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ON SIMULTANEOUS RATIONAL APPROXIMATION
TO A REAL NUMBER AND ITS INTEGRAL POWERS

by Yann BUGEAUD

Abstract. — For a positive integer n and a real number ξ, let λn(ξ) denote
the supremum of the real numbers λ such that there are arbitrarily large posi-
tive integers q such that ||qξ||, ||qξ2||, . . . , ||qξn|| are all less than q−λ. Here, || · ||
denotes the distance to the nearest integer. We study the set of values taken by
the function λn and, more generally, we are concerned with the joint spectrum of
(λ1, . . . , λn, . . .). We further address several open problems.

Résumé. — Pour un entier strictement positif n et un nombre réel ξ, on note
λn(ξ) le supremum des nombres réels λ pour lesquels il existe des entiers q arbitrai-
rement grands tels que ||qξ||, ||qξ2||, . . . , ||qξn|| sont tous inférieurs à q−λ. Ici, || · ||
désigne la distance à l’entier le plus proche. Nous étudions l’ensemble des valeurs
prises par la function λn et, plus généralement, nous nous intéressons au spectre
de (λ1, . . . , λn, . . .). Nous formulons également plusieurs problèmes ouverts.

1. Introduction

In 1932, in order to define his classification of real numbers, Mahler [18]
introduced the exponents of Diophantine approximation wn.

Definition 1.1. — Let n > 1 be an integer and let ξ be a real number.
We denote by wn(ξ) the supremum of the real numbers w such that, for
arbitrarily large real numbers X, the inequalities

0 < |xnξn + . . .+ x1ξ + x0| 6 X−w, max
06m6n

|xm| 6 X,

have a solution in integers x0, . . . , xn.

The Dirichlet theorem implies that wn(ξ) is at least equal to n for every
real number ξ which is not algebraic of degree at most n. Sprindžuk [20]

Keywords: Simultaneous approximation, exponent of approximation.
Math. classification: 11J13.
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showed that there is equality for almost all ξ, with respect to the Lebesgue
measure. Furthermore, it follows from the Schmidt Subspace Theorem that
wn(ξ) = min{n, d− 1} for every positive integer n and every real algebraic
number ξ of degree d; see [6] for an overview of the known results on
the exponents wn. In the present paper, we consider, besides wn, several
functions defined on the set of real numbers and whose values at algebraic
numbers are known. Therefore, by spectrum of a function, we mean the set
of values taken by this function on the set of transcendental real numbers.

By means of the theory of continued fractions, it is easy to show that
the spectrum of w1 is equal to the whole interval [1,+∞]; see Section 2
below. A more precise result was proved by Jarník [13]. For n > 2, the
determination of the spectrum of wn is much more delicate, and the crucial
tool is the theory of Hausdorff measure. It is an immediate consequence of
a deep result established in 1983 by Bernik [4], on the Hausdorff dimension
of the set of real numbers ξ such that wn(ξ) exceeds some prescribed real
number w, that, for any positive integer n, the exponent wn takes any value
greater than or equal to n. However, to construct explicit examples of real
numbers ξ with a prescribed value w for wn(ξ) remains an open question
unless n = 1 or w is sufficiently large compared to n. In Section 2, we give
a new contribution to this problem.

Another exponent of Diophantine approximation, which measures the
quality of the simultaneous rational approximation to a number and its n
first integral powers, has been introduced recently [10].

Definition 1.2. — Let n > 1 be an integer and let ξ be a real number.
We denote by λn(ξ) the supremum of the real numbers λ such that, for
arbitrarily large real numbers X, the inequalities

0 < |x0| 6 X, max
16m6n

|x0ξ
m − xm| 6 X−λ,

have a solution in integers x0, . . . , xn.

The Dirichlet theorem implies that λn(ξ) is at least equal to 1/n for every
real number ξ which is not algebraic of degree at most n. The combination
of Sprindžuk’s above mentioned result with a classical transference principle
shows that there is equality for almost all ξ, with respect to the Lebesgue
measure. Furthermore, it follows from the Schmidt Subspace Theorem that
λn(ξ) = max{1/n, 1/(d − 1)} for every positive integer n and every real
algebraic number ξ of degree d.

The following question is Problem 5.5 from [11] (see also Question 1
in [8]).

ANNALES DE L’INSTITUT FOURIER
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Problem 1.3. — Let n > 1 be an integer. Is the spectrum of the func-
tion λn equal to [1/n,+∞]?

