
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Trevor ARNOLD

Hida families, p-adic heights, and derivatives
Tome 60, no 6 (2010), p. 2275-2299.

<http://aif.cedram.org/item?id=AIF_2010__60_6_2275_0>

© Association des Annales de l’institut Fourier, 2010, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2010__60_6_2275_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
60, 6 (2010) 2275-2299

HIDA FAMILIES, p-ADIC HEIGHTS, AND
DERIVATIVES

by Trevor ARNOLD

Abstract. — This paper concerns the arithmetic of certain p-adic families
of elliptic modular forms. We relate, using a formula of Rubin, some Iwasawa-
theoretic aspects of the three items in the title of this paper. In particular, we
examine several conjectures, three of which assert the non-triviality of an Euler
system, a p-adic regulator, and the derivative of a p-adic L-function. We investigate
sufficient conditions for the first conjecture to hold and show that, under additional
assumptions, the first conjecture implies the equivalence of the last two.

Résumé. — Cet article concerne l’arithmétique de certaines familles p-adiques
de formes modulaires elliptiques. En utilisant une formule de Rubin, on examine
quelques aspects de la théorie d’Iwasawa pour les objets du titre, dont trois af-
firment la non-trivialité d’un système d’Euler, d’un régulateur p-adique, et de la
dérivée d’une fonction L p-adique. En particulier, on étudie des conditions suf-
fisantes pour que la première conjecture soit vraie et on démontre que, sous des
hypothèses supplémentaires, la première conjecture implique que les deux dernières
conjectures sont équivalentes.

1. Introduction

1.1. Let f be a normalized new eigenform of even weight k > 2 and
level N , choose a prime p - 2N at which f is ordinary, and let ρf be the
associated 2-dimensional p-adic Galois representation. By work of Hida [5],
f belongs to a p-adic family F of modular forms and the representation ρf
can be deformed to a continuous representation

ρF : Gal(Q/Q) −→ AutH(T )

on a module T of rank 2 over a certain ring H which is a complete local
domain, finite and flat over the power series ring Zp[[Y ]]. See 2.5 for a
description of some properties of ρF .

Keywords: Iwasawa theory, Hida family, p-adic height, p-adic L-function.
Math. classification: 11R23, 11G40, 11F11, 11S25.
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Let Q∞ be the unique Zp-extension of Q and let Λ be the cyclotomic
Iwasawa algebra Λ = Zp[[ΓC ]], ΓC = Gal(Q∞/Q). We can further deform
ρF in the cyclotomic direction to obtain a representation

ρ̃F = ρF ⊗ κuniv : Gal(Q/Q) −→ AutH[[ΓC ]](T̃ ),

where T̃ = T ⊗̂ZpΛ with Gal(Q/Q) acting on Λ via the universal character
κuniv : Gal(Q/Q) � ΓC ↪→ Λ×.

1.2. Work of Kitagawa [7] and others associates to ρ̃F a p-adic L-function
L ∈ H[[ΓC ]] interpolating L-values of modular forms (of varying weight) be-
longing to the Hida family F . See 4.2 for the interpolation formula satisfied
by L.

Assuming that f has Nebentypus ω2−k, where ω is the mod p cyclotomic
character, there is a principal ideal Θ ⊆ ΛH := H[[ΓC ]] (see 2.5) which cuts
out the locus where ρ̃F is self-dual. The specialization of L at arithmetic
primes (see 2.2 for the definition of arithmetic prime) containing Θ inter-
polates central values of L-functions of (twists of) modular forms in the
family F . One expects the order of vanishing of the classical L-functions
interpolated by L at their central points is generically 0 or 1, depending
on the common sign in the functional equations for the L-functions of the
forms belonging to F .

1.3. Conjecture (Greenberg [3]). — If εF = 1, resp. −1, then all
but finitely many of the L-values L(fσ, w(σ)/2), resp. L-derivatives
L′(fσ, w(σ)/2), are non-zero as σ ranges over all arithmetic characters
of H such that w(σ)/2 ≡ k (mod p− 1) and χσ = 1.

Here fσ denotes the modular form arising as the specialization of F at σ
and εF denotes the sign of F , i.e., the common sign of the forms belonging
to F . See 2.2 for the definition of χσ. The conditions on χσ and the class
of w(σ)/2 mod (p− 1) ensure that the p-adic L-function L interpolates the
L-value L(fσ, w(σ)/2). The following is the natural p-adic analogue of this
conjecture.

1.4. Conjecture.

ordΘ L =

{
0 εF = 1
1 εF = −1

.

In the case that εF = 1, Conjectures 1.3 and 1.4 are equivalent by the
interpolation property of L. For εF = −1, the connection is less clear, as
there does not seem to be an easy way to relate derivatives of classical and p-
adic L-functions. The goal of this paper is to discuss, in the case εF = −1,
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the relationship between Conjecture 1.4 and the following non-vanishing
conjecture for a certain Galois cohomology class z(1) ∈ H1(Q, T̃ ∗) arising
from Kato’s Euler system. (Here, T̃ ∗ = HomΛH(T̃ ,ΛH)(1); see 4.4 for more
details concerning this Euler system.)

1.5. In 2.7 below, we define Selmer groups Sel(Q,M) attached to various
GQ-modules M . Set T = T̃ /ΘT̃ . The quotient T̃ ∗ → T ∗ induces a natural
“corestriction” mapping Sel(Q, T̃ ∗)→ Sel(Q, T ∗).

Conjecture. — The image of z(1) under corestriction Sel(Q, T̃ ∗) →
Sel(Q, T ∗) does not lie in the H-torsion submodule of Sel(Q, T ∗).

In the case of sign 1, this conjecture follows easily from Conjecture 1.4
in light of the existence of a Coleman map for T̃ (cf. Theorem 4.5, due to
Ochiai); we therefore restrict our attention to the case of sign −1 in this
paper. As we will discuss in a future paper, this conjecture should imply the
main conjecture of Iwasawa theory for T , at least when a related 2-variable
main conjecture is known (cf. 4.3). In the case of sign 1, the conjecture
should allow the use of an Euler system argument to find a non-trivial
(even sharp) upper bound, in terms of L mod Θ, for the size of the Selmer
group Sel(Q,W ), where W is the H-divisible Galois module associated
to T . Perhaps more interesting is the case of sign −1, where we expect that
the conjecture implies that Sel(Q,W ) has corank 1 over H and moreover
that the maximal cotorsion quotient of this Selmer group can be bounded
in terms of a suitable derivative of L. We are therefore interested in finding
necessary and sufficient conditions for the conjecture to hold in terms of
known conjectures. By way of necessity, we have the following result.

1.6. Theorem. — Assume that εF = −1 and that ρF is residually
irreducible. If z(1) does not map to the torsion submodule of Sel(Q, T ∗),
then ordΘ L = 1 provided that the p-adic height pairing of Plater [15]
(see §3) is non-degenerate.

We show that the converse (Theorem 4.14) also holds under the ad-
ditional assumptions that, roughly, the 2-variable main conjecture and a
form of Leopoldt’s Conjecture (Greenberg’s “Hypothesis L”, 4.11) and hold
for T̃ . The proofs of these theorems are based on properties of the p-adic
height pairing, the study of which is also of independent interest. As a con-
sequence of our main results, we give conditions which guarantee that this
pairing is non-degenerate (Corollary 4.16).

