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ON THE LINEAR INDEPENDENCE OF p-ADIC
L-FUNCTIONS MODULO p

by Bruno ANGLES & Gabriele RANIERI

ABSTRACT. Let p > 3 be a prime. Let n € Nsuch thatn > 1, let x1,...,xn be
characters of conductor d not divided by p and let w be the Teichmiiller character.
For all ¢ between 1 and n, for all j between 0 and (p — 3)/2, set

xiwI Tl if y; is odd,;
9i,j{_2j if v i
Xiw if x; is even.
Let K = Qp(x1,--.,Xn) and let 7 be a prime of the valuation ring Ok of K. For all
i,7 let f(T,0; ;) be the Iwasawa series associated to 0; ; and f(T,6; ;) its reduction
modulo (). Finally let Fj, be an algebraic closure of F,. Our main result is that
if the characters x; are all distinct modulo (), then 1 and the series f(T,6; ;) are
linearly independent over a certain field Q that contains Fp,(T).
RESUME. — Soit p > 3 un nombre premier. Soit n € N tel que n > 1, soient

X1,---,Xn des caractéres de conducteur d premier a p; notons w le caractere de
Teichmiiller. Pour tout ¢ entre 1 et n et pour tout j entre 0 et (p — 3)/2, on pose

) xw? Tt sy est impair ;
b= {XiWZj si x; est pair.
Soit K = Qp(x1,---,Xn) €t soit 7 un premier de I'anneau de valuation O de K.
Pour tout 4,j notons f(T,0; ;) la série d’Twasawa associée a 0; ; et f(T,6; ;) sa
réduction modulo (7). Finalement soit F,, une cléture algébrique de Fp,. Nous mon-
trons que si les caractéres x; sont distincts modulo (), alors 1 et les séries f(T',0;,;),
sont linéairement indépendantes sur un certain corps 2 qui contient E(T).

Keywords: p-adic L-functions, p-adic Leopoldt transform, Iwasawa theory, irrationality.
Math. classification: 11R23, 11R18, 11S80, 11J72.



1832 Bruno ANGLES & Gabriele RANIERI
1. Introduction

Let p be an odd prime. Let n € N such that n > 1, let x1, ..., xn be char-
acters of conductor d not divided by p and let w be the Teichmiiller char-
acter. For all i between 1 and n and j such that 0 < j < (p — 3)/2, set

g _ xiwH Tl if x, is odd;
w Xiw? if ; is even.

Observe that, by definition, 6; ; is an even character for all 4, j.

Set kg =1+ dp and K = Qp(x1,...,Xn) (i-e. the extension of Q, gen-
erated by all the images of x; for all ¢). Let = be a prime of the valuation
ring Ok of K and let F, be Ok /nOk. For all i between 1 and n and j
between 0 and (p — 3)/2, set f(T,6; ;) the Iwasawa power series attached
to the p-adic L-function Ly(s,6; ;) (see [4, Theorem 7.10]) and f(T,0; ;)
its reduction modulo (7).

Let F, be an algebraic closure of F,. For F(T) € F,[[T]], we say that
F(T) is a pseudo-polynomial if and only if there exist r € N, a1,...,a, € Z,
and ¢1,...,¢ € IFT, such that

F(T) =) (T +1)".
i=1
Then the set of the pseudo-polynomials is a ring which we denote by A.
Moreover we denote by €2 the quotient field of A. The elements of € are
called pseudo-rational functions. Angles (see [1, Theorem 4.5]) shows that
for all non-trivial even character of the first kind 0, f(7T',0) is not a pseudo-
rational function. We shall prove the following generalisation of this result:

THEOREM 1. — Suppose that the characters x; are all distinct mod-
ulo (w) (i.e. for all integer i # j there exist a € (Z/dZ)* such that
xi(a) Z x;(a) mod (m)). Then the elements of the set

{17 f(TveiJ)’ I<i<n, 0<j< (p—3)/2}
are linearly independent over ).

Observe that in the statement of Theorem 1 it is necessary to suppose
that the characters x; are all distinct modulo (7). Indeed suppose that there
exist ¢ # k between 1 and n such that x; and yj are congruent modulo (7).
Since p is odd this implies that y; and xj have the same parity. Then for
all 0 < j < (p—3)/2 we have that 6, ; is congruent to 6 ; modulo (),
which implies f(7,0; ;) = f(T,0k,;). Thus in this case the series f(T,0; ;)
are dependent.
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LINEAR INDEPENDENCE OF p-ADIC L-FUNCTIONS 1833

Observe also that if the characters x; are distinct modulo (), then for
all 4,7 between 1 and n, j, j' between 0 and (p — 3)/2, 6, ; is congruent to
6;r ;» modulo (7) if and only if ¢ = ¢/, j = j'. It is clear that ¢ = ¢’ implies
j =4 and j = j' implies i = i’. Then suppose that i # ¢/, j # j' and that
6 ; is congruent to 6, j modulo (7). Moreover suppose that x; and x; are
even (the other case is identical). Hence there exists an integer a such that
w?(a) # w¥ (a) mod (m). Since p does not divide d there exists an integer
¢ such that 14 ¢d =a mod (p). Then 6; ;(1 + cd) = w?(a) mod () and
0ir j»(14cd) = w?'(a) mod (r). Since 6; j and ;s are equivalent modulo
(), we get w¥(a) = w¥ (a) mod (r), which is a contradiction.

