose order is different from d. Set
βζ : Z/dZ → µd the character that sends i ∈ Z/dZ to ζi. Observe that if
ζ ′ ∈ µd and ζ 6= ζ ′,

βζ(1) = ζ 6= ζ ′ = βζ′(1),
since p does not divide d. Thus the characters βζ are all distinct. Hence
the theorem of the linear independence of characters imply that βζ are
linearly independent over Fp. From this fact it follows that the vectors
(1, ζ, . . . , ζd−1) are linearly independent for all non primitive d-th root of
unity ζ. Hence B is a basis of ker(C).

(3) Using the previous notation for all non primitive d-th root of unity ζ,
let βζ be the function that sends j ∈ Z/dZ to ζj . Observe that every
non trivial linear combination of the vectors (χi(0), χi(1), . . . , χi(d − 1))
for 1 6 i 6 n is not in ker(C) if and only if the functions χi and βζ for
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1 6 i 6 n and non primitive d-th root of unity ζ are linealry independent
over Fp (here χi is considered as a function of Z/dZ over Fq ⊆ Fp). Suppose
that such functions are dependent. Then we can choose a minimal r, non-
zero λi and µζ in Fp such that

(3.18)
r∑
i=1
λiχi +

∑
ζ not primitive

µζβζ = 0.

First observe that r > 2. Indeed if r = 0 then (3.18) would imply the linear
dependence of the elements of B against (2). Moreover if r = 1 then there
would exist a character χi of conductor d that would satisfy the relation
(χi(0), χi(1), . . . , χi(d− 1)) ∈ ker(C). Then we would have

d−1∑
h=0
ζhj χi(h) = 0

for all primitive d-th root of unity ζj , which contradicts [4, Lemma 4.8].
Let b ∈ (Z/dZ)∗ such that χ1(b) 6= χ2(b) (such b exists because recall

that, by hypothesis, χ1 is different from χ2 modulo (π)). Hence by (3.18),
for all z ∈ Z/dZ we have

(3.19)
r∑
i=1
λiχi(bz) +

∑
ζ not primitive

µζβζ(bz) = 0.

Observe that the function that sends z ∈ Z/dZ to βζ(bz) coincides with
the function βζb . Hence we can rewrite (3.19) as

(3.20)
r∑
i=1
λiχ1(b)χi(z) +

∑
ζ not primitive

χ1(b)µζβζb(z) = 0.

If we multiply (3.18) by χ1(b) and we subtract it to (3.20),we get a non
trivial relation with less than r characters χi and it is impossible by the
minimality of r.

Finally consider the matrix B. Let v = (λ1, λ2, . . . , λn) ∈ ker(B). Since
B = CE, then E(v) ∈ ker(C). This fact implies that

n∑
i=1
λi(χi(0), χi(1), . . . , χi(d− 1)) ∈ ker(C).

But we have previously proved that this relation is possible only if λi = 0
for all i. Thus v = (0, 0, . . . , 0). �
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By the previous lemma we immediately get xi,k = 0 for all 1 6 i 6 n
and for all 1 6 k 6 p− 1. Remember that, by definition,

xi,k =

{∑(p−3)/2
j=0 ci,j,lk

2j , if 1 6 i 6 r;∑(p−3)/2
j=0 ci,j,lk

2j−1 otherwise.

We shall prove that the relation xi,k = 0 for all i, k implies ci,j,l = 0 for
all i, j. We just consider the case i 6 r (the proof in the other case is very
similar). Let i be an integer between 1 and r and set ci,j,l = yj . Since
xi,k = 0 for all k between 1 and p− 1, we have the following relations:

(3.21)
(p−3)/2∑
j=0

yjk
2j = 0.

The matrixM associated to the first (p−1)/2 equations of the system (3.21)
is given by:

M =


1 1 · · · 1
1 4 · · · 4(p−3)/2

...
...

. . .
...

1 (p−1)2

4 · · ·
(

(p−1)2

4

)(p−3)/2

 =


1 α1 · · · α(p−3)/2

1
1 α2 · · · α(p−3)/2

2
...

