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UNIQUENESS IN ROUGH
ALMOST COMPLEX STRUCTURES,

AND DIFFERENTIAL INEQUALITIES

by Jean-Pierre ROSAY

Abstract. — The study of J-holomorphic maps leads to the consideration of
the inequations | ∂u

∂z
| 6 C|u|, and | ∂u

∂z
| 6 ε| ∂u

∂z
|. The first inequation is fairly easy

to use. The second one, that is relevant to the case of rough structures, is more
delicate. The case of u vector valued is strikingly different from the scalar valued
case. Unique continuation and isolated zeroes are the main topics under study.
One of the results is that, in almost complex structures of Hölder class 1

2 , any
J-holomorphic curve that is constant on a non-empty open set, is constant. This
is in contrast with immediate examples of non-uniqueness.

Résumé. — L’étude des applications J-holomorphes conduit à l’étude des in-
équations | ∂u

∂z
| 6 C|u|, et | ∂u

∂z
| 6 ε| ∂u

∂z
|. La première inéquation est facile à utiliser.

La seconde, qui intervient naturellement dans les structures non lisses, est plus
difficile. De façon intéressante, le cas d’applications vectorielles u est différent du
cas scalaire. Les questions étudiées ont trait à l’unicité de prolongement et aux
zéros isolés. Parmi les résultats, il est démontré que, pour les structures presque
complexes de classe Hölderienne 1

2 , toute courbe J-holomorphe constante sur un
ouvert non vide, est constante. Ceci est en contraste avec des exemples immédiats
de non-unicité.

1. Introduction

The open unit disc in C will be denoted by D. Recall that an almost com-
plex structure on Cn consists in having for each p ∈ Cn an endomorphism
J = J(p) of the (real) tangent space to Cn at p satisfying J2 = −1, and
that a map u : D→ (Cn, J) is J-holomorphic if ∂u∂y (z) = [J(u(z))]

(
∂u
∂x (z)

)
.

The main results in this paper are the following ones:

Keywords: J-holomorphic curves, differential inequalities, uniqueness.
Math. classification: 32Q65, 35R45, 35A02.



2262 Jean-Pierre ROSAY

Proposition 1.1. — Let J be a Hölder continuous C 1
2 almost complex

structure defined on Cn. Let u : D→ Cn be a J-holomorphic map (so u is
of class C1, 12 ). If u = 0 on some non empty open subset of D, then u ≡ 0.

Proposition 1.2. — There exists a smooth map u : D→ C2 satisfying
|∂u∂z | 6 ε(z)|∂u∂z | with ε(z)→ 0 as z → 0, and such that:
u vanishes to infinite order at 0,
u has a non-isolated zero at 0,

but u is not identically 0 near 0.

Note that the phenomena of Proposition 1.2 cannot occur for scalar
valued maps u (i.e., for u : D → C), see the Appendix. So, here we see a
difference between vector valued maps and functions.

I shall now explain the motivations for these questions and how they are
related.

It is well known and extremely easy to see that for Hölder continuous
almost complex structures, that are not Lipschitz, there is not an equivalent
of unique analytic continuation. Two distinct J holomorphic maps u and v
can agree on a non empty open subset of D. Indeed, set u(z) = (z, 0), and
v(z) = (z, 0) if Im z 6 0, but v(z) = (z, (Im z)k) if Im z > 0. For u and v

to be both J-holomorphic maps we simply need that [J(z, 0)](1, 0) = (i, 0),
and [J(x+iy, yk)](1, 0) = (i, kyk−1)), if y > 0. It is immediate that such J ’s
of Hölder class C k−1

k can be defined. This failure of uniqueness is essentially
linked to the failure of uniqueness for O.D.E. such as y′ = |y|α, α < 1, for
which the Lipschitz condition is not satisfied. The possibly surprising fact
is that uniqueness holds when one of the maps is constant, at least for
almost complex structures of class C 1

2 .
If J is close enough to the standard complex structure Jst, J-holomorphic

maps are characterized by an equation:

(E) ∂u

∂z
= Q(u)∂u

∂z

where for p ∈ Cn, Q(p) is a C-linear map, Q(p) = 0 if J(p) = Jst, and Q

has the same Hölder or Ck regularity as J .
Equation (E) leads to inequalities, in particular:
(1) If Q(0) = 0 and Q is Lipschitz continuous, (locally at least) one gets:

(IN1)
∣∣∂u
∂z

∣∣ 6 C|u|

where by rescaling the size of C is irrelevant.