As in the proof of [1, Theorem 4.5], the main ingredient in the proof
of Theorem 1 is a remarkable result due to Sinnott. Before the statement
of that result we must define the following equivalence relation: let a,b €
Z, —{0}. We say that a is equivalent to b mod (Q*) (¢ =b mod (Q*)) if
and only if there exists ¢ € Q* such that ab™! = c.

PROPOSITION 1. — ([3, Proposition 1]) Let F' be a finite field of charac-
teristic p and let 1 (T),...,rs(T) € F(T)NF[[T]). Let c1,...,¢cs € Z,—{0}
and suppose that

S
r(T+1)%—1)=0.
i=1

Then for all a € Z,,

> n((T+1)%-1)€eF.

ci=a mod (Q*)

Let’s describe briefly the strategy of the proof of Theorem 1. First (sec-
tion 2) we recall some properties of the p-adic Leopoldt transform (most
of them already proved in [1]) which we will often use.

Then (section 3) we consider the case d > 2. Some results about the
p-adic Leopoldt transform of [1] and Proposition 1 will allow us to reduce
the proof of Theorem 1 to the computation of the rank of a certain matrix
whose entries depend on the values of the characters x; (Lemma 4). After
such computation the proof of this case of the theorem will follow by some
simple remarks of linear algebra.

In section 4 we study the case d = 1. In that case we have to consider a
“perturbation” of the functions f(7',6; ;) to be able to apply Proposition 1.
Then the proof is not very different from the proof of the previous case
(actually it is simpler since it does not request a result similar to Lemma 4)
and some remarks of linear algebra will imply the assumption.
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1834 Bruno ANGLES & Gabriele RANIERI

Finally we give a link between Theorem 1 and Ferrero-Washington’s
heuristic (see [2]). Let ¢ be an integer between 1 and (p — 3)/2. Write

+oo
f(T,w*) = Z ap (W) T*.
k=0

The Minvariant of f(7T,w?"), denoted by A(w??), is the least k such that
arx(w?) #0 mod (p). We set

(p—3)/2

AT = 2 Aw?).

Ferrero and Washington make the following hypothesis to define a heuristic
to make previsions about possible bounds for A\ ™.

Ferrero-Washington’s hypothesis: Every coefficient of f(T,w?') is random
mod (p) and independent from the other coefficients.

Theorem 1 implies that
17 f(T’ w0)7 f(T’ w2)7 MR f(T) wp_3)

are linearly independent over €. Thus our result seems to confirm Ferrero-
Washington’s hypothesis.

2. Preliminaries

In this section we shall list some properties of the p-adic Leopoldt trans-
form that will be very important in the proof of Theorem 1. Let L be
a finite extension of Q,, O its valuation ring and F, its residue field.
Let x a topological generator of 1 + pZ, and, for all a € Zj, set w(a) the
unique (p — 1)th root of unity in Z, congruent to a mod (p). Following [1]
for all § € Z/(p — 1)Z we define p-adic Leopoldt transform I's the unique
continuous Op-linear endomorphism of O [[T]] such that for all a € Z,,

logy, (a)

W (a)(T + 1)@ ifa € Z;

0 otherwise

Is((T+1)%) =

(see [1, Sections 2., 3.] for the proof of the fact that I's is well-defined and
unique). In an obvious way we can define a similar Fy/-linear continuous
endomorphism of Fy [[T]] that we denote by T's. Observe that if a € Z we
have a = w(a) mod (p). Thus, for all a € Z;, we have

logy (a)

Ts((T +1)%) = a®(T + 1) ™=,

ANNALES DE L’INSTITUT FOURIER



LINEAR INDEPENDENCE OF p-ADIC L-FUNCTIONS 1835

In the proof of Theorem 1 we use other Op-linear endomorphisms of
OL[[T]] already introduced by Anglés in [1]. Let us recall their definition.
Let 1,1 C Z;, be the group of (p—1)th roots of unity. For all 6 € Z/(p—1)Z
and F(T) € Op[[T]], we set

1
w(F(T) = —— > I’ F((T+1)" - 1).
p NEMUp—1
Observe that v57s = 0 for § # &', v = s and ZSGZ/@%)Z vs = Ido, (117
For F(T) € OL[[T]] set

D(F(I)) = (I'+ 1) F(T)
U(F(T)) = F(T) - i S F(UT+1) = 1) € OL[[T])
CEMp

In an obvious way we can define the Fy-linear endomorphism of F [[T]]
s, D and U. Observe that:

U? =U;

DU =UD;

vsU =Uns forall 6 € Z/(p — 1)Z;

D5 = 541D for all § € Z/(p — 1)Z;

«U=D"".

In the following lemma we shall list some properties of I's whose we need

to prove Theorem 1.

LEMMA 1. — Let 6 € Z/(p — 1)Z and F(T) € Or[[T]]. Then
(1) Ts(F(T)) = Tsv—s(F(T)) = Tsy—sUF(T).

(2) Suppose that T's(F(T)) is a pseudo-polynomial. Then ~v_sU(F(T'))
is a pseudo-polynomial.

(3) T (F(T)) = T5 D(F(D)).
Proof. —
(1) See [1, Proposition 3.2(2)].
(2) The assumption immediately follows from [1, Proposition 3.1].
(3) Since T is a F/-linear continuous endomorphism of F/[[T]], it suffices
to prove that the assumption is true for F(T) = (T'+1)® witha € Z,,. If p
divides a we have

0=Tsn1((T+1)*) =Ts(D((T +1)%))

and the assumption is trivial.

