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THE C1 INVARIANCE OF THE ALGEBRAIC
MULTIPLICITY OF A HOLOMORPHIC VECTOR

FIELD

by Rudy ROSAS

Abstract. — We prove that the algebraic multiplicity of a holomorphic vector
field at an isolated singularity is invariant by C1 equivalences.

Résumé. — On démontre que la multiplicité algébrique d’une singularité d’un
champ de vecteurs holomorphe est invariante par C1-equivalences.

1. Introduction

Given a curve f : (C2, 0) → (C, 0), singular at 0 ∈ C2, we define its
algebraic multiplicity as the degree of the first nonzero jet of f , that is,
ν(f) = ν where

f = fν + fν+1 + · · ·
is the Taylor development of f and fν 6= 0. A well known result by Burau [2]
and Zariski [15] states that ν is a topological invariant, that is, given f̃ :
(C2, 0)→ (C2, 0) and a homeomorphism h : U → Ũ between neighborhoods
of 0 ∈ C2 such that h(f−1(0)∩U) = f̃−1(0)∩V then ν(f) = ν(f̃). Consider
now a holomorphic vector field Z in C2 with a singularity at 0 ∈ C2. If

Z = Zν + Zν+1 + · · · , Zν 6= 0

we define ν = ν(Z) as the algebraic multiplicity of Z. The vector field Z

defines a holomorphic foliation by curves F with isolated singularity in a
neighborhood of 0 ∈ C2 and the algebraic multiplicity ν(Z) depends only
on the foliation F . A natural question, posed by J.F.Mattei is: is ν(F) a
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Math. classification: 37F75.



2116 Rudy ROSAS

topological invariant of F?. In [4], the authors give a positive answer if F is
a generalized curve, that is, if the desingularization of F does not contain
complex saddle-nodes. In this work, we consider the problem in dimension
n > 2 and impose conditions on the topological equivalence. Let F be a
holomorphic foliation by curves of a neighborhood U of 0 ∈ Cn with a
unique singularity at 0 ∈ Cn(n > 2). We assume that F is generated by
the holomorphic vector field

V =
n∑
i=1

ai
∂

∂zi
, ai ∈ OU , g.c.d.(a1, a2, . . ., an) = 1.

The algebraic multiplicity of F (at 0 ∈ Cn) is the minimum vanishing order
at 0 ∈ Cn of the functions ai. Let F̃ be another holomorphic foliation by
curves of a neighborhood Ũ of 0 ∈ Cn and let h : U → Ũ be a topological
equivalence between F and F̃ , that is, a homeomorphism taking leaves of
F to leaves of F̃ . Let π : Ĉn → Cn be the quadratic blow up with center
at 0 ∈ Cn. Clearly the map h := π−1 h π is a homeomorphism between
π−1(U\{0}) and π−1(Ũ\{0}). Then we prove the following:

Theorem 1.1. — Suppose that h extends to the divisor π−1(0) as a
homeomorphism between π−1(U) and π−1(Ũ). Then the algebraic multi-
plicities of F and F̃ are the same.

If h is a C1 diffeomorphism, we prove that h extends to the divisor. Thus,
we obtain that the algebraic multiplicity is invariant by C1 equivalences:

Theorem 1.2. — Let F and F̃ be two foliations by curves of neigh-
borhoods U and Ũ of 0 ∈ Cn, n > 2. Let h : U → Ũ be a C1 equivalence
between F and F̃ , that is, a C1 diffeomorphism taking leaves of F to leaves
of F̃ . Then the algebraic multiplicities of F and F̃ are equal.

It is known that there exists a unique way of extending the pull back
foliation π∗(F|U\{0}) to a singular analytic foliation F0 on π−1(U) with
singular set of codimension > 2. We say that F0 is the strict transform
of F by π. Let F̃0 be the strict transform of F̃ by π. In order to prove
Theorem 1.1 we show that the algebraic multiplicity of F depends on the
Chern class of the tangent bundle of F0. To relate the Chern classes of the
tangent bundles of F0 and F̃0 we use the following theorem (see [7]).

Theorem 1.3. — Let F and F̃ be foliations by curves on the complex
manifolds M and M̃ respectively. Let c(TF) denote the Chern class of the
tangent bundle TF of F . Let h : M → M̃ be a topological equivalence be-
tween F and F̃ and consider the map h∗ : H2(M,Z)→ H2(M̃,Z) induced
in the cohomology. Then h∗(c(TF)) = c(T F̃).
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THE C1 INVARIANCE OF THE ALGEBRAIC MULTIPLICITY 2117

Clearly the homeomorphism h : π−1(U\{0}) → π−1(Ũ\{0}) is a topo-
logical equivalence between F0|π−1(U\{0}) and F̃0|π−1(Ũ\{0}). To be able to
apply Theorem 1.3 we show that h extends as a topological equivalence
between F0 and F̃0. This is the non trivial part of the proof. Thus, we
prove the following.

Theorem 1.4. — Let V and Ṽ be complex manifolds, let Y ⊂ V and
Ỹ ⊂ Ṽ be analytic subvarieties of codimension > 1 and, let F and F̃ be
holomorphic foliations by curves on V and Ṽ respectively. Suppose there
is a homeomorphism h between V and Ṽ with h(Y ) = Ỹ and such that
h|V \Y is a topological equivalence between F|V \Y and F̃ |

Ṽ \Ỹ . Then h is a
topological equivalence between F and F̃ .

This paper is organized as follows. In section 2 we prove Theorem 1.4.
In section 3 we relate the algebraic multiplicity of the foliation and the
Chern class of its strict transform, and prove Theorem 1.1. Finally, section 4
discusses the C1 case.

The contents of this paper originally comprised a Ph.D. dissertation at
Instituto de Matematica Pura e Aplicada, Rio de Janeiro. The author would
like to thank his advisor, César Camacho, for guidance and support. I also
thank Alcides Lins Neto, Paulo Sad, Luis Gustavo Mendes and specially
Jorge Vitório Pereira for the remarks that helps in the redaction of the
present paper.

