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AN EXPLICIT FORMULA FOR THE HILBERT
SYMBOL OF A FORMAL GROUP

by Floric TAVARES RIBEIRO

Abstract. — A Brückner-Vostokov formula for the Hilbert symbol of a formal
group was established by Abrashkin under the assumption that roots of unity be-
long to the base field. The main motivation of this work is to remove this hypothesis.
It is obtained by combining methods of (ϕ,Γ)-modules and a cohomological inter-
pretation of Abrashkin’s technique. To do this, we build (ϕ,Γ)-modules adapted
to the false Tate curve extension and generalize some related tools like the Herr
complex with explicit formulas for the cup-product and the Kummer map.

Résumé. — Abrashkin a établi une formule de Brueckner-Vostokov pour le
symbole de Hilbert d’un groupe formel sous la condition d’appartenance de racines
de l’unité au corps de base. La motivation première de ce travail réside en la
suppression de cette hypothèse. On l’obtient en combinant des méthodes de (ϕ,Γ)-
modules et une interprétation cohomologique des techniques d’Abrashkin. Pour
cela, on construit des (ϕ,Γ)-modules adaptés à l’extension dite de la fausse courbe
de Tate et on généralise des outils tels que le complexe de Herr avec des formules
explicites pour le cup-produit et l’application de Kummer.

Introduction

0.1. (ϕ,Γ)-modules

Let p be a prime number and K a finite extension of Qp with residue
field k. Fix K an algebraic closure of K and note GK = Gal(K/K) the
absolute Galois group of K. Let us furthermore introduce K∞ = ∪nK(ζpn)
the cyclotomic extension of K and ΓK = Gal(K∞/K).

The context of this work is the theory of p-adic representations of the
Galois group of a local field, here GK . We are particularly interested in Zp-
adic representations of GK , i.e. Zp-modules of finite type endowed with a

Keywords: p-adic representations, (φ,Γ)-modules, formal groups, explicit reciprocity law.
Math. classification: 11F80, 11S25, 14L05, 11S31, 11S23, 14F30.



262 Floric TAVARES RIBEIRO

linear and continuous action of GK . In [13], Fontaine defined an equivalence
of categories between the category of Zp-adic representations of GK and
the one of étale (ϕ,ΓK)-modules over a ring AK . A (ϕ,ΓK)-module on AK

is a module of finite type over AK endowed with commuting semi-linear
actions of ϕ and ΓK .

Berger, in [5], showed how to recover the de Rham, semi-stable or crys-
talline module of Fontaine’s theory from the (ϕ,ΓK)-module associated
with the representation. For absolutely unramified crystalline representa-
tions, Wach furnished in [27] another powerful construction which permits
to recover the crystalline module in the associated (ϕ,ΓK)-module. This
construction was studied in details and made more precise by Berger ([7]).
(ϕ,ΓK)-modules are also intimately linked to Iwasawa theory as was shown
in works by Cherbonnier and Colmez ([9]), Benois ([4]) or Berger ([6]).

0.2. The false Tate curve extension

The construction of (ϕ,ΓK)-modules lies on the use of the cyclotomic
tower and shows its fundamental role in the study of p-adic representa-
tions. But another extension appears as particularly significant. Fix π a
uniformizer of K and πn a system of pn-th roots of π: π0 = π and for all
n ∈ N, πpn+1 = πn. It is the behavior in the extension Kπ = ∪nK(πn) which
makes the difference between a crystalline and a semi-stable representation.
It is then natural to introduce (ϕ,Γ)-modules where the cyclotomic exten-
sion K∞ is replaced by Kπ. However Kπ/K is not Galois and we only get
ϕ-modules (also studied by Fontaine in [13]). These ϕ-modules were used
by Breuil ([8]) or Kisin ([19]) to study p-adic representations and Abrashkin
made use of the field of norms of Kπ/K in [2] and [1].