...
. . .

...
1 α(p−1)/2 · · · α

(p−3)/2
(p−1)/2

 .

So M is a Vandermonde matrix and its determinant is equals to:

det(M) =
∏

16r<s6(p−1)/2

(αr − αs) 6= 0.

It follows that the only solution of the system (3.21) is yj = 0 for all j.
Then we have proved that the coefficients ci,j,l = 0 for all i and j. Since
Nl−1 > Nk for all k < l − 1, if we replace l with l − 1 with the same
procedure we can prove that the coefficients ci,j,l−1 = 0 for all i, j and so
on. Thus ci,j,k = 0 for all i, j, k, which is a contradiction.
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4. The case d = 1

The aim of this section is to prove Theorem 1 in the case where d = 1.
In other words, let χ the trivial character. We shall prove that

dimΩ(Ω + Ωf(T, χω0) + Ωf(T, χω2) + . . .+ Ωf(T, χωp−3)) = p+ 1
2
.

As we have already remarked is Section 1 we shall modify the proof of the
case d > 2. Let us give a preliminar reason for this. Let δ ∈ Z/(p− 1)Z be
odd. Then by Lemma 2(6) we have

f((T + 1)−1 − 1, χωδ+1) = Γδγ−δU((Fχ(T )).

Since χ is the trivial character we have

(4.1) Fχ(T ) =
p−1∑
a=0

(T + 1)a

1− (T + 1)p
− 1 = − 1

T
− 1.

Thus Fχ(T ) 6∈ Fp[[T ]] and we shall see that this fact does not allow us
to apply Proposition 1 (observe that if χ′ is not the trivial character then
Fχ′(T ) ∈ Fq[[T ]] and see also Remark 2). The following lemma explains
how we can solve this problem.

Lemma 5. — Let

F̃χ(T ) = (p+ 1)Fχ((T + 1)p+1 − 1)− Fχ(T ).

Then F̃χ(T ) ∈ Zp[[T ]].
Moreover

Tf((T + 1)−1 − 1, χωδ+1) = Γδγ−δU(F̃χ(T ))

for all odd δ ∈ Z/(p− 1)Z.
Finally 1, T f((T + 1)−1 − 1, χω0), . . . , T f((T + 1)−1 − 1, χωp−3) are in-

dependent over Ω if and only if 1, f(T, χω0), . . . , f(T, χωp−3) are indepen-
dent over Ω.

Proof. — Observe that

F̃χ(T ) = (p+ 1)Fχ((T + 1)p+1 − 1)− Fχ(T )

= − (p+ 1)
(T + 1)p+1 − 1

+ 1
T
− p

= (T + 1)p+1 − (p+ 1)T − 1
T ((T + 1)p+1 − 1)

− p.

We remark that T 2 exactly divides T ((T +1)p+1−1). Moreover T 2 divides
(T + 1)p+1 − (p+ 1)T − 1. Then we immediately get F̃χ(T ) ∈ Zp[[T ]].
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Let L be a finite extension of Qp and let OL be its valuation ring. Let d
be an integer not divided by p and set κ0 = 1 + dp. Remember that in
Section 2 we have defined an action of OL[[t]] over OL[[T ]] such that, for
all a ∈ Zp and F (T ) ∈ OL[[T ]],

(t+ 1)aF (T ) = F ((T + 1)κ
a
0 − 1).

Set L = Qp, d = 1 and κ0 = 1 + p. Then, since

F̃χ(T ) = Fχ((T + 1)p+1 − 1)− Fχ(T ) + pFχ((T + 1)p+1 − 1),

we have
F̃χ(T ) ≡ tFχ(T ) mod (p).

By Lemma 3(2) we get

Γδγ−δU((F̃χ(T )) = Γδγ−δU(tFχ(T )) = TΓδγ−δU(Fχ(T )).

Then, by Lemma 2(6), we immediately get

Tf((T + 1)−1 − 1, χωδ+1) = Γδγ−δU(F̃χ(T )).

