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CONTACT HOMOLOGY, CAPACITY AND
NON-SQUEEZING IN R2n × S1 VIA GENERATING

FUNCTIONS

by Sheila SANDON

Abstract. — Starting from the work of Bhupal we extend to the contact case
the Viterbo capacity and Traynor’s construction of symplectic homology. As an
application we get a new proof of the Non-Squeezing Theorem of Eliashberg, Kim
and Polterovich.

Résumé. — Inspirés par le travail de Bhupal, nous étendons à la géométrie de
contact la notion de capacité de Viterbo ainsi que la construction, dûe à Traynor,
d’homologie symplectique. Comme application, nous obtenons une démonstration
alternative du Théorème de Non-Tassement d’Eliashberg, Kim et Polterovitch.

1. Introduction

Consider the domains B2n(R) = {π
∑n
i=1 x

2
i + y 2

i < R } and C2n(R) =
B2(R) × R2n−2 in the standard symplectic euclidean space

(
R2n, ω0 =

dx ∧ dy
)
. Gromov’s Non-Squeezing Theorem [24] states that if R2 < R1

then there is no symplectic embedding of B(R1) into C(R2). The analo-
gous statement for balls and cylinders in the standard contact euclidean
space

(
R2n+1, ξ0 = ker (dz−ydx)

)
is trivially false, because one can use the

contact transformation (x, y, z) 7→ (αx, αy, α2z), where α is some positive
constant, to squeeze any domain into an arbitrarily small ball(1) . How-
ever an interesting non-squeezing phenomenon arises if we consider the
contact manifold R2n × S1 instead of R2n+1 and the following stronger
notion of contact squeezing, that was introduced by Eliashberg, Kim and
Polterovich [16].

Keywords: Contact non-squeezing, contact capacity, contact homology, orderability of
contact manifolds, generating functions.
Math. classification: 53D35.
(1) In fact, as Francisco Presas explained to me, it is even possible to find a contact
embedding of the whole R2n+1 into an arbitrarily small ball. A proof of this can be
found for example in Chekanov, van Koert and Schlenk [7].
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Definition 1.1. — Given open domains U1 and U2 in a contact man-
ifold (V, ξ) we say that U1 can be squeezed into U2 if there exists a con-
tact isotopy ϕt : U1 −→ V , t ∈ [0, 1], such that ϕ0 is the identity and
ϕ1(U1) ⊂ U2. We say that U1 can be squeezed into U2 inside a third do-
main V if ϕt(U1) ⊂ V for all t.

Note that if U1 is compact then by the isotopy extension theorem (see for
example [20]) any contact squeezing of U1 into U2 inside V can be extended
to a global contactomorphism of V supported in V.

Given a domain U in R2n we will denote by Û the domain U×S1 in R2n×S1.
In [16] it is proved that for any R1, R2 there exists a contact embedding of
B̂(R1) into B̂(R2), which if n > 1 is isotopic through smooth embeddings
to the inclusion B̂(R1) ↪→ R2n×S1. However, this isotopy cannot be made
contact if R2 < k 6 R1 for some integer k.

Theorem 1.2 (Non-Squeezing Theorem [16]). — Assume R2 6 k 6 R1

for some integer k. Then the closure of B̂(R1) cannot be mapped into B̂(R2)
by a compactly supported contactomorphism of R2n × S1. In particular,
B̂(R1) cannot be squeezed into B̂(R2).

Eliashberg, Kim and Polterovich also proved that B̂(R1) can be squeezed
into B̂(R2) if R1 and R2 are smaller than 1 and if n > 1 (in the 3-
dimensional case it is never possible to squeeze B̂(R1) into a smaller B̂(R2),
as can be seen using the techniques of Eliashberg [14]). It remains an
open question whether B̂(R1) can be squeezed into B̂(R2) for n > 1 and
k − 1 < R2 6 R1 < k with k > 1.

An interesting feature of contact squeezing is that it requires extra room.
For example, if R2 6 1

l 6 R1 for some integer l, then any contact squeezing
of B̂(R1) into B̂(R2) must move B̂(R1) outside B̂( 1

l−1 ) at a certain time.
This is a special case of the following theorem.

Theorem 1.3 ([16]). — Assume that R2 6 k
l 6 R1 < R3 6 k

l−1 for
some integers k and l. Then the closure of B̂(R1) cannot be mapped into
B̂(R2) by a compactly supported contactomorphism ψ of R2n × S1 with
ψ
(
B̂(R3)

)
= B̂(R3). In particular, B̂(R1) cannot be squeezed into B̂(R2)

inside B̂( k
l−1 ).

Theorems 1.2 and 1.3 are proved in [16] using contact homology of fiber-
wise starshaped domains in R2n×S1. This is a special instance of the Sym-
plectic Field Theory, and is related to a version of the filtered symplectic
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homology of domains in R2n as used by Biran, Polterovich and Salamon [3],
Cieliebak, Ginzburg and Kerman [11] and Ginzburg and Gürel [21]. We will
present here a proof of the same results using generating functions instead
of holomorphic curves techniques.

Generating functions have been studied extensively by many authors in
the 80’s and 90’s. They provide a powerful tool in symplectic and contact
topology, with important applications also to many of the central problems
of these subjects (see for instance Chaperon [4, 5], Laudenbach and Siko-
rav [29], Sikorav [32, 33], Givental [22, 23], Viterbo [41, 39], Traynor [37, 38],
Théret [34, 36, 35], Chekanov [6], Eliashberg and Gromov [15], Bhupal [1,
2], Milinković [31], Chekanov and Pushkar [8], Ferrand and Pushkar [18],
Jordan and Traynor [28], Colin, Ferrand and Pushkar [12], Chernov and
Nemirovski [9, 10], Eiseman, Lima, Sabloff and Traynor [13], Fuchs and
Rutherford [19]). In particular, Viterbo [41] applied Morse-theoretical meth-
ods to the generating function of a Lagrangian submanifold L of the cotan-
gent bundle of a closed manifold B to define invariants c(u, L) ∈ R for any
u ∈ H∗(B). Using this he could then define an invariant c(φ) for compactly
supported Hamiltonian symplectomorphisms φ of R2n, which in turn led
to the definition of a symplectic capacity for domains in R2n. Among the
applications discussed by Viterbo there is in particular the definition of a
partial order and a bi-invariant metric on the group of compactly supported
Hamiltonian symplectomorphisms of R2n.

Extending the work of Viterbo, Traynor [37] defined homology groups for
Hamiltonian symplectomorphisms and, via a limit process, domains of R2n.
More precisely, for any domain U in R2n and any interval (a, b] of R she
defined homology groups G (a,b]

∗ (U). She proved that these groups are sym-
plectic invariants and calculated them in the case of open ellipsoids.

Some of the above results have been extended to contact topology. In partic-
ular, Bhupal [2] defined invariants c (u, L) for a Legendrian submanifold L
of the 1-jet bundle of a closed manifold B and u ∈ H∗(B). Proceeding as in
[41] he then associated a number c(φ) to each compactly supported contac-
tomorphisms φ of R2n+1 isotopic to the identity, and used this construction
to define a partial order on the groups of all such contactomorphisms. In
contrast with the symplectic case, the number c(φ) is not invariant by con-
jugation of φ with another contactomorphism ψ. For this reason it is not
possible to mimic Viterbo’s construction of a symplectic capacity to obtain
a contact invariant for domains in R2n+1. However Bhupal could prove that
c(ψφψ−1) = 0 if and only if c(φ) = 0, which was all he needed to define
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148 Sheila SANDON

the partial order. Our contribution to this problem is the observation that
if we consider contactomorphisms of R2n × S1, regarded as contactomor-
phisms of R2n+1 that are 1-periodic in the z-coordinate, then the methods
of Bhupal can be used to show that c(ψφψ−1) = k if and only if c(φ) = k,
where k is any positive integer. In particular this implies that the integer
part of c(φ) is invariant by conjugation, and this fact can be used to define
an integral contact invariant for domains in R2n × S1. In analogy with the
symplectic case we call this invariant a contact capacity. Given a domain U
in R2n, we prove that the contact capacity of Û equals the integer part of
the Viterbo capacity of U . This then easily yields a proof of Theorem 1.2
(see 3.6).

Similar observations can be made about homology groups. Using the set-
up of Bhupal, it is possible to extend the construction of Traynor to the
contact case and get homology groups G (a,b]

∗ (V) for a domain V of R2n+1.
These groups however are not contact invariant, but they become so in the
1-periodic case if we consider only integer values of a and b.

The crucial fact that explains the special role played by the integers in the
contact 1-periodic case is the following. In the symplectic case there is a
1-1 correspondence between critical points of the generating function of a
Hamiltonian symplectomorphism φ and the fixed points of φ. Moreover,
critical values are given by the symplectic action of the corresponding fixed
points. Since the symplectic action is invariant by conjugation it follows
that the generating functions of φ and of ψφψ−1 have the same critical
values. This fundamental fact can be used to prove that the Viterbo ca-
pacity and Traynor’s homology groups are symplectic invariants (see 2.6
and 2.7). The same argument does not apply to the contact case. Given a
contactomorphism φ of R2n+1 we will see in 3.2 that critical points of the
generating function of φ with critical value c correspond to points (x, y, z)
of R2n+1 such that φ(x, y, z) = (x, y, z + c). Thus the generating functions
of φ and of ψφψ−1 do not have the same critical values in general. However,
if one of the two functions has 0 as critical value then so does the other
as well, because critical points with critical value 0 correspond to fixed
points. Similarly, in the 1-periodic case the same holds if we replace 0 by
any integer k. We will explain in 3.6 and 3.7 how this observation implies
that our homology groups and integral capacity for domains of R2n × S1

are contact invariants.

We will now show how one can use our construction of contact homology
to prove Theorems 1.2 and 1.3, referring to 3.7 for all technical details.
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Assume we have R1, R2, R3 with R2 6 k
l < R1 < R3 6 k

l−1 . We have to
show that B̂(R1) cannot be mapped into B̂(R2) by a contactomorphism
ψ of R2n × S1 such that ψ

(
B̂(R3)

)
= B̂(R3). Suppose this can be done.

Then we can consider the following commutative diagram:

G
(k,∞]
∗ (B̂(R3)) // G (k,∞]

∗ (B̂(R1))

G
(k,∞]
∗ (B̂(R3))

ψ∗

OO

// G (k,∞]
∗ (B̂(R2)) // G (k,∞]

∗
(
ψ(B̂(R1))

)
ψ∗

hhRRRRRRRRRRRRR

where the horizontal arrows denote the homomorphisms induced by in-
clusions (see Theorem 3.24) and the vertical ones are isomorphisms in-
duced by ψ (see Theorem 3.23). Consider Z2-coefficients, and ∗ = 2nl.
Then by Theorems 2.20 and 3.25 we know that G

(k,∞]
∗ (B̂(R2)) = 0,

G
(k,∞]
∗ (B̂(R1)) = G

(k,∞]
∗ (B̂(R3)) = Z2, and that the horizontal map

on the top is an isomorphism. Thus the diagram gives a contradiction,
yielding the proof of Theorem 1.3. Theorem 1.2 can be proved similarly,
considering ∗ = 2n and a big enough R3.

This article is organized as follows.

In Section 2 we describe the constructions by Viterbo and Traynor of a
symplectic capacity and symplectic homology for domains in R2n. In 2.7
we define homology groups for compactly supported Hamiltonian symplec-
tomorphisms of R2n and use them to construct, via a limit process, sym-
plectic homology of domains. The limit process is based on the Viterbo
partial order on Hamc (R2n), which we discuss in 2.5. The Viterbo ca-
pacity is described in 2.6. The partial order and the capacity are defined
using the invariants for Hamiltonian symplectomorphisms introduced by
Viterbo. We discuss these invariants in 2.3 and 2.4. In 2.1 and 2.2 we give
the needed preliminaries on generating functions. In this section we al-
ways follow Traynor [37] and Viterbo [41] except for the following points:
we give a different proof of symplectic invariance of the homology groups
(Proposition 2.16); monotonicity of the invariant c(φ) is proved directly
in [Vit92, Proposition 4.6] while for us is an immediate consequence of
Proposition 2.10.