In order to recover the whole action of GK , let us then consider the
Galois closure L of Kπ which is nothing more than the compositum of
Kπ and K∞, a metabelian extension of K, the false Tate curve extension.
What we lose here is the explicit description of the field of norms of this
extension. Note G∞ = Gal(L/K). Our first result can, for A′ = A or Ã,
and A′L = A′GL (where A and Ã are Fontaine rings defined in Paragraph
1.2), be expressed as:

Theorem 0.1. — The functor V 7→ DL(V ) = (V ⊗Zp A′)GL induces an
equivalence of categories

{Zp − adic representations of GK} → {étale (ϕ,G∞)−modules over A′L}
In fact we show that the (ϕ,G∞)-module DL(V ) is nothing but the scalar

extension of the usual (ϕ,ΓK)-module D(V ) from AK to A′L.

ANNALES DE L’INSTITUT FOURIER



AN EXPLICIT FORMULA FOR THE HILBERT SYMBOL 263

0.3. Galois cohomology

Recall that in the case of (ϕ,ΓK)-modules, Herr [16] showed that the ho-

mology of the complex 0 // D(V )
f1 // D(V )⊕D(V )

f2 // D(V ) // 0

with maps f1 =
(
ϕ− 1
γ − 1

)
and f2 = (γ − 1, 1 − ϕ) computes the Galois

cohomology of V .
We introduce now a complex in DL(V ) which computes the cohomol-

ogy of V . Since the group G∞ has dimension 2, the corresponding com-
plex loses some simplicity. Let τ be a topological generator of the sub-
group Gal(L/K∞) and γ a topological generator of Gal(L/Kπ) satisfying
γτγ−1 = τχ(γ), it can be described as:

Theorem 0.2. — Let V be a Zp-adic representation of GK and D its
(ϕ,G∞)-module. The homology of the complex

0 // D
α // D ⊕D ⊕D

β // D ⊕D ⊕D
η // D // 0

where

α =

ϕ− 1
γ − 1
τ − 1

 , β =

γ − 1 1− ϕ 0
τ − 1 0 1− ϕ

0 τχ(γ) − 1 δ − γ

 ,

η =
(
τχ(γ) − 1, δ − γ, ϕ− 1

)
with δ = (τχ(γ) − 1)(τ − 1)−1 ∈ Zp[[τ − 1]], identifies canonically and
functorially with the continuous Galois cohomology of V .

In fact, we get explicit isomorphisms. In particular for the first cohomol-
ogy group, let (x, y, z) ∈ kerβ, let b be a solution in V ⊗A′ of (ϕ−1)b = x,
then the above theorem associates with the class of the triple (x, y, z) the
class of the cocycle:

c : σ 7→ cσ = −(σ − 1)b+ γn
τm − 1
τ − 1

z + γn − 1
γ − 1

y

where m and n are defined by the relation σ|G∞ = γnτm.
Like Herr in [17], we also furnish explicit formulas for the cup-product.

0.4. Explicit formulas for the Hilbert symbol

The Hilbert symbol, for a field K containing the group µpn of pn-th roots
of unity is defined, for rK : K∗ → Gab

K the reciprocity map of class field

TOME 61 (2011), FASCICULE 1



264 Floric TAVARES RIBEIRO

theory, as the pairing

(a, b) ∈ K∗ ×K∗ 7→ (a, b)pn :=
(
pn
√
b
)rK(a)−1

∈ µpn .

Since 1858 and Kummer, many explicit formulas have been given for the
Hilbert symbol. Let us cite Coleman’s one ([10]): suppose that K = K0(ζpn)
where K0 is a finite unramified extension of Qp and ζpn a fixed primitive
pn-th root of unity. Note W the ring of integers of K0. If F ∈ 1 + (p,X) ⊂
W [[X]], then F (ζpn−1) is a principal unit. Extend the absolute Frobenius ϕ
from W to W [[X]] by putting ϕ(X) = (1+X)p−1. Denote for F ∈W [[X]]

L (F ) = 1
p

log F (X)p

ϕ(F (X))
∈W [[X]].

So for F ∈ 1 + (p,X), L (F ) =
(

1− ϕ
p

)
logF (X). Coleman’s formula is:

Theorem 0.3 (Coleman). — Let F,G ∈ 1 + (p,X) ⊂W [[X]], then

(F (ζpn − 1), G(ζpn − 1))pn = ζ
[F,G]n
pn , where

[F,G]n = TrK0/Qp ◦ ResX
1

ϕn(X)

(
L (G)d logF − 1

p
L (F )d logGϕ

)
.