In the present note, we summarize what is known on this problem and
establish several new related results. We begin in Section 2 by a new re-
sult on the exponents wn. Section 3 is then devoted to the study of the
spectra of the exponents λn. In Section 4 we address the question of de-
termining the joint spectrum of (λ1, . . . , λn, . . .) and establish two partial
results. In Section 5, following a recent work of Laurent [17], we introduce
new Diophatine exponents, which can be viewed as intermediate exponents
between λn and wn, and we give partial results on their spectra. Finally,
in Section 6, we restrict our attention to the set of values taken by λn on
the triadic Cantor set.

We assume that the reader is familiar with the theory of continued frac-
tions. Throughout this note, b·c denotes the integer part function. The
notation a �d b means that a exceeds b times a constant depending only
on d. When� is written without any subscript, it means that the constant
is absolute. We write a � b if both a� b and a� b hold.

2. New result for the exponents wn

Besides the exponents wn and λn defined in Section1, the exponents w∗n
which measure the quality of the approximation by algebraic numbers of
degree at most n have also been extensively studied (see, e.g. [6]). Recall
that the height H(P ) of an integer polynomial P (X) is the maximum of
the moduli of its coefficients, and the height H(α) of an algebraic number
α is the height of its minimal polynomial over Z.

Definition 2.1. — Let n > 1 be an integer and let ξ be a real number.
We denote by w∗n(ξ) the supremum of the real numbers w∗ for which the
inequality

0 < |ξ − α| 6 H(α)−w
∗−1

is satisfied for infinitely many algebraic numbers α of degree at most n.

Recall that w∗n(ξ) 6 wn(ξ) holds for every n > 1 and every real number ξ,
but the inequality can be strict. It is a well-known problem, often referred
to as the Wirsing conjecture [22], to decide whether w∗n(ξ) > n holds for
every n > 1 and every transcendental real number ξ.

We improve a result of Güting [12] (see Theorem 7.7 from [6]) as follows.

TOME 60 (2010), FASCICULE 6
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Theorem 2.2. — Let m > 1 and k > 0 be integers. Let w be a real
number with

(2.1) (w + 1−m)(w + 1−m− k) > m(m+ k)w.

Then, there exist uncountably many real numbers ξ such that

wm(ξ) = w∗m(ξ) = . . . = wm+k(ξ) = w∗m+k(ξ) = w.

Theorem 2.2 is a new contribution towards the resolution of the Main
Problem investigated in [6]. It improves Theorem 7.7 from [6], where (2.1)
is replaced by the inequality (w+1−m)(w+1−m−k) > m(m+k)(w+1).

The key idea, which goes back to Güting [12], is to construct suitable real
numbers with many very good algebraic approximations of degree exactly
m. This was done in earlier works by means of lacunary series; here, we
obtain an improved result by using continued fractions.

We display an immediate corollary of Theorem 2.2 obtained by taking
m = 1 and k = n− 1 in its statement.

Corollary 2.3. — Let n > 1 be an integer. For any real number w >
2n− 1, there exist uncountably many real numbers ξ such that

w1(ξ) = w∗1(ξ) = . . . = wn(ξ) = w∗n(ξ) = w.

The assumption w > 2n − 1 in Corollary 2.3 replaces the stronger as-
sumption w > (2n − 1 +

√
4n2 + 1)/2 in [6]. Note that Corollary 2.3 for

n = 1 and the existence of Liouville numbers imply that the spectrum of
w1 is equal to [1,+∞], a result first proved by Jarník.

Proof of Theorem 2.2. — For simplicity, we only give a full proof for the
case m = 1 (thus, we establish Corollary 2.3) and explain the modifications
to be done to get the whole statement.

Let w > 1 be a real number. Let M be a large positive integer and
consider the real number

(2.2) ξ = [0; 2,Mbqw−1
1 c,Mbqw−1

2 c,Mbqw−1
3 c, . . .],

where q1 = 2 and qj is the denominator of the j-th convergent to ξ, that
is, of the rational number pj/qj = [0; 2,Mbqw−1

1 c, . . . ,Mbqw−1
j−1 c], for j > 2.

By construction, we have

(2.3) qj+1 �Mqwj and
∣∣∣∣ξ − pjqj

∣∣∣∣ � 1
Mqw+1
j

,

for j > 1. Consequently, we have

(2.4) w = w1(ξ) 6 . . . 6 wd(ξ),

for every positive integer d.