In Section 3 we generalize the results of Section 2 to the contact case. In
3.6 and 3.7 respectively we construct a contact capacity and contact ho-
mology groups for domains in R2n×S1. The limit process to define contact
homology of domains is based on the Bhupal partial order on the group of
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150 Sheila SANDON

contactomorphisms of R2n+1, which we discuss in 3.5. All the constructions
in this section use the generalization of the Viterbo’s invariants to contac-
tomorphisms of R2n+1 and R2n×S1. We discuss these invariants in 3.3 and
3.4. In 3.1 and 3.2 we give respectively some preliminaries on generating
functions in contact topology, and a more detailed discussion of generating
functions for contactomorphisms of R2n+1.
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2. Symplectic Capacity and Homology for Domains in R2n

We refer to McDuff and Salamon [30] for preliminaries on symplectic
topology. Here we only discuss some basic concepts that are needed for the
rest of the article.
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A symplectic manifold is an even dimensional manifold M endowed with
a symplectic form, i.e a non-degenerate closed 2-form ω ∈ Ω2(M). A sym-
plectic manifold (M,ω) is said to be exact if ω = −dλ for some 1-form λ

which is then called a Liouville form. In this paper we will only deal with
the following two (exact) symplectic manifolds: the standard symplectic
euclidean space

(
R2n, ω0 = −d (ydx)

)
and the cotangent bundle T ∗B of a

manifold B, endowed with the canonical symplectic form ωcan = −d (pdq)
where q is the coordinate on the base and p on the fiber. A diffeomor-
phism φ of a symplectic manifold (M,ω) is called a symplectomorphism
if φ∗ω = ω. Given a time-dependent function Ht on M , the flow φt of
the time-dependent vector field Xt defined by the condition iXtω = −dHt

consists of symplectomorphisms. The isotopy φt is called a Hamiltonian iso-
topy, with Hamiltonian function Ht. A Hamiltonian symplectomorphism of
(M,ω) is a symplectomorphism that can be obtained as the time-1 map
of a Hamiltonian isotopy. An immersion i : L → (M,ω) is called isotropic
if i∗ω = 0 and Lagrangian if moreover the dimension of L is maximal, i.e.
half of the dimension of M . If (M,ω) is exact with Liouville form λ, then
a Lagrangian immersion i : L→ (M,ω) is called exact if i∗λ = df for some
function f .

Consider an exact symplectic manifold (M,ω = −dλ). The action func-
tional AH with respect to a time-dependent Hamiltonian H is defined
by

AH(γ) :=
∫ t1

t0

(
λ
(
γ̇(t)
)

+Ht

(
γ(t)
))
dt

for a path γ : [t0, t1] → M . A crucial fact is that γ is a critical point of
AH (with respect to variations with fixed endpoints) if and only if it is an
integral curve of the Hamiltonian flow of H. Moreover we have the following
lemma.

Lemma 2.1 ([30], 9.19). — Let φt, t ∈ [0, 1], be a symplectic isotopy of
an exact symplectic manifold

(
M,ω = −dλ

)
, starting at the identity. Then

φt is a Hamiltonian isotopy if and only if φ ∗t λ − λ = dFt for a smooth
family of functions Ft : M −→ R. In this case the Ft are given by

Ft =
∫ t

0

(
λ(Xs) +Hs

)
◦ φs ds

where Xt is the vector field generating φt, and Ht : M −→ R the corre-
sponding Hamiltonian function. In other words, the value of Ft at a point q
of M is the action functional with respect to H of the path φs(q), s ∈ [0, t].

TOME 61 (2011), FASCICULE 1



152 Sheila SANDON

The action functional plays a central role in symplectic topology. It is also
related in a crucial way to generating functions and thus to the invariants
defined by Traynor and Viterbo that we are going to discuss in this section.

2.1. Generating functions for Lagrangian submanifolds of T ∗B

Consider a smooth manifold B. Given a function f : B → R, the graph
of its differential is a Lagrangian submanifold Lf of T ∗B. Many geomet-
ric properties of Lf can be inferred by looking at f , the most immediate
instance of this being the fact that critical points of f correspond to inter-
section points of Lf with the 0-section. The idea of generating functions
is to generalize this construction in order to be able to associate a func-
tion to a more general class of Lagrangian submanifolds of T ∗B. This can
be achieved by considering functions defined on the total space of a fiber
bundle over B, and by using the following construction which is due to
Hörmander.

Definition 2.2 ([27]). — A variational family (E,S) over a manifold
B is a function S : E −→ R defined on the total space of a fiber bundle
p : E −→ B. (E,S) is a transverse variational family if dS : E −→ T ∗E is
transverse to NE := { (e, η) ∈ T ∗E | η ≡ 0 on ker dp (e) }.

Consider the set ΣS of fiber critical points of S, i.e. points e of E that
are critical points of the restriction of S to the fiber through e. Note that
ΣS = (dS)−1(NE), so if the variational family (E,S) is transverse then ΣS
is a submanifold of E of dimension equal to the dimension of B. To any e in
ΣS we can associate an element v∗(e) of T ∗p(e)B (the Lagrange multiplier)
defined by v∗(e) (X) := dS (X̂) for X ∈ Tp(e)B, where X̂ is any vector in
TeE with p∗(X̂) = X.

Proposition 2.3. — If (E,S) is a transverse variational family over B,
then iS : ΣS −→ T ∗B, e 7→

(
p(e), v∗(e)

)
is a Lagrangian immersion.

In this case, S : E −→ R is called a generating function for the La-
grangian submanifold LS := iS (ΣS) of T ∗B. Note that (non-degenerate)
critical points of S correspond under iS to (transverse) intersection points
of LS with the 0-section. Note also that iS is an exact Lagrangian immer-
sion, with i ∗S λcan = d (S|ΣS ). A proof of Proposition 2.3 can be found for
instance in [30, 9.34].

A crucial example of this construction is given by the case in which E is
the space of paths γ : [0, 1] → T ∗B that begin at the 0-section. E can be
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seen as a fiber bundle over B with projection γ 7→ π
(
γ(1)
)
, where π is the

projection of T ∗B into B. Given a time-dependent Hamiltonian H on T ∗B
we can define a function S : E → R by S(γ) := AH(γ). Then ΣS is the
set of orbits of the Hamiltonian flow of H and the Lagrange multiplier of
an element γ of ΣS is the vertical component of γ(1). Thus S generates
the image of the 0-section under the time-1 map of the Hamiltonian flow
of H. Note that S is not a generating function in the sense of the above
definition because E has infinite dimensional fibers. However, it is possible
to approximate E by a finite dimensional space and prove in this way that
any Lagrangian submanifold of T ∗B which is Hamiltonian isotopic to the
0-section has a generating function. This was done by Sikorav, using the
broken Hamiltonian trajectories idea of Chaperon [4] and Laudenbach and
Sikorav [29]. It was also proved that by this construction one can obtain
in fact a generating function which is quadratic at infinity in the following
sense.

Definition 2.4. — A generating function S : E −→ R for a Lagrangian
submanifold of T ∗B is quadratic at infinity if p : E −→ B is a vector
bundle and if there exists a non-degenerate quadratic form Q∞ : E −→ R
such that dS − ∂vQ∞ : E −→ E∗ is bounded, where ∂v denotes the fiber
derivative.

This condition is important because it makes possible to apply to gener-
ating functions all arguments of Morse theory, even though the functions
are not defined on a compact manifold.

Theorem 2.5 ([32], [33]). — If B is closed, then any Lagrangian sub-
manifold of T ∗B which is Hamiltonian isotopic to the 0-section has a gen-
erating function quadratic at infinity (g.f.q.i.). More generally, if L ⊂ T ∗B
has a g.f.q.i. and ψt is a Hamiltonian isotopy of T ∗B, then there exists a
continuous family of g.f.q.i. St : E −→ R such that each St generates the
corresponding ψt(L).

A second fundamental result is the uniqueness theorem of Viterbo and
Théret, which says that all generating functions of a Lagrangian subman-
ifold of T ∗B which is Hamiltonian isotopic to the 0-section are related by
some basic operations that do not affect the Morse theory of the function.
As a consequence, all the invariants defined using generating functions do
not depend on the choice of the specific generating function used to calcu-
late them.

Theorem 2.6 ([41], [36]). — Suppose that B is closed, and let L be
a Lagrangian submanifold of T ∗B Hamiltonian isotopic to the 0-section.

TOME 61 (2011), FASCICULE 1
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If S : E −→ R is a g.f.q.i. for L then any other g.f.q.i. S′ for L can be
obtained from S by the following operations:

• addition of a constant: S′ = S + c : E −→ R, for some c ∈ R;
• fiber-preserving diffeomorphism: S′=S◦φ, for some fiber-preserving

diffeomorphism φ : E′ −→ E;
• stabilization (assuming p : E −→ B is a vector bundle): S′ =
S +Q : E′ = E ⊕ F −→ R, where F −→ B is a vector bundle and
Q : F −→ R is a non-degenerate quadratic form.

A g.f.q.i. S : E −→ R is said to be special if E = B × RN and S =
S0 +Q∞, where S0 is compactly supported and Q∞ is the same quadratic
form on each fiber.

Proposition 2.7 ([36]). — If B is closed, then any g.f.q.i. can be mod-
ified to a special one by applying the operations in Theorem 2.6.

In the following we will always consider generating functions which are
quadratic at infinity, and we will assume that they are special whenever
this is needed.

2.2. Generating functions for Hamiltonian symplectomorphisms
of R2n

We will now apply the results of 2.1 to compactly supported Hamiltonian
symplectomorphisms of R2n. We do this by associating to such a symplecto-
morphism φ of R2n a Lagrangian submanifold of T ∗S2n, as we will now ex-
plain. We first drop the condition of φ being compactly supported, and con-
struct a Lagrangian submanifold Γφ of T ∗R2n. Note first that the graph of φ
can be seen as a Lagrangian embedding grφ : R2n −→ R2n×R2n, where R2n

denotes the symplectic manifold (R2n,−ω0). We identify R2n × R2n with
T ∗R2n by the symplectomorphism(2) τ : (x, y,X, Y ) 7→ (x, Y, Y −y, x−X)
and define Γφ : R2n −→ T ∗R2n by Γφ = τ ◦ grφ. Since τ sends the diagonal
of R2n × R2n to the 0-section of T ∗R2n, fixed points of φ correspond to
intersection points of Γφ with the 0-section. Note that Γφ can also be writ-
ten as Γφ = Ψφ (0-section) where Ψφ is the symplectomorphism of T ∗R2n

(2) One can use in fact any other symplectomorphism that sends the diagonal to the
0-section. Traynor and Viterbo use respectively τ ′ : (x, y,X, Y ) 7→ (y,X, x −X,Y − y)
and τ ′′ : (x, y,X, Y ) 7→ (x+X

2 ,
y+Y

2 , Y − y, x − X). We use τ because it is consistent
with the formula in the contact case given by Bhupal (see 3.2).
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defined by the diagram

R2n × R2n
id×φ //

τ

��

R2n × R2n

τ

��
T ∗R2n

Ψφ
// T ∗R2n.

This shows in particular that Γφ is Hamiltonian isotopic to the 0-section.
Observe that the above diagram behaves well with respect to composition:
for all Hamiltonian symplectomorphisms φ, φ1 and φ2 we have namely that
Ψφ1 ◦Ψφ2 = Ψφ1φ2 (in particular Γφ1 ◦φ2 = Ψφ1 (Γφ2)) and Ψ −1

φ = Ψφ−1 .
Note moreover that Γφ is in fact an exact Lagrangian embedding, with

Γ ∗
φ (λcan) = d (xφ2 − φ1φ2 + F )

where φ1 and φ2 denote the first and last n components of φ and F is a
function satisfying φ∗(λ0)− λ0 = dF for λ0 = ydx (see Lemma 2.1).

Assume now that φ is compactly supported. Then Γφ coincides with the
0-section outside a compact set, so (by regarding S2n as the 1-point com-
pactification of R2n) it can be seen as Lagrangian submanifold T ∗S2n,
Hamiltonian isotopic to the 0-section. By Theorems 2.5 and 2.6 it follows
that Γφ has a g.f.q.i. S : E −→ R, which is unique up to addition of a con-
stant, fiber-preserving diffeomorphism and stabilization. We may and will
always assume that S is special. Note that this assumption in particular
normalizes S, removing the indeterminacy by a constant.

A crucial property of any generating function of a Hamiltonian symplecto-
morphism φ of R2n is that its set of critical values coincides with the action
spectrum of φ.

Definition 2.8. — Let φ be a Hamiltonian symplectomorphism of R2n.
The symplectic action of a fixed point q of φ is defined by

Aφ(q) := AH
(
φt(q)
)

=
∫ 1

0

(
λ(Xt) +Ht

) (
φt(q)
)
dt

where φt is a Hamiltonian isotopy joining φ to the identity, Xt the vec-
tor field generating it and Ht the corresponding Hamiltonian. The action
spectrum of φ is the set Λ(φ) of all values of Aφ at fixed points of φ.