TOME 60 (2010), FASCICULE 5



1836 Bruno ANGLES & Gabricle RANIERI

Suppose that p does not divide a. We have
Ts(D((T +1)%) = Ts(a(T + 1))
=als((T +1)%)

logy, (a)

=TT + 1) "™
Ty (T4 1)),

Let 6 be a Dirichlet character of the first kind such that
9 = XW6+17

with 6 € Z/(p — 1)Z and x a character of conductor d not divided by p.

Observe that kg = 1 4 dp is a topological generator of 1 + pZ, and from
now on set kK = kg. Suppose that Q,(x) C L. Set

d

x(a)(T + 1)

F.(T) = e

(D) 1 (T+1)

and F(T) € Fy (T) its reduction modulo the maximal ideal of Op. In the
following lemma we list some properties of F (T') and we recall the relation
between F) (T) and f(T,6).

LEMMA 2. — We have:
(1) Ifd > 2, then F\(T) € O[[T]).

(2) Ifd =1, then v, (F\(T)) € Or[[T]] for all« € Z/(p—1)Z and o # 1.

(3) Ifd > 2, then F\, (T +1)~' — 1) = eF,(T) where ¢ =1 if x is odd
and € = —1 if x is even.

(4) Ifd =1, then F\ (T +1)7' —1) = —F(T) — 1.

(5) If d divides a positive integer g we have

a1 X(a)(T + 1)
1—(T+1)9

(6) Tsy—sU(F(T)) = f(T+1)~" = 1,0).

Proof. —
For (1), (2), (3), (4), see [1, Lemma 4.1].

FX(T) =

ANNALES DE L’INSTITUT FOURIER
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(5) We have:
a1 X(a)(T' +1)°
1—-(T+1)9
d
a . x(O)(T +1)
- aZﬂX( )bEa zn;)d (d) 1= (T+ 1)

d
_ (T+ 1)+ (T+ 1) 4 4 (T +1)t9~d
_;X(“) 1 (T+1)9

S0 (@) (T + 1) (1 — (T +1)9)
(1 —(T+1)9)(1 — (T +1)9)
= F\(T).

(6) Remember that Uy_5 = v_sU. Then apply [1, Lemma 4.4].

Consider the ring Op[[t]]. It acts over OL[[T]] via:
(t+1)F(T)=F(T+1)"™ —1) e OL[[T]],
for all F(T) € OL[[T]].

1837

LEMMA 3. — Let H(T) € Op[[T]]. Then for all F(T) € OL[[T]] we have

H(T)T5(F(T)) = Ts(H () F(T)).

Proof. — Since I'y is Op-linear and continuous it suffices to prove the
assumption in the case P(T) = (T +1)%, where a € Z,. By [1, Proposition

3.2(3)] for all b € Zy;, we have

logy, (b)

Ds(F(T +1)" —1) = W’ (b)(T + 1) *5 ™ T (F(T)).
Then we get
Ds((t+ 1)*F(T)) = T5(F((T 4+ 1) — 1)

logp (1g)

= W (K§)(T + 1) ™= T5(F(T))
= (T +1)Ts(F(T)).

3. The case d > 2

The aim of this section is to prove Theorem 1 in the case where the

conductor d of the characters y; is > 2.

TOME 60 (2010), FASCICULE 5



1838 Bruno ANGLES & Gabricle RANIERI

Proof of Theorem 1 in the case d > 2. — Let x1, X2, - - -, Xn characters
of conductor d > 2 distinct modulo (7). Without loss of generality we can
suppose X1, -..,Xr 0odd and X,41,...,Xn even for a certain integer r < n.
For all i between 1 and n and j between 0 and (p — 3)/2 set

(3.1) 0 Yiw2tlif 1 <Py
. I iw? otherwise.

Suppose that for all 1 <i < n, 0 < j < (p—3)/2, there exist g; ;(T) € Q
such that
(p—3)/2

> 9:.;(T) (T, 0; ;) € Q

i=1 j=0
and g; ;(T) # 0 for some 4, j. Set h; ;(T) = g; ;(1/(T 4+ 1) — 1) for all 4, .
Then we have

n P3/2

SN hiy(MFA/T+1)—1,0i5) € Q

=1 j5=0

and h; ;j(T') # 0 for certain ¢, j. Observe that we can suppose that h; ; € A
for all 7,5 and that

n P 3)/2
(3.2) SN hi(MFA/(T+1)—1,6:;5) € A.
=1 j5=0

By Lemma 2(6) and (3.1) for all ¢ between 1 and n and j between 0 and
(p — 3)/2, we have:

1 Ty (Fy, (T if1<i<r
) X P
T+1 Toj—1v—2j+1(Fy,(T)) otherwise.

Moreover by Lemma 1(3), for all 6 € Z/(p — 1)Z we have
T5417-5-1 = I's7sD-

Hence we can rewrite relation (3.2) in the following way:

r P 3)/2
hi (T FO’YO(D F L(T)+
i=1 j=0
n (p—3)/2 -
21—
Yo DT hi(DTeF,(D7 Fy (1) € A.
i=r+1 j=0

ANNALES DE L’INSTITUT FOURIER



LINEAR INDEPENDENCE OF p-ADIC L-FUNCTIONS 1839

By Lemma 1(1) this last relation implies that

r P 3)/2 94
_ — 2
) D Y hig(MTemU (D Fy (T)+
=1 35=0
n  (p—3)/2 2] -
Z Z hzg FO,YO ( FXz(T)) GA'
i=r+1 j5=0