ANNALES DE L’INSTITUT FOURIER
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Let d be a positive integer with d < w. Let P (X) be an integer polynomial
of degree at most d and of large height H(P ). Assume first that P (X) does
not vanish at any element of the sequence (pj/qj)j>1. Let j be defined by
qj 6 H(P ) < qj+1. Observe that

|P (pj/qj)| > q−dj

and

|P (pj/qj)− P (ξ)| �d H(P )|ξ − pj/qj | �d H(P )q−w−1
j M−1,

by (2.3). Consequently, we have

|P (ξ)| > |P (pj/qj)| − |P (pj/qj)− P (ξ)| > q−dj /2 > H(P )−w/2

as soon as H(P )q−w−1
j M−1 �d q−dj , that is, as soon as

(2.5) H(P )�d Mqw+1−d
j .

Similarly, we observe that

|P (pj+1/qj+1)| > q−dj+1

and

|P (pj+1/qj+1)− P (ξ)| �d H(P )q−w−1
j+1 M

−1 �d q−wj+1M
−1.

Since w > d, this implies that, if j (that is, ifH(P )) is large enough, we have
|P (ξ)| > q−dj+1/2. We then have |P (ξ)| > H(P )−w ifH(P )−w 6 q−dj+1/2, that
is, by (2.3), if

(2.6) H(P )�d Md/wqdj .

SelectingM sufficiently large in terms of d, it follows from (2.5) and (2.6)
that the whole range of values qj 6 H(P ) < qj+1 is covered as soon as

(2.7) d 6 w + 1− d.

This means that, for w > 2d − 1 and for any polynomial P (X) of degree
at most d that does not vanish at pj/qj and whose height satisfies qj 6
H(P ) < qj+1, we have

|P (ξ)| > H(P )−w/2.

In particular, if the polynomial P (X) of degree at most d does not vanish
at any element of the sequence (pj/qj)j>1, then it satisfies

(2.8) |P (ξ)| � H(P )−w.

TOME 60 (2010), FASCICULE 6
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If there are positive integers a1, . . . , ah, distinct positive integers
n1, . . . , nh and an integer polynomial R(X) such that the polynomial P (X)
of degree at most d can be written as

P (X) = (qn1X − pn1)a1 · · · (qnhX − pnh)ahR(X),

where R(X) does not vanish at any element of the sequence (pj/qj)j>1,
then it follows from (2.3), (2.8) and the so-called Gelfond inequality

H(P ) �d qa1
n1
· · · qahnhH(R)

that
|P (ξ)| �d,M q−a1w

n1
· · · q−ahwnh

|R(ξ)|

�d,M q−a1w
n1

· · · q−ahwnh
H(R)−w

�d,M
(
qa1
n1
· · · qahnhH(R)

)−w �d,M H(P )−w.
We conclude that, if (2.7) is satisfied, then

|P (ξ)| �d,M H(P )−w

holds for every polynomial P (X) of degree at most d and sufficiently large
height, hence wd(ξ) 6 w. Combined with (2.4), this completes the proof of
Theorem 1 in the case m = 1, since our construction is flexible enough to
yield uncountably many real numbers with the required property.

As for the general case, that is, m > 2, we proceed exactly as above,
with ξ replaced by its m-th root ξ1/m and with the rational numbers pj/qj
replaced by their m-th roots (pj/qj)1/m. Note that

|ξ1/m − (pj/qj)1/m| �m |ξ − pj/qj |.

We follow the proof of Theorem 7.7 of [6], however, there is a slight ad-
ditional difficulty; indeed, we have to ensure that (pj/qj)1/m is of degree
exactly m. This can be guaranteed by choosing instead of (2.2) the real
number

(2.9) ξ = [0; 2,Mbqw−1
1 c+ f2,Mbqw−1

2 c+ f3,Mbqw−1
3 c+ f4, . . .],

where q1 = 2, qj is the denominator of the j-th convergent to ξ, and
f2, f3, . . . are suitable non-negative integers less than m. To see this, recall
that ([16], Theorem 9.1), if q is not an h-th power for 2 6 h 6 m and if q/4
is not a fourth power, then the polynomial qXm − p is irreducible when p
is coprime with q. If we have

(2.10) (Mbqw−1
j−1 c+ f)qj−1 + qj−2 = yh

for integers y, 0 6 f 6 m and h > 2, then (y + 1)h exceeds (Mbqw−1
j−1 c +

f)qj−1 +qj−2 +qw/2j−1 . By (2.1) we have w > 2, thus the number (Mbqw−1
j−1 c+

ANNALES DE L’INSTITUT FOURIER
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`)qj−1 +qj−2, where ` = 0, 1, . . . ,m, ` 6= f , cannot be a perfect h-th power,
if j is large enough. This shows that at most one number of the form

(2.11) (Mbqw−1
j−1 c+ f)qj−1 + qj−2,

with 0 6 f 6 m, is an h-th power with 2 6 h 6 m. The same argument
applies when yh is replaced by 4y4 in (2.10). Consequently, there exists
f with 0 6 f 6 m such that the number of the form (2.11) is neither
an h-th power, for any h > 2 at most equal to m, nor is equal to four
times a fourth power. This shows that we can construct inductively integers
f2, f3, . . . in [0,m] such that the number ξ defined in (2.9), whose sequence
of convergents is (pj/qj)j>1, is such that the polynomial qjXm − pj is
irreducible for j > 2. �

3. The exponents λn

Let ξ be an irrational real number. Clearly, we have

λ1(ξ) = w1(ξ) > 1

and

(3.1) λ1(ξ) > λ2(ξ) > . . .