Let F : R2n → R be the compactly supported function satisfying φ∗λ0−
λ0 = dF . Then by Lemma 2.1 we have Aφ(q) = F (q), so in particular
we see that the definition of Aφ(q) does not depend on the choice of the
Hamiltonian isotopy φt connecting φ to the identity.
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Lemma 2.9. — Let φ be a compactly supported Hamiltonian symplec-
tomorphism of R2n, with g.f.q.i. S. Then a point q of R2n is a fixed point
of φ if and only if (q, 0) ∈ Γφ, and thus if and only if i −1

S (q, 0) is a critical
point of S. In this case the corresponding critical value is the symplectic
action Aφ(q).

Proof. — The first statement is immediate. Suppose now that we have a
fixed point q of φ, and take a point p in R2n outside the support of φ. We
claim that

S
(
i −1
S (q, 0)

)
= −
∫
γtφ(γ)−1

λ0 = Aφ(q)

where γ is any path in R2n joining p to q. The second equality is proved in
[30, 9.30]. As for the first, it can be seen as follows. Note that

−
∫
γtφ(γ)−1

λ0 =
∫
γ×φ(γ)

(−λ0)× λ0

where (−λ0)×λ0 is the Liouville form of R2n×R2n and γ×φ(γ) a path in the
Lagrangian submanifold grφ of R2n×R2n. After identifying R2n×R2n with
T ∗R2n the result will follow from the following more general fact. Suppose
that a Lagrangian submanifold L of T ∗B is generated by S : E → R, i.e.
L is the image of iS : ΣS → T ∗B. Since i ∗S λcan = d (S|ΣS ) we have that∫
γ
λcan = S

(
i −1
S (y)

)
− S
(
i −1
S (x)

)
for any path γ in L joining two points

x and y. In our situation this gives

−
∫
γtφ(γ)−1

λ0 =
∫
γ×φ(γ)

(−λ0)× λ0 =
∫
τ
(
γ×φ(γ)

) λcan

= S
(
i −1
S (q, 0)

)
− S
(
i −1
S (p, 0)

)
= S
(
i −1
S (q, 0)

)
.

The last equality holds because S
(
i −1
S (p, 0)

)
= 0, since p is outside the

support of φ. The second follows from τ∗λcan = (−λ0)×λ0 +d(−XY +xY )
and the fact that the function −XY + xY vanishes at the endpoints (p, p)
and (q, q) of the path γ × φ(γ). �

In 2.4 and 2.7 respectively we are going to associate to any compactly
supported Hamiltonian symplectomorphism φ of R2n a real number c(φ)
and, for real parameters a and b, homology groups G (a,b]

k (φ). The number
c(φ) is obtained by selecting a critical value of the generating function S

of φ, while the groups G (a,b]
∗ (φ) are defined to be the relative homology

of sublevel sets of S at a and b. Both c(φ) and G
(a,b]
∗ (φ) are invariant by

conjugation of φ with another Hamiltonian symplectomorphism of R2n. As
we will see, this is an immediate consequence of Lemma 2.9 and the fact
that the action spectrum of a Hamiltonian symplectomorphism is invariant
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by conjugation. In 2.7 we will then apply a limit process in order to asso-
ciate to any domain U of R2n symplectic homology groups G (a,b]

∗ (U), by
looking at the corresponding groups for Hamiltonian symplectomorphisms
supported in U . The limit process will be with respect to the following
partial order 6 on the group Hamc (R2n) of compactly supported Hamil-
tonian symplectomorphisms of R2n: we say that φ1 6 φ2 if φ2φ

−1
1 is the

time-1 flow of some non-negative Hamiltonian (Hamiltonian functions of
compactly supported symplectomorphism are normalized to be 0 outside
the support). The fact that 6 is indeed a partial order, in particular that
if φ1 6 φ2 and φ2 6 φ1 then φ1 = φ2, will be proved in 2.5 by comparing
6 with the partial order on Hamc (R2n) defined by Viterbo [41]. We will
need the following proposition.

Proposition 2.10. — If φ1 6 φ2, then there are generating functions
S1, S2 : E −→ R for Γφ1 , Γφ2 respectively such that S1 6 S2.

This proposition is proved by Traynor [37, 5.3]. It will also follow as a
special case of the corresponding result in contact geometry, that we will
prove in 3.2.

2.3. Invariants for Lagrangian submanifolds

In the next four sections we will follow Viterbo [41] very closely. We will
first define invariants for Lagrangian submanifolds of T ∗B and discuss their
properties. Then we will apply these invariants to compactly supported
Hamiltonian symplectomorphisms of R2n, and use them to define a partial
order 6V on Hamc (R2n) and a capacity for domains in R2n.

Let B be a closed manifold and fix a point P on it. Denote by 0B the
0-section of T ∗B and by LP the set of all Lagrangian submanifolds of T ∗B
which are Hamiltonian isotopic to 0B and such that P ∈ L∩0B . We normal-
ize generating functions by requiring that the critical point corresponding
to P has critical value 0. In this way the set of critical values of a gen-
erating function for a Lagrangian submanifold L depends only on L, and
not on the choice of the generating function. Given L in LP , we will now
explain how to use a cohomology class u of B to select a critical value of
the generating function of L, in order to define an invariant c(u, L).

Let L be an element of LP with g.f.q.i. S = S0 + Q∞ : E −→ R. We
denote by Ea, for a ∈ R ∪ ∞, the sublevel set of S at a, i.e. Ea = {x ∈
E |S(x) 6 a }, and by E−∞ the set E−a for a big (note that up to homotopy
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equivalence E−∞ is the same for all L in LP ). We will study the inclusion
ia : (Ea, E−∞) ↪→ (E,E−∞), and the induced map on cohomology

i ∗a : H∗(B) ≡ H∗(E,E−∞) −→ H∗(Ea, E−∞).

Here H∗(B) is identified with H∗(E,E−∞) via the Thom isomorphism

T : H∗(B)
∼=−→ H∗

(
D(E−), S(E−)

)
where E− denotes the subbundle of E where Q∞ is negative definite. Note
that this isomorphism shifts the grading by the index of Q∞. Note also
that by excision H∗

(
D(E−), S(E−)

)
is isomorphic to H∗(E,E−∞). For |a|

big enough we have H∗(Ea, E−∞) ≡ 0 if a < 0, and i ∗a = id if a > 0. So
we can define

c(u, L) := inf { a ∈ R | i ∗a (u) 6= 0 }

for any u 6= 0 in H∗(B). It follows from Theorem 2.6 that c(u, L) is well-
defined, i.e. it does not depend on the choice of the generating function
used to calculate it. Note also that c(u, L) is a critical value of S. The
other relevant properties of c(u, L) are contained the following lemma.

Lemma 2.11. — Let µ ∈ Hn(B) denote the orientation class of B. The
mapH∗(B)×LP −→ R, (u, L) 7−→ c(u, L) satisfies the following properties:

(i) If L1, L2 have generating functions S1, S2 : E −→ R with |S1 −
S2|C0 6 ε, then for any u in H∗(B) it holds that

|c(u, L1)− c(u, L2)| 6 ε.

(ii) c
(
u ∪ v, L1 + L2

)
> c(u, L1) + c(v, L2)

where L1 + L2 is defined by

L1 + L2 := { (q, p) ∈ T ∗B | p = p1 + p2, (q, p1) ∈ L1, (q, p2) ∈ L2 }.

(iii) c(µ, L̄) = −c(1, L),
where L̄ denotes the image of L under the map T ∗B → T ∗B,
(q, p) 7→ (q,−p).

(iv) c(µ,L) = c(1, L) if and only if L is the 0-section. In this case we
have

c(µ,L) = c(1, L) = 0.

(v) For any Hamiltonian symplectomorphism Ψ of T ∗B such that
Ψ(P ) = P , it holds

c
(
u,Ψ(L)

)
= c
(
u, L−Ψ−1(0B)

)
.
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The first property is immediate. For a ∈ R and j = 1, 2 denote by
(
Ea
)
j

the sublevel set of Sj at a, and by (i ∗a )j the map on cohomology induced by
the inclusion of the pair

(
(Ea)j , E−∞

)
into
(
E , E−∞

)
. If |S1−S2|C0 6 ε,

then we have inclusions of sublevel sets
(
Ea−ε

)
2 ⊂
(
Ea
)

1 ⊂
(
Ea+ε)

2. For
any a > c(u, L1) we have (i ∗a )1(u) 6= 0 which implies (i ∗

a+ε )2(u) 6= 0
and so c(u, L2) 6 a + ε. Similarly, for any a′ < c(u, L1) we have that
c(u, L2) > a′ − ε. It follows that c(u, L1) − ε 6 c(u, L2) 6 c(u, L1) + ε as
we wanted.

Properties (ii), (iii) and (iv) require more elaborated arguments of algebraic
topology, and we refer to [41] for a proof(3) . We will present here only the
proof of (v), because it is the only point that needs arguments of symplectic
geometry. We will see in 3.5 that the analogue statement is not true in the
contact case.

We first need to introduce some preliminaries from [41] and [40]. Given
Lagrangian submanifolds L1, L2 of T ∗B and points x, y in L1 ∩L2, define

l (x, y;L1, L2) :=
∫
γ1γ

−1
2

λcan

where γ1 and γ2 are paths in L1, L2 respectively joining x and y. Note that
l(x, y;L1, L2) = S1

(
i −1
S1

(y)
)
−S1
(
i −1
S1

(x)
)
+S2
(
i −1
S2

(y)
)
−S2
(
i −1
S2

(x)
)
,

where S1, S2 are g.f.q.i. for L1, L2. In particular, for any L in LP and u in
H∗(B) there exist points x, y in L∩ 0B such that c(u, L) = l (x, y, ;L, 0B):
just take x = P and y such that S

(
i −1
S (y)

)
= c(u, L), where S is

a g.f.q.i. for L. Note that if Ψt is an Hamiltonian isotopy of T ∗B then
l (x, y;L1, L2) = l

(
Ψt(x),Ψt(y); Ψt(L1),Ψt(L2)

)
, as can be easily checked

using the fact that Ψ ∗
t λcan − λcan is exact. For L ∈ LP , define a subset

Λ(L) of R by Λ(L) := { l(x, y, ;L, 0B) |x, y ∈ L ∩ 0B }.
Proof of Lemma 2.11(v). — Let Ψ be the time-1 flow of a Hamiltonian

isotopy Ψt, and consider the map t 7−→ c
(
u,Ψ−1

t Ψ(L) − Ψ−1
t (0B)

)
. We

know by Lemma 2.11(i) and Theorem 2.5 that this map is continuous, and
we claim that it takes values in Λ(L). Since Λ(L) is a totally disconnected
set, it will follow that t 7−→ c

(
u,Ψ−1

t Ψ(L)−Ψ−1
t (0B)

)
is independent of t

and thus in particular c
(
u,Ψ(L)

)
= c
(
u, L−Ψ−1(0B)

)
. To prove the claim,

let xt, yt be points in the intersection of Ψ−1
t Ψ(L)−Ψ−1

t (0B) with 0B such
that

c(u,Ψ−1
t Ψ(L)−Ψ−1

t (0B)) = l(xt, yt; Ψ−1
t Ψ(L)−Ψ−1

t (0B), 0B),

(3) See also Milinković [31] for an alternative definition and proof of the main properties
of the invariants c(u, L), based on Morse homology.
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and let x′t, y′t be the corresponding points in Ψ−1
t Ψ(L) ∩ Ψ−1

t (0B). Then
we have

c
(
u,Ψ−1

t Ψ(L)−Ψ−1
t (0B)

)
= l(xt, yt; Ψ−1

t Ψ(L)−Ψ−1
t (0B), 0B)

= l(x′t, y′t; Ψ−1
t Ψ(L),Ψ−1

t (0B)) = l(Ψtx
′
t,Ψty

′
t; Ψ(L), 0B) ∈ Λ(L)

as we wanted. �

2.4. Invariants for Hamiltonian symplectomorphisms of R2n

We will now apply the construction of 2.3 to the special case of a com-
pactly supported Hamiltonian symplectomorphism φ of R2n. We define

c(φ) := c(µ,Γφ)

where Γφ is the Lagrangian submanifold of T ∗S2n constructed in 2.2 and
µ the orientation class of S2n. Note that Γφ intersects the 0-section at the
point at infinity of S2n. This point plays the role of the point P in 2.3.
We know that c(φ) is a critical value for any g.f.q.i. of Γφ, and hence that
c(φ) = Aφ(q) for some fixed point q of φ. Note also that c(id) = 0. Moreover
we have the following properties.

Proposition 2.12. — For all φ, ψ in Hamc (R2n) it holds:
(i) c(φ) > 0.
(ii) If c(φ) = c(φ−1) = 0 then φ is the identity.
(iii) c(φψ) 6 c(φ) + c(ψ).
(iv) c(φ) = c(ψφψ−1).
(v) If φ1 6 φ2 in the sense of 2.2, then c(φ1) 6 c(φ2).