1.7. The main ingredient in the proof of Theorem 1.6 and its converse
is Theorem 3.2, which is a generalization of a formula of Rubin [16, Thm.
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3.2(b)] relating the p-adic height pairing on Selmer groups with the local
(at p) Tate pairing. Our version of the height formula, Theorem 3.2, is new
in the sense that formulas similar to that of Theorem 3.2 have only been
shown to hold in the case of Galois representations on finitely-generated Zp-
modules. On the other hand, the main ideas in our proof of Theorem 3.2 are
not significantly different from those employed by Rubin in [16] in the case
of abelian varieties. The general strategy is to use the definition of the p-
adic height pairing (reviewed in 3.5) to reduce the formula to a computation
(Proposition 3.10) relating the derivative mapping on cohomology (see 3.8)
and the coboundary homomorphism.

The formula could also be deduced from Nekovář’s treatment of height
parings [10] (see especially 11.3.14 of loc. cit., where Nekovář reproves Ru-
bin’s formula by a different method). The main contributions of this paper,
therefore, are the results of §4, where we apply the height formula to study
non-triviality of Euler systems and derivatives of p-adic L-functions asso-
ciated to Hida families in the case where the Selmer groups are expected
to have positive rank.

1.8. We now explain further the main idea behind the proofs in §4. The
existence of a Coleman map for T ∗ allows us, roughly speaking, to treat L
as an element of the local cohomology group H1(Qp, T̃ ∗), equal to the
localization at p of a global cohomology class z(1) arising from Kato’s Euler
system. In the case of sign −1, L restricts to 0 in H1(Qp, T

∗) and the Selmer
group Sel(Q, T ∗) should have positive rank. A key observation is that the
representation T̃ ∗ may be viewed as a twist of the cyclotomic deformation
of T ∗. As a result, the height formula in this situation can then be viewed
as relating the height pairing of the corestriction to T ∗ of the Euler system
class z(1) against an arbitrary element b of Sel(Q, T ) with the local (at p)
Tate pairing of the derivative of L against the localization at p of b. Thus,
assuming that the derivative of L is non-vanishing, the non-degeneracy of
the local Tate pairing implies that the corestriction of z(1) is likewise non-
vanishing. For the reverse implication, in addition to assuming that the p-
adic height pairing is non-degenerate, it is necessary to guarantee somehow
that Sel(Q, T ∗) has the expected rank—this missing global information
is provided by assuming 4.11, a form of Leopoldt’s Conjecture (which,
following Greenberg, we refer to as “Hypothesis L”).

ANNALES DE L’INSTITUT FOURIER
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2. Notation

2.1. Fix a rational prime p > 2 and let Q∞ =
⋃
n Qn be the Zp-extension

of Q, where Qn is the unique extension of Q contained in Q(µpn) with
Gal(Qn/Q) ∼= Z/pn. Let Gal(Q(µp∞)/Q) ∼= ΓC×∆ be the canonical split-
ting, where ΓC = Gal(Q∞/Q) ∼= Zp and ∆ = Gal(Q(µp)/Q) ∼= Z/(p−1)Z,
and denote by ε : Gal(Q(µp∞)/Q) ∼−→ Z×p the p-adic cyclotomic character
and κC = ε|ΓC : ΓC

∼−→ 1 + pZp, resp. ω = ε|∆ : ∆ ∼−→ µp−1, its restriction
to ΓC , resp. ∆. Define ψ : ΓC ∼= Zp by composing κC with the topological
isomorphism 1 + pZp ∼= Zp sending 1 + p to 1 and furthermore let γC be
the topological generator of ΓC satisfying ψ(γC) = 1.

For any field F , let F be a separable closure of F and denote by GF
the absolute Galois group Gal(F/F ). If F is a number field and v is a
non-archimedean place of F , then we denote by Frobv ∈ GF a geometric
Frobenius element.

Set Γn = Gal(Qn/Q) and let Λ = Zp[[ΓC ]] = lim←−Zp[Γn] be the cyclo-
tomic Iwasawa algebra, so κC determines an isomorphism ι : Λ ∼= Zp[[X]]
satisfying ι(γC) = 1 + X. More generally, for any complete, local, Noe-
therian Zp-algebra R, we set ΛR = lim←−R[Γn] = Λ ⊗̂Zp R

∼= R[[X]]. Let
IR ⊆ ΛR be the augmentation ideal, i.e., the ideal generated by γC − 1 (or
by X). In what follows, we often implicitly identify ΛR with R[[X]] via the
isomorphism ι⊗R.

If F is a field and M is an R[GF ]-module (with R as above), then we
denote by M∨ = Hom(M,Qp/Zp) its Pontryagin dual with the usual GF -
action: (gφ)(m) = φ(g−1m). If M is a finitely-generated R-module, we
denote by M∗ = Hom(M,R)(1) the Tate (or Kummer) dual of M .

The Galois cohomology groups we use are the usual continuous coho-
mology groups. For every number field F and place v of F , we choose
an embedding F ↪→ F v and denote by locv : Hi(F,M) → Hi(Fv,M) the
induced localization (i.e., restriction) map.

2.2. Suppose H is a 2-dimensional complete local domain, finite and flat
over Zp[[ΓD]], where ΓD is the p-part of the group of diamond operators
acting on the tower of modular curves {X1(pkN)}k. Denote by κD : ΓD

∼−→
1 + pZp the canonical isomorphism, which gives rise to an isomorphism
Zp[[ΓD]] ∼= Zp[[Y ]]. Inside of ΛH ∼= H[[X]], we define the ideal Θ to be the
principal ideal generated by the element γC− (1+p)γ1/2

D , where γ1/2
D is the

unique square root of γD in ΓD (recall p 6= 2).
An arithmetic character of H is a continuous ring homomorphism σ : H→

Cp such that σ(γD) = χσ(γD)κD(γD)w(σ) for some (uniquely-determined)
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finite-order character χσ and integer w(σ), which we refer to as the weight
of σ. Similarly, an arithmetic character of ΓC is a continuous character
τ : ΓC → C×p such that τ(γC) = χτ (γC)κC(γC)w(τ) for a finite-order char-
acter χτ and integer weight w(τ). An arithmetic character of ΛH is then a
continuous ring homomorphism (σ, τ) : ΛH → Cp whose restriction to H,
resp. ΓC , is equal to σ, resp. τ , for arithmetic characters σ and τ . (Note that
a continuous homomorphism ΛH → Cp is determined by its restriction to
H and ΓC .) We call the prime ideals pσ ⊆ H and pσ,τ ⊆ ΛH arising as ker-
nels of arithmetic characters arithmetic primes. Denote by Oσ, resp. Oσ,τ ,
the ring of integers in the finite extension of Qp generated by the image of
σ, resp. (σ, τ).

2.3. Let f =
∑
n>1 an(f)qn ∈ Sk(Γ1(N), χf ) be a cuspidal newform of

even weight k > 2, level N prime to p, and character χf . As Deligne [1]
has shown, to any such f is attached a 2-dimensional p-adic Galois repre-
sentation

ρf : GQ −→ GL2(O),
where O is the ring of integers in the completion at a place above p of the
number field Ff obtained by adjoining the Fourier coefficients of f to Q.
This representation satisfies

trace ρf (Frob`) = a`(f), det ρf (Frob`) = χf (`)`k−1 (` - Np).

Denoting by m ⊆ O the maximal ideal and k = O/m the residue field, we
define the residual representation ρf : GQ → GL2(k) to be the reduction
of ρf mod m. In what follows, we assume that ρf is absolutely irreducible.