Our first lemma establishes a relation between the exponents λn and λm
when m divides n.

Lemma 3.1. — For any positive integers k and n, and any transcenden-
tal real number ξ we have

λkn(ξ) >
λk(ξ)− n+ 1

n
.

Proof. — Let v be a positive real number and q be a positive integer
such that

max
16j6k

|qξj − pj | 6 q−v,

for suitable integers p1, . . . , pk. Let h be an integer with 1 6 h 6 kn. Write
h = j1 + . . .+ jm with m 6 n and 1 6 j1, . . . , jm 6 k. Then,

|qmξh − pj1 . . . pjm | �m qm−1q−v

and
||qnξh|| � qn−m||qmξh|| �m qn−1−v �m (qn)−(v−n+1)/n,

independently of h. This proves the lemma. �

We display an immediate consequence of Lemma 3.1.

TOME 60 (2010), FASCICULE 6
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Corollary 3.2. — Let ξ be a real irrational number. Then, λn(ξ) =
+∞ holds for every positive n if, and only if, λ1(ξ) = +∞.

We recall two relations between the exponents wn and λn deduced from
Khintchine’s transference principle (see e.g. Theorem 3.9 of [6]).

Proposition 3.3. — For any positive integer n and any real number ξ
which is not algebraic of degree at most n, we have

wn(ξ)
(n− 1)wn(ξ) + n

6 λn(ξ) 6
wn(ξ)− n+ 1

n
.

The real numbers ξ defined in (2.2) satisfy w1(ξ) = λ1(ξ) = w, thus it is
easy to construct explicitly real numbers ξ having any arbitrarily prescribed
value for λ1(ξ). The same question for any exponent λn with n > 2 is not yet
solved. We start with a new contribution to this problem, which improves
Theorem 5.4 of [11].

Theorem 3.4. — Let n > 1 be an integer and λ > 1 be a real number.
There are uncountably many real numbers ξ, which can be constructed
explicitly, such that λn(ξ) = λ. In particular, the spectrum of λn includes
the interval [1,+∞].

Proof. — Let n > 2 be an integer and ξ be a transcendental real number.
Lemma 3.1 with k = 1 implies the lower bound

(3.2) λn(ξ) >
w1(ξ)− n+ 1

n
.

On the other hand, Proposition 3.3 gives the upper bound

λn(ξ) 6
wn(ξ)− n+ 1

n
.

Now, Corollary 2.3 asserts that for any given real number w > 2n−1, there
exist uncountably many real numbers ξw such that

w1(ξw) = . . . = wn(ξw) = w.

Then, the equalities

λk(ξw) = w
k
− 1 + 1

k
, k = 1, . . . , n,

hold; in particular,
λn(ξw) = w

n
− 1 + 1

n
,

and this gives the requested result. �

Unfortunately, and unlike what happens for the exponents wn, the met-
rical theory is not sufficiently developed at present to solve Problem 3.5
below (which may imply a positive answer to Problem 1.3).

ANNALES DE L’INSTITUT FOURIER
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Problem 3.5. — Let n > 1 be an integer and λ > 1/n be a real number.
To determine the Hausdorff dimension of the sets

{ξ ∈ R : λn(ξ) > λ} and {ξ ∈ R : λn(ξ) = λ}.

We complement Theorem 3.4 with various metrical results which give a
partial answer to Problem 3.5. We begin this short survey with a statement
that is an immediate consequence of seminal results of Jarník [13].

Theorem 3.6. — For any real number λ > 1, we have

dim{ξ ∈ R : λ1(ξ) = λ} = 2
1 + λ

.

Theorem 3.6 was recently extended by Budarina, Dickinson, and Leves-
ley [5] as follows.

Theorem 3.7. — Let n > 2 be an integer. Let λ > n − 1 be a real
number. Then, we have

dim{ξ ∈ R : λn(ξ) = λ} = 2
n(1 + λ)

.