Applying Lemma 3 and 1(2) to (3.4) we get
r P 3)/2

Z Z (7T (D Fy, (T))+

n P 3)/2

> Y o T(D7'F, (1)) € A.
i=r+1 j=0
Set forall1 <i<n,0<j p 3)/2
T)) if1<i<r
(36) 2] 1 .
v:(T)) otherwise.
Then we can rewrite relation (3.5) in the following way:
n (p—3)/2
(3.7) > hi,j ()70 (F3,5(T)) € A
i=1 ;=0

Now recall that by Lemma 2(3), we have

F(T)  if1<i<n
Pyt -n= @) ELs e
—-F,(T) ifr+1

//\ //\

i< n.
Moreover observe that for all 1 < i< n, 0 <k < p— 2 we have
(UD'F)(T+ )7 =1) = (- TD" (Fy (T + D)7 ~ 1),
Let i be between 1 and r and j be between 0 and (p — 3)/2. Then
Fiy(T+1)7 =1) = @D F)(T+ 17" = 1)

= (~)YTD” (Fy (T + 1) = 1)

= UDY(F (1))

=F ;(T).
With exactly the same computation we can prove that

Fi(T+1)7" =1) = F;(T)

TOME 60 (2010), FASCICULE 5



1840 Bruno ANGLES & Gabriele RANIERI

for all 7, j, also in the case where r + 1 <7 < n. Then
(3.8) Fi;(T+1)"" = 1) = F,;(T), Vi,j.

We recall that F, is, by definition, the residue field of the smallest exten-
sion of @, that contains all the images of the characters y;. Consider the
smallest field that contains Fy and all the coefficients of h; ;(T) for all 4, j.
Since h; ;(T) € A C F,[[T]], such field is a finite extension of F,. Call it F,,
and write h; () = X ez Ciga(t + 1)® with ¢; ;5 € Fy,. Moreover observe
that since h; j(T') # 0 for certain integer 4, j, there exist 4, j,b such that
Cijb # 0. Let

n (p—3)/2

Gb(T) = Z Z ci,j,bFi,j (T)
i=1 j=0
By Lemma 2(1), Go(T) € Fo, [[T])) NFy, (T). Since
(t+ 1P (G(T)) = Gy((T + 1) — 1),
by (3.7) we have
(3.9) 70< 3 Go((T + 1) — 1)) €A
bEZ,

Choose a subset of p,_; whose elements represent all the classes of
pp—1/{—1,1} and call it S. From (3.8) it follows that
(3.10) Gy(T) = Gy(T+ 1)~ = 1)
for all b. Thus by (3.9) we get

SN G+ 1)~ 1) € A
neS beEZy

Since Gp(T') = 0 for all but finitely many b € Z,, there exists a positive
integer u such that

S G(@+ )~

nes k=1
Moreover we set Gi(T') = Gy, (T'). By Proposition 1 there exist an integer
l < u, blyb%'"abl € Z;m b’L 7& bj for 4 7é j7 N, N2, ---,M € Hp—1 with
Mk ~ge miky for all 4, j and nikY # n;ky for i # j such that

l
(3.11) S G (T + 1) —1) € 4.
k=1
For all 1 < k <[ write

be b
Neko" = MKy Tk,

ANNALES DE L’INSTITUT FOURIER
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where 2, € Q* NZ; and x; # w; if i # j. Recall that by (3.10), we have
Gr(T) = GL((T + 1)~ — 1). Hence we can suppose that xj > 0 for all k.
By (3.11) we get

l
Y GH(T+1)™ —1) € A.

Therefore there exist some positive integers N1, Ns, ..., N; not divided by p
such that 1 < Ny < Ny < ... < N; and

ZGk((TJr DN —1) € A

If we rewrite G(T) as a combination of F; ;(T), we get
n (p—3)/2

l p—3
Z:E: > cignFi(T+1)M 1) € A,

1i=1 j=

0
By [1, Lemma 3.5] if H(T') € F,, (T), then H(T) € A if and only if there
exists m € N such that (T'+ 1) H(T) € Fg, [T]. Since the denominator of
F; ;((T 4+ 1)N= — 1) is relatively prime to (7' + 1) for all i, j, k, we get

l
(3.12) >

k=1 i=1
Observe that, by Lemma 2(5), we have

z”: T 4 1)*
— T+1@

n (p—

p—3)/2
Z Ci,j,kFi,j((T + I)Nk — 1) S IF(Il [T}
j=0

Then for all 1 <i¢<nand 0<j < (p—3)/2, we have
dp—1 Xi(a)QZj (T+1)* . .
B1) R {Zz—lf*“ GRS i<icr
Zailﬂa Xlalf(w otherwise.

Then replacing in (3.12) using (3.13), we get

1 r (p=3)/2 dp a2 ; T—|- )aNk
S5 Y e X (TR )t

a=1,pta

(3.14)

l n (p—3)/2 a2i-1 T 4+ 1)2Nk
PSS e ¥ (CMATENY

k=1li=r+1 35=0 a=1,pta

To finish the proof we shall prove that (3.14) is satisfied only if ¢; ; » = 0
for all i, j, k, obtaining a contradiction.
We need the following remark:

TOME 60 (2010), FASCICULE 5



1842 Bruno ANGLES & Gabriele RANIERI

REMARK 1. — Let V be a vector space over a field F' and W be a sub-
space of V. Moreover let ¢ be an endomorphism of V' such that ¢(W) C W.
We remark that if m is a positive integer and v1,vs,...,v,, € V are eigen-
vectors of ¢ with non-zero eigen-values A1, Az, ..., Ay, such that A\; # A; if
1 # j and if

v1+v+...+v, €W,
then v; € W for all i.