2.4. Assume further that the form f is p-ordinary, i.e., |ap(f)|v = 1 for
all primes of Ff lying over p. Then work of Hida [5] implies that f belongs
to a p-adic family F of modular forms in the following sense. There is a
ring H as in 2.2 and a formal q-expansion F =

∑
i>1 ai(F)qi such that

the specialization fσ =
∑
i>1 σ
(
ai(F)

)
qi of F at an arithmetic character σ

of H is the q-expansion of a p-ordinary, new eigenform of weight w(σ) + 2,
level Npr, and character χFχσω−w(σ), where χF is a Dirichlet charac-
ter of order prime to p canonically associated to F and r is defined by
κD(kerχσ) = 1 + prZp. That f belongs to F means the specialization of F
at some arithmetic character of weight k− 2 is equal to the q-expansion of
the p-stabilization fp of f , i.e., the unique newform of level Np which has
a`(fp) = a`(f) for almost all primes `.

2.5. We denote by
ρF : GQ −→ AutH(T )

ANNALES DE L’INSTITUT FOURIER
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the representation attached to the Hida family discussed in 2.4; this repre-
sentation satisfies

det ρF (Frob`) = χF (`)〈`〉` (` - pN),

where χF is a Dirichlet character, the Nebentypus of F , and 〈 〉 is the
composition Z×p � 1 + pZp ∼= ΓD ↪→ H×. Under our assumption (imposed
in 2.3) that ρF is residually irreducible, we may choose T to be a free
H-module by a result of Mazur-Tilouine [8, Cor. 6]. Define ρ̃F to be the
cyclotomic deformation of ρF , i.e., ρ̃F : GQ → AutΛH(T̃ ), where T̃ = T ⊗H
ΛH with Galois action via ρF ⊗ κuniv.

Note that ρF is not self-dual. However, if we define the character

θ : ΓC −→ H× : γC 7−→ (1 + p)γ1/2
D ,

then the twist ρF ⊗ θ is isomorphic to its Tate dual, provided that χF is
trivial. (The statement that χF is trivial is the same as assuming that the
Nebentypus of the original weight k modular form f is ω2−k.) We denote
by T the rank-2 H-module serving as a representation space for ρF ⊗θ and
set T̃ = T ⊗̂Zp Λ with Galois action via (ρF ⊗ θ) ⊗ κuniv, so T = T̃ /IHT̃ .
Thus we have the identity

T ∼= T̃ /ΘT̃
of H[GQ]-modules, which allows us to combine information about T̃ with
the theory of height pairings to study the representation T .

The representation ρF satisfies the following interpolation property with
respect to specialization at arithmetic primes: For any arithmetic character
(σ, τ) satisfying w(σ) > 0, the composition

GQ
ρF−→AutΛH(T̃ )(σ, τ)−→GL2(Cp)

is isomorphic to the 2-dimensional p-adic Galois representation ρfσ ⊗ τ :
GQ → GL2(Cp), where ρfσ is (the extension of scalars to Cp of) the p-adic
representation attached to the newform fσ determined by σ.

2.6. By work of Wiles [18, Thm. 2.2.2], the representation T admits a fil-
tration T ⊇ F+ T ⊇ 0 by GQp-submodules such that F+ T is free of rank 1
over H and GQp acts on F+ T by the unramified character α : GQp → H×
satisfying σ

(
α(Frobp)

)
= ap(fσ) for every arithmetic character σ of H

of weight w(σ) > 0. This filtration gives in an obvious way a filtration
T̃ ⊇ F+ T̃ ⊇ 0 on T̃ satisfying F+ T̃ = (F+ T )⊗H ΛH.

For R = H or ΛH, denote by R∨ = HomZp(R,Qp/Zp) the Pontryagin
dual of R. Define W = HomZp(T ∗,Qp/Zp)(1) and W̃ = HomZp(T̃ ∗,
Qp/Zp)(1) and similarly define W ∗ = HomZp(T,Qp/Zp)(1) and W̃ ∗ =
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HomZp(T̃ ,Qp/Zp)(1). By freeness of T as an H-module, we have a natural
identification W = T ⊗H H∨ of H[GQ]-modules. Note, then, that the GQp-
filtration on T gives rise in an obvious way to a filtration W ⊇ F+ W ⊇ 0
on W . Similar remarks apply to W̃ , W ∗, and W̃ ∗.

2.7. We now define, following Plater [15, §5] and others (see Green-
berg [2], e.g.), local conditions and Selmer groups for the representations
discussed above. Fix a number field F . Let R be a complete, local, Noe-
therian Zp-algebra and M a finitely-generated R-module. If N ⊆ M is an
R-submodule, then define N sat to be the R-saturation of N in M , i.e.,
N sat = {m ∈M | rm ∈ N for some r ∈ R}.

Suppose given an R[GF ]-module M which admits a filtration M ⊇
F+ M ⊇ 0 such that F+ M is GFv -invariant for all places v of F lying
over p; set F−M = M/F+ M . If M is finitely generated over R and v - p,
then we define the local conditions to be the R-saturation of the submodule
of unramified classes:

H1
f (Fv,M) = H1

ur(Fv,M)sat = ker
(
H1(Fv,M) −→ H1(Iv,M)

)sat
,

where Iv ⊆ GFv is the inertia subgroup. For v | p, set

H1
f (Fv,M) = ker

(
H1(Fv,M) −→ H1(Iv,F−M)

)sat
.

For cofinitely generated R-modules M , we define the local condition
for M at v to be dual to the local condition at v for the finitely generated
R-module M∨(1) = HomZp(M,Qp/Zp)(1) with respect to the (perfect)
local Tate pairing

H1(Fv,M)×H1(Fv,M∨(1)
)
−→ Qp/Zp.

In other words, H1
f (Fv,M) is defined to be the exact orthogonal complement

of H1
f
(
Fv,M

∨(1)
)

under this pairing. Finally, for any v and M (finitely or
cofinitely generated), set H1

s (Fv,M) = H1(Fv,M)/H1
f (Fv,M).

Assume that M is unramified outside of a finite set of places of F
and let Σ be any finite set containing the places of F lying over p, the
archimedean places, and the places at which M is ramified. We then de-
fine, for M finitely or cofinitely generated over R,

SelΣ(F,M) = ker
(

H1(F,M) −→
⊕
v/∈Σ

H1
s (Fv,M)

)
Sel(F,M) = ker

(
SelΣ(F,M) −→

⊕
v∈Σ

H1
s (Fv,M)

)

ANNALES DE L’INSTITUT FOURIER



HIDA FAMILIES, p-ADIC HEIGHTS, AND DERIVATIVES 2283

SelΣ(F,M) = ker
(

Sel(F,M) −→
⊕
v∈Σ

H1
f (Fv,M)

)
.

We apply these definitions, in particular, for R = H, resp. ΛH, and M = T ,
T ∗, W , or W ∗, resp. T̃ , T̃ ∗, W̃ , or W̃ ∗. When M and v are clear from
the context, we denote the localization maps H1(F,M) → H1(Fv,M),
H1(F,M) → H1

s (Fv,M), and Sel(F,M) → H1
f (Fv,M) by locv, locs, and

locf, respectively.

2.8. By Lemma 2.10 below, for M = T or T ∗, we have that SelΣ(F,M) =
H1(QΣ/Q,M), where QΣ is the maximal extension of Q unramified outside
of Σ. We also have the following interaction of the local conditions with
the cup product pairing

H1(Qp, T )×H1(Qp, T
∗) −→ H2(Qp,H(1)

) ∼= H.