2. An extension theorem

This section is devoted to prove Theorem 1.4. We start with some def-
initions. Let D = {z ∈ C : |z| < 1} and B = {z ∈ Cn−1 : ||z|| < 1} where
n > 2. Let M be a complex manifold of complex dimension n and let D
be a subset of M homeomorphic to a disc. We say that D is a singular
disc if for all x ∈ D there exist a neighborhood D of x in D, and an in-
jective holomorphic function f : D → M such that f(D) = D, f(0) = x.
If f ′(0) = 0 we say that x is a singularity of D, otherwise x is a regular
point of D (this does not depend on f). The set S of singularities of D is
discrete and closed in D and we have that D\S is a complex submanifold
of M . Thus, if x is a regular point of D, there is a neighborhood U of x in
M and holomorphic coordinates (w, z), w ∈ B, z ∈ D on U such that D∩U
is represented by (w = 0). If D does not have singularities we say that it is
a regular disc. In this case, by uniformization, there is a holomorphic map
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2118 Rudy ROSAS

f : E → M , where E = D or C, such that f is a biholomorphism between
E and D.

Example. — Let F be a holomorphic foliation by curves on the complex
manifold M and let D ⊂M be a topological disc contained in a leaf of F .
Then D is a regular disc.

The following Lemma will be fundamental in the proof of Theorem 1.4.

Lemma 2.1. — Let F : D× [0, 1]→ Cn be a continuous map such that
for all t ∈ [0, 1], the map F (∗, t) : D → Cn is a homeomorphism onto
its image. Thus, we have a continuous family of discs Dt := F (D × {t}).
Suppose Dt is a regular disc for each t > 0. Then D0 is a singular disc.

Proof. — We give a sketch of the proof. Let p = F (x0, 0) be any point
in D0. Let U ⊂ D be a disc centered at x0 and such that U ⊂ D. Let
tk > 0 be such that tk → 0 as k → ∞ an define Dk = F (U×{tk}).
By uniformization there is a holomorphic map fk : D → Cn which is a
biholomorphism between D and Dk. We may assume that fk(0) = F (x0, tk)
for all k and it is well known that fk extends as a homeomorphism fk : D→
Dk. By Montel’s theorem we can assume that fk converges uniformly on
compact sets to a holomorphic function f : D→ Cn, f(0) = p. Clearly it is
sufficient to show that f is not a constant function (f 6≡ p). Let S1 := ∂D
and consider for each k the homeomorphism

ϕk := fk|S1 : S1 → ∂Dk.

By taking a subsequence if necessary, it is not difficult to see that we may
assume that ϕk converges a.e. to a function

ϕ : S1 → ∂D0.

Fix x ∈ D. Since {ϕk} is uniformly bounded, by the dominated convergence
theorem we have that

(2.1) 1
2πi

∫
S1

ϕk(w)
w − x

dw → 1
2πi

∫
S1

ϕ(w)
w − x

dw

as k → ∞. By Cauchy’s Integral Formula the left part of (2.1) is equal to
fk(x) and, since fk(x)→ f(x), we conclude that

(2.2) f(x) = 1
2πi

∫
S1

ϕ(w)
w − x

dw.

Finally, it is not difficult to prove from this equation that f ≡ p implies
ϕ = p a.e., which is a contradiction because ϕ(S1) ⊂ ∂D0 and p /∈ ∂D0. �

We now show that Theorem 1.4 is a consequence of the following theorem.

ANNALES DE L’INSTITUT FOURIER



THE C1 INVARIANCE OF THE ALGEBRAIC MULTIPLICITY 2119

Theorem 2.2. — Let F be a foliation by curves on the complex mani-
fold M . Let X ⊂M be an analytic subvariety of codimension > 1. Suppose
that:

(i) F is generated by a holomorphic vector field.
(ii) There exists a homeomorphism h : Σ×D → M , where Σ is a ball

in Cn−1 and D is a disc in C.
(iii) If Dz := h({z} ×D) then for all z: either Dz is contained in X, or

Dz ∩X is discrete and Dz\X is contained in a leaf of F .
Then F is regular and the sets Dz are the leaves of F .

Proof of Theorem 1.4. — Let p be a point in Y which is regular for F .
Let Σ denote a ball in Cn−1 and D a disc in C. Consider a neighborhood
W of p on which F is a product foliation, that is, W ' Σ × D and the
sets {z} ×D are the leaves of F|W . We take W small enough such that F̃
restricted to M := h(W ) is generated by a holomorphic vector field. Let X
be the intersection between M and Ỹ . We will show that the hypothesis
of Theorem 2.2 hold for F̃ restricted to M . Hypothesis (i) and (ii) of 2.2
evidently hold. Let Dz = h({z} ×D). Then it is easy to see that

Assertion 1. — For all z ∈ Σ, either {z} × D is contained in Y , or
S′z := ({z} ×D) ∩ Y is discrete and closed in {z} ×D.

Suppose that Dz is not contained in X. Let Sz = h(S′z), where S′z is given
by Assertion 1. Then Sz is discrete in Dz. Observe that ({z} × D)\S′z is
contained in a leaf of F|M\Y . Then, since h|M\Y is a topological equivalence
between F|V \Y and F̃ |

Ṽ \Ỹ , it follows that

Dz\Sz = h(({z} ×D)\S′z)

is contained in a leaf of F̃ . Thus, hypothesis (iii) of 2.2 holds. Then F̃ is
regular on M = h(W ) and every Dz is contained in a leaf of F̃ . Therefore
we conclude:

Assertion 2. — If p is a point in Y which is regular for F , then p is
mapped by h to a regular point of F̃ . Moreover, there exists a neighborhood
Ω of p in its leaf which is mapped by h onto a neighborhood of h(p) in its
leaf.

Now, by using Assertion 2 for h and h−1, we deduce that p is regular for
F if and only if h(p) is regular for F̃ . Hence

h(Sing(F)) = Sing(F̃).

It remains to prove that h maps any leaf of F onto a leaf of F̃ . Let p be
a regular point of F . Let L be the leaf of F passing through p and let

TOME 60 (2010), FASCICULE 6



2120 Rudy ROSAS

L̃ be the leaf of F̃ passing through h(p). Let A be the set of points in L

which are mapped by h into L̃. By Assertion 2, if x ∈ A there exists a
neighborhood of x in Lp contained in A. Therefore A is open. Now, let
x /∈ A. Then h(x) /∈ L̃. Thus, if L′ 6= L is the leaf of F̃ passing through
h(x) it follows by Assertion 2 that there exists a neighborhood Ω of x in L
which is mapped by h into L′ 6= L̃, hence Ω is contained in L\A. Then A

is also closed and it follows by conectedness that A = L, that is, h(L) ⊂ L̃.
Analogously, we prove that h−1(L̃) ⊂ L. Therefore h(L) = L̃. �

We proceed now to prove Theorem 2.2.

Proposition 2.3. — Let F be a foliation by curves on the complex
manifold M . Let X ⊂ M be an analytic subvariety of codimension > 1.
Suppose that:

(i) There exists a homeomorphism h : Σ×D → M , where Σ is a ball
in Cn−1 and D is a disc in C.