If we apply Remark 1 in the particular case where F =F, , V =F,, (T),
W=F,[T),m=p—1,¢=D, \,=bforall1 <b<p—1and

1 r (p—3)/2 a2l J(a)(T 1)aNk
XSS e ¥ (R )

k=11i= j=0 aNp=b mod (p)

n (p—3)/2 dp a1y (a)(T + 1)aNe
1530 Db ST SR G ]

k=1i=r+1 ;=0 aNp=b mod (p)

by (3.14) we get V,(T) € Fy, [T]. Multiply V4(T) by 1 — (T + 1), Then
(1= (T+H)PV(T) € (1 (T + 1)PN)F,, [T).

Let us recall that p does not divide Ny for all k. Observe that if  is a
primitive dN;-th root of unity, then ¢ —1 is a root of (1 — (T4 1)N)V,(T).
Since N; > Ny, for all k < I, ( — 1 is a zero of

-1 r (p—3)/2

(1 — (T + 1)) ZZ Z Ci gk

k=11¢=0 j5=0

a®x;(a)(T + 1)2Ne
Y (e )

aNp=b mod (p)

n P 3)/2

(17 T+ de’ Z Z Z Cijk

k=1i=r+1 j5=0
dp

a1 xi(a)(T + 1)*M
Z ( 1— (T + 1)drNx )

aNL=b mod (p)
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LINEAR INDEPENDENCE OF p-ADIC L-FUNCTIONS 1843

Then we get
r (p—3)/2
315 Z Z Ci gl Z 2j ( )CaNl
i=1 j5=0 aN;=b mod (p)
n (p—3)/2 .
+ Z Z Cijl Z a® " xi(a)* M = 0.
i=r+1 ;=0 aN;=b mod (p)

Observe that since p does not divide d, {a,p+a,...,p(d—1)+a} is a set of
representatives of all the classes modulo d. Moreover observe that, since
is a primitive dN;-th root of unity, ¢’ = ¢ is a primitive d-th root of unity.
Let k € Z/pZ such that kN; =b mod (p). We can rewrite (3.15) as

T Pd/z

(3.16) > Z Cirg ik Zx
=1 35=0

n (p—3)/2

27—1
DD kT Z
i=r+1 j=0

Then for all primitive d-th root of unity, (3.16) must be satisfied.
Set

SR, <<
ik = j i
Z(p 3)/2 ¢; k¥~ otherwise

and let

{¢1,¢2 -5 oy}

be the set of primitive d-th roots of unity in I, (recall that p does not
divide d). Then by (3.16) we have

for all 1 < ¢ < ¢(d). Hence we have a system of n unknows (21 k,...,%Zn k)
and ¢(d) equations (one for all primitive d-th root of unity). Observe that
n < ¢(d). Indeed by definition n is less than the number of the characters
of conductor d > 2 distinct mod (7). Since we have only ¢(d) characters
whose conductor divides d and since the trivial character has conductor
1 # d, we have n < ¢(d) — 1. Thus the number of equations of the system is
greater then the number of its unknowns. We shall prove that the system
has the unique solution (0,0, ...,0).
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Let B be the matrix associated to the system (3.17). Then

Zh oXl(h) Zh 0X2(h) Zh oXn(h) ¢r
B Zh oXl(h) h Zh QXQ(h) h Zh oXn(h) h
Zh OXI( )C$<d) ZZ;E X2(h)C$(d) Zh OXn( )C&d)

Observe that B = C'E, where

SEEREE f—l
1 ¢ - g—l
C=1. . . . ,
L Coa) - C¢(d)
x1(0) x2(0) Xn(0)
x1(1) x2(1) Xn(1)
E= )
xi(d—1) x2(d=1) -+ Xn(d—1)
In the following lemma we will prove that ker(B) is equals to {(0,0,...,0)},
which implies 1 = T2 = ... = Tp; = 0.
LEMMA 4. — We have:

(1) The rank of C is ¢(d).
(2) The set
B={(1,¢,...,¢%1), ¢ € pg, ¢ not primitive}
is a basis of ker(C).

(3) ker(B) = {(0,0,...,0)}.

Proof. — (1) Let C’ be the matrix whose columns coincide with the
first ¢(d) columns of the matrix C. Then C’ is a square matrix equals to

LG cf(d;‘l
d)—1

R FR R
1 Cqﬁ(d) C¢(d) 1
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Observe that C’ is a Vandermonde matrix. Thus its determinant is equals

to
H (Cr - Cs)

1<r<s<o(d)
Since p does not divide d, we have

Cr 7 Cs-

Thus the determinant of C’ is non-zero. Therefore C' has rank ¢(d), since
its square ¢(d) x ¢(d) sub-matrix C' has non-zero determinant.

(2) Since C has rank ¢(d), the dimension of ker(C) is d — ¢(d). Observe
that B has d — ¢(d) elements. Hence B is a basis of ker(C) if and only if
B C ker(C) and the elements of B are linearly independent.