Proof. —
(i) We will prove that c(1,Γφ) 6 0 for any φ, and then use

Lemma 2.11(iii) to conclude that

c(φ) = c(µ,Γφ) = −c(1,Γφ) > 0.

Since c(1,Γφ) = inf { a ∈ R | i ∗a (1) 6= 0 }, we need to prove that
i ∗0 (1) 6= 0. Let S : E → R be a g.f.q.i. for Γφ, and recall that we
regard S2n as the 1-point compactification R2n∪{P}. Consider the
commutative diagram

H∗(E0, E−∞) // H∗(E 0
P , E −∞

P )

H∗(S2n) //

(i0)∗
OO

H∗({P})

∼=

OO
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where the horizontal maps are induced by the inclusions {P} ↪→
S2n and EP ↪→ E. Since φ is compactly supported, Γφ and hence
Γφ coincide with the 0-section on a neighborhood of P , so S|EP :
EP → R is a quadratic form. It follows that the vertical map on
the right hand side is an isomorphism. Since the horizontal map on
the bottom sends 1 to 1, we see that i ∗0 (1) 6= 0 as we wanted.

(ii) Note first that c(u,Γφ) = c(u,Γφ−1) for all u (apply Lemma 2.11(v)
to L = 0B and Ψ = Ψφ). Using this, the result then follows from
Lemma 2.11(iii)-(iv).

(iii) Using (ii), (v) and (iii) of Proposition 2.11 we have

c(ψ) = c(µ,Γψ) = c
(
µ ∪ 1,Ψφ−1(Γφψ)

)
= c
(
µ ∪ 1,Γφψ −Ψφ(0B)

)
> c(µ,Γφψ) + c

(
1,Ψφ(0B)

)
= c(µ,Γφψ) + c(1,Γφ)

= c(µ,Γφψ)− c(1,Γφ) = c(φψ)− c(φ)

i.e. c(φψ) 6 c(φ) + c(ψ) as we wanted.
(iv) Let ψ be the time-1 map of a Hamiltonian isotopy ψt, and consider

the map t 7→ c(ψtφψ −1
t ). We know that this map is continuous

(by Lemma 2.11(i) and Theorem 2.5) and that it takes values in
the totally disconnected set Λ(φ), since Λ(ψtφψ −1

t ) = Λ(φ) (see
for instance [26, 5.2]). It follows that it is independent of t, so in
particular c(φ) = c(ψφψ −1).

(v) We know by Proposition 2.10 that there are generating functions
Sφ1 , Sφ2 for Γφ1 , Γφ2 respectively such that Sφ1 6 Sφ2 . So for any
a we have inclusion of sublevel sets (Ea)Sφ2

⊂ (Ea)Sφ1
and this

easily implies that c(u,Γφ1) 6 c(u,Γφ2) for any u. In particular,
c(φ1) 6 c(φ2) as we wanted.

�

2.5. The Viterbo partial order

The Viterbo partial order 6V on Hamc (R2n) is defined as follows. Given
φ1, φ2 in Hamc (R2n) we set

φ1 6V φ2 if c(φ1φ
−1

2 ) = 0.

Using the properties in Proposition 2.12 it is immediate to see that 6V is
indeed a partial order, that it is bi-invariant (i.e. if φ1 6V φ2 and ψ1 6V ψ2
then φ1ψ1 6V φ2ψ2), and that if φ1 6 φ2 in the sense of 2.2 then φ1 6V φ2.
In particular this implies that 6 is also a partial order.
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2.6. The Viterbo capacity

Given an open and bounded domain U of R2n, its Viterbo capacity
is defined by c(U) := sup { c(φ) | φ ∈ Ham (U) } where Ham (U) denotes
the set of time-1 maps of Hamiltonian functions supported in U . By the
following lemma, c(U) is a finite real number.

Lemma 2.13. — If φ ∈ Ham (U) and ψ is such that ψ(U)∩U = ∅, then
c(φ) 6 γ(ψ) where γ(ψ) := c(ψ) + c(ψ−1).

Proof. — We first show that under the hypotheses of the lemma we have
c(ψφ) = c(ψ). Let xt be a fixed point for ψφt such that c(ψφt) = Aψφt(xt).
Since ψ(U) ∩ U = ∅, we see that xt /∈ U . It follows that xt is also a
fixed point for all φt, hence for ψ. Moreover Aψφt(xt) = Aψ(xt). Thus the
continuous map t 7→ c(ψφt) takes values in Λ(ψ) and hence is independent
of t. In particular we get that c(ψφ) = c(ψ) as we claimed. Using this and
Proposition 2.12(iii) it then follows that

c(φ) 6 c(ψφ) + c(ψ−1) = c(ψ) + c(ψ−1) = γ(ψ).

�

We can extend the definition to arbitrary domains of R2n by setting

c(V) := sup { c(U) | U ⊂ V, U bounded }

if V is open, and

c(A) := inf { c(V) | V open, A ⊂ V }

for an arbitrary domain A.

Theorem 2.14. — c is a (relative) capacity in R2n, i.e. it satisfies the
following properties:

(i) (Symplectic Invariance) For any Hamiltonian symplectomorphism
ψ of R2n we have

c(ψ(U)) = c(U).

(ii) (Monotonicity) If U1 ⊂ U2, then c(U1) 6 c(U2).
(iii) (Conformality) c(αU) = α2c(U) for any positive constant α.
(iv) (Non-triviality) c (B2n(1)) > 0 and c (C2n(1)) <∞.

Proof. — If φ ∈ Ham (U) then ψφψ−1 ∈ Ham
(
ψ(U)
)
, thus symplectic

invariance follows from Proposition 2.12(iv). Monotonicity is immediate
from the definition, and non-triviality will be discussed in the example
below. As for conformality, it can be seen as follows. Consider first a con-
formal symplectomorphism ψ of R2n, i.e. ψ∗ω = αω for some constant α.
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Then Λ (ψφψ−1) = αΛ(φ) (see Hofer and Zehnder [26, 5.2]). Suppose that
ψ is isotopic to the identity through conformal symplectomorphisms, i.e.
ψ = ψt|t=1 with ψ ∗t ω = α(t)ω for some function α(t) with α(0) = 1 and
α(1) = α. The continuous map t 7→ 1

α(t) c (ψtφψ−1
t ) takes values in the to-

tally disconnected set Λ(φ), thus it is independent of t and so in particular
c (ψφψ−1) = α c(φ). Applying this to the conformal symplectomorphism ψ:
(x, y) 7→ (αx, αy) we get c (ψφψ−1) = α2 c(φ). Since ψφψ−1 ∈ Ham (αU) if
φ ∈ Ham (U), it follows that c(αU) = α2c(U) as we wanted. �

Example 2.15. — Consider the ellipsoid

E(α1, · · · , αn) := { 1
α1
|z1|2 + · · ·+ 1

αn
|zn|2 < 1 } ⊂ R2n ≡ Cn

where 0 < α1 6 α2 6 · · · 6 αn <∞. Using Traynor’s calculations of sym-
plectic homology of E(α1, · · · , αn) it is easy to see that c

(
E(α1, · · · , αn)

)
=

πα1 (see also Hermann [25]), in particular c
(
B(R)

)
= R. Since any bounded

domain contained in C2n(R) is also contained in some ellipsoid
E(α1, · · · , αn) with α1 = R, it follows by monotonicity that c (C2n(R))=R.

2.7. Symplectic homology

We will now associate homology groups first to a compactly supported
Hamiltonian symplectomorphism of R2n, by considering relative homology
of sublevel sets of its generating function, and then, by a limit process, to
domains of R2n. In this section we follow Traynor [37] although we give a
different proof of symplectic invariance of the homology groups (Proposi-
tion 2.16).

Let φ be a compactly supported Hamiltonian symplectomorphism of R2n.
Given real numbers a, b not belonging to the action spectrum of φ and
such that −∞ < a < b 6 ∞, we define the k-th symplectic homology
group of φ with respect to the values a, b by

G
(a,b]
k (φ) := Hk+ι (Eb, Ea)

where Ec, for c ∈ R ∪ ∞, denotes the sublevel set {x ∈ E |S(x) 6 c } of
a generating function S : E → R for φ and ι is the index of the quadratic
at infinity part of S. It follows from Theorem 2.6 that the G (a,b]

k (φ) are
well-defined, i.e. do not depend on the choice of the generating function
(see also [37, 3.6]). Moreover, we will prove now that they are invariant by
conjugation with a Hamiltonian symplectomorphism.
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Proposition 2.16. — For any φ and ψ in Hamc (R2n) we have an in-
duced isomorphism

ψ∗ : G (a,b]
∗ (ψφψ−1) −→ G

(a,b]
∗ (φ).

To prove this we will need the following lemma.

Lemma 2.17. — Let ft, t ∈ [0, 1], be a continuous 1-parameter family
of functions defined on a compact manifold M . Suppose that a ∈ R is
a regular value of all ft. Then there exists an isotopy θt of M such that
θt(Ma

0) = Ma
t, where Ma

t := {x ∈M | ft(x) 6 a }.

Proof. — Since a is a regular value of ft for all t ∈ [0, 1], there exists
an ε > 0 such that there are no critical values of any ft in the interval
(a−ε, a+ε). Take a δ > 0 such that if |t−s| < δ then |ft(x)−fs(x)| < ε for
all x ∈M , and consider a sequence 0 = t0 < t1 < · · · < tk−1 < tk = 1 with
|ti− ti−1| < δ for all i = 1, · · · , k. For ti−1 < t < ti define a diffeomorphism
θ it : f −1

ti−1
(a) → f −1

t (a) by sending a point x of f −1
ti−1

(a) to the point
obtained by following the flow of the (normalized) gradient 5ft for a time
a−ft(x). Note that by construction5ft will never be 0 in this process. Note
also that (after taking a smaller subdivision if needed) 5ft is transverse
to f

−1
ti−1

(a), so θ it is indeed a diffeomorphism. We can now define a 1-
parameter family of diffeomorphisms θt : f −1

0 (a) → f −1
t (a) by defining

inductively θt = θ it ◦ θti−1 for ti−1 < t < ti. A global isotopy as in the
statement is now obtained by applying the isotopy extension theorem. �

Proof of Proposition 2.16. — Let ψt be a Hamiltonian isotopy starting
at the identity and ending at ψ1 = ψ. We have Λ

(
ψtφψ

−1
t

)
= Λ(φ) for

all t thus if we consider a continuous family St : R2n × RN −→ R of
generating functions, each St generating the corresponding ψtφψ

−1
t , then

by Lemma 2.9 the set Λ
(
ψtφψ

−1
t

)
of critical values of St is independent of

t. Since a and b are regular values for S0 it follows that they are regular
values for all St, and so we can conclude using an analogue of Lemma 2.17
for pairs of sublevel sets. Note that we can do it even though R2n×RN is not
compact, because the functions St are (special) quadratic at infinity. �

Consider now a domain U of R2n. Given a, b ∈ R we denote by Ham c
a,b (U)

the set of compactly supported Hamiltonian symplectomorphisms of R2n

that are the time-1 map of a Hamiltonian function which is supported
in U and whose action spectrum does not contain a and b. Note that
Ham c

a,b (U) is directed with respect to the partial order 6, i.e. for any
φ, ψ in Ham c

a,b (U) there is a ϕ in Ham c
a,b (U) such that φ 6 ϕ and ψ 6 ϕ.

Recall that if φ1 6 φ2 we have an induced homomorphism
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λ 2
1 : G (a,b]

k (φ2) −→ G
(a,b]
k (φ1). Note that given φ1, φ2, φ3 in Ham c

a,b (U)
with φ1 6 φ2 6 φ3, it holds λ 2

1 ◦ λ 3
2 = λ 3

1 and λ i
i = id. This means

in particular that {G (a,b]
k (φi)}φi∈Ham c

a,b
(U) is an inversely directed fam-

ily of groups, so we can define the k-th symplectic homology group
G

(a,b]
k (U) of U with respect to the values a, b to be the inverse limit

of this family. Note that G (a,b]
k (U) can be calculated by any sequence

φ1 6 φ2 6 φ3 6 · · · such that the associated Hamiltonians get arbitrarily
large.

Theorem 2.18 (Symplectic Invariance). — For any domain U in R2n

and any Hamiltonian symplectomorphism ψ we have an induced isomor-
phism ψ∗ : G (a,b]

∗
(
ψ(U)
)
−→ G

(a,b]
∗ (U).