(ii) If Dz := h({z} ×D) then for all z: either Dz is contained in X, or
Dz is contained in a leaf of F .

Consider z′ ∈ Σ and suppose that Dz′ is a singular disc. Let Sz′ the set of
singularities of Dz′ . Then Dz′\Sz′ is contained in a leaf of F .

Proof. — It is sufficient to prove the following.

Assertion. — If p ∈ Dz′\Sz′ then p has a neighborhood in Dz′\Sz′
contained in a leaf of F .

Suppose Assertion holds. Let L be a leaf of F and let x ∈ (Dz′\Sz′)∩L.
By Assertion, there is a neighborhood ∆ of x in Dz′\Sz′ such that ∆ ⊂ L.
Then ∆ ⊂ (Dz′\Sz′) ∩ L and it follows that the intersection of Dz′\Sz′
with any leaf is open in Dz′\Sz′ . Then, since Dz′\Sz′ is connected, we have
that it is contained in a unique leaf.

Proof of Assertion. — Let p in Dz′\Sz′ . Since p is a regular point of
the singular disc Dz′ , on a neighborhood U ⊂ M of p we may consider
coordinates (w, y), w ∈ B, y ∈ D with p = (0, 0) and such that Dz′ ∩ U is
represented by (w = 0). Suppose that p = h(z′, t′). Let Σ′ be a ball in Σ
containing z′ and let D′ be a disc in D containing t′. Then W = Σ′ ×D′
is a neighborhood of (z′, t′) and, by taking W small enough, we assume
h(W ) ⊂ U . Let D′z = h({z} × D′). Note that D′z′ ⊂ Dz′ ∩ U , hence
D′z′ is contained in (w = 0). Let g : U → D be the projection g(w, y) = y.
Consider z ∈ Σ′ and supposeDz\X 6= ∅. By hypothesis (ii),Dz is contained
in a leaf of F . Therefore D′z is contained in leaf of F and we have that
g|D′z : D′z → D is a holomorphic map. Remember that D′z′ ⊂ (w = 0).

ANNALES DE L’INSTITUT FOURIER
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Then g|D′
z′

: D′z′ → D is given by (0, y) → y and is therefore a one to
one map. Then g(D′z′) is a disc in D with g(∂D′z′) as boundary. Note that
p = (0, 0) ∈ D′z′ , hence 0 is contained in the disc g(D′z′). Therefore the
curve g(∂D′z′) winds once around 0. By the continuity of h we assume
Σ′ small enough such that g(∂D′z) is homotopic to g(∂D′z′) in D\{0} for
all z ∈ Σ′. Then g(∂D′z) winds once around 0 and g|D′z has therefore a
unique zero. In other words, the plaque D′z intersects Y = B × {0} ⊂ U

at a unique point. Thus, we can define the map f : h(W )\X → Y by
f(D′z\X) = D′z ∩ Y whenever D′z\X 6= ∅. We have that f is holomorphic
because it is constant along the leaves and, restricted to any transversal,
is a holonomy map. Since f is bounded and X has codimension > 1, by
the generalized Riemann’s extension theorem, f extends to a holomorphic
function on h(W ). Observe that f restricted to Y is the identity map, then
f is a submersion in a neighborhood V of Y . Hence f defines a regular
foliation N on V . It is easy to see that N coincides with F on V \X, thus
N = F . Therefore p ∈ Y is a regular point of F .

Now, by reducing the neighborhood W = Σ′ × D′ of (z′, t′), we may
assume that h(W ) is contained in a neighborhood of p where F is given by
a submersion f . Obviously D′z′ is a neighborhood of p in Dz. We shall prove
that D′z′ is contained in a leaf of F (the leaf passing through p). If D′z′ is
not contained in X, so is Dz′ and, by hypothesis (ii), we have that D′z′ is
contained in a leaf of F . On the other hand, suppose that D′z′ is contained
in X. Then there exists a sequence of points zk → z′ such that h({zk}×D)
is not contained in X, otherwise h(Σ′′ × D) ⊂ X for some neighborhood
Σ′′ ⊂ Σ of z′, which is a contradiction because X has codimension > 1.
Thus, by (ii), we have that D′zk is contained in a leaf of F for all k. Recall
D′zk ⊂ h(W ) is contained in a domain where F is given by the submersion
f . Then f is constant over D′zk = h({zk} × D′) and in particular, for all
t ∈ D′ we have f(h(zk, t)) = f(h(zk, t′)). Then:

f(h(z′, t)) = f(h( lim
k→∞

zk, t)) = lim
k→∞

f(h(zk, t))

= lim
k→∞

f(h(zk, t′)) = f(h( lim
k→∞

zk, t
′))

= f(h(z′, t′)).

Therefore, for all t ∈ D′ we have that h(z′, t) and h(z′, t′) are contained in
the same leaf. It follows that D′z′ is contained in the leaf passing trough
h(z′, t′). Thus, Assertion is proved. �

Proposition 2.4. — Let F be a foliation by curves on the complex
manifold M such that:

TOME 60 (2010), FASCICULE 6



2122 Rudy ROSAS

(i) F is generated by a holomorphic vector field.
(ii) There exists a homeomorphism h : Σ×D → M , where Σ is a ball

in Cn−1 and D is a disc in C.
(iii) For all z, there is a discrete closed set Sz ⊂ Dz := h({z}×D) such

that Dz\Sz is contained in a leaf of F .
Then F is regular and the sets Dz are the leaves of F .

The following lemmas are easy consequences of well known facts and we
left the proofs to the reader.

Lemma 2.5. — Let f : D → C be smooth, and holomorphic on D.
Suppose that f is regular on S1 := D. Then f is a regular map if and only
if the curve f |S1 : S1 → C has degree 1(1) .

Lemma 2.6. — Let M be a complex manifold and D ⊂ M a singular
disc. Then there exists a holomorphic injective map g : E → M , where
E = D or C, such that g(E) = D.

Lemma 2.7. — Let D ⊂ Cn be a set homeomorphic to a disc such that
for some point p ∈ D the annulus D\{p} is a complex submanifold. Then
D is a singular disc.

Proof of Proposition 2.4. —

Assertion 1. — For all z, we have that Dz is a singular disc and the
sets Dz\Sing(F) are the nonsingular leaves of F .