We point out that the inequality

dim{ξ ∈ R : λn(ξ) > λ} >
2

n(1 + λ)
is valid for any λ > 1/n. Indeed, for n > 2 and λ > 1/n, we infer from (3.2)
and Theorem 3.6 that

dim{ξ ∈ R : λn(ξ) > λ} > dim{ξ ∈ R : λ1(ξ) > nλ+ n− 1}

>
2

1 + (nλ+ n− 1)
= 2
n(1 + λ)

.

This was already established in [5], but with a different proof.
It follows from Theorem 3.7 that, for any n > 2, the spectrum of λn

includes the interval [n− 1,+∞], a weaker conclusion than Theorem 3.4.
Problem 3.5 for n = 2 and λ ∈ [1/2, 1] was solved by Beresnevich, Dick-

inson, Vaughan and Velani [3, 21].

Theorem 3.8. — For any real number λ with 1/2 6 λ 6 1, we have

dim{ξ ∈ R : λ2(ξ) = λ} = 2− λ
1 + λ

.

We display an immediate consequence of Theorems 3.4 and 3.8. This
solves Problem 1.3 for n = 2.

Corollary 3.9. — The spectrum of λ2 is equal to [1/2,+∞].

TOME 60 (2010), FASCICULE 6
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To conclude this section, we quote a recent result of Beresnevich [2]
dealing with small values of λn.

Theorem 3.10. — Let n > 2 be an integer. Let λ be a real number
with 1/n 6 λ < 3/(2n− 1). Then, we have

(3.3) dim{ξ ∈ R : λn(ξ) > λ} >
n+ 1
λ+ 1

− (n− 1).

By Theorem 3.8, the inequality (3.3) is an equality for n = 2 and Beres-
nevich conjectures that this is also an equality for n > 3.

4. Prescribing simultaneously the values of all the
exponents λn

The results stated in Section 3 show that, under a suitable (very strong)
assumption, it is possible to construct real numbers ξ with prescribed values
of λn(ξ) for finitely many integers n.

Theorem 4.1. — Let k be a positive integer and n1, . . . , nk be distinct
positive integers. Let λ1, . . . , λk and τ be positive real numbers such that
τ > 2,

τ = nj(1 + λj), λj > nj − 1, (j = 1, . . . , k).
Then, we have

(4.1) dim{ξ ∈ R : λnj (ξ) = λj for j = 1, . . . , k} = 2
τ
.

Proof. — We use Theorem 1 of [5] to construct a suitable dimension
function f such that the Hausdorff f -measure of the set defined in (4.1) is
positive, while, for every positive integer h and for i = 1, . . . , k, the set

{ξ ∈ R : λnj (ξ) > λj , for j = 1, . . . , k and λni(ξ) > λi + 1/h}

has zero Hausdorff f -measure. Then, we conclude as in the proof of Theo-
rem 5.8 of [6]. �

Unfortunately, Theorem 4.1 cannot be extended to an infinite set of
positive integers since, clearly, for any real number τ > 2, there are only
finitely many pairs (n, λ) in (Z>1,R>1) such that n(1 + λ) = τ .

The Main Problem investigated in [6] asks whether, for any
non-decreasing sequence (wn)n>1 of real numbers such that wn > n for
n > 1, there exists a real number ξ for which wn(ξ) = wn for n > 1. We
refer the reader to Section 7.8 of [6] for a summary of the known results
towards the Main Problem. In view of this and of Lemma 3.1, we propose
the following generalisation of Problem 1.3.

ANNALES DE L’INSTITUT FOURIER
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Problem 4.2. — Let (λn)n>1 be a non-increasing sequence of positive
real numbers such that

λn >
1
n
, (n > 1),

and
λkn >

λk − n+ 1
n

, (k > 1, n > 1).

Does there exist a real number ξ with

λn(ξ) = λn, for n > 1?

We state our first modest contribution to this problem, which is appar-
ently much more difficult than the (still unsolved) Main Problem.

Theorem 4.3. — There exist uncountably many real numbers ξ satis-
fying

(4.2) λn(ξ) = 1, for n > 1.

The idea is to construct suitable real numbers which are very well ap-
proximable by quadratic numbers. This is a natural approach, since for
every quadratic number γ and every positive integer n we have λn(γ) = 1.

Proof. — Let (mj)j>1 be a very rapidly increasing sequence of positive
integers. Let A1 = 1m12 be the finite word composed of m1 digits 1 and
terminating by the digit 2. For j > 2, denote by nj the number of digits
of the word Amjj−1 and define the word Aj = Amjj−12 composed of mj copies
of Aj−1 and terminating by the digit 2. Let ξj be the quadratic number in
(0, 1) whose continued fraction is purely periodic of periodAj . We define the
infinite word a = a1a2a3 . . . as the limit of the finite words Aj when j tends
to infinity. Clearly, a is not ultimately periodic and ξ := [0; a1, a2, a3, . . .]
is the limit of the quadratic numbers ξj as j tends to infinity.