From the definitions, we have that H1
f (Qp, T ) is the H-saturation of the

image of the map H1(Qp,F+ T )→ H1(Qp, T ) induced by inclusion. Thus,
given that (F+ T )∗ ∼= F−(T ∗), the diagram

(2.8.1)
H1

s (Qp, T
∗) × H1

f (Qp, T ) //

��

H

H1(Qp, T
∗) ×

OO

H1(Qp, T ) // H

commutes, where the vertical arrows represent, from left to right, the quo-
tient, inclusion, and identity maps.

2.9. Lemma. — For M = T or T ∗, we have

rkH H1(Qv,M) =

{
0 v 6= p

2 v = p

Moreover, H1
f (Qp,M) and H1

s (Qp,M) have rank 1 over H.

Proof. — This lemma can be found in Perrin-Riou [14, Prop. 2.1.3] in
the p-adic case. Because H is free over ΛD := Zp[[ΓD]] ∼= Zp[[Y ]], the rank of
H1

s (Qp,M) as an H-module is determined by its rank as a ΛD-module. We
have that H1(Qv,M) = lim←−H1(Qv,M/Y nM), and M/Y nM is a finitely
generated Zp-module of rank 2 rkZp H/Y nH. Set Vn = (M/Y nM)⊗Qp. By
the classical Euler-Poincaré characteristic formula (Milne [9, Thm. I.2.8],
e.g.), we have

2∑
i=0

(−1)i dimQp Hi(Qv, Vn) =

{
0 v 6= p

−dimQp Vn v = p.

TOME 60 (2010), FASCICULE 6
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By local duality, dimQp H2(Qv, Vn) = dimQp H0(Qv, V
∗
n ), where we have

V ∗n
∼= (M∗/Y nM∗) ⊗ Qp. Because M(Qv) = M∗(Qv) = 0, both

dimQp H0(Qv, Vn) and dimQp H0(Qv, V
∗
n ) are bounded as n varies, which

gives the first statement.
By the same reasoning as above, H1(Qp,F+ M) has rank 1 over H. Thus,

the second statement follows from the facts that (F−M)(Qp) = 0 and that
H1

f (Qp,M) is the saturation of the image of H1(Qp,F+ M) in H1(Qp,M).
�

2.10. Lemma. — For M = T or T ∗, if v /∈ Σ, then H1
f (Qv,M) =

H1
ur(Qv,M).

Proof. — The argument is sketched on p. 110 of Plater [15] (following
Perrin-Riou [14, Lemme 2.2.1]); we review it here. Inflation-restriction and
the fact that GQv/Iv has cohomological dimension 1 imply that the se-
quence

0 −→ H1
ur(Qv,M) −→ H1(Qv,M) −→ H1(Iv,M)GQv −→ 0

is exact. By definition of H1
f (see 2.7), the quotient H1

f (Qv,M)/H1
ur(Qv,M)

is thus isomorphic to (H1(Iv,M)GQv )H-tors. For v /∈ Σ, M is unramified
at v, so H1(Iv,M) ∼= M(−1) by an exercise in tame inertia. In particular,
H1(Iv,M) is H-torsion-free, so H1

f (Qv,M)/H1
ur(Qv,M) = 0. �

2.11. If M is a finitely-generated H-module and K is any Galois exten-
sion (possibly infinite) of a local or global field F , then we set

H1(K,M) = lim←−
L⊆K′⊆K

H1(K ′,M),

the inverse limit taken with respect to corestriction between finite ex-
tensions K ′ of L contained in K; we make the analogous definition for
Selmer groups. Thus, an element of H1(K,M) can be viewed as a pro-
jective system of elements of H1(K ′,M). With this definition, Shapiro’s
Lemma continues to hold for infinite extensions of L: There is a canon-
ical isomorphism H1(K,M) ∼= H1(L,M ⊗ Zp[[Gal(K/L)]]). In particular,
we have canonical isomorphisms of ΛH-modules H1(Q∞, T ) ∼= H1(Q, T̃ ),
H1(Q∞,p, T ) ∼= H1(Q, T̃ ), Sel(Q∞, T ) ∼= Sel(Q, T̃ ), etc. The maps on
local and global Galois cohomology groups and Selmer groups induced
by the quotient ΛH → ΛH/IH, i.e., the maps H1(Q, T̃ ) → H1(Q, T ),
Sel(Q, T̃ ) → Sel(Q, T ), etc., which correspond via Shapiro’s lemma to
corestriction from Q∞ to Q, are denoted below by cor∞ (the particular
incarnation of cor∞ we mean is determined by context).
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3. Heights and the height formula

3.1. In this section, we first recall the definition of the height pairing,
due to Plater [15], and then show that the height formula, Theorem 3.2,
holds in our situation. The height pairing is an H-bilinear map

〈 , 〉 : Sel(Q, T ∗)× Sel(Q, T ) −→ Frac(H)

depending on κC : ΓC
∼−→ 1 + pZp. We review the definition of 〈 , 〉 in 3.3–

3.5. As we discussed in 2.8, the cup product H1(Qp, T
∗) × H1(Qp, T ) →

H2(Qp,H(1)
)

induces another pairing

( , )p : H1
s (Q, T ∗)×H1

f (Q, T ) −→ H.

The height formula compares these two pairings.
Nothing in this section depends in any essential way on the fact that our

representation T arises from a Hida family, so our treatment should apply
to any “geometric” 2-dimensional p-ordinary representation ρ satisfying
Plater’s hypotheses (H1)–(H3) [15, p. 107]:

(H1) ρ|GQp
is indecomposable and of the form

ρ|GQp
∼=
(
χ1 ∗
0 χ2

)
for characters χi : GQp → H×.

(H2) For any finite extension F/Q and any prime v of F , T (Fv) =
T ∗(Fv) = (F+ T )∗(Fv) = 0.

(H3) W (Q∞) is a cotorsion H-module.
Note that these hypotheses are satisfied by the representation T introduced
in §2. (This follows from the properties of T enumerated in 2.5–2.6.)

3.2. Theorem (cf. Rubin [17, Thm. 3.2(ii)]). — Suppose that a ∈
Sel(Q, T ) satisfies a = cor∞ a(∞) for some a(∞) ∈ H1(Q, T̃ ) such that
locs a

(∞) ∈ H1
s (Qp, T̃ ) is divisible by γC − 1, say locs a

(∞) = (γC − 1)α(∞).
Then for any b ∈ Sel(Q, T ∗), we have

〈a, b〉 = (cor∞ α(∞), locf b)p.

We give a proof of this theorem following the basic outline of Rubin’s
proof in [17] for the Tate module of an abelian variety. The idea is to find an
expression which is local at p for the height pairing in the case considered
in the theorem and then compare this expression to the local Tate pairing
by a computation. Consequently, it is necessary to review the definition of
the height pairing; we do this in 3.3–3.5, which are essentially a summary
of §6 in Plater [15]. In §4, we use this theorem to relate classes arising from
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Kato’s Euler system (which we substitute for a on the left hand side of
the formula) to the derivative of the associated p-adic L-function (which is
related to cor∞ α(∞) on the right hand side via Ochiai’s “Coleman map”
for T̃ , cf. 4.5).

3.3. For any prime v and any GQ module for which the local conditions
have been defined, denote by H1

f (Qv,M)u the submodule of H1
f (Qv,M)

consisting of universal norms from the cyclotomic direction, i.e.,

H1
f (Qv,M)u = cor∞

(
H1

f (Q∞,v,M)
)
,

where cor∞ denotes corestriction from Q∞,p to Qp. Globally, let
Sel(Q,M)u ⊆ Sel(Q,M) be the submodule consisting of elements whose lo-
calizations belong to H1

f (Qv,M)u for all v. The following proposition shows
that it suffices to define the height pairing on elements which are locally
everywhere universal norms.