Proof . — Let x ∈ Dz. Since Sz is a discrete closed subset of Dz, there
is a disc D ⊂ Dz with x ∈ D such that D\{x} ⊂ Dz\Sz. Then, from
hypothesis (iii), D\{x} is contained in a leaf of F . If D is small enough,
we may think that D is contained in Cn. Hence, by applying Lemma 2.7,
there exists a holomorphic injective map g : D→M with g(D) = D. Since
that x ∈ Dz was arbitrary, it follows that Dz is a singular disc.

Let L be a leaf of F and suppose that x ∈ L ∩ (Dz\Sing(F)) for some
z. Take D ⊂ Dz as above. We assume D small enough such that it is
contained in a neighborhood U of x where F is trivial and given by the
submersion f . Then D\{x} is contained in a leaf of F|U and f is therefore
constant over D\{x}. Hence, by continuity, f is constant over D. Then
D is contained in a leaf of F|U and we have therefore D ⊂ L. Thus we
have D ⊂ L ∩ (Dz\Sing(F)). It follows that L ∩ (Dz\Sing(F)) is an open
subset of both L and Dz\Sing(F) for all L and z. Now, fix a leaf L.

(1) The degree of a parameterized regular curve in the plane is defined as the winding
number around 0 of its velocity vector.

ANNALES DE L’INSTITUT FOURIER
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Since the intersection of L with any Dz\Sing(F) is open in L, it follows
by connectedness that L is contained in a unique Dz\Sing(F). For this
Dz\Sing(F), we also have that its intersection with any leaf is open in
Dz\Sing(F). Again by connectedness Dz\Sing(F) is contained in a unique
leaf, thus we necessarily have that Dz\Sing(F) = L. Therefore Assertion 1
is proved.

Fix p ∈ M . We have p ∈ Dz′ for some z′ ∈ Σ. Take p′ in Dz′\Sz′ .
From hypothesis (iii), p′ is a regular point of F . We have p′ = h(z′, t′)
with t′ ∈ D. If B ⊂ Σ is a ball containing z′, then Σ0 := B × {t′} is a
(n− 1) ball passing through (z′, t′). We assume B small enough such that
Σ0 is mapped by h into a neighborhood W of p′ where F is equivalent to
a product foliation. Let Σ̃ (submanifold of W ) be a global transversal to
F|W . If w is a point contained in h(Σ0), the leaf of F|W passing through it
intersects Σ̃ in a unique point ψ(w). We claim that ψ is a homeomorphism
of h(Σ0) onto its image. Since h(Σ0) is compact, it suffices to prove that
ψ is injective on h(Σ0). Suppose that w1 and w2 are two points in h(Σ0)
contained in the same leaf L of F|W . From Assertion 1, we have that
L ⊂ Dz for some z. Then h−1(L) ⊂ {z} ×D, hence h−1(w1) and h−1(w2)
are two different points in the intersection of (z ×D) with Σ0, which is a
contradiction because Σ0 ⊂ Σ× {t′} intersects (z ×D) only at (z, t′).

If we redefine Σ̃ as Σ̃ = ψ(h(Σ0)), it follows from above that for all z ∈ B,
Dz intersects Σ̃ at the unique point ψ(h(z, t0)). Thus we may define the
map

g : V = h(B × D)→ Σ̃,

g(Dz) = Dz ∩ Σ̃.

By Assertion 1, each leaf of F is contained in some Dz. Then g is constant
along the leaves. Therefore, since the restriction of g to any transversal is
a holonomy map, we have that g is holomorphic on V \Sing(F). Actually,
since Sing(F) has codimension > 2, g is holomorphic on V .

Consider x∈ Σ̃\g(Sing(F)). ThenD = g−1(x) does not intersect Sing(F).
Clearly D is equal to some Dz. Then, by Assertion 1, D\Sing(F) = D is a
leaf of F . Thus, we conclude that for all x ∈ Σ̃\g(Sing(F)), the leaf passing
through x is simply connected. Moreover, since Sing(F) has codimension
> 2, we have that g(Sing(F)) has codimension > 1 in Σ̃ and we have
therefore that:

Assertion 2. — For all x in a dense subset of Σ̃, the leaf passing
through x is simply connected.

TOME 60 (2010), FASCICULE 6
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Let Z be a holomorphic vector field which generates F on V and ϕ the
local complex flow of Z. Let L be a leaf of F|V and let xL be its intersection
with Σ̃ (g(L) = {xL}). There exists εL > 0 such that ϕ(xL, ∗) maps the
disc |t| < εL biholomorphically onto a neighborhood DL of xL in L. Thus,
given any x in DL there exists a unique τL(x) with |τL(x)| < εL such that
ϕ(xL, τL(x)) = x. The function τL : DL → C is the complex time between
xL and x. Clearly τL is holomorphic on DL.

Assertion 3. — The function τL can be analytically continued on L

along any path γ : [0, 1]→ L with γ(0) = xL.

Proof . — Since γ does not intersect Sing(F) there exists δ > 0 such
that for all x in γ([0, 1]), the map ϕ(x, ∗) is a biholomorphism between D2δ
and its image. Denote xL by x0 and let 0 = s0 < s1 < · · · < sr = 1 and
x1 = γ(s1), . . ., xr = γ(sr) be such that:

(i) The open sets ϕ(xi,Dδ) for i = 0, . . ., r cover γ([0, 1]).
(ii) xi is contained in ϕ(xi−1,Dδ) for i = 1, . . ., r.

For each i = 0, . . ., r let τ ′i : ϕ(xi,D2δ)→ D2δ be defined by ϕ(xi, τ ′i(x)) =
x. Let x ∈ ϕ(xi−1,Dδ) ∩ ϕ(xi,Dδ). Let ti = τ ′i−1(xi) for i = 1, . . ., r and
define t0 = 0. Clearly, |ti| and |τ ′i(x)| are less than δ, hence |ti+τ ′i(x)| < 2δ
and we have that

ϕ(xi−1, ti + τ ′i(x)) = ϕ(ϕ(xi−1, ti), τ ′i(x))
= ϕ(ϕ(xi−1, τ

′
i−1(xi)), τ ′i(x))

= ϕ(xi, τ ′i(x))
= x.

Then, by definition of τ ′i−1 we obtain:

(2.3) ti + τ ′i(x) = τ ′i−1(x).

For each i = 1, . . ., r let τi be the holomorphic function on ϕ(xi,Dδ)
defined by

τi = τ ′i + t0 + · · ·+ ti.

By using (2.3) we deduce that τi−1 = τi on ϕ(xi−1,Dδ)∩ϕ(xi,Dδ). More-
over, it follows from the definition that τ0 is equal to τL in a neighborhood
of x0 = xL. Therefore, τ0,...,τr give an analytic continuation of τL along γ.