Let γ be a quadratic real number with minimal defining polynomial
c2X

2 + c1X + c0 over Z and height at most H. Let q be the denominator
of a convergent to γ. Then we have ||qγ|| < q−1, where || · || denotes the
distance to the nearest integer. Observe that ||qc2γ2|| = ||qc1γ|| < Hq−1

and that
||qc22γ3|| 6 ||qc1c2γ2||+ ||qc2c0γ|| < 2H2q−1.

An easy induction then shows that

||qcj2γj+1|| < (2H)jq−1, for j > 1,

and we get

(4.3) ||qch2γj+1|| 6 ch−j2 ||qcj2γj+1|| 6 (2H)hq−1, for j > 1 and h > j.

TOME 60 (2010), FASCICULE 6
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Let j > 2. Let Qj denote the denominator of the nj+1-th convergent to ξj
(that is, of the nj+1-th convergent to ξ since, by construction, ξ and ξj have
the same first nj+1 partial quotients). Let Lj be the leading coefficient of the
minimal defining polynomial of ξj over Z and let Hj be its height. Classical
results from the theory of continued fraction ensure that Qj > (3/2)nj+1

and Hj 6 3nj , since the partial quotients of ξj belong to {1, 2}. In view of
this and of (4.3), we get

(4.4) max{||QjLj−1
j ξj ||, ||QjL

j−1
j ξ

2
j ||, . . . , ||QjL

j−1
j ξ

j
j ||} 6 (2Hj)jQ−1

j

6 (QjLj−1
j )−1 log(QjLj−1

j ),

if nj+1 is sufficiently large compared to nj . Since

|ξhj − ξh| 6 jQ−2
j , for 1 6 h 6 j,

we infer from (4.4) that, provided that nj+1 is sufficiently large, we have

||QjLj−1
j ξ

h|| 6 QjLj−1
j · |ξhj − ξh|+ ||QjL

j−1
j ξ

h
j ||

6 jQ−1
j L

j−1
j + (QjLj−1

j )−1 log(QjLj−1
j ) 6 2(QjLj−1

j )−1 log(QjLj−1
j ),

for h = 1, . . . , j. This implies that λh(ξ) > 1 for h > 1. Since ξ has bounded
partial quotients, it satisfies λ1(ξ) = 1, and the requested result follows
from (3.1). Finally, we observe that there are uncountably many suitable
choices for the sequence (nj)j>1, thus, uncountably many real numbers ξ
satisfy (4.2). �

The next theorem gives new information on the joint spectrum of λ1
and λ2.

Theorem 4.4. — Let λ be a real number with 1 6 λ 6 3. There exist
uncountably many real numbers ξ with λ1(ξ) = λ and λ2(ξ) = 1.

Note that the assumption λ 6 3 in Theorem 4.4 is necessary since λ2(ξ) >
(λ1(ξ)− 1)/2, by (3.2).

The constructive proof of Theorem 4.4 depends on the following auxiliary
result. Recall that a finite word a1a2 . . . an is called a palindrome if aj =
an+1−j for j = 1, . . . , n.

Lemma 4.5. — Let a1 > 4 be an integer. Let ξ = [0; a1, a2, . . . , ak, . . .]
be an irrational real number. Assume that there exists n > 4 such that
a1a2 . . . an is a palindrome and set

p

q
= [0; a1, . . . , an−1, an] and p′

q′
= [0; a1, . . . , an−1].
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Then we have p = q′, max{||qξ||, ||qξ2||} � a1q
−1, and ||qξ2|| � a−1

1 q
−1.

Consequently, if there are infinitely many integers n such that a1a2 . . . an
is a palindrome, then λ2(ξ) > 1.

Proof. — The first two assertions are established in Section 5 of [1]. For
the last one, observe that∣∣∣∣ξ2 − p′q

∣∣∣∣ = ∣∣∣∣ξ2 − p′q′ · pq
∣∣∣∣ = ∣∣∣∣(ξ + p

′

q′

)(
ξ − p
q

)
± ξ
qq′

∣∣∣∣.
Since ∣∣∣∣(ξ + p

′

q′

)(
ξ − p
q

)∣∣∣∣ 6 3ξ
q2

and ξ

qq′
>

4ξ
q2
,

we deduce that ||qξ2|| > ξq−1. This completes the proof of the lemma. �

Proof of Theorem 4.4. — We give an inductive construction for the con-
tinued fraction expansion of a suitable real number ξ = [0; a1, a2, . . .], whose
sequence of convergents is denoted by (pn/qn)n>1. Set a1 = . . . = a4 = 4,
n1 = 5 and a5 = bqλ−1