3.4. Proposition. — For M = T or T ∗, the quotient Sel(Q,M)/
Sel(Q,M)u is a torsion H-module.

Proof. — By definition, Sel(Q,M)/Sel(Q,M)u injects into the direct
sum ⊕

v

H1
f (Qv,M)/H1

f (Qv,M)u.

We show that each summand is H-torsion, from which the proposition fol-
lows. For v 6= p, the local conditions H1

f (Qv,M) are a fortiori H-torsion by
Lemma 2.9. For v = p, H1

f (Qp,M)/H1
f (Qp,M)u is H-torsion by Lemma 5.8

of Plater [15]. �

3.5. We now give the definition, originally due to Perrin-Riou [14] in the
p-adic case and later generalized by Plater [15] to the case considered here,
of the height pairing. Starting with a ∈ Sel(Q, T ∗)u and b ∈ Sel(Q, T )u, we
define 〈a, b〉 by the following procedure. Corresponding to b ∈ H1(Q, T ) is
an extension of H[GQ]-modules

0 −→ T −→ X −→ H −→ 0

which dualizes to a short exact sequence

(3.5.1) 0 −→ H(1) −→ X∗ −→ T ∗ −→ 0.

Because the connecting homomorphism δ : H1(Q, T ∗)→ H2(Q,H(1)
)

is
given by ∪ b and because the the diagram (2.8.1) shows that a∪ b = 0, a is
the image of some element ã ∈ H1(Q, X∗).
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Since a is a universal norm locally everywhere, we may choose, for every
rational prime v, elements a(∞)

v ∈ H1
f (Q∞,v, T ∗) satisfying cor∞ a

(∞)
v =

locv a, where cor∞ denotes corestriction from Q∞,v to Qv. The same ar-
gument as above shows that a

(∞)
v can be lifted to an element ã

(∞)
v ∈

H1(Q∞,v, X∗). Examining the cohomology sequence associated to (3.5.1),
we see that locv ã− cor∞ ã

(∞)
v is the image of some wv ∈ H1(Qv,Zp(1)

)
.

For any prime v, the restriction ψv of ψ to a decomposition group at v can
be viewed as an element of H1(Qv,Zp), and thereby cup product with ψv
yields a homomorphism

∪ψv : H1(Qv,H(1)
)
−→ H2(Qv,H(1)

) ∼= H.

The p-adic height pairing is then defined by the formula

(3.5.2) 〈a, b〉 =
∑
v

wv ∪ ψv,

which one can show (as in [14, 1.2.4]) exists and is independent of all the
choices made. One expects the following conjecture to hold when, as here,
the representation under consideration is attached to a Hida family.

3.6. Conjecture. — The kernel on either side of the pairing (3.5.2)
consists of the H-torsion submodule.

3.7. As we now show, when the class a is globally a norm from
H1(Q∞, T ∗), the definition (3.5.2) can be given a simpler form by making
suitable choices of ã and ã

(∞)
v . Thus in what follows we assume that there

is an element a(∞) ∈ H1(Q∞, T ∗) such that cor∞ a(∞) = a. As above,
we may choose an element ã(∞) ∈ H1(Q∞, X∗) mapping to a(∞); then
ã = cor∞ ã(∞) maps to a.

For v = p, choose as in 3.5 an element a(∞)
p ∈ H1

f (Q∞,p, T ∗) which satis-
fies cor∞ a

(∞)
p = locp a. Moreover, choose an element w(∞)

p ∈ H1(Q∞,p, X∗)
mapping to locp a(∞)− a(∞)

p in H1(Q∞,p, T ∗). If we set ã(∞)
p = locp ã(∞)−

w
(∞)
p , then we have locp ã− cor∞ ã

(∞)
p = cor∞ w

(∞)
p ∈ H1

f (Qp, X
∗).

In the case that v - p, Lemma 2.9 shows that H1
f (Q∞,v, T ∗) =

H1(Q∞,v, T ∗). Thus for v ∈ Σ not equal to p, we can set ã(∞)
v = locv ã(∞):

2.9 guarantees that the image of ã(∞)
v lies in H1

f (Q∞,v, T ∗). By inspect-
ing (3.5.2), we get the following simpler formula for the height pairing in
the case under consideration.

Proposition. — Suppose a ∈ Sel(Q, T ∗)u, b ∈ Sel(Q, T )u, and a =
cor∞ a(∞) for some a(∞) ∈ H1(Q∞, T ∗). Then with the choices made in
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3.7, we have
〈a, b〉 = cor∞ w(∞)

p ∪ ψp.

3.8. Recall that the ideal IH ⊆ ΛH is defined as the kernel of the H-
linear map ΛH → H : γC 7→ 1, i.e., IH is generated by X when ΛH is
identified with H[[X]] via the isomorphism determined by κC . For a free
H-module M , define the derivative map

Der = DerM : M ⊗H IH −→M

by the formula m ⊗ f 7→ f ′(0)m, where by f ′(0) ∈ H we mean the coeffi-
cient a1 in the power series expansion f =

∑
i>0 aiX

i obtained by viewing f
as an element of H[[X]]. Note that Der is H-linear and GQ-equivariant and
therefore induces maps on cohomology Der = DeriM : Hi(Qp,M ⊗H IH)→
Hi(Qp,M) which are functorial in M . The maps DeriM are compatible with
the quotient ΛH → H : f 7→ f(0), i.e., DeriM (fx) = f(0) DeriM (x) for any
x ∈ H1(Qp,M ⊗H IH) and f ∈ ΛH.

If we define H1
f (Qp, T

∗ ⊗H IH) to be the ΛH-saturation of

ker
(
H1(Qp, T

∗ ⊗H IH) −→ H1(Ip, (F− T ∗)⊗H IH)
)
,

then Der similarly induces a map Ders : H1
s (Qp, T

∗ ⊗H IH) → H1
s (Qp, T

∗)
making the diagram

H1(Qp, T
∗ ⊗H IH) //

Der1
T∗

��

H1
s (Qp, T

∗ ⊗H IH)

Ders

��

H1(Qp, T
∗) // H1

s (Qp, T
∗)

commute. Ders is well-defined because H1(Ip, (F− T ∗) ⊗H IH)[IH] = 0,
which follows from the fact that (F− T ∗)Ip = 0.

3.9. Lemma. — The map

H1
s (Qp, T

∗ ⊗H IH) −→ H1
s (Qp, T

∗ ⊗H ΛH)

induced by inclusion T ∗ ⊗H IH ↪→ T ∗ ⊗H ΛH is injective.

Proof. — From the definitions, there are natural inclusions

H1
s (Qp, T

∗ ⊗H IH) ⊆ H1(Ip, (F− T ∗)⊗H IH)/(ΛH-torsion)

and

H1
s (Qp, T

∗ ⊗H ΛH) ⊆ H1(Ip, (F− T ∗)⊗H ΛH)/(ΛH-torsion).

The lemma thus follows from the fact that (F− T ∗)Ip = 0. �
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3.10. Proposition (cf. Rubin [17, Prop. 4.3]). — Suppose that

0 −→ A −→ B −→ C −→ 0

is an exact sequence of H[GQp ]-modules finitely-generated over H and
choose c(∞) ∈ H1(Qp, C⊗H IH) which is the image of some b(∞) ∈ H1(Qp,

B⊗HΛH). Further assume that H0(Qp, C) = 0. Then cor∞ b(∞)∈H1(Qp, B)
lies in H1(Qp, A)⊆H1(Qp, B) and

cor∞ b(∞) ∪ ψp = δp(Der c(∞)) ∈ H2(Qp, A),

where δp : H1(Qp, C)→ H2(Qp, A) is the connecting homomorphism.