Assertion 4. — Let L be any leaf of F|V and let γ′, γ′′ : [0, 1] → L

be paths such that γ′(0) = γ′′(0) = xL and γ′(1) = γ′′(1) = x ∈ L. Let
τ ′L be the analytic continuation of τL along γ′ and let τ ′′L be the analytic
continuation of τL along γ′′. Then τ ′L(x) = τ ′′L(x). Thus, τL extends as a
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holomorphic function on L. Therefore we may define τ : V \Sing(F) → C
by τ = τL on L. Then τ is holomorphic on U\Sing(F) and extends to U
because Sing(F) has codimension > 2. Moreover, if restricted to a leaf, τ
is a regular map. In particular, τ is a submersion on U\Sing(F).

Proof . — Fix L and denote xL by x0. Let 0 = s0 < · · · < sr =
1, let Σ0, . . .,Σr be transversals to the foliation at the points x0, x1 =
γ(s1), . . ., xr = γ(sr) respectively, and let δ > 0 with the following proper-
ties:

(i) Σ0 ⊂ Σ̃.
(ii) The flow ϕ maps Σi×D2δ biholomorphically onto its image, for all

i = 0, . . ., r.
(iii) The transversal Σi is contained in ϕ(Σi−1×Dδ), for all i = 1, . . ., r.
(iv) For all i = 1, . . ., r we have that Σi = hi(Σ0), where hi is the

holonomy map along γ.
Denote by V ′ the union of the sets ϕ(Σi ×Dδ) for i = 0, . . ., r. Consider

x ∈ V ′ and let Lx be the leaf passing through x. Let k ∈ {0, . . ., r} be
such that x ∈ ϕ(Σk × Dδ). Then Lx intersects Σk and it follows from
hypothesis (iv) that Lx intersects each Σi. Since Σ0 ⊂ Σ̃ we have that Lx
intersects Σ0 in a unique point and, by (iv), the same holds for each Σi.
Then we may define ρi : V ′ → Σi such that ρi(x) is the point of intersection
between Lx and Σi. Let τ ′i(x) ∈ Dδ be defined by ϕ(ρi(x), τ ′i(x)) = x.
Since ρi(x) ∈ Σi, by hypothesis (iii) we have that ρi(x) ∈ ϕ(Σi−1 × Dδ)
for i = 1, . . ., r. Then for i = 1, . . ., r we may define ti : V ′ → Dδ as
ti = τ ′i−1 ◦ ρi. Define t0 : V ′ → Dδ as the zero function. Clearly, ρi, τi and
ti are holomorphic functions. We proceed as in the proof of Assertion 3.
Let x ∈ ϕ(Σi×Dδ)∩ϕ(Σi−1×Dδ). Since |ti(x)| and |τ ′i(x)| are less than δ,
then |ti(x) + τ ′i(x)| < 2δ. Thus, by hypothesis (ii), ϕ(ρi−1(x), ti(x) + τ ′i(x))
is well defined and:

ϕ(ρi−1(x), ti(x) + τ ′i(x)) = ϕ(ϕ(ρi−1(x), ti(x)), τ ′i(x))
= ϕ(ϕ(ρi−1(x), τ ′i−1 ◦ ρi(x)), τ ′i(x))
= ϕ(ρi(x), τ ′i(x))
= x.

Then by definition of τ ′i−1 we deduce that

ti(x) + τ ′i(x) = τ ′i−1(x).

Thus, the holomorphic functions on ϕ(Σi × Dδ) defined as

(2.4) τi(x) = τ ′i(x) + t0(x) + · · ·+ ti(x)
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for each i = 0, . . ., r are such that

τi = τi−1

on ϕ(Σi×Dδ)∩ϕ(Σi−1×Dδ). Observe that for any leaf L′, the restriction
τ0|L′ coincides with τL′ on a neighborhood of xL′ . Then τ0|L′ , · · · , τr|L′
give an analytic continuation of τL′ . Thus, τr|L is the analytic continua-
tion of τL along γ′, hence τr(x) = τ ′L(x). We denote τr by τ ′. Analogously
we construct τ ′′ for γ′′. Then we have that τ ′′|L′ is an analytic continu-
ation of τL′ and, τ ′′|L is the analytic continuation of τL along γ′′, hence
τ ′′(x) = τL(x). By Assertion 2, we may take a sequence {xk} of points in
Σ0 with xk → x as k → ∞ and such that the leaf Lk passing through
xk is simply connected for all k. From above τ ′|Lk and τ ′′|Lk are analytic
continuations of τLk . Since Lk is simply connected and, by Assertion 2, τLk
has an analytic continuation along any path, then τ ′|Lk and τ ′′|Lk coincide
on a neighborhood of xk. In particular, τ ′(xk) = τ ′′(xk). Making k →∞ it
follows by continuity that τ ′(x) = τ ′′(x), that is, τ ′L(x) = τ ′′L(x). Therefore,
τL extends to L.

We define τ : V \Sing(F)→ C by τ |L = τL. From above, τ coincides with
the holomorphic function τ ′ on a neighborhood of the point x (arbitrary
point). Then τ is holomorphic. Finally, remember (equation 2.4) that on a
neighborhood of any non singular point, τ is expressed as

τr(x) = τ ′r(x) + t0(x) + · · ·+ tr(x).

If we restrict x to a leaf, the first term of the sum above is a regular map
and the other terms are constants. Hence τ is a regular map of any leaf.
This finishes the proof of Assertion 4.

Given x ∈ Σ̃, we know that g−1(x) is equal to Dz for some z. We denote
g−1(x) by Dx. Thus, we have p ∈ Dx for x = g(p). It follows from hy-
pothesis (iii) that there is a disc D′ ⊂ Dx containing p such that D′\{p} is
contained in a leaf. Lemma 2.7 implies that there is a holomorphic bĳective
map f : Ω → D′, f(0) = p, where Ω ⊂ C is a disc containing D. Thus if
D = f(D), we have that f : D → D is holomorphic and regular on D\{0}.
Since D\{p} is contained in a leaf and by Assertion 3 we have that τ is a
submersion on U\Sing(F), then there exists a neighborhood V of ∂∆ on
which τ defines a foliation by transversal balls along ∂∆. If we denote by
Σζ the transversal passing trough ζ ∈ ∂∆ we have that τ is constant along
Σζ . Recall that y ∈ Σ̃ is the unique point in the intersection of Dy and Σ̃.
It follows from the transversal uniformity of the foliation that if y ∈ Σ̃ is
close to x then Dy intersects only one time each transversal Σζ . Let θy(ζ)
be the intersection of Dy with Σζ . Since θy(ζ) and ζ are both contained in
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Σζ , we have that τ(θy(ζ)) = τ(ζ) for all ζ ∈ ∂∆. Note that θy := θy(∂∆) is
a smooth Jordan curve in Dy. By Assertion 2, we may choose y such that
Dy is a leaf. We consider Dy ⊂ Dy, the regular disc bounded by θy.