Brückner-Vostokov’s formula is very similar to Coleman’s one: suppose
p 6= 2, let ζpn ∈ K, let W be the ring of integers of K0, the maximal unram-
ified extension of K/Qp. Extend the Frobenius ϕ from W to W [[Y ]][1/Y ]
via ϕ(Y ) = Y p. Fix moreover π a uniformizer of K.

Theorem 0.4 (Brückner-Vostokov). — Let F,G ∈ (W [[Y ]][1/Y ])×, and
s ∈W [[Y ]] such that s(π) = ζpn , then

(F (π), G(π))pn = ζ
[F,G]n
pn , where

[F,G]n = TrK0/Qp ◦ ResY
1

spn − 1

(
L (G)d logF − 1

p
L (F )d logGϕ

)
.

In the second part of this work, we show a generalization of this formula
to formal groups.

Remark that there are other types of formulas, in particular the one of
Sen ([20]), generalized to formal groups by Benois in [3]. We refer interested
readers to Vostokov’s [25] which provides a comprehensive background on
such formulas.

ANNALES DE L’INSTITUT FOURIER



AN EXPLICIT FORMULA FOR THE HILBERT SYMBOL 265

0.5. An explicit formula for formal groups

We suppose now p > 2.(1)

Let G be a connected smooth formal group of dimension d and finite
height h over W = W (k) the ring of Witt vectors with coefficients in a
finite field k(2) . Let K be a finite extension of K0 = FracW containing the
pM -torsion G[pM ] of G. Define the Hilbert symbol of G as

(x, β) ∈ K∗ ×G(mK) 7→ (x, β)G,M := rK(x)(β1)−G β1 ∈ G[pM ]

where rK : K∗ → Gab
K is the reciprocity map and β1 satisfies pM idGβ1 = β.

Fix a basis of logarithms of G under the form of a vectorial logarithm
lG ∈ K0[[X]]d where X = (X1, . . . , Xd) so that one has the formal identity
lG(X +G Y) = lG(X) + lG(Y). Complete lG with almost-logarithms mG ∈

K0[[X]]h−d in a basis
(
lG
mG

)
of the Dieudonné module of G. Fontaine

defined in [12] (see also [11] for an explicit description) a pairing between
the Dieudonné module and the Tate module of G, T (G) = lim

←
G[pn].

Honda showed in [18] the existence of a formal power series of the
form A =

∑
n>1 Fnϕ

n with Fn ∈ Md(W ) such that
(

1− Ap
)
◦ lG(X) ∈

Md(W [[X]]).
Let us introduce the approximated period matrix. Fix (o1, . . . , oh) a basis

of T (G) where oi = (oin)n>1 with pidGoin = oin−1. Then (o1
M , . . . , o

h
M ) is a

basis of G[pM ]. For all i, choose ôiM ∈ F (YW [[Y ]]) such that ôiM (π) = oiM .
We define

VY =
(
pM lG(ô1

M ) . . . pM lG(ôhM )
pMmG(ô1

M ) . . . pMmG(ôhM )

)
.

Now we can state the reciprocity law which generalizes Brückner-
Vostokov’s one and constitutes the goal of the second part of this work:

Theorem 0.5. — Let α ∈ (W [[Y ]][ 1
Y ])× and β ∈ G(YW [[Y ]]). Write

Tr for TrW/Zp . The coordinates of the Hilbert symbol (α(π), β(π))G,M in
the basis (o1

M , . . . , o
h
M ) are

(Tr ◦ ResY )V−1
Y

((
(1− Ap ) ◦ lG(β)

0

)
dlogα(Y )−L (α) d

dY

(
A
p ◦ lG(β)
mG(β)

))

(1) The computations of the Kummer maps require 2 to be invertible (cf. Proposition
1.14 and the proof of Lemma 2.15 below).
(2)W is then unramified over Zp. The ramified case seems much more complicated since
we don’t have the theory of Honda’s systems [18, Theorem 4].

TOME 61 (2011), FASCICULE 1



266 Floric TAVARES RIBEIRO

This formula was shown by Abrashkin in [2] under the assumption that
K contains pM -th roots of unity. Vostokov and Demchenko proved it in
[26] without any condition on K for formal groups of dimension 1.