Although the corresponding proposition in [17] deals with finite Galois
modules, our proof is similar. The formula in this proposition continues to
hold for higher cohomology groups, with essentially the same proof, but for
simplicity we have limited ourselves to the case of H1, as that is all that is
needed in the sequel.

Proof. — The assertion that cor∞ b(∞) lies in H1(Qp, A) is clear, so we
only need check the cup product formula, which we do, as in [17], by a
computation.

For H[GQp ]-modules M , elements of Hi(Qp,M ⊗H ΛH), resp. Hi(Qp,

M ⊗H IH), can be represented as formal power series
∑
k>0 mkX

k, resp.∑
k>1 mkX

k, where each mk is a function (GQp)i → M . (This represen-
tation depends, of course, on the isomorphism ΛH ∼= H[[X]] determined
by κC .) Thus, we can write b(∞) =

∑
k>0 bkX

k and c(∞) =
∑
k>1 ckX

k

and we have cor∞ b(∞) = b0 : GQp → B and Der c(∞) = c1 : GQp → C.
The fact that b(∞) is a cocycle gives the following formula relating the

coefficients in the power series representation of b(∞):∑
bk(gh)Xk = (X + 1)ψp(g)

∑
gbk(h)Xk +

∑
bk(g)Xk,

where we are viewing ψp as a homomorphism GQp � ΓC
∼−→ Zp. Compar-

ing linear terms, this gives

b1(gh) = ψp(g)gb0(h) + gb1(h) + b1(g).

Thus, by definition of the cup product, we have

(ψp ∪ cor∞ b(∞))(g, h) = ψp(g)gb0(h) = −gb1(h) + b1(gh)− b1(g).

But, by assumption, b1 is a lift of the cocycle c1 = Der c(∞), so the propo-
sition follows from the definition of δp. �
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3.11. Proof of 3.2. By Proposition 3.7, we have

〈a, b〉 = cor∞ w(∞)
p ∪ ψp,

where w(∞)
p ∈ H1(Q,H(1)

)
maps to locp ã − cor∞ ã

(∞)
p ∈ H1(Qp, X

∗), so
Proposition 3.10 gives

cor∞ w(∞)
p ∪ψp = δp

(
Der(locp a(∞)−a(∞)

p )
)

= Der(locp a(∞)−a(∞)
p )∪locp b.

By definition, a(∞)
p lies in H1

f (Qp, T
∗ ⊗H ΛH), so locp a(∞) − a(∞)

p maps
to locs a

(∞) in H1
s (Qp, T

∗ ⊗H ΛH). As locp b lies in H1
f (Qp, T ), Lemma 3.9

thus shows that
〈a, b〉 = Ders(locs a

(∞)) ∪ locf b,

which gives Theorem 3.2 in view of (2.8.1).

4. Euler systems and derivatives

4.1. Theorem 1.6, now follows as a mostly formal consequence of the
height formula, Theorem 3.2, given the existence of a Coleman map for T̃ ,
Theorem 4.5 (due to Ochiai). Under the additional assumption that the
2-variable main conjecture, Conjecture 4.3, holds in our situation, we show
that the non-degeneracy of the height pairing follows from the non-triviality
of the derivative of L with respect to Θ and statements concerning the
ranks of certain Selmer groups associated to T . Hence, under these con-
ditions Conjecture 1.5 implies the equivalence of Conjectures 1.4 and 3.6.
We also discuss the validity of Conjecture 1.5 in the context of Greenberg’s
“Hypothesis L” ([4, p. 339]; the “L” stands for “Leopoldt”).

Throughout §4, we assume the following about the Hida family F : The
residual representation ρF is irreducible, the Nebentypus χF is trivial, and
the sign of F is −1. Before proceeding to the proof of our main theorems,
we first give precise statements of some of the ingredients. Theorem 4.2
(due to Kitagawa) gives the existence of a 2-variable p-adic L-function
for T̃ , Conjecture 4.3 states the conjectural relationship between this p-
adic L-function and the Selmer group Sel(Q, W̃), and Theorem 4.5 (due to
Ochiai) relates the p-adic L-function to Kato’s Euler system.

4.2. Theorem (Kitagawa [7, Thm. 1.1]). — There is an element L =
L(X) ∈ ΛH ∼= H[[X]] such that for every arithmetic character (σ, τ) with
1 6 w(τ) 6 w(σ) + 1 the interpolation formula

(σ, τ)(L) = d(σ, τ)L(fσ, ω−w(τ)τκ
−w(τ)
C , w(τ))
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holds, where d(σ, τ) is an explicit non-zero constant (involving complex and
p-adic periods).

Recall that fσ is the modular form arising as the specialization at σ of
the Hida family under consideration; see 2.5 for more details. This p-adic
L-function is related to the Selmer group of W̃ = W̃ ⊗θ−1 by the following
conjecture.

4.3. Conjecture (2-variable main conjecture). — Sel(Q, W̃) is a co-
torsion ΛH-module and for every height 1 prime p ⊆ ΛH,

ordp L = length(ΛH)p
(Sel(Q, W̃)∨)p.

We should explain what we mean by this conjecture in the case that ΛH
is not regular in codimension 1. Let ΛH denote the integral closure of ΛH
and denote by L the image of L in ΛH. We make the convention that

ordp L = length(ΛH)p
(Sel(Q, W̃)∨)p

means
ordp L = length(ΛH)p

(Sel(Q, W̃)∨ ⊗ ΛH)p

for every height 1 prime p of ΛH lying over p. Regardless, in the sequel
we are only concerned with this conjecture for the case p = Θ, which is a
principal height 1 prime, so (ΛH)Θ is a DVR and there is no difficulty with
the notation as it stands in the conjecture.

Under some assumptions, the “>” inequality of this conjecture was
proved by Ochiai [12, Thm. 2.6] using Kato’s Euler system. However, it
is the “6” inequality that we use below, which we do not expect to follow
from an Euler system argument. Skinner-Urban have announced a proof of
this conjecture in some cases, though we know of no reference.

4.4. We do not give here a complete definition of or even a complete
list of the properties satisfied by Kato’s Euler system, as for us the main
significance of this Euler system is that it gives a collection of global co-
homology classes related (via Ochiai’s Coleman map, 4.5) to Kitagawa’s
p-adic L-function described in 4.2. The key difficulty in establishing the
non-triviality of the restriction of this Euler system to T is that there does
not seem to be any obvious way to relate the essentially local informa-
tion provided by the p-adic L-function to the global behavior of the Euler
system without assuming at least some statement about ranks of Selmer
groups; this is why Greenberg’s “Hypothesis L” arises.

The Euler system we use here is a modification, due to Ochiai [13, §6],
of Kato’s original construction and consists of a collection of cohomology
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classes z(r) ∈ SelΣ(Q(µr), T̃ ∗), one for each squarefree integer r prime
to p, which satisfy certain norm-compatibility relations. The specializa-
tions of this Euler system at arithmetic primes are related to L-values of
the corresponding modular forms via the dual exponential map. See, for
example, [6], [11], or [13] for the precise formulas. By interpolating the dual
exponential maps of the specializations of F at arithmetic primes, Ochiai
was able to relate this Euler system to the p-adic L-function of Theorem 4.2.