Proof. — Let φ1 6 φ2 6 φ3 6 · · · be an unbounded ordered sequence
supported in U . Then ψφ1ψ

−1 6 ψφ2ψ
−1 6 ψφ3ψ

−1 6 · · · is an un-
bounded ordered sequence supported in ψ(U). By Proposition 2.16 we have
isomorphisms ψ ∗i : G (a,b]

∗ (ψφiψ−1) −→ G
(a,b]
∗ (φi), commuting with the

λ j
i of the limit process. Thus we get an induced isomorphism between
G

(a,b]
∗ (ψ(U)) and G

(a,b]
∗ (U). �

Theorem 2.19 (Monotonicity). — Every inclusion of domains induces
a homomorphism of homology groups (reversing the order) with the fol-
lowing functorial properties:

(i) If U1 ⊂ U2 ⊂ U3 then the following diagram commutes

G
(a,b]
∗ (U3) //

&&NNNNNNNNNNN
G

(a,b]
∗ (U2)

��

G
(a,b]
∗ (U1).

(ii) If U1 ⊂ U2, then for any Hamiltonian symplectomorphism ψ the
following diagram commutes

G
(a,b]
∗ (U2) // G (a,b]

∗ (U1)

G
(a,b]
∗
(
ψ(U2)

)ψ∗

OO

// G (a,b]
∗
(
ψ(U1)

)
.

ψ∗

OO

Proof. — Suppose U1 ⊂ U2. Given an unbounded ordered sequence φ 2
1 6

φ 2
2 6 φ 2

3 6 · · · supported in U2, there exists an unbounded ordered se-
quence φ 1

1 6 φ 1
2 6 φ 1

3 6 · · · supported in U1 such that φ 1
i 6 φ 2

i . The
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homomorphisms G (a,b]
∗ (φ 2

i ) −→ G
(a,b]
∗ (φ 1

i ) induce a homomorphism of
the inverse limits G (a,b]

∗ (U1)→ G
(a,b]
∗ (U2). The functorial properties are

easy to check. �

Traynor [37] calculated the homology groups with Z2-coefficients of el-
lipsoids in R2n. We will need the following special case of her calculations.

Theorem 2.20. — Consider B(R) ⊂ R2n and let a be a positive real
number. Then for ∗ = 2nl we have

G
(a,∞]
∗

(
B(R)

)
=
{

Z2 if a
l < R 6 a

l−1
0 otherwise

where l is any positive integer. In particular for l = 1 we have

G
(a,∞]

2n
(
B(R)

)
=
{

Z2 if R > a

0 otherwise.
For all other values of ∗ the corresponding homology groups are zero.
Moreover, given R1, R2 with a

l < R2 < R1 6 a
l−1 , the homomorphism

G
(a,∞]
∗

(
B(R1)

)
−→ G

(a,∞]
∗

(
B(R2)

)
induced by the inclusion B(R2) ⊂

B(R1) is an isomorphism.

3. Contact Capacity and Homology for Domains in
R2n × S1

We refer to Geiges [20] for an introduction to Contact Topology, and
discuss here only some basic preliminaries.

A contact manifold is an odd dimensional manifold V 2n+1 endowed with a
hyperplanes field ξ which is maximally non-integrable, i.e. it is locally the
kernel of a 1-form η such that η ∧ (dη)n never vanishes. We will always as-
sume that the contact manifold is cooriented, i.e. that η is globally defined.
Standard examples of contact manifolds can be obtained by considering the
prequantization space of an exact symplectic manifold

(
M,ω = −dλ

)
, i.e.

the manifold M × R endowed with the contact structure ξ = ker (dz − λ)
where z is the coordinate on R. Special instances of this construction are
the standard contact euclidean space

(
R2n+1, ξ0 = ker (dz − ydx)

)
, which

is the prequantization of (R2n, ω0), and the 1-jet bundle J1B of a manifold
B, which is the prequantization of (T ∗B,ωcan).

A diffeomorphism φ of a contact manifold
(
V, ξ = ker(η)

)
is called a contac-

tomorphism if its differential preserves ξ and its coorientation. It is called
a strict contactomorphism if φ∗η = η. A time-dependent vector field Xt
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on V is called a contact vector field if its flow consists of contactomor-
phisms. Given a time-dependent function Ht on V there exists a unique
contact vector field Xt such that η(Xt) = Ht (see [20, Section 2.3]). The
function Ht is then called the contact Hamiltonian of the flow φt of Xt,
with respect to the contact form η. For instance notice that if ϕ is an exact
symplectomorphism of the exact symplectic manifold

(
M,ω = −dλ

)
, i.e.

a symplectomorphism of M satisfying ϕ∗λ − λ = dF for some function
F : M → R, then ϕ can be lifted to a strict contactomorphism ϕ̃ of the
prequantization M × R by defining ϕ̃(q, z) = (ϕ(q), z + F (q)). If ϕt is a
Hamiltonian isotopy of M with Hamiltonian function Ht : M → R, then
the contact isotopy ϕ̃t of M × R is generated by the contact Hamiltonian
H̃t : M × R→ R defined by H̃t(q, z) = Ht(q).

An immersion i : L →
(
V, ξ = ker(η)

)
is called isotropic if i∗η = 0

and Legendrian if moreover the dimension of L is maximal, i.e. half of
(dim(M) − 1). For example, if V is the prequantization of an exact sym-
plectic manifold

(
M,ω = −dλ

)
and i : L → M is an exact Lagrangian

immersion with i∗λ = df , then the lift i× f is a Legendrian immersion of
L into V = M × R. Note that in particular, up to addition of a constant
in the R-coordinate, this gives a 1-1 correspondence between Legendrian
submanifolds of V and exact Lagrangian submanifolds of M .

In the contact case, generating functions are defined for Legendrian sub-
manifolds of J1B. A Lagrangian submanifold of T ∗B that is Hamiltonian
isotopic to the 0-section is in particular exact, and we will see that it has
the same generating function as its lift to J1B. This basic fact is what is be-
hind the relation between the symplectic invariants defined in the previous
section and the contact invariants that we are going to define now.

3.1. Generating functions for Legendrian submanifolds of J1B

Consider a real function f defined on a smooth manifold B. The 1-
jet of f is the Legendrian immersion j1f : B → J1B defined by x 7→(
x, df(x), f(x)

)
. Note that j1f is the lift of the differential of f , seen as an

exact Lagrangian immersion B → T ∗B. More generally, given a transverse
variational family (E,S) over B denote by jS : ΣS → J1B the lift of the
exact Lagrangian immersion iS : ΣS −→ T ∗B defined in 2.1, i.e. jS(e) =(
p(e), v∗(e), S(e)

)
. Then S : E −→ R is called a generating function

for the Legendrian submanifold L̃S := jS (ΣS) of J1B. Note that critical
points of S correspond under jS with intersection points of L̃S with the
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0-wall of J1B (which is defined to be the product of the 0-section of T ∗B
with R), and that the corresponding critical value is the R-coordinate of the
intersection point with the 0-wall. Moreover, non-degenerate critical points
correspond to transverse intersections (see [6, Proposition 2.1]). Note also
that if two functions differ by an additive constant, then they generate
different Legendrian submanifolds of J1B (in fact different lifts of the same
Lagrangian submanifold of T ∗B).

The existence and uniqueness theorems for generating functions have been
generalized to the contact case by Chaperon, Chekanov and Théret.

Theorem 3.1 ([5], [6], [34]). — If B is closed, then any Legendrian
submanifold of J1B contact isotopic to the 0-section has a g.f.q.i., which
is unique up to fiber-preserving diffeomorphism and stabilization. If L ⊂
J1B has a g.f.q.i. and ψt is a contact isotopy of J1B, then there exists a
continuous family of g.f.q.i. St : E −→ R such that each St generates the
corresponding ψt(L).

As in the symplectic case, any g.f.q.i. is equivalent to a special one.
We will always assume generating functions to be special whenever this is
needed.

3.2. Generating functions for contactomorphisms of R2n+1

In order to apply the results of the previous section to contactomor-
phisms of R2n+1 we need to associate to a contactomorphism of R2n+1 a
Legendrian submanifold in some 1-jet bundle. Moreover, we should do this
in a way which is compatible with the construction given in the symplectic
case. By this we mean the following. Recall that any Hamiltonian symplec-
tomorphism ϕ of R2n can be lifted to a contactomorphism ϕ̃ of R2n+1. To
get a simple relation between the contact invariants that we will define in
this section and the symplectic ones defined before, we need the generating
function of ϕ̃ to be essentially the same as the generating function of ϕ.
We now explain how this can be done, following Bhupal [2]. Let φ be a
contactomorphism of R2n+1, with φ∗(dz − ydx) = eg(dz − ydx) for some
function g : R2n+1 −→ R. Consider the graph of φ, i.e. the embedding

grφ : R2n+1 −→ R2(2n+1)+1 , q 7→ (q, φ(q), g(q)).

If we endow R2(2n+1)+1 with the contact structure given by the kernel of
eθ (dz − ydx) − (dZ − Y dX), then grφ becomes a Legendrian embedding.
Define now Γφ : R2n+1 −→ J1R2n+1 to be the composition Γφ = τ ◦ grφ,
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where τ : R2(2n+1)+1 −→ J1R2n+1 is the contact embedding defined by

(x, y, z,X, Y, Z, θ) 7→
(
x, Y, z, Y − eθy, x−X, eθ − 1, xY −XY + Z − z

)
.

Thus

(3.1) Γφ(x, y, z) =
(
x, φ2, z, φ2− egy, x−φ1, e

g − 1, xφ2−φ1φ2 +φ3− z
)
.

To motivate this formula, consider the case of the lift ϕ̃ of a Hamilton-
ian symplectomorphism ϕ of R2n. Recall that ϕ̃ is defined by ϕ̃(x, y, z) =(
ϕ1(x, y), ϕ2(x, y), z + F (x, y)

)
where F is the compactly supported func-

tion satisfying ϕ∗λ0 − λ0 = dF . In 2.2 we associated to ϕ the Lagrangian
embedding Γϕ : R2n −→ T ∗R2n , (x, y) 7→

(
x, ϕ2, ϕ2−y, x−ϕ1

)
. This em-

bedding is exact with Γ ∗
ϕ λcan = d(xϕ2 − ϕ1ϕ2 + F ), thus it can be lifted

to the Legendrian embedding Γ̃ϕ : R2n −→ J1R2n , (x, y) 7→
(
x, ϕ2, ϕ2 −

y, x− ϕ1, xϕ2 − ϕ1ϕ2 + F
)
. Identify now J1R2n+1 with J1R2n × T ∗R via

(x, y, z,X, Y, Z, θ) 7→
(
(x, y,X, Y, θ) , (z, Z)

)
and consider the Legendrian

embedding Γ̃ϕ × 0-section, R2n+1 −→ J1R2n+1 : (x, y, z) 7→
(
x, ϕ2, z, ϕ2 −

y, x−ϕ1, 0, xϕ2−ϕ1ϕ2+F
)
. Note that, since ϕ is a strict contactomorphism,

Γ̃ϕ × 0-section coincides with the Legendrian embedding Γ
ϕ̃

: R2n+1 −→
J1R2n+1 given by (3.1). Besides shedding some light to the formula (3.1)
the above discussion proves the following lemma.

Lemma 3.2. — If ϕ is a compactly supported Hamiltonian symplecto-
morphism of R2n with generating function S : R2n × RN −→ R, then the
function S̃ : R2n+1 × RN −→ R defined by S̃(x, y, z; ξ) = S(x, y; ξ) is a
generating function for the lift ϕ̃.

Similarly to the symplectic case, for a contactomorphisms φ of R2n+1

we can write Γφ also as Γφ = Ψφ(0-section), with Ψφ denoting the local
contactomorphism of J1R2n+1 defined by the diagram

(3.2) R2(2n+1)+1
φ //

τ

��

R2(2n+1)+1

τ

��
J1R2n+1

Ψφ
// J1R2n+1

where φ is the contactomorphism (p, P, θ) 7→ (p, φ(P ), g(P )+θ). This shows
in particular that if φ is contact isotopic to the identity then Γφ is contact
isotopic to the 0-section. Suppose indeed that φ is the time-1 map of a
contact isotopy φt. Then we get a local contact isotopy Ψφt of J1R2n+1

connecting Ψφ to the identity. By the contact isotopy extension theorem
(see [20, Section 2.6]) we can extend this local isotopy to a global one, so
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we see that Γφ is contact isotopic to the 0-section. Notice that, as in the
symplectic case, diagram (3.2) behaves well with respect to composition: for
all contactomorphisms φ, φ1 and φ2 we have namely that Ψφ1◦Ψφ2 = Ψφ1φ2

(in particular Γφ1 ◦φ2 = Ψφ1 (Γφ2)) and Ψ −1
φ = Ψφ−1 .