0.6. The strategy

The main idea is due to Benois who carried it out in [4] to show Coleman’s
reciprocity law. The point is to see the Hilbert symbol as a cup-product
via the commutative diagram

K∗ ×K∗
(,)pn //

κ×κ
��

µpn

H1(K,µpn)×H1(K,µpn) ∪ // H2(K,µ⊗2
pn )

invK
OO

where κ is Kummer’s map. He first explicitly computed κ in terms of the
Herr complex associated with the representation Zp(1), then he used Herr’s
cup-product explicit formulas and he finally computed the image of the
couple he obtained via the isomorphism invK .

For a formal group, the situation is rather similar, we get the diagram

K∗ ×G(mK)
(,)G,M //

κ×κG ��

G[pM ]

H1(K,µpM )×H1(K,G[pM ]) ∪ // H2(K,µpM ⊗G[pM ])

invK
OO

with identifications H2(K,µpM ⊗G[pM ]) ' H2(K,Z/pMZ(1))⊗G[pM ] and
G[pM ] ' (Z/pMZ)h.

The formulas for the Kummer map and the cup-product are shown in
the section on (ϕ,Γ)-modules. The computation of the explicit formula for
the map κG : G(mK)→ H1(K,G[pM ]) constitutes the technical axis of this
work. Abrashkin made use of the Witt symbol, and to conclude via the field
of norms of extension Kπ/K, he used the compatibility of the reciprocity
map between the field of norms of an extension and the basis field. With
the help of the four terms complex above, we give a cohomological inter-
pretation of his method and carry his computations to the higher order to
calculate κG.

Let us finish with some technical remarks on the remainder assumption
that K contains the pM -torsion. Without this hypothesis, the Hilbert sym-
bol is not well defined, but we can’t even compute the Kummer map. Indeed

ANNALES DE L’INSTITUT FOURIER



AN EXPLICIT FORMULA FOR THE HILBERT SYMBOL 267

the formula involves an approximation of the period matrix, which is built
by approximating the basis of the Tate module by elements of G(K).

However, the assumption that K contains the pM -torsion implies, be-
cause of Weil’s pairing and in the case where the formal group comes from
an abelian variety, that K actually contains the pM -th roots of unity so
that we don’t get any improvement in this case.

0.7. Organization of the paper

This work splits in two parts. First, we introduce (ϕ,G∞)-modules and
give the associated Herr complex with explicit formulas between its homol-
ogy and the cohomology of the representation. Then we provide explicit
formulas for the cup-product and the Kummer map.

The second part is devoted to the proof of the Brückner-Vostokov formula
for formal groups. The main difficulty lies in the fact that the period matrix
does not live in the right place: we introduce an approximated period matrix
and show that it enjoys similar properties as the original matrix modulo
suitable rings. Then, we carry out the computation of the Hilbert symbol
in terms of the Herr complex.

Acknowledgment. — This work is based on my PhD thesis under
the supervision of Denis Benois. I wish to thank him for the precious ideas
he shared with me and the time and energy he offered me. I am also very
grateful to Laurent Berger. He carefully read an earlier version of this paper,
some of his remarks allowed me to improve it.

1. (ϕ,Γ)-modules and cohomology

1.1. Notation

Let p be a prime. Let us recall (cf. [21]) that if K is a perfect field of
characteristic p, the ring of Witt vectors W (K) over K is a strict p-ring
with residue field K. If R is a subring of K, we still denote by W (R) the
Witt vectors with coefficients in R. It is a subring of W (K).

Fix K a finite extension of Qp with residue field k. Denote W = W (k)
the ring of Witt vectors over k. Then K0 = W ⊗Zp Qp identifies with the
maximal unramified sub-extension of Qp in K. Fix K an algebraic closure
of K and denote GK = Gal(K/K) the absolute Galois group of K and

TOME 61 (2011), FASCICULE 1



268 Floric TAVARES RIBEIRO

Cp the p-adic completion of K. Endow Cp with the p-adic valuation vp
normalized by vp(p) = 1. Recall that the action of GK on K extends by
continuity to Cp.

Let us fix ε = (ζpn)n>0 a coherent system of pn-th roots of unity, i.e.
ζppn = ζpn−1 for all n, ζ1 = 1 and ζp 6= 1. Then K∞ :=

⋃
n∈N K(ζpn) is

the cyclotomic extension of K. Denote GK∞ = Gal(K/K∞) its absolute
Galois group and ΓK = Gal(K∞/K) the quotient.