ANNALES DE L’INSTITUT FOURIER



UNIQUENESS AND DIFFERENTIAL INEQUALITIES 2263

(2) If the operator norm of Q(.) is 6 ε,

(IN2)
∣∣∂u
∂z

∣∣ 6 ε
∣∣∂u
∂z

∣∣
The size of ε is important.

In almost complex analysis, it is interesting to know which properties
follow from the equations and which one are merely consequences of the
above inequalities. (IN1) is very easy to use and there is a summary in
the Appendix. (IN2) is useful to get energy estimates (see Lemma 2.4.2
in [14], Remark 2 in 1.d in [9], 2.2 in [4]). Another differential inequality,
on the Laplacian, is used in [12] page 44, also to get energy estimates.
Contrary to (IN1), (IN2) apparently does not yield good uniqueness results,
as Proposition 1.2 illustrates. A much strengthened version of (IN2) will
be used for proving Proposition 1.1.

Proposition 1.3. — Let u : D→ Cn be a C1 map such that for some
K > 0 ∣∣∂u

∂z

∣∣ 6 K|u| 12 |∂u
∂z
| .

If u vanishes on some non empty open subset of D, then u ≡ 0.

Comments.
1) The problems of uniqueness
(a) vanishing on an open set implies vanishing
(b) vanishing to infinite order at a point implies vanishing on a neigh-

borhood
are not strictly related since we are not dealing with smooth maps.

2) The results in this paper are only partial results. More questions are
raised than solved, e.g. :

Can Proposition 1.1 be extended to all Hölder continuous almost complex
structures?

In Proposition 1.1, can one replace vanishing on an open set by vanishing
to infinite order at some point, or having a non-isolated zero? (For non-
Hölderian structures, see an example in Remark 4.3).

And vice versa for Proposition 1.2.
The gap is huge between the positive result of Proposition 1.3 and the

counterexample of Proposition 1.2, in which (with the notation of Propo-
sition 1.2) we will have |ε(2−n)| = O( 1

n ).
3) The proof of Proposition 1.1 will follow very closely the first, easier,

steps of the proof of Theorem 17.2.1 in [6], and will conclude with the

TOME 60 (2010), FASCICULE 6
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arguments in 8.5 and 8.6 in [5], mentioned in [6] page 10. A special case of
this Theorem, gives the following:

Let g be a C1 function defined on D. Assume that ∂g∂z + a(z)∂g∂z = 0,
where a is a C1, with |a| < 1 . If g vanishes on some non empty open subset
of D, then g ≡ 0.

For getting uniqueness for J-holomorphic discs there are very serious
difficulties preventing us from adapting the result:

– The proof makes crucial use of the differentiability of a that we
certainly do not have.

– We would need a generalization to vector valued maps g, with a(z)
operator valued. The proof in [6] seems to be difficult to adapt if
one does not assume a(z) to be a normal operator (a∗a = aa∗). Is
such a generalization true?

– And first, and possibly worst: equation (E) is not a C-linear equa-
tion.