If φ is compactly supported then the Legendrian embedding Γφ : R2n+1 −→
J1R2n+1 coincides with the 0-section outside a compact set, so it can be
seen as a Legendrian submanifold of J1S2n+1, which is contact isotopic
to the 0-section if φ is contact isotopic to the identity. By Theorem 3.1,
it follows that Γφ has a generating function, which is unique up to fiber-
preserving diffeomorphism and stabilization. The same is true if φ is a
contactomorphism of R2n+1 which is 1-periodic in the z-coordinate and
compactly supported in the (x, y)-plane, because then Γφ can be seen as a
Legendrian submanifold of J1(S2n×S1). We will denote by Cont c

0 (R2n+1)
the group of compactly supported contactomorphisms of R2n+1 that are
isotopic to the identity, and by Cont c

1-per(R2n+1) the group of contacto-
morphisms of R2n+1 that are 1-periodic in the z-coordinate, compactly
supported in the (x, y)-plane and isotopic to the identity through contacto-
morphisms of this form. Note that Cont c

1-per(R2n+1) can be identified with
the group Cont c

0 (R2n × S1) of compactly supported contactomorphisms
of R2n × S1 isotopic to the identity.

Recall that in the symplectic case the set of critical values of a generating
function coincides with the action spectrum of the generated Hamilton-
ian symplectomorphism. Before stating the contact analogue of this crucial
result we need to introduce the following terminology. Given a contactomor-
phism φ of R2n+1 with φ∗(dz−ydx) = eg(dz−ydx), we say that q = (x, y, z)
is a translated point for φ if φ1(q) = x, φ2(q) = y and g(q) = 0. In anal-
ogy to the symplectic case we will call φ3(q)− z the contact action of φ
at the translated point q.

Lemma 3.3. — Let φ be a contactomorphism of R2n+1 with generating
function S. Then a point q = (x, y, z) of R2n+1 is a translated point of φ if
and only if

(
q, 0, φ3(q)− z

)
∈ Γφ, and so if and only if i −1

S

(
q, 0, φ3(q)− z

)
is a critical point of S. In this case the corresponding critical value is the
contact action φ3(q)− z.

Proof. — If q is a translated point then
(
q, 0, φ3(q) − z

)
= Γφ(q) ∈ Γφ.

Conversely, it is easy to see that if
(
q, 0, φ3(q) − z

)
= Γφ(q0) for some

q0 ∈ R2n+1 then q0 = q and q is a translated point. Recall then from 3.1
that intersections of Γφ with the 0-wall correspond to critical points of the
generating function S, with critical value given by the last coordinate. �
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Consider for example the lift ϕ̃ of a Hamiltonian symplectomorphism ϕ of
R2n. Recall that ϕ̃ is defined by ϕ̃(x, y, z) =

(
ϕ1(x, y), ϕ2(x, y), z+F (x, y)

)
.

A point (x, y, z) of R2n+1 is a translated point for ϕ̃ if and only if (x, y) is
a fixed point of ϕ. In this case, using Lemma 2.1, we see that the contact
action is given by F (x, y) = Aϕ(x, y). Note that this gives an alternative
proof of the fact that the set of critical values of the generating function of
ϕ coincides with the action spectrum of ϕ.

Similarly to the symplectic case we can define a relation 6 on the groups
Cont c

0 (R2n+1) and Cont c
1-per(R2n+1) by setting φ1 6 φ2 if φ2φ

−1
1 is the

time-1 flow of some non-negative contact Hamiltonian. We will see in 3.5
that this relation is in fact a partial order. In the rest of this section we
will show that the analogue of Proposition 2.10 is still true in the contact
case. We will only consider compactly supported contactomorphisms, but
all arguments go through for elements of Cont c

1-per(R2n+1) as well.

Proposition 3.4. — Let φ0, φ1 be either in Cont c
0 (R2n+1) or in

Cont c
1-per(R2n+1). If φ0 6 φ1, then there are generating functions S0, S1 :

E −→ R for Γφ0 , Γφ1 respectively such that S0 6 S1.

Note that, by considering the lift of Hamiltonian symplectomorphisms of
R2n, this result contains Proposition 2.10 as a special case. To prove Propo-
sition 3.4 we will use the concept of Greek generating functions for contac-
tomorphisms of J1Rm, which was introduced by Chaperon [5].

Let ϕ be a contactomorphism of J1Rm, and assume it is C1-close to the
identity(4) . Then the Greek generating function of ϕ is a function Φ :
Rm×(Rm)∗×R→ R defined as follows. For (p, z) ∈ (Rm)∗×R, consider the
function Ap,z : Rm → R given by Ap,z(q) = z+pq. Note that j1Ap,z : Rm →
J1Rm, for (p, z) varying in (Rm)∗ × R, form a foliation of J1Rm. Since ϕ
is C1-close to the identity, ϕ (j1Ap,z) is still a section of J1Rm and thus it
is the 1-jet of a function Φp,z : Rm → R. The Greek generating function
Φ is then defined by Φ(Q, p, z) = Φp,z(Q). The Latin generating function
of ϕ is the function F : Rm × (Rm)∗ × R → R defined by F (Q, p, z) :=
Φ(Q, p, z)− (z + pQ). Note that F is identically 0 if (and only if) ϕ is the
identity. Moreover one can show that F is independent of z if and only if
ϕ is the lift of an Hamiltonian symplectomorphism of T ∗Rm, and that in

(4) Chaperon showed in fact how to construct a Greek generating function Φ : J1Rm ×
RN → R for any compactly supported contactomorphism of J1Rm contact isotopic to
the identity, in such a way that the corresponding Latin generating function is quadratic
at infinity. However we will only need the construction of Greek generating functions for
C1-small contactomorphisms.
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this case it coincides with the function constructed by Traynor in [37, 4.4]
(but we are not going to need this fact in the following).

For the proof of Proposition 3.4 we will need the following three lemmas.

Lemma 3.5. — Consider a Legendrian submanifold L of J1Rm with
generating function S : Rm × RN → R, and a compactly supported con-
tact isotopy ϕt of J1Rm which is C1-close to the identity and has Greek
generating function Φt : Rm × (Rm)∗ × R → R. Then the function
St : Rm ×

(
(Rm)∗ × Rm × RN

)
→ R defined by

St (Q; p, q, ξ) := Φt
(
Q, p, S(q; ξ)− pq

)
is a generating function for ϕt(L).

This lemma can be obtained as a special case of the composition formula (9)
in [5] (see also Section III of [34]).

Lemma 3.6 ([5], 2.2). — Let ϕt be a contact isotopy of J1Rm with
contact Hamiltonian Ht : J1Rm → R. Assume that ϕt is C1-close to the
identity and has Greek generating function Φt : Rm × (Rm)∗ × R → R.
Then given (q, p, z) in Rm × (Rm)∗ × R it holds

dΦt
dt


t=t0

(Qt0 , p, z) = Ht0

(
Qt0 , Pt0 , Yt0

)
where (Qt0 , Pt0 , Yt0) = ϕt (q, p, z + pq).

The next lemma is a special case for t = 0 of Lemma 3.5, and can also be
easily verified directly.

Lemma 3.7. — Consider a Legendrian submanifold L of J1Rm. If S :
Rm × RN → R is a generating function for L, then so is the function
S0 : Rm × (Rm)∗ × R→ R defined by S0 (Q; p, q, ξ) := S(q; ξ) + p(Q− q).

Proof of Proposition 3.4. — Let φ1φ
−1

0 be the time-1 map of a contact
isotopy ψt of R2n+1. We will first prove the result assuming that ψt is
C1-close to the identity. Consider the contact isotopy Ψψt of J1R2n+1: we
know that it is C1-close to the identity and has non-negative Hamiltonian,
because so does ψt by assumption. Thus by Lemma 3.6 if Ψt : J1R2n+1 →
R is a Greek generating function for Ψψt then d

dt
Ψt > 0. Take now a

generating function S : R2n+1 × RN → R for Γφ0 ⊂ J1R2n+1. Then, by
Lemma 3.5, Γψtφ0 = Ψψt(Γφ0) has generating function St (Q; p, q, ξ) :=

Ψt

(
Q, p, S(q; ξ)− pq

)
. Thus d

dt
St > 0, in particular S1 > S0. Note that S1

is a generating function for Γφ1 , and S0 is a generating function for Γφ0
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related to S as in Lemma 3.7. For the general case the result follows by
repeating this process and applying Lemma 3.7 at every step. This can be
done because it can be proved (see Lemma 1 in Section 2.4 of [5]) that there
exists a δ > 0 such that every ψtψ−1

s with |s− t| < δ is C1-small enough to
have a Greek generating function. �

3.3. Invariants for Legendrian submanifolds

Let B be a closed manifold, and denote by L the set of all Legendrian
submanifolds of J1B contact isotopic to the 0-section. As in the symplectic
case, for any L ∈ L and u 6= 0 in H∗(B) we can define a real number c(u, L)
by

c(u, L) := inf { a ∈ R | i ∗a (u) 6= 0 }
where ia is the inclusion (Ea, E−∞) −→ (E,E−∞) of sublevel sets of any
generating function for L.

Lemma 3.8. — Let µ ∈ Hn(B) denote the orientation class of B. The
map H∗(B)×L −→ R, (u, L) 7−→ c(u, L) satisfies the following properties:

(i) If L1, L2 have generating functions S1, S2 : E −→ R with |S1 −
S2|C0 6 ε, then for any u in H∗(B) it holds that

|c(u, L1)− c(u, L2)| 6 ε.

(ii) c
(
u ∪ v, L1 + L2

)
> c(u, L1) + c(v, L2)

where L1 + L2 is defined by

L1 + L2 := { (q, p, z) ∈ J1B | p = p1 + p2, z = z1 + z2,

(q, p1, z1) ∈ L1, (q, p2, z2) ∈ L2 }.

(iii) c(µ,L) = −c(1, L),
where L denotes the image of L under the map J1B → J1B,
(q, p, z) 7→ (q,−p,−z).

(iv) Assume L ∩ 0B 6= ∅. Then c(µ,L) = c(1, L) if and only if L is the
0-section. In this case we have

c(µ,L) = c(1, L) = 0.

Proof. — If S is a generating function for L ⊂ J1B then S also generates
π(L), where π denotes the projection J1B = T ∗B×R→ T ∗B. So c(u, L) =
c(u, π(L)) and thus all the results follow from the symplectic case. �

Property (v) of Lemma 2.11 does not hold in the contact case. However
Bhupal [2] showed that the following weaker statement is still true.
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Lemma 3.9. — For any contactomorphism Ψ of J1B contact isotopic
to the identity, u 6= 0 in H∗B and L ∈ L it holds

c
(
u,Ψ(L)

)
= 0 ⇔ c

(
u, L−Ψ−1(0B)

)
= 0.

Proof. — Let Ψt be a contact isotopy of J1B with Ψ = Ψt|t=1, and for
every t consider the Legendrian submanifold Λt = Ψ −1

t Ψ(L) − Ψ−1
t (0B).

We have Λ0 = Ψ(L) and Λ1 = L − Ψ−1(0B). Let ct = c(u,Λt). We will
prove that if ct0 = 0 for some t ∈ [0, 1] then ct = 0 for all t. Let St : E → R
be a 1-parameter family of generating functions for Λt. Consider a path xt
in E such that each xt is a critical point of St with critical value ct, for t
in some subinterval of [0, 1] containing t0. Recall that xt corresponds to an
intersection of Λt with the 0-wall of J1B. Since by hypothesis ct0 = 0, xt0
corresponds in fact to an intersection of Λt0 with the 0-section. We will first
assume that this intersection is transverse, so that xt0 is a non-degenerate
critical point of St0 . The idea of the proof now is to construct a path yt in E
such that yt0 = xt0 and each yt is a non-degenerate critical point of St with
critical value 0. It will then follow from Morse theory that the two paths xt
and yt must coincide, so that ct = 0 for all t. The path yt can be constructed
as follows. The key observation is that (non-degenerate) critical points of St
with critical value 0 are in 1-1 correspondence with (transverse) intersection
points of Λt with 0B . Moreover (transverse) intersections of Λt with 0B
correspond to (transverse) intersections of Ψ −1

t Ψ(L) with Ψ −1
t (0B) (by

projecting to 0B), and the last correspond to (transverse) intersections of
Ψ(L) with 0B (by applying Ψt), i.e. of Λ0 with 0B . Using this we see
that y′t := π

(
Ψ−1
t Ψt0

( ˜iS0(x0)
))

is a transverse intersection of Λt with 0B ,

where ˜iS0(x0) denotes the point in Ψ −1
t0 Ψ(L) ∩ Ψ −1

t0 (0B) that projects
to iS0(x0) ∈ Ψ −1

t0 Ψ(L) − Ψ −1
t0 (0B). Thus yt := i −1

St
(y′t) is the desired

1-parameter family of critical points of St. This finishes the proof under the
assumption that xt0 is a non-degenerate critical point of St0 . The general
case follows from an approximation argument (see [2]). �

In [2] Bhupal realized that this result is enough to extend Viterbo’s partial
order to the contact case. We will review his construction in 3.5. However,
Lemma 3.9 is too weak to give an interesting generalizations to the con-
tact case of the Viterbo capacity. We will now give a stronger version of
Lemma 3.9, which is only available in the 1-periodic case and will enable
us to define in 3.6 a contact capacity for domains in R2n × S1.