First let us prove that B C ker(C). Let { € 4 be a d-th root of unity
that is not primitive. Observe that (1,¢,...,¢% 1) € ker(C) if and only if

d—1
> ¢t =0
h=0
for all 7. Since
d—1 d—1
GCY = ¢t
h=0 h=0

and ;¢ # 1 because p does not divide d, it follows that

d—1
Y ¢ =o.
h=0

Thus (1,¢,...,¢% 1) € ker(C) for all non primitive d-th root of unity (.
Then B C ker(C).

Denote still by ¢ an element of py whose order is different from d. Set
B¢t Z)dZ — pg the character that sends i € Z/dZ to ¢'. Observe that if
¢" € pg and ¢ # (',

Be(1) = ¢ # ¢ =B (1),
since p does not divide d. Thus the characters §; are all distinct. Hence
the theorem of the linear independence of characters imply that §. are
linearly independent over E. From this fact it follows that the vectors
(1,¢,...,¢% 1) are linearly independent for all non primitive d-th root of
unity ¢. Hence B is a basis of ker(C).

(3) Using the previous notation for all non primitive d-th root of unity (,
let B; be the function that sends j € Z/dZ to (/. Observe that every
non trivial linear combination of the vectors (x;(0),x:(1),...,xi(d — 1))
for 1 < i < n is not in ker(C) if and only if the functions x; and g for
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1 <% < n and non primitive d-th root of unity ¢ are linealry independent
over F,, (here x; is considered as a function of Z/dZ over F, C F,). Suppose
that such functions are dependent. Then we can choose a minimal r, non-
zero \; and p¢ in F,, such that

(3.18) Z AiXi + Z peBe = 0.
i=1

¢ not primitive

First observe that r > 2. Indeed if r = 0 then (3.18) would imply the linear
dependence of the elements of B against (2). Moreover if » = 1 then there

would exist a character y; of conductor d that would satisfy the relation
(xi(0), xi(1),...,xi(d = 1)) € ker(C). Then we would have

d—1
Z thXi(h) =0
h=0

for all primitive d-th root of unity ¢;, which contradicts [4, Lemma 4.8].

Let b € (Z/dZ)* such that x1(b) # x2(b) (such b exists because recall
that, by hypothesis, x; is different from x2 modulo (7)). Hence by (3.18),
for all z € Z/dZ we have

(3.19) Do)+ Y pefc(bz) =0.

¢ not primitive

Observe that the function that sends z € Z/dZ to (¢ (bz) coincides with
the function f... Hence we can rewrite (3.19) as

(3.20) Z)\iXI(b)Xi(Z) + Z x1(b)peBev(2) = 0.

¢ not primitive

If we multiply (3.18) by x1(b) and we subtract it to (3.20),we get a non
trivial relation with less than r characters x; and it is impossible by the
minimality of r.

Finally consider the matrix B. Let v = (A1, A2,..., An) € ker(B). Since
B = CE, then E(v) € ker(C). This fact implies that

Z A (0) 3 (1), - xs(d — 1)) € ker(C).

But we have previously proved that this relation is possible only if \; =0
for all 4. Thus v = (0,0,...,0). O
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By the previous lemma we immediately get z;, = 0 for all 1 < ¢ < n
and for all 1 < k& < p — 1. Remember that, by definition,

Sk, 1< <
Tik =

3)/ i .
Z(p /% ¢; ;1k%=1 otherwise.

We shall prove that the relation z;, = 0 for all ¢,k implies ¢; j; = 0 for
all i, 7. We just consider the case ¢ < r (the proof in the other case is very
similar). Let ¢ be an integer between 1 and 7 and set ¢; j; = y,. Since
z; 1 = 0 for all k between 1 and p — 1, we have the following relations:

(p—3)/2

(3.21) > yk¥ =o0.

=0

The matrix M associated to the first (p—1)/2 equations of the system (3.21)
is given by:

1 1
4 4(p=3)/2
M: =
(p—3)/2
| wen? ((m)?)p
1 1
1 o s P2
1 Qs S e
' (v-3)/2
L ap-np - O‘(571)/2

So M is a Vandermonde matrix and its determinant is equals to:

det(M) = 11 (o —ag) #0.

1<r<s<(p—1)/2

It follows that the only solution of the system (3.21) is y; = 0 for all j.

Then we have proved that the coefficients ¢; j; = 0 for all 7 and j. Since
N;_1 > Nyp for all kK < [ — 1, if we replace [ with [ — 1 with the same
procedure we can prove that the coeflicients ¢; j;—1 = 0 for all 7,5 and so
on. Thus ¢; j, = 0 for all 4, j, k, which is a contradiction.
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4. The case d =1

The aim of this section is to prove Theorem 1 in the case where d = 1.
In other words, let x the trivial character. We shall prove that

. — +1
dimg(Q + QF (T, ) + QTP + ...+ QF (T b)) = o=
As we have already remarked is Section 1 we shall modify the proof of the
case d > 2. Let us give a preliminar reason for this. Let § € Z/(p — 1)Z be

odd. Then by Lemma 2(6) we have
ST+ 1)1 — 1, ) = Ty s U (B (T)).

Since x is the trivial character we have

p—1 a
(4.1) FX(T):Z%_1:_;_1.
a=0

Thus F\(T) ¢ F,[[T]] and we shall see that this fact does not allow us
to apply Proposition 1 (observe that if x’ is not the trivial character then
F(T) € F,[[T]] and see also Remark 2). The following lemma explains
how we can solve this problem.