4) Aronszajn type Theorems, such as Theorem 17.2.6 in [6], that prove
that vanishing to infinite order implies vanishing, are difficult and the sit-
uation is very delicate, as shown both by the fact that these results do
not generalize to equations of order > 2 and by the second order coun-
terexamples provided by Alinhac [1]. However, in case of the differential
inequality |∂u∂z | 6 C|u| (vector valued case), the proof of uniqueness under
the hypothesis of vanishing to infinite order by using Carleman weights
simplifies enormously, since one can take advantage of the commutation of
∂
∂z and multiplication by 1

zN
, for introducing the weights 1

|z|N , at “no cost”
(proving an estimate

∫
D
|∂u∂z |

2 1
|z|2N > K

∫
D
|u|2 1

|z|2N , for u ∈ C1
0(D), with

K > 0 independent of N), avoiding thus all the difficult part of the proof
of Aronszajn’s Theorem.

2. Standard ∂ estimates

Notation 2.1. — For the whole paper, we set φ(z) = φ(x) = x + x2

2 ,
z = x + iy. So φ(z) < 0 if −1 6 x < 0, φ is increasing on [−1, 1], and
φ′′ = 1.

Integration on D will be simply denoted by
∫

, standing for
∫

D.

The estimate of Lemma 2.2 is completely standard and its proof is in-
cluded only for the convenience of the reader. It is more usual to see the
dual estimate used for solving ∂ requiring the opposite sign of the exponent
in the weight function. For generalizations see [6], proof of Theorem 17.2.1.
For an elementary introduction, see 4.2 in [7] 4.2 in Chapter IV.

ANNALES DE L’INSTITUT FOURIER



UNIQUENESS AND DIFFERENTIAL INEQUALITIES 2265

2.1.

Lemma 2.2. — For any C1 function (or Cn-valued map) v with compact
support in D, and τ > 1∫ ∣∣∂v

∂z

∣∣2eτφ >
1

10τ

∫ ∣∣∂v
∂z

∣∣2eτφ + τ

20

∫
|v|2eτφ .

Proof. — For short set ∂ = ∂
∂z and ∂ = ∂

∂z . Consider the Hilbert space
of measurable functions f on D such that

∫
|f |2eτφ < +∞, with the scalar

product < f, g >φ=
∫
fgeτφ.

Let ∂∗ be the adjoint of ∂ in that space. Elementary computations show
that

∂
∗
v = −

(
∂v + 1

2
τφ′v
)
.

One has ∫
|∂v|2eτφ =< ∂v, ∂v >φ=< v, ∂

∗
∂v >φ

=< v, ∂ ∂
∗
v >φ + < v, [∂∗, ∂]v >φ

=< ∂
∗
v, ∂
∗
v >φ + < v, [∂∗, ∂]v >φ .

Another immediate computation gives [∂∗, ∂]v = τ
4φ
′′v = τ

4 v. (This is
where positivity comes, from the convexity of φ). Therefore∫
|∂v|2eτφ =

∫
|∂∗v|2eτφ + τ

4

∫
|v|2eτφ >

1
5τ

∫
|∂∗v|2eτφ + τ

4

∫
|v|2eτφ.

To finish the proof, it is enough to use, in the above inequality, the estimate
from below (simply using (a+ b)2 > a2

2 − b
2):

|∂∗v|2 = |∂v + 1
2
τφ′v|2 >

1
2
|∂v|2 − 1

4
|τφ′v|2 >

1
2
|∂v|2 − τ2|v|2,

since 0 6 φ′ 6 2. �

2.2.

The next Lemma is narrowly tailored to the application in view. The
hypotheses are made just ad-hoc and we state the conclusion just as we
shall need it, dropping an 1

τ

∫
|∇u|2 term on the right hand side, that we

could keep.

TOME 60 (2010), FASCICULE 6
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Lemma 2.3. — Let v be a C1 map from D to Cn, with compact support
in D, |v| 6 1. If w is a measurable function on D satisfying |w(z)| 6
θ|v| 12 Min (|∂v∂z |, 1), with θ = 1

10 , then, for any τ > 1:∫ ∣∣∂v
∂z
− w(z)

∣∣2eτφ >
τ

80

∫
|u|2eτφ .