4 c. We construct a very rapidly increasing sequence
(nj)j>1 of odd integers. We describe the inductive step. Let j be a pos-
itive integer such that the word a1a2 . . . anj−2anj−1 is a palindrome and
anj = bqλ−1

nj−1c. Let anj+1, . . . , a(nj+1−1)/2 be elements of {1, 2} and set
a(nj+1−1)/2+h = a(nj+1−1)/2+1−h for h = 1, 2, . . . , (nj+1 − 1)/2. Conse-
quently, the word a1a2 . . . anj+1−2anj+1−1 is a palindrome. We select nj+1
sufficiently large to secure that

(4.5) ||qnξ|| > q−1
n (log qn)−1, for nj 6 n 6 nj+1 − 2.

Note that (4.5) certainly holds if q(nj+1−1)/2 exceeds exp{anj}. Finally, we
put anj+1 = bqλ−1

nj+1−1c, thus

(4.6) ||qnj+1−1ξ|| � q−λnj+1−1.

This completes the inductive step. By construction, we have λ1(ξ) = λ and
Lemma 4.5 implies that λ2(ξ) > 1. It remains to prove that λ2(ξ) cannot
exceed 1. Let ν > 1 be a real number and let q be a (large) positive integer
such that ||qξ|| < q−ν . We deduce from (4.5) and (4.6) that q is necessarily
an integer multiple of qnj−1 for some j > 1. Write then q = Mqnj−1 and
note that there are integers p and p′ such that p =Mp′ and

1
qλ+1
nj−1

�
∣∣∣∣ξ − p′

qnj−1

∣∣∣∣ = ∣∣∣∣ξ − pq
∣∣∣∣ < 1
qν+1 .

This shows that qν+1 � qλ+1
nj−1, thus,

M � q(λ+1)/(ν+1)
nj−1 q−1

nj−1 � q
(λ−ν)/(ν+1)
nj−1 .
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Since ν > 1 and λ 6 3, there exists τ < 1 such that M 6 qτnj−1 and,
consequently,

||qξ2|| = ||Mqnj−1ξ
2|| =M ||qnj−1ξ

2|| �Mq−1
nj−1 � q−1,

by Lemma 4.5. This shows that λ2(ξ) cannot exceed 1. Consequently,
λ2(ξ) = 1 and the theorem is proved, since the method is flexible enough
to yield uncoutably many real numbers with the required property. �

5. Intermediate exponents

Let n > 2 be an integer and Θ be a point in Rn. In [17], Laurent intro-
duced new exponents ωn,d(Θ) (simply denoted by ωd(Θ) in [17], since n is
fixed throughout that paper) measuring the sharpness of the approxima-
tion to Θ by linear rational varieties of dimension d. He split the Khint-
chine transference principle into n − 1 intermediate estimates which con-
nect the exponents ωn,d(Θ) for d = 0, 1, . . . , n − 1 (see also [9]). Actually,
Schmidt [19] was the first to investigate the properties of these exponents
ωn,d, but he did not introduce them explicitly. We briefly recall their def-
inition and we consider new exponents wn,d defined over R by restricting
ωn,d to the Veronese curve (x, x2, . . . , xn). It is convenient to view Rn as
a subset of Pn(R) via the usual embedding (x1, . . . , xn) 7→ (1, x1, . . . , xn).
We shall identify Θ = (Θ1, . . . ,Θn) with its image in Pn(R). Denote by d
the projective distance on Pn(R) and, for any real linear subvariety L of
Pn(R), set

d(Θ, L) = min
P∈L

d(Θ, P )

the minimal distance between Θ and the real points P of L. When L is
rational over Q, we indicate moreover by H(L) its height, that is the Weil
height of any system of Plücker coordinates of L. We refer to [17, 9] for
precise definitions of the projective distance, heights, etc.

Definition 5.1. — Let n > 2 and d be integers with 0 6 d 6 n−1. Let
Θ be in Rn. We denote by ωn,d(Θ) the supremum of the real numbers ω for
which there exist infinitely many rational linear subvarieties L ⊂ Pn(R)
such that

dim(L) = d and d(Θ, L) 6 H(L)−1−ω.

If there exists ξ such that Θ = (ξ, ξ2, . . . , ξn), then we set wn,d(ξ) =
ωn,d(Θ).
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We observe that the functions λn and wn,0 (resp. wn and wn,n−1) coin-
cide.