LEMMA 5. — Let
F(T) = (p+ 1)F (T + )P — 1) — Fy (7).

Then F\(T) € Z,[[T]].
Moreover
TH(T + 1)1 = 1 xw? ) = Ts7 U (Fy (1))
for allodd § € Z/(p — 1)Z.
Finally 1,Tf((T+ 1)~ = 1,xw°),...,Tf((T+1)~! — 1, xwP=3) are in-
dependent over Q if and only if 1, f(T, xw°),..., f(T, xwP~3) are indepen-
dent over ().

Proof. — Observe that
F(T) = (p+ DT + 1) = 1) = F(T)
_ (P+1) !
NG e T
(TP —(p+1)T -1
B T(T+1)p+ —1)
We remark that T2 exactly divides T'((T +1)P*! —1). Moreover T? divides
(T +1)P™ — (p+1)T — 1. Then we immediately get F (1) € Z,[[T]].
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Let L be a finite extension of Q, and let Oy, be its valuation ring. Let d
be an integer not divided by p and set kKo = 1 4 dp. Remember that in
Section 2 we have defined an action of O[[t]] over OL[[T]] such that, for
all a € Z, and F(T) € OL[[T]],

(t+1)*F(T) = F((T + 1) —1).
Set L =Qp, d=1 and k9 = 1 4 p. Then, since
F(T) = (T + )P = 1) = F(T) +pF (T + )P~ 1),

we have
F\(T)=tF\(T) mod (p).
By Lemma 3(2) we get

T30 (Fy(T)) = T30 (tFy(T)) = TT37=50 (Fy (T)).

Then, by Lemma 2(6), we immediately get

TFT + 1) — 1, xoo 1) = Ts7_s U (Fy(T)).

Finally 1,Tf((T + 1)~ = 1,xw0),...,Tf((T+ 1)~ — 1, xywP~3) are in-
dependent over Q if and only if 1, (T, xw°),..., f(T, xwP~3) are indepen-

dent over €2, since T' € Q and the image of 2 via the endomorphism of
F,((T)) that sends F(T) € F,((T)) in F(T +1)~* —1) is Q. O

By the previous lemma to finish the proof of Theorem 1 it suffices to show
that 1L,Tf(T+1)"1 —1,xw0),...,Tf((T+1)~1 = 1, xwP~3) are linearly
independent over (). Since, always by the previous lemma, for all odd § €
Z/(p — 1)Z we have

TF(T + 1)~ =1, xw ) =Te7_;U(Fy(T))

and F\;(T ) € F,[[T1]], to show the linear independence we can easily adapt
our proof of Theorem 1 in the case d > 2

Proof of Theorem 1 in the cased = 1. — First observe that by Lemma 5
to prove the assumption it suffices to show that

17Tf((T + 1)71 - 1a X(.UO)7 e 7Tf((T + 1)71 - 17pr73)

are linearly independent over ). Suppose that this is not the case. Then
there exist ho(T), ..., hp—3)/2(T) € Q such that

p—3

(p=3)/2
- _ 25
(4.2) Z hy( Tf( 77 bw )eQ,
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with h;(T) # 0 for a certain j. Observe that without loss of generality we
can suppose that h;(T) € A for all ¢ and that

(p—3)/2

> hj(T)Tf(T_li_l - 1,w2j> €A

j=0
By Lemma 5 we get

(p—3)/2

> (DT 171 U(F(T)) € Al
=0

By Lemma 1(3) and since D75 = ¥551D for all § € Z/(p — 1)Z, we have

(p—3)/2

Z hy(T)T_17, D T(F(T)) € A.

Moreover, applying Lemma 3, we get

w32
S T_m D Ty () (1)) € A.
=0

From Lemma 1(2) it follows

(p—3)/2

(4.3) > 7DYT(h(t)F(T)) € A

j=0
For all j such that 0 < j < (p—3)/2 set
Fy(T) = D7 U(F\(T)).
Then we can rewrite (4.3) in the following way:

(p—3)/2

(4.4) Y Ml F(T) € A,

§=0
By Lemma 2(4) we have
F(T+1)'=1)=-F/(T) - 1.
Then
BT +1)7 = 1) = F (T + 1) 1) - F(T+1)7 = 1)
=-F(T+1)P" —1) -1+ F(T)+1

= ~F(T).
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Moreover observe that for all 7 between 0 and (p — 3)/2,
DYTENT+1)7 =1) = DTTFE(T + 1) 1),
Then for all j
(DX T(EN(T +1)7 = 1) = =D7T(F(T)).
It follows that
(4.5) Fj(T)=-F;(T+1)"*—1)

for all j.