(z)qy

S

S

Dx

Dy

D

Dy

p
z

z

Let fy : D → Dy be a uniformization map. Since θy is a smooth Jordan
curve, fy extends as a diffeomorphism fy : D → Dy (see [14], p.323). By
Assertion 3, we have that τ is regular on Dy. It follows that τ ◦ fy : D→ C
is a regular map. Therefore, by Lemma 2.5, the curve τ ◦ fy : S1 → C has
degree 1. Remember that τ(θy(ζ)) = τ(ζ) for all ζ ∈ ∂∆, thus τ(∂Dy) =
τ(∂D). Then

τ ◦ fy(S1) = τ(∂Dy) = τ(∂D) = τ ◦ f(S1).

Therefore τ ◦ f : S1 → C is only a reparametrization of τ ◦ fy : S1 → C,
hence τ ◦ f : S1 → C is regular and has degree 1. Again by Lemma 2.5,
τ ◦ f : D → C is also a regular map and in particular, τ ◦ f is locally
injective. Therefore there exists a disc U ⊂ D, centered at 0, such that τ ◦f
is injective on U. Then

τ ◦ f(∂U)
is a Jordan curve in C. We also denote f(U) by D. Again, let Σζ be the
transversal ball through ζ ∈ ∂D. Proceeding as above, if Σ′ is a small
enough ball in Σ̃ containing x = g(p), we obtain that for all y ∈ Σ′ the set
Dy intersects each Σζ at the unique point θy(ζ). Thus we have the Jordan
curve θy inDy such that τ(θy) = τ(∂D). Remember that τ(∂D) = τ◦f(∂U)
is a Jordan curve in C. It follows that τ(θy) is Jordan curve in C for all
y. Let Dy ⊂ Dy be the disc bounded by θy. Since Dy is a singular disc,
by Lemma 2.6, there is an injective holomorphic map fy : E → M , where
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E = D or C, such that fy(E) = Dy. Let Ωy ⊂ E be such that fy(Ωy) = Dy.
Clearly Ωy is a disc and fy(∂Ωy) = ∂Dy. Then

τ ◦ fy(∂Ωy) = τ(∂Dy)

is, from above, a Jordan curve in C. Hence we deduce that the holomorphic
function τ ◦ fy : Ωy → C is injective on Ωy. Thus, since fy is injective, we
conclude that

τ : Dy → C
is injective for all y ∈ Σ′.

Denote by W the union of the discs Dy for all y ∈ Σ′. It is easy to see
that W is a neighborhood of p. Define

F : W → Σ̃× C

F (w) = (g(w), τ(w))

Assertion 5. — F is a biholomorphism between W and its image.

Proof . — Clearly F is holomorphic on W . We shall prove that F in-
jective on W . Suppose F (w) = F (w′). Then g(w) = g(w′) = y, hence
w,w′ ∈ Dy and, since W ∩ Dy = Dy, we have w,w′ ∈ Dy. On the other
hand τ(w) = τ(w′) and since τ is injective on Dy we conclude that w = w′.
Now, since W is compact, F is a homeomorphism onto its image and it
follows that F is a biholomorphism.

Now, we will prove that p ∈ W is regular for F . Let N be the regular
foliation on Σ̃×C whose leaves are the sets {∗}×C. Let F ′ be the pull-back
foliation of N by the biholomorphism F . Then F ′ is regular and it is easy to
see that F ′ coincides with F out on a open set of W (out of Sing(F)). Then
F ′ = F on W and F is therefore regular at p. Since p ∈ U was arbitrary,
we have proved that Sing(F) is empty. Then, from Assertion 1, the sets Dz
are the leaves of F . The proof of Proposition 2.4 is complete. �

Proof of Theorem 2.2. —

Assertion 1. — Let z ∈ Σ such that Dz is not contained in X. Then
Dz is contained in a leaf of F .

Proof . — Take t0 ∈ Dz such that h(z, t0) /∈ X. Since X is closed in
M , if Σ′ is a small enough neighborhood (ball) of z in Σ, we have that
h(z′, t0) /∈ X for all z′ ∈ Σ′. Hence, for all z′ ∈ Σ′ we have that Dz′ is not
contained in X. Then, by hypothesis (ii), Sz′ := Dz′ ∩ X is discrete and
Dz′\Sz′ is contained in a nonsingular leaf of F . Therefore, F restricted to
M ′ := h(Σ′ × D) satisfies the hypothesis of Proposition 2.4 and we have
therefore that Dz is contained in a leaf of F .
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Assertion 2. — Let z ∈ Σ such that Dz is contained in X. Then Dz
is a singular disc.

Proof . — Let x ∈ Dz, x = h(z, t). Let Σ′ ⊂ Σ be a neighborhood (a
ball) of z and D′ ⊂ D be a neighborhood (a disc) of t. If Σ′ and D′ are
small enough, we may assume that M ′ := h(Σ′ × D′) is a domain in Cn.
Since X has codimension > 1, there is a path xs = h(zt, ts) in M ′ such
that x0 = x and xs /∈ X for all s > 0. Then Ds := Dzs is not contained in
X for all s > 0 and it follows by Assertion 1 that Ds is contained in a leaf.
Hence Ds is a regular disc for all s > 0. Then, we may apply Lemma 2.1
to the family of discs Ds and conclude that Dz = D0 is a singular disc.

Assertion 3. — Let z be such that Dz ⊂ X. Let Sz be the set of
singularities of the singular disc Dz. Then Dz\Sz is contained in a leaf
of F .

Proof . — By Assertion 2, if Dz is not contained in X we have that
Dz is contained in a leaf of F . Therefore, the hypothesis of Proposition 2.3
holds for F and Assertion 3 follows.

Let z be such that Dz is not contained in X. By hypothesis (iii) of 2.2,
we have that Sz := Dz ∩X is discrete and Dz\Sz is contained in a leaf of
F . From this and Assertion 3 we conclude: for all z there is a discrete set
Sz such that Dz\Sz is contained in a leaf of F . Therefore the hypothesis
of Proposition 2.4 holds and Theorem 2.2 follows. �

3. The algebraic multiplicity and the Chern class of the
tangent bundle of the strict transform

Let F0, F̃0 and h as in §1.