We will denote by d·e the integer part of a real number, i.e. the smallest
integer that is greater or equal to the given number.
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Lemma 3.10. — Let Ψ be a contactomorphism of J1B which is 1-
periodic in the R-coordinate of J1R2n+1 = T ∗R2n+1 × R and isotopic to
the identity through 1-periodic contactomorphisms. Then for every u 6= 0
in H∗(B) and L ∈ L it holds

dc
(
u,Ψ(L)

)
e = dc

(
u, L−Ψ−1(0B)

)
e.

Proof. — Let Ψt be a contact isotopy of J1B with Ψ = Ψt|t=1, and
consider ct = c(u,Λt) where Λt = Ψ −1

t Ψ(L) − Ψ −1
t (0B). We will show

that if k is an integer and ct0 = k for some t0, then ct = k for all t. Let
St : E → R be a family of generating functions for Λt. Then ct is a critical
value of St. As in the proof of Proposition 3.9 the result follows if we prove
that if xt0 is a (non-degenerate) critical point of St0 with critical value k
then there is a 1-parameter family of (non-degenerate) critical points yt of
St with yt0 = xt0 and all with critical value k. The idea to prove this is
that, since the Ψt are 1-periodic, the construction of the proof of Lemma 3.9
can be adapted to the case in which the critical value 0 is replaced by an
integer k. More precisely, it is easy to check that if xt0 is a critical point
of St0 with critical value k then y′t := π

(
Ψ−1
t Ψt0

( ˜iS0(x0)
))

+ (0, 0, k) is in
the intersection of Λt with 0B × {k}. Thus yt := i −1

St
(y′t) is the desired

1-parameter family of critical points of St. �

3.4. Invariants for contactomorphisms of R2n+1

Consider a contactomorphism φ either in Cont c
0 (R2n+1) or in

Cont c
1-per(R2n+1), and define

c(φ) := c(µ,Γφ)

where Γφ is regarded as a Legendrian submanifold either of J1S2n+1 or
J1(S2n × S1) and µ is the orientation class either of S2n+1 or S2n × S1.
Note that c(φ) is a critical value of any generating function for Γφ, so
by Lemma 3.3 we have that c(φ) = φ3(q) − z for some translated point
q = (x, y, z) of φ. Note also that c(id) = 0. Moreover c satisfies the following
properties.

Proposition 3.11. — For all φ, ψ in Cont c
0 (R2n+1) or Cont c

1-per(R2n+1)
it holds:

(i) c(φ) > 0.
(ii) If c(φ) = c(φ−1) = 0 then φ is the identity.
(iii) If c(φ) = c(ψ) = 0 then c(φψ) = 0.
(iv) If φ1 6 φ2 in the sense of 3.2 then c(φ1) 6 c(φ2).
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Proof. —
(i) As in the symplectic case we have c(1,Γφ) 6 0 for all φ. Thus by

Lemma 3.8(iii) it holds that c(φ) = c(µ,Γφ) = −c(1,Γφ) > 0.
(ii) Note first that, for all u, if c(u,Γφ−1) = 0 then also c(u,Γφ) = 0

(apply Lemma 3.9 to L = 0B and Ψ = Ψφ−1). Using this, the result
then follows from Lemma 3.8(iii)-(iv).

(iii) We have c(µ,Ψφ−1(Γφψ)) = c(µ,Γψ) = 0. Thus, by Lemma 3.9 and
Lemma 3.8(ii),

0 = c(µ,Γφψ −Ψφ(0B)) = c(µ,Γφψ − Γφ) > c(µ,Γφψ) + c(1,Γφ).

Since by Lemma 3.8(iii) it holds c(1,Γφ) = −c(µ,Γφ) = 0, we have
that c(φψ) = c(µ,Γφψ) 6 0, and thus c(φψ) = 0.

(iv) As in the symplectic case, using Proposition 3.4.
�

Using Lemma 3.10 we can prove a stronger version of Proposition 3.11(iii),
that only holds in the 1-periodic case.

Proposition 3.12. — For all φ, ψ in Cont c
1-per(R2n+1) it holds

dc(φψ)e 6 dc(φ)e+ dc(ψ)e.

Proof. — We have c(ψ)=c(µ,Γψ)=c
(
µ,Ψφ−1(Γφψ)

)
thus by Lemma 3.10

it holds dc(ψ)e = dc
(
µ,Γφψ −Ψφ(0B)

)
e. But, by Lemma 3.8(ii)-(iii)

c
(
µ,Γφψ −Ψφ(0B)

)
= c
(
µ ∪ 1,Γφψ − Γφ

)
> c
(
µ,Γφψ

)
+ c
(
1,Γφ
)

= c(φψ)− c
(
µ,Γφ
)

= c(φψ)− c(φ).

Thus
dc(ψ)e > dc(φψ)− c(φ)e > dc(φψ)e − dc(φ)e

as we wanted. �

In contrast with the symplectic case, c is not invariant by conjugation. Re-
call that in the symplectic case this property follows from the fact that,
for every Hamiltonian symplectomorphism ϕ of R2n, c(ϕ) belongs the ac-
tion spectrum of ϕ which is invariant by conjugation. In the contact case
the situation is very different since the set of values taken by the contact
action φ3(q) − z at translated points q = (x, y, z) of a contactomorphism
φ of R2n+1 is not invariant by conjugation. In fact, not even the property
of being a translated point is invariant by conjugation: if q is a translated
point for φ then in general ψt(q) is not a translated point for ψtφψ −1

t .
However, we are going to see that this is true if q is a translated point with
action 0, and in the 1-periodic case also if the action is any integer. As we
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will see this observation is the key to prove that, in the 1-periodic case, the
integer part of c is invariant by conjugation.

Recall that a point q of R2n+1 is a translated point for a contactomorphism
φ if and only if Γφ(q) is in the intersection of Γφ with the 0-wall. We will say
that q is a non-degenerate translated point if this intersection is transverse
and thus if the corresponding critical point of the generating function of φ is
non-degenerate. Note that this condition can also be expressed by requiring
that there is no tangent vector X 6= 0 at q such that (Γφ)∗(X) is tangent
to the 0-wall, or equivalently (see [2]) no tangent vector X 6= 0 at q such
that φ∗(X) = X and X(g) = 0.

Lemma 3.13 ([2]). — Let φ and ψ be contactomorphisms of R2n+1.
Then q ∈ R2n+1 is a translated point of φ with contact action 0 if and only
if ψ(q) is a translated point of ψφψ−1 with contact action 0. Moreover, q
is non-degenerate if and only if so is ψ(q).

Proof. — Note first that if φ∗(dz − ydx) = eg(dz − ydx) and ψ∗(dz −
ydx) = ef (dz − ydx) then (ψφψ−1)∗(dz − ydx) = eh(dz − ydx) with h =
f ◦φ◦ψ−1 +g◦ψ−1−f ◦ψ−1. Suppose that q is a translated point of φ with
contact action 0, i.e. φ(q) = q and g(q) = 0. Then ψφψ−1(ψ(q)

)
= ψ(q)

and h
(
ψ(q)
)

= f
(
φ(q)
)

+ g(q)− f(q) = 0 so that ψ(q) is a translated point
of ψφψ−1 with contact action 0. To prove the last statement we will show
that if q is a degenerate translated point then so is ψ(q). By the discussion
above, if q is a degenerate translated point for φ then there is a tangent
vector X 6= 0 at q such that φ∗(X) = X and X(g) = 0. But then(

ψφψ−1)
∗

(
ψ∗(X)

)
= ψ∗(X)

and
ψ∗(X)(h) = X(f ◦ φ+ g − f) = X(f ◦ φ) +X(g)−X(f)

= φ∗(X)(f)−X(f) = 0
thus ψ(q) is a degenerate translated point for ψφψ−1. �

We now give the 1-periodic version of the previous lemma.

Lemma 3.14. — Let φ and ψ be 1-periodic contactomorphisms of R2n+1,
and k an integer. Then q ∈ R2n+1 is a translated point of φ with contact
action k if and only if ψ(q) is a translated point of ψφψ−1 with contact
action k. Moreover, q is non-degenerate if and only if so is ψ(q).

Proof. — The same proof as in Lemma 3.13 goes through in this sit-
uation, due to the 1-periodicity of ψ and the fact that k is an integer.
Suppose indeed that q is a translated point of φ with contact action k,
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i.e. φ(q) = q + (0, 0, k) and g(q) = 0. Then ψφψ−1(ψ(q)
)

= ψ
(
φ(q)
)

=
ψ
(
q + (0, 0, k)

)
= ψ(q) + (0, 0, k) and

h
(
ψ(q)
)

= f
(
φ(q)
)

+ g(q)− f(q) = f
(
q + (0, 0, k)

)
+ g(q)− f(q) = 0

(note that f is invariant by integer translation in the z-coordinate since ψ
is 1-periodic), thus ψ(q) is a translated point of ψφψ−1 with contact action
k. The statement about the non-degeneracy can be seen as in the proof of
Lemma 3.13. �

The above lemma is the key to prove the following crucial result.

Lemma 3.15. — Consider a contactomorphism φ and a contact isotopy
ψt in Cont c

1-per(R2n+1) and let St : E → R be a 1-parameter family of
generating functions for the conjugation ψtφψ

−1
t . If k is an integer and ct

is a path of critical values of St with ct0 = k for some t0 ∈ R, then ct = k

for all t.

Proof. — Suppose that ct is a path of critical values of St with ct0 = k for
some t0. Let xt = (qt, ξt) ∈ R2n+1×RN be a 1-parameter family of critical
points of St, for t in some subinterval of [0, 1] containing t0. Following the
model of the proof of Lemma 3.9, the result follows if we construct a path
yt in E such that yt0 = (qt0 , ξt0) and every yt is a (non-degenerate) critical
point of St with critical value k (assuming that xt is non-degenerate).
We know that qt0 is a non-degenerate translated point for ψt0φψ

−1
t0 with

action ct0 = k. By Lemma 3.14 it follows that ψt
(
ψ −1
t0 (qt0)

)
is a path of

non-degenerate translated points for ψtφψ−1
t , all with action k. Thus yt :=

iS −1
t

(
ψt
(
ψ −1
t0 (qt0)

)
, 0, k
)

is the desired path of critical points of St. �

Lemma 3.15 immediately implies that in the 1-periodic case the integer
part of c is invariant by conjugation, as stated in the following proposition.
As we will see, this result will allow us to define in 3.6 an integral invariant
for domains in R2n × S1.

Proposition 3.16. — For any φ, ψ in Cont c
1-per(R2n+1) it holds

dc(φ)e = dc(ψφψ−1)e.

In the case of Contc (R2n+1) only the following weaker statement is true.

Proposition 3.17 ([2]). — For any φ, ψ in Cont c
0 (R2n+1) we have

that c(φ) = 0 if and only if c(ψφψ−1) = 0.

Proof. — Let ψ be the time-1 map of the contact isotopy ψt and consider
ct = c(ψtφψ−1

t ) . As in the proof of Lemma 3.15, Lemma 3.13 implies that
if ct0 = 0 then ct = 0 for all t. �
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We end this section explaining the relation between the invariant c in the
symplectic and contact case.

Proposition 3.18. — Let ϕ be a compactly supported Hamiltonian
symplectomorphism of R2n and ϕ̃ its lift to R2n+1 or to R2n × S1. Then
c(ϕ̃) = c(ϕ).