Consider the smallest field that contains F, and all the coefficients of
h;(T) for all j. Since h;(T) € A C F,[[T]], such field is a finite extension
of Fp. Call it Fg, and write h;(t) = > peq cjp(t + 1) with ¢jp € Fy,.
Moreover observe that since h;(T") # 0 for certain integer j, there exist j,b
such that c;, # 0. Set

(p—3)/2
Go(T)= > ¢pF5(T)
=0

and observe that Gy(T') € F, [[T]] NFy, (T') for all b. Since
(t+ 1) (Go(T) = Go((T + 1) — 1),
by (4.4) we have
(4.6) 71< > G T+ 1)Fo — 1)) €A
beZ,

Choose a subset of p,—1 whose elements represent all the classes of the
group pp—1/{—1,1} and call it S. From (4.5) it follows that

(4.7) Gy(T) = =Gy((T+1)7! — 1)
for all b. Thus by (4.6) we get
ST ST G (T +1)70 — 1) € A
neS bEZy

Since G(T') = 0 for all but finitely many b € Z,, there exists an integer u
such that

S50, (T + 1) —1) € A.

nesS k=1
Moreover set G (T) = Gy, (T). Since Gi(T') € Fp, [[T]] NFq, (T') for all k,
we can apply Proposition 1, obtaining that there exist an integer | < u,
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b17627"' abl € Zpa bi 7é bj for 4 7é j7 N2, M € Pp-1 with niﬁjgi ~Q*
njngj for all 4, j and 7,k # njngj for i # j such that
1
(4.8) S GH((T + 1) — 1) € A.
k=1

REMARK 2. — We remark that that the fact that for all k, Gi,(T) €
Fq, [[T)]NFy, (T') is necessary to apply Proposition 1. This relation is verified
since for all j, we have Fj(T) € Fp[[T]] N F,(T), which is an immediate
consequence of the fact that [?';C(T) e F, [T NEFL(T).

Finally observe that in the case d > 2, for all character X’ of conductor d
we have F\/(T) € Fy[[T]] N Fy(T). For this reason it is not necessary “to
perturbate” F\,.(T') to apply Proposition 1.

For all 1 < k <[ write

b b
Nkkg" = 1Mikq' Tk,

where z € Q* NZy and x; # x, if i # k. Recall that by (4.7), we have
Gi(T) = —=G((T + 1)~ — 1). Hence we can suppose that xj > 0 for all k.
By (4.6) we get

1

> mGr((T +1)™ —1) € A.
k=1

Therefore there exist some integers Ny, Na, ..., N; not divided by p, such
that 1 < Ny < Ny < ... < N;and

l
> mGr((T+ )N — 1) € A,

k=1

By definition of G (T) this last relation becomes:

l (p—3)/2
(4.9) Sme Y GaFi(T+1D)N —1) € A
k= =0

Now we want to compute F;(T) for all j. First remember that
”Zl T+
L1 (T+1)p
Then

iy (T +1)*
TJrl

a:l
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for all j between 0 and (p — 1)/2. Since U = D" we have

P p—1 a®(T +1)°
1—(T+1)r

Then

YT (F(T)) = D7 T(Fy(T))

D

”’1 YT 4 1)o+D) ”i WT + 1)
— (T + 1)p+1) (T +1)p

a=1 a=1

Replacing in (4.9) we get

L (p=3)/2 a2 (T + 1)aNk(p+1) 2(T + 1)*N
Yo Y e (T e o ) <4
k=1 L— (T + 1Nt 1 — (T + )P

Since by [1, Lemma 3.5] a rational function H(T') € A if and only if there
exists an integer n such that (T + 1)"H(T) is a polynomial, we get

(p—3)/2

(4.10) an Z Cjk

p—1 a J(T_|_ 1)aNk(P+1) a2j(T+ 1)aNk
Z (1 — (T + 1)PNe(p+1) 11— (T + 1)ka) € Fo, [T

(recall that, by definition, F,, is the extension of F,, generated by ¢, for
all j, k).

We apply Remark 1 in the particular case where F' = F,, V =F,, (T),
W=F,[T),m=p—1,¢=D, \p=bforall 1 <b<p—1and

(p—3)/2 abk(T+ 1)e. &Nk (p+1) ai,jk(T—i' 1)ab,ka
(Y )

where ayp, ), satisfies the relation ap Ny, = b mod (p). Then by Remark 1,
Vo(T) € Fy, [T]. Let us recall that p does not divide Ny, for all k between 1
and [. Since p does not divide b, we have ay x € IF;, for all b, k.
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Let ¢ be a primitive (p+ 1)N;th root of unity and multiply V;(T") by the

polynomial 1 — (T + 1)P®P+DN We get
w-3)/2
(4.11) Q) +m Y cjuay) (T +1)PPTHON = p(T),
j=0
where Q(T') € Fy, (T), P(T) € Fy, [T, Q(¢ — 1) = 0 (since N; > N, for all
k <l) and P(¢ —1) =0. Then if (4.11) is satisfied we have
(r—3)/2 ‘
m¢mMETY N T ejiah =0
j=0

for all b between 1 and p — 1. Since n¢» M@+ = ¢ [F7, we have

(p—3)/2 ‘
(4.12) > cjuay =0,
j=0

for all b. Observe that, since 1 < b < p—1, ap; Ny =b mod (p) and p does
not divide Ny, for all ¢ € [, there exists b such that a;; = c. Then to find
the ¢;; satisfying (4.12) is equivalent to find all the solutions of the system

(p—3)/2
(4.13) > ak¥ =0,
3=0

where x; are the unknows of the system and 1 < k < p — 1. Observe that
the system (4.13) is identical to the system (3.21) that we have studied at
the end of Section 3. Since we have already remarked that (3.21) has only
the solution (0, ...,0), also (4.13) has the unique solution (0,...,0). This
fact implies c;; = 0 for all j.

Since N;_1 > Ny, for all k < [ — 1, if we replace [ with [ — 1 with the
same procedure we can prove that the coefficients c;;—1 = 0 for all j and
so on. Thus ¢;, = 0 for all 7, k, which implies h;(T") = 0 for all j. Since
we have supposed that there exists j such that h;(T) # 0, we obtain a
contradiction.
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