4.5. Theorem (Ochiai [13, Cor. 6.17]). — There is an ΛH-linear injec-
tion (“Coleman map”)

Col : H1
s (Qp, T̃ ∗) −→ ΛH

with pseudo-null cokernel such that Col
(
locs z(1)

)
= uL for a unit u ∈ Λ×H.

Recall that a ΛH-module is psuedo-null if it is annihilated by a height 2
ideal.

4.6. In order to apply the height formula, we need to elaborate some-
what on the notion of twisting introduced in 2.5 and in particular examine
how it interacts with the Coleman map and p-adic L-function introduced
above. For any continuous character η : ΓC → H×, we define an H-algebra
isomorphism

Twη : ΛH −→ ΛH

by the formula Twη(g) = η(g)g for all g ∈ ΓC ⊆ Λ×H. Taking η = θ, the
character defined in 2.5, and identifying ΛH ∼= H[[X]] via the isomorphism
determined by κC , we have that

(
Twθ(Θ)

)
= (X) (equality of ideals in ΛH),

where Θ is as in 2.4. In particular Θn | L if and only if Xn | Twθ L.
Because T̃ ∗ = T̃ ∗ ⊗ θ−1, there are (abusing notation slightly) H-linear

isomorphisms

Tw∗θ : H1
s (Q, T̃ ∗) ∼−→H1

s (Q, T̃ ∗), Tw∗θ : Sel(Q, T̃ ∗) ∼−→ Sel(Q, T̃ ∗)

satisfying Tw∗θ(λx) = Twθ(λ) Tw∗θ(x) for all λ ∈ ΛH. Thus, there is a unique
ΛH-linear injection Colθ making the diagram

SelΣ(Q, T̃ ∗)
locs //

Tw∗θ
��

H1
s (Q, T̃ ∗)

Tw∗θ
��

Col // ΛH

Twθ
��

SelΣ(Q, T̃ ∗) locs

// H1
s (Q, T̃ ∗) Colθ

// ΛH

commute. By definition, we have Colθ
(
Tw∗θ(locs z(1))

)
= Twθ(L).
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For ease of notation, we define z = Tw∗θ z(1) ∈ SelΣ(Q, T̃ ∗) and z =
cor∞Tw∗θ z(1) ∈ SelΣ(Q, T ∗) for what follows. Given the above, the follow-
ing is equivalent to Theorem 1.6.

4.7. Theorem. — Assume that Conjecture 3.6 (non-degeneracy of the
height pairing) holds. If z /∈ Sel(Q, T ∗)H-tors, then X2 - Twθ L.

Proof. — By 4.5, coker(Twθ ◦Col) is annihilated by an idea of height 2,
so we may choose λ ∈ ΛH prime to X annihilating this cokernel. Recall
we are assuming that εF = −1, so the interpolation property of L, 4.2,
implies that X | Twθ L. As locs z maps to Twθ L under Colθ, we thus have
that locs λz = Xα(∞) ∈ H1

s (Qp, T̃
∗) for some α(∞). The height formula,

Theorem 3.2, then gives

(4.7.1) 〈cor∞ λz, b〉 = (cor∞ α(∞), locp b)p
for any b ∈ Sel(Q, T ). Under our assumption that the height pairing is
non-degenerate, the left hand side of (4.7.1) is non-zero for some choice
of b, which shows that cor∞ α(∞) 6= 0 by the non-degeneracy of the local
Tate pairing. It remains to show how this implies that X2 - Twθ L, which
is part of the following lemma. �

4.8. Lemma. — Suppose that locs λz = Xα(∞) for some α(∞) ∈ H1
s (Qp,

T̃ ∗) and λ ∈ AnnΛH(coker Colθ) prime to X. Then X2 | Twθ L if and only
if cor∞ α(∞) = 0.

Proof. — Suppose first that X2 | Twθ L, so there exists β(∞) ∈ H1
s (Qp,

T̃ ∗) such that ColθX2β(∞) = λTwθ L (viz. β(∞) = Col−1
θ λX−2 Twθ L).

Both Xβ(∞) and α(∞) map under Colθ to λX−1 Twθ L, so Xβ(∞) = α(∞),
which shows that cor∞ α(∞) = 0.

Conversely, suppose that cor∞ α(∞) = 0. We first show that the cokernel
of cor∞ : H1

s (Qp, T̃
∗)→ H1

s (Qp, T
∗) is a torsion H-module, which follows if

we show that the cokernel of cor∞ : H1(Qp, T̃
∗)→ H1(Qp, T

∗) is H-torsion.
As T ∗(Qp) = 0, the kernel of the latter map is XH1(Qp, T̃

∗). By an Euler-
Poincaré characteristic argument similar to that in the proof of Lemma 2.9,
one can show that H1(Qp, T̃

∗) has rank at least 2 over ΛH, which gives
what we want in view of the fact (Lemma 2.9) that rkH H1(Qp, T

∗) =
2. The fact that Colθ is injective with pseudo-null cokernel implies that
H1

s (Qp, T̃
∗)/XH1

s (Qp, T̃
∗) has rank 1 over H. Consequently, the kernel of

the induced map cor∞ : H1
s (Qp, T̃

∗)/XH1
s (Qp, T̃

∗) → H1
s (Qp, T

∗) is anni-
hilated by some µ ∈ ΛH prime to X. In particular, µα(∞) ∈ XH1

s (Qp, T̃
∗),

so X2 | µColθ α(∞) = µλTwθ L, which gives the lemma, as both λ and µ

are prime to X. �
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4.9. We now analyze some sufficient conditions for the converse of The-
orem 4.7 to hold. The underlying philosophy is that the rank of the Selmer
group Sel(Q, T ∗) should be governed by the Euler system class z(1): Re-
gardless of the sign of F , SelΣ(Q, T ∗) should have rank 1 over H, with
cor∞Tw∗θ z(1) providing a non-torsion class, and Sel(Q, T ∗) has rank 1 or
0 according as a multiple of cor∞Tw∗θ z(1) belongs or does not belong to
Sel(Q, T ∗). Moreover, the question of whether cor∞Tw∗θ z(1) belongs to
Sel(Q, T ∗) or not is related via the Coleman map, 4.5, to the vanishing or
non-vanishing along Θ of the p-adic L-function L of 4.2. Thus statements
about the ranks of Selmer groups attached to T and T ∗ are closely related
to Conjectures 1.4 and 1.5.

4.10. The two 5-term sequences

(4.10.1) 0 −→ Sel(Q, T ∗) −→ SelΣ(Q, T ∗) −→
⊕
v∈Σ

H1
s (Qv, T

∗) −→

−→ Sel(Q,W )∨ −→ SelΣ(Q,W )∨ −→ 0

and

(4.10.2) 0 −→ SelΣ(Q, T ∗) −→ Sel(Q, T ∗) −→
⊕
v∈Σ

H1
f (Qv, T

∗) −→

−→ SelΣ(Q,W )∨ −→ Sel(Q,W )∨ −→ 0

are exact by the orthogonality of local conditions under the local Tate
pairing. The analogous sequences obtained by replacing T ∗ with T̃ ∗ and
W with W̃ are likewise exact. In addition, we define the Shafarevich-Tate
group

X
1(Q,W ) = ker

(
Sel(Q,W ) −→

⊕
v∈Σ

H1(Qv,W )
)
.

4.11. Hypothesis L (Greenberg [4, p. 339]). — X
1(Q,W )∨ is a torsion

H-module.

The statement given here is what Greenberg would refer to as “Hypoth-
esis L for the representation T ∗”. Note that, in our context, the validity of
Hypothesis L is independent of the finite set Σ of primes containing p in
view of the fact (Lemma 2.9) that H1(Qv, T

∗) is a torsion H-module for
v - p. For the same reason, Hypothesis L is equivalent to the statement that
SelΣ(Q,W )∨ is a torsion H-module.