Proof. — We have∫ ∣∣∂v
∂z
− w(z)

∣∣2eτφ >
1
2

∫ ∣∣∂v
∂z

∣∣2eτφ − ∫ |w|2eτφ
>

1
20τ

∫ ∣∣∂v
∂z

∣∣2eτφ + τ

40

∫
|v|2eτφ − θ2

∫
|v|
[
Min
(∣∣∂v
∂z

∣∣, 1)]2eτφ.
The Lemma will be established if we have the (much better than needed)
point-wise estimate

θ2|v|
[
Min
(∣∣∂v
∂z

∣∣, 1)]2 6
1

20τ
∣∣∂v
∂z

∣∣2 + τ

80
|v|2.

At points where |v| 6 1
τ , the estimate is trivial. At points where |v| > 1

τ ,
we simply use θ2|v|[Min (|∂v∂z |, 1)]2 6 θ2|v|. We have θ2|v| = θ2|v|−1|v|2 6
θ2τ |v|2 6 1

80τ |v|
2. �

Remark 2.4. — The proof of Lemma 2.3 ends with a simple pointwise
estimate, because we have no regularity assumptions on w (so, no help-
ful integration by parts seems to be possible). The Hölder exponent 1

2 in
Proposition 1.1, will lead below to the consideration of a perturbation term
w(z) satisfying the hypotheses of Lemma 2.3. That exponent 1

2 seems to
be the limit of what our approach can reach. In Lemma 2.2, a big loss was
taken. At some point, we wrote

∫
|∂∗v|2eτφ > 1

5τ
∫
|∂∗v|2eτφ. This is just to

say that we could add 1
2
∫
|∂∗v|2eτφ, to the right hand side of the inequality

in Lemma 2.2. However, as we shall see, this would not solve the difficulty
that we now explain. If we now consider an almost complex structure of
class Cα, we are led to consider a perturbation term w of the size of |v|α|∂v∂z |.
If, for simplicity, we assume |∂v∂z | 6 1, for finishing the proof of Lemma 2.3,
under the hypothesis |w| 6 θ|v|α|∂v∂z |, we would need an inequality of the
type ∣∣∂v

∂z
+ τφ′v

∣∣2 + 1
τ

∣∣∂v
∂z

∣∣2 + τ |v|2 > C|v|2α
∣∣∂v
∂z

∣∣2,
where C > 0 should be independent of τ , and the first term on the left
hand side is to try to get advantage from the term previously dropped
(that makes the second term superfluous, as it has been seen in the proof
of Lemma 2.2). Suppose that at some point z, with |z| < 1 and Re z > − 1

2
(so 1

2 6 φ′ 6 2), we have: ∂v∂z + τφ′v = 0, and |v(z)| = ε
τ , with 0 < ε < 1

2

ANNALES DE L’INSTITUT FOURIER



UNIQUENESS AND DIFFERENTIAL INEQUALITIES 2267

(so |∂v∂z (z)| 6 2ε < 1). Then, the left hand side, in the above inequality, is
τ(1 + φ′2)|v|2 6 5τ |v|2 = 5ε2

τ , while the right hand side is > Cτ2

4 |v|
2+2α =

Cε2+2α

4
1
τ2α . For τ large, the inequality will not hold if α < 1

2 .

3. Proof of Propositions 1.3 and 1.1

Proposition 1.1 is an immediate consequence of Proposition 1.3, since by
a linear change of variable in R2n, we can assume that J(0) = Jst, thus
Q(0) = 0 and |Q(p)| 6 K|p| 12 . So we now turn to the Proof of Proposi-
tion 1.3.

3.1. Reduction to Lemma 3.1

Let ω ⊂ D be the set of z ∈ D such that u ≡ 0 on a neighborhood of z.
We need to show that its boundary bω is empty. If it is not empty, we can
choose ζ0 ∈ ω such that dist (ζ0, bω) = r < 1 − |ζ0|, and let ζ1 ∈ bω such
that |ζ1 − ζ0| = r. So, on the disc defined by |ζ − ζ0| 6 r, u = 0. We wish
to prove that u ≡ 0 near ζ1, getting thus a contradiction.