Finally 1, T f((T + 1)−1 − 1, χω0), . . . , T f((T + 1)−1 − 1, χωp−3) are in-
dependent over Ω if and only if 1, f(T, χω0), . . . , f(T, χωp−3) are indepen-
dent over Ω, since T ∈ Ω and the image of Ω via the endomorphism of
Fp((T )) that sends F (T ) ∈ Fp((T )) in F ((T + 1)−1 − 1) is Ω. �

By the previous lemma to finish the proof of Theorem 1 it suffices to show
that 1, T f((T + 1)−1 − 1, χω0), . . . , T f((T + 1)−1 − 1, χωp−3) are linearly
independent over Ω. Since, always by the previous lemma, for all odd δ ∈
Z/(p− 1)Z we have

Tf((T + 1)−1 − 1, χωδ+1) = Γδγ−δU(F̃χ(T ))

and F̃χ(T ) ∈ Fp[[T ]], to show the linear independence we can easily adapt
our proof of Theorem 1 in the case d > 2.

Proof of Theorem 1 in the case d = 1. — First observe that by Lemma 5
to prove the assumption it suffices to show that

1, T f((T + 1)−1 − 1, χω0), . . . , T f((T + 1)−1 − 1, χωp−3)

are linearly independent over Ω. Suppose that this is not the case. Then
there exist h0(T ), . . . , h(p−3)/2(T ) ∈ Ω such that

(4.2)
(p−3)/2∑
j=0

hj(T )Tf
(

1
T + 1

− 1, ω2j
)
∈ Ω,
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with hj(T ) 6= 0 for a certain j. Observe that without loss of generality we
can suppose that hj(T ) ∈ A for all i and that

(p−3)/2∑
j=0

hj(T )Tf
(

1
T + 1

− 1, ω2j
)
∈ A.

By Lemma 5 we get
(p−3)/2∑
j=0

hj(T )Γ2j−1γ−2j+1U(F̃χ(T )) ∈ A.

By Lemma 1(3) and since Dγδ = γδ+1D for all δ ∈ Z/(p− 1)Z, we have
(p−3)/2∑
j=0

hj(T )Γ−1γ1D
2j
U(F̃χ(T )) ∈ A.

Moreover, applying Lemma 3, we get
(p−3)/2∑
j=0

Γ−1γ1D
2j
U(hj(t)F̃χ(T )) ∈ A.

From Lemma 1(2) it follows

(4.3)
(p−3)/2∑
j=0

γ1D
2j
U(hj(t)F̃χ(T )) ∈ A.

For all j such that 0 6 j 6 (p− 3)/2 set

Fj(T ) = D2j
U(F̃χ(T )).

Then we can rewrite (4.3) in the following way:

(4.4)
(p−3)/2∑
j=0

γ1(hj(t)Fj(T )) ∈ A.

By Lemma 2(4) we have

Fχ((T + 1)−1 − 1) = −Fχ(T )− 1.

Then

F̃χ((T + 1)−1 − 1) = Fχ((T + 1)−(p+1) − 1)− Fχ((T + 1)−1 − 1)

= −Fχ((T + 1)p+1 − 1)− 1 + Fχ(T ) + 1

= −F̃χ(T ).
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Moreover observe that for all j between 0 and (p− 3)/2,

(D2j
U(F̃χ))((T + 1)−1 − 1) = D2j

U(F̃χ((T + 1)−1 − 1).

Then for all j

(D2j
U(F̃χ))((T + 1)−1 − 1) = −D2j

U(F̃χ(T )).

It follows that

(4.5) Fj(T ) = −Fj((T + 1)−1 − 1)

for all j.
Consider the smallest field that contains Fp and all the coefficients of
hj(T ) for all j. Since hj(T ) ∈ A ⊆ Fp[[T ]], such field is a finite extension
of Fp. Call it Fq1 and write hj(t) =

∑
b∈Zp cj,b(t + 1)b with cj,b ∈ Fq1 .