Hypothesis L can fail in general, even for representations over “large” (>
2-dimensional) rings (see [4, p. 386ff] for a discussion of this), but we expect
it to hold for many “naturally-occurring” representations and, in particular,
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for the representation T ∗ considered here. In general, the existence of a
non-trivial Euler system for T ∗ should imply that SelΣ(Q,W )∨ is a torsion
H-module, so in our context we expect that Hypothesis L follows from
Conjecture 1.5; this implication will be discussed in a future paper.

4.12. Lemma. — The natural corestriction map

cor∞ : SelΣ(Q, T̃ ∗)/IH SelΣ(Q, T̃ ∗) −→ SelΣ(Q, T ∗)

is injective.

Proof. — Recall from 2.8 that SelΣ(Q, T̃ ∗) = H1(QΣ/Q, T̃ ∗) and
SelΣ(Q, T ) = H1(QΣ/Q, T ). The long exact sequence in cohomology as-
sociated to the exact sequence of Gal(QΣ/Q)-modules

0 −→ T̃ ∗
·X−→ T̃ ∗ −→ T ∗ −→ 0

gives the statement of the lemma. �

4.13. Lemma. — The natural maps (dual to restriction)

SelΣ(Q, W̃ )∨/IH SelΣ(Q, W̃ )∨ −→ SelΣ(Q,W )∨

Sel(Q, W̃ )∨/IH Sel(Q, W̃ )∨ −→ Sel(Q,W )∨

SelΣ(Q, W̃ )∨/IH SelΣ(Q, W̃ )∨ −→ SelΣ(Q,W )∨

are injective with H-torsion cokernel.

Proof. — In light of the fact that SelΣ(Q,W ) = H1(QΣ/Q,W ), we have
that the restriction map

H1(QΣ/Q,W ) ∼= SelΣ(Q,W ) −→ SelΣ(Q, W̃ )[IH] ∼= H1(QΣ/Q∞,W )[IH]

is surjective, because ΓC has cohomological dimension 1, and has kernel iso-
morphic to H1(Q∞/Q,W (Q∞)

)
, by the inflation-restriction sequence. The

statement for SelΣ thus follows from the facts that H1(Q∞/Q,W (Q∞)
) ∼=

W (Q∞)/(γC − 1)W (Q∞) and that W (Q∞) is a cotorsion H-module.
For v ∈ Σ, the local condition H1

f (Qv,W ) is the maximal H-divisible
submodule of H1(Qv,W ) by [15, Prop. 5.1]. The kernel of the restriction
map

H1
s (Qp,W ) −→ H1

s (Qp, W̃ )[IH]

is therefore a fortiori a cotorsion H-module.
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Now consider the commutative diagram

0 // Sel(Q,W ) //

��

SelΣ(Q,W ) //

��

⊕
v∈Σ H1

s (Qv,W )

��

0 // Sel(Q, W̃ )[IH] // SelΣ(Q, W̃ )[IH] //
⊕

v∈Σ H1
s (Qv, W̃ )

with vertical arrows given by restriction. By the above, the cokernel of the
middle vertical map is trivial and the kernels of both the middle and the
righthand vertical maps are H-cotorsion. The statement for Sel now follows
from the snake lemma.

One applies the same argument to the diagram

0 // SelΣ(Q,W ) //

��

Sel(Q,W ) //

��

⊕
v∈Σ H1

f (Qv,W )

��

0 // SelΣ(Q, W̃ )[IH] // Sel(Q, W̃ )[IH] //
⊕

v∈Σ H1
f (Qv, W̃ )

to prove the statement for SelΣ. �

4.14. Theorem. — Assume Hypothesis L and the 2-variable main con-
jecture, 4.3. If Conjecture 1.4 holds, then Conjecture 1.5 holds.

This theorem leaves something to be desired in that, ideally, one would
like to find sufficient conditions for Conjecture 1.5 to hold which are related
only to the non-vanishing of (classical or p-adic) L-functions. On the other
hand, a proof of the 2-variable main conjecture should in many cases be
contained in recent work of Skinner-Urban and, as we remarked in 4.11,
we expect that Hypothesis L is a consequence of Conjecture 1.5 (and is
therefore necessary for 1.5 to hold).

Proof. — Suppose by way of contradiction that z ∈ SelΣ(Q, T ∗)H-tors.
Then we may choose λ ∈ ΛH prime toX such that λz = 0. (We are of course
viewing here H-modules as ΛH-modules via the natural quotient ΛH � H.)
By Lemma 4.12, it follows that λz ∈ IH SelΣ(Q, T̃ ∗), say λz = Xy with
y ∈ SelΣ(Q, T̃ ∗) mapping to y = cor∞ y ∈ SelΣ(Q, T ∗). A computation on
cocycles shows that locs y = λDers locs z ∈ H1

s (Qp, T
∗), which we claim

does not lie in the H-torsion submodule. If this claim does not hold, then,
replacing y by a suitable H-multiple, we may assume that locs y = 0. The
claim follows by applying Lemma 4.8 with α(∞) = locs y.

Thus, Hypothesis L, Lemma 2.9, and the exact sequence (4.10.1) imply
that Sel(Q,W )∨ is a torsion H-module. On the other hand, we know that
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X | Twθ L from the assumption that εF = −1, so the 2-variable main
conjecture, after applying Twθ, implies that

length(ΛH)(X)
(Sel(Q, W̃ )∨)(X) > 0.

Lemma 4.13 then implies that rkH Sel(Q,W )∨ > 0, a contradiction. �

4.15. Theorem. — Under Hypothesis L and the 2-variable main con-
jecture, if Conjectures 1.4 (non-vanishing of the derivative of L) and 1.5
(non-vanishing of Euler system) hold, then Conjecture 3.6 (non-degeneracy
of height pairing) holds.

Proof. — Under our assumptions, we have that T is self-dual, so the
height pairing is a self-pairing

〈 , 〉 : Sel(Q, T ∗)× Sel(Q, T ∗) −→ H

and the height formula gives the equation

〈z, z〉 =
(
Der locs z, locf z

)
p
.

The theorem follows if we can show that locf z is not a torsion class. By the
exact sequences (4.10.1) and (4.10.2) applied to T̃ ∗ and W̃ , Lemma 2.9
applied to T̃ ∗, and the 2-variable main conjecture (which implies that
Sel(Q, W̃ )∨ is a torsion ΛH-module), we have that SelΣ(Q, W̃ )∨ has rank 1
over ΛH. Also note that the 2-variable main conjecture and Lemma 4.13
imply that Sel(Q,W )∨ has rank 1 over H.

Suppose by way of contradiction that locf z is a torsion class. Lemma 2.9
and the exact sequence (4.10.2) show that SelΣ(Q, T ∗)∨ has rank 2 over H,
which by Lemma 4.13 implies that length(ΛH)(X)

(SelΣ(Q, W̃ )∨tors)(X) > 0.
But an examination of the exact sequences (4.10.1) and (4.10.2) (for T̃ ∗

and W̃ ) then shows that length(ΛH)(X)
(SelΣ(Q, W̃ )∨)(X) > 0, contradicting

Hypothesis L by Lemma 4.13. �

4.16. Corollary. — Under Hypothesis L, the 2-variable main conjec-
ture, and Conjecture 1.5, Conjectures 1.4 and 3.6 are equivalent.

Proof. — Combine Theorems 4.7 and 4.15. �
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