Note that the hypotheses of Proposition 1.3 are preserved under holomor-
phic change of variable for z. Using a conformal map from a neighborhood
of ζ1 that maps ζ1 to 0 and that maps the intersection of disc {|ζ−ζ0| < r}
with a neighborhood of ζ1 to a region defined near 0 by x > −y2, and by
rescaling, the proof of Proposition 1.3 reduces to proving the following:

Lemma 3.1. — Let A and θ > 0 and let u : D→ Cn be a C1 map such
that

u(x+ iy) = 0 , if x > −Ay2 ,∣∣∂u
∂z

∣∣ 6 θ|u| 12 |∂u
∂z
|.

Then u ≡ 0 near 0.

3.2.

Further reduction. By replacing u by Ku for K large enough, we can
assume that θ is as small as we wish. In order to apply Lemma 2.3, we
take θ = 1

10 . Next (seemingly contradictory to the previous step), we can
also assume that |u| 6 1 and |∂u∂z | 6 1. This can be achieved by rescaling,
replacing the function z 7→ u(z), by the function z 7→ u(εz)), for ε > 0 small
enough. This changes the constant A in the Lemma. We shall therefore use
θ = 1

10 , |u| 6 1 and |∂u∂z | 6 1.

TOME 60 (2010), FASCICULE 6
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3.3. Proof of Lemma 3.1

This is the standard game of Carleman’s estimates.
In order to apply the ∂ estimates of section 2, we need compact support.
Let χ ∈ C∞(D) be such that 0 6 χ 6 1, χ(x + iy) = 1 if x > −α, and
χ(x+ iy) = 0 if x < −2α, where α > 0 is chosen small enough so that the
region defined by x < −Ay2 and x > −2α is relatively compact in D.

Set v = χu, so v is a compactly supported map from D into Cn. We can
apply the estimate of Lemma 2.3, with w(z) = ∂u

∂z if x > −α (z = x+ iy),
and w(z) = 0 if x < −α. For all τ > 1:∫ ∣∣ ∂

∂z
(χu)(z)− w(z)

∣∣2eτφ >
τ

40

∫
|χu|2eτφ .

However:
The integrand on the left hand side is zero for x > −α. So the left

hand side is at most O
(
eτ(−α+α2

2 )). If u(x0, y) 6= 0 for some x0 > −α, it

is immediate to see that (for τ large) τ
80
∫
|χu|2eτφ > eτ(x0+

x2
0

2 ). Letting
τ → +∞ gives us a contradiction since x0 + x2

0
2 > −α+ α2

2 .

4. Examples (proving Proposition 1.2)

Example 4.1. — A smooth map z 7→ u(z) = (u1(z), u2(z)) from a neigh-
borhood of 0 in C into C2, such that

|∂u|
|∂u|
→ 0, as z → 0 ,

u vanishes to infinite order at 0, but is not identically 0 near 0.
Moreover one can adapt the construction so that u has a non-isolated

zero at 0.

4.1.

We first give an example without getting a non-isolated zero.
1) If n is an even positive integer, for 2−n 6 |z| 6 2−n+1, set

u1(z) = 2n
2

2 zn

u2(z) = χ(z)2
(n−1)2

2 zn−1 + (1− χ(z))2
(n+1)2

2 zn+1,

ANNALES DE L’INSTITUT FOURIER
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where χ = 1 near |z| = 2−n+1, χ = 0 near |z| = 2−n, |dχ| = O(2n), and
more generally the Ck norm of χ is O(2kn).

2) For n odd, take the same definitions switching u1 and u2.

Claims.
(a) u is a smooth map vanishing to infinite order at 0,
(b) For 2−n 6 |z| 6 2−n+1

|∂u| 6 C

n
|∂u| ,

with C independent on n.
(a) is straightforward. Note that for |z| = K2−n (think 1

2 6 K 6 2),
2n

2
2 |zn| = 2−n

2
2 Kn 6 2−n

2
3 .