Moreover observe that since hj(T ) 6= 0 for certain integer j, there exist j, b
such that cj,b 6= 0. Set

Gb(T ) =
(p−3)/2∑
j=0

cj,bFj(T )

and observe that Gb(T ) ∈ Fq1 [[T ]] ∩ Fq1(T ) for all b. Since

(t+ 1)b(Gb(T )) = Gb((T + 1)κ
b
0 − 1),

by (4.4) we have

(4.6) γ1

( ∑
b∈Zp

Gb((T + 1)κ
b
0 − 1)

)
∈ A.

Choose a subset of µp−1 whose elements represent all the classes of the
group µp−1/{−1, 1} and call it S. From (4.5) it follows that

(4.7) Gb(T ) = −Gb((T + 1)−1 − 1)

for all b. Thus by (4.6) we get∑
η∈S

∑
b∈Zp

ηGb((T + 1)ηκ
b
0 − 1) ∈ A.

Since Gb(T ) = 0 for all but finitely many b ∈ Zp, there exists an integer u
such that ∑

η∈S

u∑
k=1
ηGbk((T + 1)ηκ

bk
0 − 1) ∈ A.

Moreover set Gk(T ) = Gbk(T ). Since Gk(T ) ∈ Fq1 [[T ]] ∩ Fq1(T ) for all k,
we can apply Proposition 1, obtaining that there exist an integer l 6 u,
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b1, b2, . . . , bl ∈ Zp, bi 6= bj for i 6= j, η1, η2, . . . , ηl ∈ µp−1 with ηiκbi0 ∼Q∗

ηjκ
bj
0 for all i, j and ηiκbi0 6= ηjκ

bj
0 for i 6= j such that

(4.8)
l∑
k=1
ηkGk((T + 1)ηkκ

bk
0 − 1) ∈ A.

Remark 2. — We remark that that the fact that for all k, Gk(T ) ∈
Fq1 [[T ]]∩Fq1(T ) is necessary to apply Proposition 1. This relation is verified
since for all j, we have Fj(T ) ∈ Fp[[T ]] ∩ Fp(T ), which is an immediate
consequence of the fact that F̃χ(T ) ∈ Fp[[T ]] ∩ Fp(T ).

Finally observe that in the case d > 2, for all character χ′ of conductor d
we have Fχ′(T ) ∈ Fq[[T ]] ∩ Fq(T ). For this reason it is not necessary “to
perturbate” Fχ′(T ) to apply Proposition 1.

For all 1 6 k 6 l write

ηkκ
bk
0 = η1κb10 xk,

where xk ∈ Q∗ ∩ Z∗p and xi 6= xk if i 6= k. Recall that by (4.7), we have
Gk(T ) = −Gk((T + 1)−1− 1). Hence we can suppose that xk > 0 for all k.
By (4.6) we get

l∑
k=1
ηkGk((T + 1)xk − 1) ∈ A.

Therefore there exist some integers N1, N2, . . . , Nl not divided by p, such
that 1 6 N1 < N2 < . . . < Nl and

l∑
k=1
ηkGk((T + 1)Nk − 1) ∈ A.

By definition of Gk(T ) this last relation becomes:

(4.9)
l∑
k=1
ηk

(p−3)/2∑
j=0

cj,kFj((T + 1)Nk − 1) ∈ A.

Now we want to compute Fj(T ) for all j. First remember that

Fχ(T ) =
p−1∑
a=0

(T + 1)a

1− (T + 1)p
− 1.

Then

D
2j(Fχ(T )) =

p−1∑
a=1

a2i(T + 1)a

1− (T + 1)p
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for all j between 0 and (p− 1)/2. Since U = Dp−1 we have

D
2i
U(Fχ(T )) =

p−1∑
a=1

a2i(T + 1)a

1− (T + 1)p
.

Remember that

F̃χ(T ) = Fχ((T + 1)p+1 − 1)− Fχ(T ) = tFχ(T ).