Proof. — The result follows from Lemma 3.2. The case of R2n+1 is im-
mediate, while the 1-periodic case can be seen as follows. Suppose that
ϕ̃ is the lift of ϕ to R2n × S1. By Lemma 3.2 we know that a generat-
ing function for ϕ̃ is given by S̃ : (S2n × S1) × RN → R, S̃(q, z; ξ) =
S(q; ξ) where S : S2n × RN → R is a generating function for ϕ. De-
note by Ẽa the sublevel set of S̃ with respect to a, and by ĩa the inclu-
sion (Ẽa, Ẽ−∞) ↪→ (Ẽ, Ẽ−∞). Then Ẽa = Ea × S1 and, after identifying
H∗(Ẽ, Ẽ−∞) with H∗(S2n × S1) = H∗(S2n)⊗H∗(S1) and H∗(Ẽa, Ẽ−∞)
with H∗(Ea, E−∞)⊗H∗(S1), the induced map

ĩa
∗

: H∗(S2n)⊗H∗(S1)→ H∗(Ea, E−∞)⊗H∗(S1)

is given by ĩa
∗

= i ∗a ⊗ id. In particular we have that ĩa
∗
(µ ⊗ µS1) =

i ∗a (µ)⊗µS1 where µ and µS1 denote respectively the orientation classes of
S2n and S1, thus ĩa

∗
(µ⊗ µS1) = 0 if and only if i ∗a (µ) = 0. Since µ⊗ µS1

is the orientation class of H∗(S2n × S1) we conclude that c(ϕ̃) = c(ϕ). �

3.5. The Bhupal partial order on Cont c0 (R2n+1) and
Cont c0 (R2n × S1)

Bhupal’s partial order 6B on Cont c
0 (R2n+1) and on Cont c

0 (R2n × S1)
is defined by

φ1 6B φ2 if c(φ1φ
−1

2 ) = 0.
Using the properties in Proposition 3.11 it is immediate to see that 6B is
indeed a partial order, that it is bi-invariant (i.e. if φ1 6B φ2 and ψ1 6B ψ2
then φ1ψ1 6B φ2ψ2), and that if φ1 6 φ2 in the sense of 3.2 then φ1 6B φ2.
In particular it follows that 6 is also a partial order. Note that in the
language of Eliashberg and Polterovich [17] this means that R2n+1 and
R2n × S1 are orderable contact manifolds.

3.6. Contact capacity of domains in R2n × S1

We will consider domains in R2n × S1 as domains in R2n+1 that are
invariant by the action of Z by translations in the z-coordinate. For an
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open and bounded domain V of R2n×S1 we define the contact capacity
of V as

c(V) := sup { dc(φ)e | φ ∈ Cont (V) }
where Cont (V) denotes the set of time-1 maps of 1-periodic contact Hamil-
tonian functions supported in V. By the following lemma, c(V) is a well-
defined integer number.

Lemma 3.19. — For every contactomorphism ψ in Cont c
1-per(R2n+1)

such that ψ(V) ∩ V = ∅ we have c(V) 6 γ(ψ), where γ(ψ) := dc(ψ)e +
dc(ψ−1)e.

Proof. — We will show that dc(ψφ)e = dc(ψ)e for all φ in Cont (V) and
ψ as in the statement of the lemma, and then conclude as in the proof of
Lemma 2.13. Let φ = φt|t=1, and consider the map t 7→ c(ψφt). Suppose
ct0 = k ∈ Z. Then there is a translated point q = (x, y, z) of ψφt0 such
that (ψφt0)3 − z = k. But then we can apply an argument similar to the
one in Lemma 2.13 to see that q is also an almost fixed point of ψφt for
all t, with (ψφt)3 − z = k. We can now conclude, as in Lemma 3.15, that
c(ψφt) = k for all t. It follows that dc(ψφt)e is independent of t, in particular
dc(ψφ)e = dc(ψ)e. �

As in the symplectic case, we can extend the definition to arbitrary domains
of R2n × S1.

Theorem 3.20. — c satisfies the following properties:
(i) (Contact Invariance) For any ψ in Cont c

0 (R2n × S1) we have
c(ψ(V)) = c(V).

(ii) (Monotonicity) If V1 ⊂ V2, then c(V1) 6 c(V2).
(iii) For any domain U in R2n we have c (U × S1) = dc(U)e.

Proof. — Contact invariance follows from Proposition 3.16, and mono-
tonicity is immediate from the definition. As for the last property, it can be
seen as follows. If ϕ is an Hamiltonian symplectomorphism of R2n generated
by a Hamiltonian H : R2n → R supported in U , then its lift ϕ̃ is gener-
ated by the contact Hamiltonian H̃ : R2n × S1 → R, H̃(x, y, z) = H(x, y)
which is supported in U × S1. By Proposition 3.18 we have c(ϕ̃) = c(ϕ),
so we see that c (U × S1) > dc(U)e. Equality holds because for every φ in
Cont (U × S1) there exists a ϕ in Ham (U) such that φ 6 ϕ̃. �

Note that the Non-Squeezing Theorem of Eliashberg, Kim and
Polterovich follows immediately from Theorem 3.20 and Example 2.15.
Indeed, consider R2 6 k < R1 for k ∈ Z and suppose that there is a
contactomorphism ψ in Cont c

0 (R2n × S1) such that ψ
(
B̂(R1)

)
⊂ B̂(R2).
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Then by monotonicity we have c
(
ψ
(
B̂(R1)

))
6 c
(
B̂(R2)

)
. But this is

impossible since c
(
ψ
(
B̂(R1)

))
= c
(
B̂(R1)

)
= dc

(
B(R1)

)
e > k and

c
(
B̂(R2)

)
= dc
(
B(R2)

)
e 6 k. Note that the same argument shows that if

R2 6 k < R1 it is in fact not even possible to squeeze B̂(R1) into Ĉ(R2).

3.7. Contact homology of domains in R2n × S1

In this last section we generalize to the contact case Traynor’s con-
struction of symplectic homology. Similarly to the case of the capacity,
we only obtain contact invariant homology groups G a,b

∗ (V) for domains V
in R2n × S1 and for integer parameters a and b.

Let φ be a contactomorphism in Cont c
1-per(R2n+1) with generating function

S : E = (S2n × S1) × RN −→ R. Given integer numbers a and b that are
not critical values of S and such that −∞ < a < b 6∞, we define the k-th
contact homology group of φ with respect to the values a and b by

G
(a,b]
k (φ) := Hk+ι (Eb, Ea)

where Ea, Eb denote the sublevel sets of S, and ι is the index of the
quadratic at infinity part of S. By the uniqueness part in Theorem 3.1
these groups are well-defined, i.e. do not depend on the choice of S.

The following proposition follows immediately from Lemma 3.2.

Proposition 3.21. — For any ϕ in Hamc(R2n) we have

G
(a,b]
∗ (ϕ̃) = G

(a,b]
∗ (ϕ)⊗H∗(S1).

The definition of G (a,b]
k (φ) would in fact make sense for all real numbers

a and b and also for contactomorphisms of Contc (R2n+1). However, the
facts that a and b are integers and φ is 1-periodic are crucial to prove the
following proposition.

Proposition 3.22. — For any φ and ψ in Cont c
1-per(R2n+1) we have an

induced isomorphism

ψ∗ : G (a,b]
∗ (ψφψ−1) −→ G

(a,b]
∗ (φ).

Proof. — Let ψ be the time-1 map of an isotopy ψt of 1-periodic con-
tactomorphisms of R2n+1, and let St : R2n+1 × RN −→ R be generating
functions for ψtφψ−1

t . In contrast to the symplectic case the critical values
of St are not fixed. However we will now see that, due to Lemma 3.15, we
can still find an isotopy conjugating the preimages S −1

t (a) and S −1
t (b).
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Recall that G (a,b]
∗ (φ) is only defined in the case that a and b are not crit-

ical values of the generating function S0 of φ. Since a and b are integers, it
follows from Lemma 3.15 that a and b are not critical values of St, for any t.
Thus we can apply an analogue of Lemma 2.17 for pairs of sublevel sets to
find an isotopy θt of R2n+1×RN such that θt

(
S −1

0 ((∞, a])
)

= S −1
t ((∞, a])

and θt
(
S −1

0 ((∞, b])
)

= S −1
t ((∞, b]). In particular for t = 1 this induces

the desired isomorphism ψ∗ : G (a,b]
∗ (ψφψ−1) −→ G

(a,b]
∗ (φ). �

Consider now a domain V in R2n × S1. Given integer numbers a and b,
we denote by Cont c

a,b (V) the set of φ in Cont c
1-per(R2n+1) with support

contained in V and whose generating function does not have a, b as critical
values. Note that Cont c

a,b (V) is directed with respect to the partial order
6 defined by the Hamiltonians, i.e. for any φ, ψ in Cont c

a,b (V) there is a
ϕ in Cont c

a,b (V) such that φ 6 ϕ and ψ 6 ϕ. Suppose now that φ1 6 φ2.
Then by Proposition 3.4 we know that there are generating functions S1,
S2 : E −→ R for Γφ1 , Γφ2 respectively such that S1 6 S2. Thus we have
inclusions of sublevel sets E a

2 ⊂ E a
1 and E b

2 ⊂ E b
1 , and so an induced

homomorphism λ 2
1 : G (a,b]

k (φ2) −→ G
(a,b]
k (φ1). Note that given φ1, φ2,

φ3 in Cont c
a,b (V) with φ1 6 φ2 6 φ3, it holds λ 2

1 ◦λ 3
2 = λ 3

1 and λ i
i = id.

This means in particular that {G (a,b]
k (φi)}φi∈Cont c

a,b
(V) is an inversely

directed family of groups, so we can define the k-th contact homology
group G

(a,b]
k (V) of V with respect to the values a an b to be the inverse

limit of this family. Note that G a,b
k (V) can be calculated by any sequence

φ1 6 φ2 6 φ3 6 · · · such that the associated contact Hamiltonians get
arbitrarily large.
The next two theorems are proved as in the symplectic case (using Propo-
sition 3.22 for the first).

Theorem 3.23 (Contact invariance). — For any domain V in R2n×S1

and any contactomorphism ψ of R2n × S1 isotopic to the identity we have
an induced isomorphism ψ∗ : G (a,b]

k

(
ψ(V)
)
−→ G

(a,b]
k (V).

Theorem 3.24 (Monotonicity). — Every inclusion of domains induces
a homomorphism of homology groups (reversing the order), with the fol-
lowing functorial properties:

(i) If V1 ⊂ V2 ⊂ V3 then the following diagram commutes

G
(a,b]
∗ (V3) //

&&NNNNNNNNNNN
G

(a,b]
∗ (V2)

��

G
(a,b]
∗ (V1).
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(ii) If V1 ⊂ V2, then for any contactomorphism ψ the following diagram
commutes

G
(a,b]
∗ (V2) // G (a,b]

∗ (V1)

G
(a,b]
∗
(
ψ(V2)

)ψ∗

OO

// G (a,b]
∗
(
ψ(V1)

)
.

ψ∗

OO

The relation between symplectic and contact homology is given by the
following theorem.

Theorem 3.25. — For any domain U of R2n we have G (a,b]
∗ (U×S1) =

G
(a,b]
∗ (U) ⊗ H∗(S1). Moreover, this correspondence is functorial in the

following sense. Let U1, U2 be domains in R2n with U1 ⊂ U2, and for
i = 1, 2 identify G (a,b]

∗ (Ui × S1) with G
(a,b]
∗ (Ui)⊗H∗(S1). Then the ho-

momorphism G
(a,b]
∗ (U2×S1)→ G

(a,b]
∗ (U1×S1) induced by the inclusion

U1 × S1 ↪→ U2 × S1 is given by µ⊗ id, where µ : G (a,b]
∗ (U2)→ G

(a,b]
∗ (U1)

is the homomorphism induced by U1 ↪→ U2.

Proof. — If ϕ1 6 ϕ2 6 ϕ3 6 · · · is an unbounded ordered sequence
supported in U then ϕ̃1 6 ϕ̃2 6 ϕ̃3 6 · · · in an unbounded ordered se-
quence supported in U × S1, thus the first statement follows from Propo-
sition 3.21. Suppose now that U1 ⊂ U2, and consider unbounded ordered
sequences ϕ 1

1 6 ϕ 1
2 6 ϕ 1

3 6 · · · and ϕ 2
1 6 ϕ 2

2 6 ϕ 2
3 6 · · · sup-

ported in U1 and U2 respectively and such that ϕ 1
i 6 ϕ 2

i . Then the ho-
momorphism G

(a,b]
∗ (U2)→ G

(a,b]
∗ (U1) is induced by the homomorphisms

G
(a,b]
∗ (ϕ 2

i )→ G
(a,b]
∗ (ϕ 1

i ). If we calculate the contact homology of U1×S1

and U2 × S1 using the sequences ϕ̃ 1
1 6 ϕ̃ 1

2 6 ϕ̃ 1
3 6 · · · and ϕ̃ 2

1 6 ϕ̃ 2
2 6

ϕ̃ 2
3 6 · · · then the homomorphism G

(a,b]
∗ (U2 × S1)→ G

(a,b]
∗ (U1 × S1) is

induced by the homomorphisms G (a,b]
∗ (ϕ̃ 2

i ) = G
(a,b]
∗ (ϕ 2

i ) ⊗ H∗(S1) →
G

(a,b]
∗ (ϕ̃ 1

i ) = G
(a,b]
∗ (ϕ 1

i ) ⊗ H∗(S1) which are obtained by tensoring
G

(a,b]
∗ (ϕ 2

i )→ G
(a,b]
∗ (ϕ 1

i ) with the identity on H∗(S1). �
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