We now check (b), for n even. For n odd, the checking is the same with
u1 and u2 switched.

We have |∂u| > |∂u1| = n2n
2

2 |z|n−1. The factor n will be the needed
gain.
∂u1 = 0. So we only have to estimate ∂u2, in which the non zero terms

come from differentiating χ whose gradient is of the order of 2n. One gets
(with various constants C):

(∗) |∂u2| 6 C
(
2n2

(n−1)2
2 |z|n−1 + 2n2

(n+1)2
2 |z|n+1)

6 C |z|n−1(2n2
2 + 2n

2
2 +2n|z|2

)
.

Since |z| ' 2−n, one indeed gets

|∂u| 6 C2n
2

2 |z|n−1 so |∂u| 6 C

n
|∂u|.

Remark 4.2. — The example is not difficult but the matter looks del-
icate. In particular, the choice of the exponent n

2

2 seems to be somewhat
dictated. If in the above definition of u1 we would set u1(z) = 2

n2
p zn in-

stead of u1(z) = 2n
2

2 zn, and do the corresponding change in the definition
of u2, we should take p > 1 for having decay. Then, for the estimate of the
first term on the right hand side in (∗), we would need p 6 2. But for the
estimate of the second term we would need p > 2.

4.2.

We now indicate how to get a non-isolated zero.

TOME 60 (2010), FASCICULE 6
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Set

2−n < rn = 5
4

2−n < an = 3
2

2−n < Rn = 7
4

2−n < 2−n+1.

We modify the definition of u1 and u2 (respu2 and u1, if n is odd) above
by setting:

u1(z) = 2n
2

2 zn−1(z − an)

i.e., replacing a factor z by (z − an), and accordingly

u2(z) = χ(z)2
(n−1)2

2 zn−2(z − an−1) + ψ(z)2
(n+1)2

2 zn(z − an+1),

where χ = 1 near |z| = 2−n+1 and χ(z) = 0 if |z| < Rn , ψ = 1 near
|z| = 2−n and ψ(z) = 0 if |z| > rn, with estimates on the derivatives, as
before. Note that for rn < |z| < Rn, u2(z) = 0, (in particular u2(an) = 0).

In the region rn < |z| < Rn, both u1 and u2 are holomorphic. So the
differential inequalities have to be checked only in the regions 2−n < |z| <
rn and Rn < |z| < 2−n+1. In these regions |z|, |z − an|, |z − an+1| and
|z − an−1| all have the same order of magnitude.

The estimate for ∂u2 is basically unchanged: gradient estimates for χ
and ψ and point-wise estimates of zn−2(z−an−1) and zn(z−an+1) instead
of zn−1 and zn+1.

Finally one has to estimate ∂u1 = 2n
2

2
(
(n − 1)zn−2(z − an) + zn−1).

For n large, in the regions under consideration the first term in the paren-
thesis dominates the second one (|z − an| > 1

8 |z|), and one has |∂u1| >
n
10 2n

2
2 |z|n−1.

So, as previously

|∂u| 6 C

n
|∂u| ,

with C independent on n.
We have u1(an) = u2(an) = 0.

Remark 4.3. — Almost complex structures that are merely continuous
and not Hölder continuous are certainly of much less interest. However for
these merely continuous almost complex structures, on can still prove the
existence of many J-holomorphic curves, see 5.1 in [8]. The above example,
by adding four real dimensions, allows one to find a continuous almost
complex structure J on C4, such that there is a smooth J-holomorphic
map U : D → (C4, J) non identically 0 near 0, but vanishing to infinite
order at 0, and with a non-isolated zero. We are still very far from an
example with a Hölder continuous almost complex structure, as asked in
[10].