Let the spectrum of the function ωn,d denote the set of values taken by
the exponents ωn,d(Θ) when Θ ranges over Rn, with 1,Θ1, . . . ,Θn linearly
independent over the rationals. Using a result of Jarník [14], Laurent [17]
established that the spectrum of ωn,d over Rn is equal to the whole interval
[(d+ 1)/(n− d),+∞] and that ωn,d(Θ) = (d+ 1)/(n− d) for almost all Θ
in Rn. By means of the numbers ξw defined in the proof of Theorem 3.4,
we get some information on the spectra of the exponents wn,d.

Theorem 5.2. — For n > 2 and 0 6 d 6 n − 1, the spectrum of wn,d
contains the whole interval [(n+d)/(n−d),+∞] and wn,d(ξ) = (d+1)/(n−
d) for almost all real numbers ξ.

Theorem 5.2 plainly includes Theorem 3.4.
Proof. — We follow the proof of the Corollary from [17], where it is

established that, for any w with 1/n 6 λ 6 +∞ and for any point Θ in
Rn such that ωn,0(Θ) = λ and ωn,n−1(Θ) = nλ+ n− 1, we have

(5.1) ωn,d(Θ) = nλ+ d
n− d

, (d = 0, 1, . . . , n− 1).

For w > 2n−1, the numbers ξw defined in the proof of Theorem 3.4 satisfy

nλn(ξw) = wn(ξw)− n+ 1 = w − n+ 1,

that is,
ωn,n−1(ξw, . . . , ξnw) = nωn,0(ξw, . . . , ξnw) + n− 1.

We then get from (5.1) that

wn,d(ξw) = nλn(ξw) + d
n− d

, (d = 0, 1, . . . , n− 1).

The first assertion of the theorem follows since λn(ξw) takes every value
between 1 and +∞ as w varies from 2n − 1 to +∞. The second assertion
is an immediate consequence of (5.1) and the fact that nλn(ξ) = wn(ξ) −
n+ 1 = 1 holds for almost every real number ξ. �

We conclude this section by stating an extension of Problem 1.3.

Problem 5.3. — Let d and n be integers with n > 2 and 0 6 d 6 n−1.
Is the spectrum of the function wn,d equal to [(d+ 1)/(n− d),+∞]?

Clearly, a positive answer to Problems 1.3 and 5.3 would follow if we could
prove that, for any positive integer n and for any real number wn greater
than n, there exists a real number ξ such that w1(ξ) = . . . = wn(ξ) = wn.
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We feel that condition (2.1) is likely not best possible, but we have no
conjecture to what extent it could be improved.

6. Diophantine approximation on the Cantor set

Let K denote the triadic Cantor set, that is, the set of all real numbers
of the form c13−1 +c23−2 + · · ·+ci3−i+ · · · with ci = 0 or 2 for every i > 1.
Motivated by a question of Mahler asking whether there are algebraic irra-
tional numbers in K, several authors have recently studied the Diophantine
approximation properties of the elements of K, see the references at the
end of [7].

Let us mention that Kleinbock, Lindenstrauss, and Weiss (Theorem 7.10
from [15]) proved that almost every element ξ on K (with respect to the
standard measure supported on K) satisfies wn(ξ) = w∗n(ξ) = n for every
positive integer n. By Khintchine’s transference principle, such a ξ also
satisfies λn(ξ) = 1/n for every positive integer n. Furthermore, it has been
established in [7] that w1 (that is, λ1) takes on the Cantor set any arbi-
trarily given value greater than or equal to 1. The proof is constructive.
It is apparently a very difficult open problem to prove that for n > 2 the
exponent wn (resp. λn) takes on K any arbitrarily given value greater than
or equal to n (resp. 1/n). The following statement, which follows from the
proof of Theorem 5.4 from [11], solves partially this problem.

Theorem 6.1. — Let n > 2 be an integer. The spectrum of wn re-
stricted to the Cantor set includes the interval [(2n−1+

√
4n2 + 1)/2,+∞].

The spectrum of λn restricted to the Cantor set includes the interval
[(1 +

√
4n2 + 1)/(2n),+∞].

Observe that the left-hand side of the first (resp. second) interval is
(slightly) larger than 2n− 1 (resp. than 1).

Proof. — Theorem 7.7 from [6] asserts that for any given real number
w > (2n− 1 +

√
4n2 + 1)/2 (actually, the strict inequality can be replaced

by a large one), the real number

ξ′w := 2
∑
j>1

3−b(w+1)jc.

satisfies
w1(ξ′w) = . . . = wn(ξ′w) = w.

We conclude as in the proof of Theorem 3.4. �
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