Then

D
2j
U(F̃χ(T )) = tD2j

U(Fχ(T ))

= t
( p−1∑
a=1

a2i(T + 1)a

1− (T + 1)p

)

=
p−1∑
a=1

a2i(T + 1)a(p+1)

1− (T + 1)p(p+1) −
p−1∑
a=1

a2i(T + 1)a

1− (T + 1)p
.

Replacing in (4.9) we get
l∑
k=1
ηk

(p−3)/2∑
j=0

cj,k

p−1∑
a=1

(
a2j(T + 1)aNk(p+1)

1− (T + 1)pNk(p+1) −
a2j(T + 1)aNk
1− (T + 1)pNk

)
∈ A.

Since by [1, Lemma 3.5] a rational function H(T ) ∈ A if and only if there
exists an integer n such that (T + 1)nH(T ) is a polynomial, we get

(4.10)
l∑
k=1
ηk

(p−3)/2∑
j=0

cj,k

p−1∑
a=1

(
a2j(T + 1)aNk(p+1)

1− (T + 1)pNk(p+1) −
a2j(T + 1)aNk
1− (T + 1)pNk

)
∈ Fq1 [T ]

(recall that, by definition, Fq1 is the extension of Fp generated by cj,k for
all j, k).

We apply Remark 1 in the particular case where F = Fq1 , V = Fq1(T ),
W = Fq1 [T ], m = p− 1, φ = D, λb = b for all 1 6 b 6 p− 1 and

vb = Vb(T )

:=
l∑
k=1
ηk

(p−3)/2∑
j=0

cj,k

(
a2j
b,k(T + 1)ab,kNk(p+1)

1− (T + 1)pNk(p+1) −
a2j
b,k(T + 1)ab,kNk

1− (T + 1)pNk

)
,

where ab,k satisfies the relation ab,kNk ≡ b mod (p). Then by Remark 1,
Vb(T ) ∈ Fq1 [T ]. Let us recall that p does not divide Nk for all k between 1
and l. Since p does not divide b, we have ab,k ∈ F∗p for all b, k.
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Let ζ be a primitive (p+ 1)Nlth root of unity and multiply Vb(T ) by the
polynomial 1− (T + 1)p(p+1)Nl . We get

(4.11) Q(T ) + ηl
(p−3)/2∑
j=0

cj,la
2j
b,l(T + 1)p(p+1)Nl = P (T ),

where Q(T ) ∈ Fq1(T ), P (T ) ∈ Fq1 [T ], Q(ζ − 1) = 0 (since Nl > Nk for all
k < l) and P (ζ − 1) = 0. Then if (4.11) is satisfied we have

ηlζ
abNl(p+1)

(p−3)/2∑
j=0

cj,la
2j
b,l = 0

for all b between 1 and p− 1. Since ηlζabNl(p+1) = ηl ∈ F∗p, we have

(4.12)
(p−3)/2∑
j=0

cj,la
2j
b,l = 0,

for all b. Observe that, since 1 6 b 6 p− 1, ab,lNl ≡ b mod (p) and p does
not divide Nl, for all c ∈ F∗p there exists b such that ab,l = c. Then to find
the cj,l satisfying (4.12) is equivalent to find all the solutions of the system

(4.13)
(p−3)/2∑
j=0

xjk
2j = 0,

where xj are the unknows of the system and 1 6 k 6 p − 1. Observe that
the system (4.13) is identical to the system (3.21) that we have studied at
the end of Section 3. Since we have already remarked that (3.21) has only
the solution (0, . . . , 0), also (4.13) has the unique solution (0, . . . , 0). This
fact implies cj,l = 0 for all j.

Since Nl−1 > Nk for all k < l − 1, if we replace l with l − 1 with the
same procedure we can prove that the coefficients cj,l−1 = 0 for all j and
so on. Thus cj,k = 0 for all j, k, which implies hj(T ) = 0 for all j. Since
we have supposed that there exists j such that hj(T ) 6= 0, we obtain a
contradiction.
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