ANNALES DE L’INSTITUT FOURIER
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We set U(z) = (u(z), u3(z), u4(z)), where u = (u1, u2) is the map of the
above example, with u(an) = 0. Looking at the proof, we see that ∂u(z) 6= 0
unless z = 0 or, z = n−1

n an, for some n, and that ∂u = 0 near n−1
n an. For

each n, let ψn be a non negative smooth function with support in a small
neighborhood of {2−n 6 |z| 6 2−n+1}, such that: ψn(z) = |z − an|2 near
an, ψn(z) > 0 if 2−n 6 |z| 6 2−n+1 and z 6= an, ψn is constant on a
neighborhood of n−1

n an. Note that ∂ψn(an) = 0, and ∂ψn = 0 near n−1
n an.

For εn small enough, set u3 =
∑
n εnψn. Then u3 is a smooth function

that vanishes only at the points an and at 0, such that ∂u3 = 0 at an
and near n−1

n an, and such that |u3|+|∇u3|
|∂u| → 0, as z → 0. Finally one sets

u4(z) = zu3(z). Note the following injectivity property: (u3(z), u4(z)) =
(u3(z′), u4(z′)) if and only if z = z′, unless z = an for some n or z = 0. One
can define the almost complex structure on C4 by defining the matrix Q

in (E). We set Q(0) = 0 and we need [Q(u1(z), u2(z), u3(z), u4(z))](∂U) =
∂U . Due to the injectivity property of U and the vanishing of ∂U near
the points n−1

n an where ∂u = 0, and at the points an where U = 0, the
above requirement on Q is compatible with the requirement of continuity
and Q(0) = 0, since |∂U ||∂u| (z)→ 0 as z → 0.

5. Appendix

.

5.1.

The inequality (IN1) has been used by many authors ([3] and [14] Lem-
ma 3.2.4 – see also [4], [9], [12], [13]). Given a bounded matrix valued
function z 7→ A(z), where A(z) is a n×n matrix, one can solve the equation
∂M
∂z +AM = 0 with solution M(z) an invertible matrix. Locally this is easily

obtained by the inverse function Theorem, for a global result see [11] (or the
Appendix p. 61 in [13]). If (IN1) is satisfied, there exists a bounded matrix
valued map z 7→ A(z) (depending on u) such that ∂u∂z + A(z)u = 0. Define
v by u = Mv. The above equation yields ∂v∂z = 0, so v is holomorphic,
and the zero set of u is the same as the zero set of the holomorphic vector
valued function v. Globally on D, that will give the Blaschke condition for
the zero set of J-holomorphic maps, if J is C1, and if |∇u| is bounded. See
more on that topic in [8].
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5.2.

The scalar case of (IN2) is |∂u∂z | 6 a|∂u∂z | with u scalar valued, and we
should take 0 6 a < 1. For each function u, satisfying the inequality,
there is a bounded measurable (not continuous) function α, with |α(z)| 6
a < 1, such that u satisfies the Beltrami equation ∂u∂z = α(z)∂u∂z . Beltrami
equations have been much studied (Bers, Bers-Nirenberg, Morrey, Vekua,
· · · ). A very convenient reference is [2]. It is shown in [2], Theorems 3.1
and 3.2, that, given α (in our case, not given a priori but associated to u),
with |α| 6 a < 1, there exists a Hölder continuous change of variables ψ
such that a function v satisfies the Beltrami equation ∂v∂z = α(z)∂v∂z if and
only if v ◦ψ is holomorphic. So there is again reduction to the holomorphic
case, by composition on the right rather than by composition on the left
as in 5.1. However, this reduction is only in the scalar case and it is much
more difficult. Note that, even if we started from the point of view of
J-holomorphicity ∂u∂z = β(u)∂u∂z , we switched here to the quasi-conformal
point of view ∂v

∂z = α(z)∂v∂z . This, in the theory of almost complex structures
on C, corresponds to studying maps from (C, Jst) to (C, J), or vice versa.
And it corresponds to the non-linear and linear approaches to the Theorem
of Newlander-Nirenberg.
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