Proposition 3.1. — If h extends to the divisor as a homeomorphism
between π−1(U) and π−1(Ũ), then the extension also denoted by h is a
topological equivalence between F0 and F̃0.

Proof. — Is a direct application of Theorem 1.4. �

Proof of Theorem 1.1. — Suppose that F is generated on U by the
holomorphic vector field

V =
n∑
i=1

ai
∂

∂zi
, ai ∈ OU , g.c.d.(a1, a2, . . ., an) = 1.
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For each j = 1, 2, . . ., n, let Uj = (xj 6= 0) and U ′j = π−1(Uj). Let
Vj = π∗(V |Uj ). If (xj1, . . ., xjn) are coordinates on U ′j such that

π(xj1, . . ., xjn) = (xjjx
j
1, . . ., x

j
j , . . ., x

j
jx
j
n),

then

Vj = aj
∂

∂xjj
+

n∑
i=1,i 6=j

ai − xjiaj
xjj

∂

∂xji
,

where ai = ai ◦ π for i = 1, . . ., n. On U ′j , F0 is defined by the vector field

Wj = 1
(xjj)r−ξ

Vj ,

where r is the algebraic multiplicity of V at 0 ∈ Cn and ξ = 1 or 0
depending on the divisor being invariant or not by F0. Evidently Vi = Vj
on U ′i ∩ U ′j . Then

Wi =
(
xjj/x

i
i

)r−ξ
Wj on U ′i ∩ U ′j .

It follows from this equation that the tangent bundle TF0 of F0 is iso-
morphic to Lξ−r, where L is the line bundle associated to the divisor
E = π−1(0). Then the Chern class c(TF0) of TF0 is equal to (ξ − r)c(L).
It is natural consider E as an element in Hn−2(U ′,Z), where U ′ = π−1(U).
We know that c(L) is equal to d(E) ∈ H2(U ′,Z), the dual of E. Therefore

c(TF0) = (ξ − r)d(E).

On the other hand, make Ũ ′ = π−1(Ũ) and observe that the divisor E is
invariant by F0 if and only if it is by F̃0. Then analogously we have

c(T F̃0) = (ξ − r̃)d̃(E),

where r̃ is the algebraic multiplicity of F̃ and d̃(E) ∈ H2(Ũ ′,Z) is the
dual of E. By Proposition 3.1 we have that h : U ′ → Ũ ′ is a topological
equivalence between F0 and F̃0. Then Theorem 1.3 implies that

(3.1) (ξ − r)h∗(d(E)) = (ξ − r̃)d̃(E).

We may assume that U is a ball in Cn. Thus, we have that U ′ is a tubular
neighborhood of E and therefore H2(U ′,Z) ' Z. Since the cohomology is
invariant by homeomorphisms, we also have H2(Ũ ′,Z) ' Z. Can be proved
that d(E) and d̃(E) are generators of H2(U ′,Z) and H2(Ũ ′,Z) respectively.
Then we have that h∗(d(E)) = d̃(E) or h∗(d(E)) = −d̃(E). By using this
in (3.1) we obtain r = r̃ or r + r̃ = 2ξ. The second possibility implies
r = r̃ = ξ, since r > 1, r̃ > 1 and ξ = 1 or 0. Therefore we conclude that
r = r̃. �
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Remark. — Under the hypothesis of Theorem 1.1, we have another in-
variants. The restriction of F0 to the divisor is a foliation with Sing(F0) as
singular set. It is well known that this foliation coincides out of the singular
set with a unique foliation N of codimension > 2 in the divisor (the satu-
rated foliation). We will say that N is the foliation induced by F0 in the
divisor. Let Ñ be the foliation induced by F̃0 in the divisor. It follows from
Theorem 1.4 that N and Ñ are topologically equivalent. Thus, since the
divisor is isomorphic to Pn−1, Theorem 1.3 implies that d(N ) = d(Ñ ). In
other words, the degree of the foliation induced in the divisor is invariant.

From above, F0 is generated by the holomorphic vector fields Wi and

Wi =
(
xjj/x

i
i

)r−ξ
Wj on U ′i ∩ U ′j ,

where ξ = 1 or 0. Let x ∈ U ′i ∩U ′j . Let xi = (xi1, . . ., xin) be the coordinates
of x in U ′i and let xj = (xj1, . . ., xjn) be the coordinates of x in U ′j . Since
π(xi) = π(xj), we have that

(xiixi1, . . ., xii, . . ., xiixin) = (xjjx
j
1, . . ., x

j
j , . . ., x

j
jx
j
n),

hence xjj/xii = xij . Replacing in last equation we obtain:

(3.2) Wi =
(
xij
)r−ξ

Wj on U ′i ∩ U ′j .

Observe that π−1(0) ∩ U ′i is represented by (xii = 0). Recall that π−1(0) is
canonically isomorphic to Pn−1. A point p in π−1(0) ∩ U ′i given by

(xi1(p), . . ., 0i, . . ., xin(p))

is represented in homogeneous coordinates by

[z1 : · · · : zn](p) = [xi1(p) : · · · : 1i : · · · : xin(p)],

hence xij(p) = (zj/zi)(p). Thus, if Ui = U ′i ∩ π−1(0) and Ji = Wi|Ui , it
follows from (3.2) that

(3.3) Ji = (zj/zi)r−ξJj on Ui ∩ Uj .

Let S be the union of the components of codimension 2 of Sing (F0). Then
S is the codimension 1 part (respect to the divisor) of the zero set of {Ji}.
Each Ji may be expressed as Ji = fiZi, where fi is a holomorphic function
on Ui and the vector field Zi has singular set of codimension > 2. It follows
from (3.3) that

Zi = (fj/fi) (zj/zi)r−ξZj on Ui ∩ Uj .

From this equation, it is not difficult to conclude that

r = d(N )− deg(S)− 1 + ξ,
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where deg(S) is the degree of S as a divisor of π−1(0). Then, since the
algebraic multiplicity and the degree of the foliation induced in the divisor
are invariants, we deduce that the degree of the codimension 1 part of the
singular set of the strict transform is also an invariant. Moreover it is not
difficult to see that h(S) = S̃, where S̃ is the union of the components of
codimension 2 of Sing(F̃0).

4. The case C1

In this section we prove Theorem 1.2. In view of Theorem 1.1, it is
sufficient to show the following.

Proposition 4.1. — Let F and F̃ be two foliations by curves of neigh-
borhoods U and Ũ of 0 ∈ Cn. Let h : U → Ũ be a C1 equivalence. Let
h : π−1(U\{0}) → π−1(Ũ\{0}) be as before. Then h can be extended to
the divisor as a homeomorphism between π−1(U) and π−1(Ũ).

We start the proof.

Proposition 4.2. — Under the conditions of Proposition 4.1, we have
that d h(0) : Cn → Cn maps complex lines onto complex lines. Furthermore,
if J : Cn → Cn is the conjugation J(z) = z̄, then either d h(0) : Cn → Cn is
a C-linear isomorphism, or d h(0) = Q ◦ J , where Q : Cn → Cn is a C-linear
isomorphism. Thus, d h(0) induces a diffeomorphism of Pn−1 onto itself.

Proof. — let L be a complex line, 0 ∈ L ⊂ Cn. There exists C-linear
functions Ai : Cn → C for i = 1, . . ., (n− 1), such that

L = {z ∈ Cn : Ai(z) = 0 for all i = 1, . . ., (n− 1)}.

Let V : U → Cn be a holomorphic vector field which generates F . The set:

B = {z ∈ Cn : Ai ◦ V (z) = 0 for all i = 1, . . ., (n− 1)}

is an analytic variety and it is easy to see that 0 ∈ B. Then, there exists
a complex curve contained in B and passing through 0. In particular there
exists a sequence of points zk ∈ Cn\{0}, zk → 0, such that Ai ◦ V (zk) = 0
for all k ∈ N and all i = 1, 2, . . ., (n− 1). In other words, TzkF = L for all
k ∈ N. Now, since h is a C1 equivalence, d hzk(TzkF) = Th(zk)F̃ , that is,
d hzk(L) = Th(zk)F̃ is a complex line for all k ∈ N. Making k → ∞, since
h ∈ C1 and the space of complex lines of Cn is compact, we obtain that
d h0(L) is also a complex line. The second part of the proposition is an
immediate consequence of the following lemma. �
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Lemma 4.3. — Let A : R2n → R2n (n > 2) be a R-linear isomorphism.
Identify R2n with Cn and assume that A maps complex lines onto complex
lines. Then, either A is a C-linear isomorphism, or A = Q◦J with Q : Cn →
Cn a C-linear isomorphism.

Proof. — Since A maps any complex line onto a complex line, for all
v ∈ Cn\{0} there exists θ(v) ∈ C\{0} such that A(iv) = θ(v)A(v). Let v1
and v2 be two C-linearly independent vectors. Then

A(iv1 + iv2) = A(iv1) +A(iv2) = θ(v1)A(v1) + θ(v2)A(v2).

Moreover:

A(iv1 + iv2) = A(i(v1 + v2)) = θ(v1 + v2)A(v1 + v2)
= θ(v1 + v2)A(v1) + θ(v1 + v2)A(v2).

From the equations above, we obtain:

(4.1) (θ(v1)− θ(v1 + v2))A(v1) + ((θ(v2)− θ(v1 + v2))A(v2) = 0.

Let L1 and L2 be the complex lines generated by v1 and v2 respectively.
Since v1 and v2 are C-linearly independent, we have that L1 and L2 are
different. This implies, since A is an isomorphism, that A(L1) and A(L2)
are different complex lines. Then, since A(L1) and A(L2) are generated by
A(v1) and A(v2) respectively, we have that A(v1) and A(v2) are C-linearly
independent. Thus, it follows from equation (4.1) that

θ(v1) = θ(v1 + v2) = θ(v2).

It is now easy to see that θ(v) = θ0, ∀v ∈ Cn\{0}. We know that there
exists two C-linear transformations P : Cn → Cn and Q : Cn → Cn such
that

A(z) = P (z) +Q(z̄), for all z ∈ Cn.
Then

A(iz) = iP (z)− iQ(z̄).
On the other hand

A(iz) = θ0A(z) = θ0P (z) + θ0Q(z̄), for all z ∈ Cn.

consequently
(θ0 − i)P (z) + (θ0 + i)Q(z̄) = 0.

Since, as functions of z, (θ0 − i)P and (θ0 + i)Q ◦ J are holomorphic and
anti-holomorphic respectively, we have that

(θ0 − i)P ≡ 0, (θ0 + i)Q ◦ J ≡ 0.
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From this it is easy to see that either P = 0, or Q = 0. This proves the
lemma. �

Definition 4.4. — Let {zk} be a sequence of points in Cn\{0}. Let L
be a complex line in Cn . We say that {zk} is tangent to L at 0 if zk → 0
and every accumulation point of {zk/||zk||} is contained in L.

Let π : Ĉn → Cn be the blow up at 0 ∈ Cn. We know that π−1(0) is
naturally isomorphic to Pn−1. Thus, for each p ∈ π−1(0) we denote by Lp
the respective complex line in Cn. The following fact is well known and we
left the proof to the reader:

Proposition 4.5. — Let {pk} be a sequence of points in Ĉn\π−1(0).
Then pk → p ∈ π−1(0) if and only if {π(pk)} is tangent to Lp at 0.

Proof of Proposition 4.1. — Let p ∈ π−1(0) and {pk} any sequence of
points in π−1(U)\π−1(0) such that pk → p.

Since h ∈ C1, we have

h(π(pk)) = d h0(π(pk)) + r(π(pk)), where r(π(pk))
||π(pk)||

→ 0 as k → 0.

Then

(4.2) h(π(pk))
||π(pk)||

= d h0

(
(π(pk))
||π(pk)||

)
+ r(π(pk))
||π(pk)||

.

By proposition 4.5, π(pk) is tangent to Lp at 0, hence any point of accu-
mulation of the sequence {(π(pk))/‖π(pk)||} is contained in Lp. Thus, it
is easy to see from equation (4.2) that any point of accumulation of the
sequence {h(π(pk))/||π(pk)||} is contained in d h0(Lp) and the same holds
for the sequence

h(π(pk))
||h(π(pk))||

= h(π(pk))
||π(pk)||

||π(pk)||
||h(π(pk))||

.

From proposition 4.2 we have that d h0(Lp) is a complex line. Then
{h(π(pk)}) is tangent to d h0(Lp) at 0. It follows by proposition 4.5 that
π−1 ◦ h ◦π(pk) = h(pk)→ q, where q ∈ π−1(0) is such that Lq = d h0(Lp).
We extend h by making h(p) = d h0(Lp) for all p in π−1(0). Finally, it is
easy to prove that h : π−1(U)→ π−1(Ũ) is a homeomorphism. �
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