Fix as well π a uniformizer of K and ρ = (πpn)n>0 a coherent system
of pn-th roots of π. Denote Kπ =

⋃
n>0 K(πpn). The extension Kπ/K

is not Galois, so put L =
⋃
n>0 K(ζpn , πpn) its Galois closure. It is the

compositum of Kπ and K∞. Denote GL = Gal(K/L) its absolute Galois
group and G∞ = Gal(L/K) the quotient. The cyclotomic character χ :
GK → Z∗p factorizes through G∞ (even through ΓK) ; it is also true for the
map ψ : GK → Zp defined by

∀g ∈ GK g(πpn) = πpnζ
ψ(g)
pn .

Moreover, the group G∞ identifies with the semi-direct product Zp o ΓK .
So if p is odd G∞ is topologically generated by two elements, γ and τ

satisfying γτγ−1 = τχ(γ). Let us fix γ and choose τ such that ψ(τ) = 1,
i.e. with τ(ρ) = ρε.

We adopt the convention that complexes have their first term in degree
−1 if this term is 0, and otherwise in degree 0.

Remark 1.1. — The group G∞ is a p-adic Lie group so that the exten-
sion L/K is arithmetically profinite (cf [28, 24]).

1.2. The field Ẽ, the ring Ã and some of their subrings.

We refer to [13] for results of this section. However we adopt Colmez’
notation. Rings R, W (FracR) or OÊnr become Ẽ+, Ã and A.

Define Ẽ as the inverse limit Ẽ = lim
←

Cp where transition maps are
exponentiation to the power p. An element of Ẽ is then a sequence x =
(x(n))n∈N satisfying (x(n+1))p = x(n) for all n ∈ N. Endow Ẽ with the
addition x + y = s where s(n) = lim

m→+∞
(x(n+m) + y(n+m))p

m

and the

product x.y = t where t(n) = x(n).y(n). These operations make Ẽ into a
field of characteristic p, algebraically closed and complete for the valuation
vE(x) := vp(x(0)). The ring of integers of Ẽ, denoted by Ẽ+, identifies
then with the inverse limit lim

←
OCp . It is a local ring whose maximal ideal,

denoted by mẼ, identifies with lim
←

mCp and with residue field isomorphic to

ANNALES DE L’INSTITUT FOURIER



AN EXPLICIT FORMULA FOR THE HILBERT SYMBOL 269

k. The field Ẽ, as well as its ring of integers Ẽ+, still has a natural action of
GK continuous with respect to the vE-adic topology. Define the Frobenius
ϕ : x 7→ xp which acts continuously, commutes with the action of GK and
stabilizes Ẽ+.

Let Ã = W (Ẽ) be the ring of Witt vectors on Ẽ and Ã+ = W (Ẽ+).
Any element of Ã (resp. Ã+) can be written uniquely as

∑
n∈N p

n[xn]
where (xn)n∈N is a sequence of elements in Ẽ (resp. in Ẽ+). The topology
on Ã comes from the product topology on W (Ẽ) = ẼN. This topology
is compatible with the ring structure on Ã. It is weaker than the p-adic
topology.

Let us remark that the sequences ε and ρ define elements in Ẽ+. Denote
X = [ε] − 1 and Y = [ρ]. These are elements of Ã+ and even of W (mẼ).
They are topologically nilpotent. We also have bases of neighborhoods of
0 in Ã:

{pnÃ +XmÃ+}(n,m)∈N2 and {pnÃ + Y mÃ+}(n,m)∈N2 .

Let us remark moreover that if P is a polynomial with coefficients in W [[X]]
then τ(P ) = P so that Y cannot be a root of P since otherwise τn(Y ) =
Y (1 + X)n would be another one, for any n ∈ Z. Thus, X and Y are
algebraically independent.

Let W [[X,Y ]] denote the subring of Ã+ consisting in sequences in X

and Y ; it is stable under the actions of GK and ϕ which are given by:

g(1 +X) = (1 +X)χ(g) and g(Y ) = Y (1 +X)ψ(g)

ϕ(X) = (1 +X)p − 1 and ϕ(Y ) = Y p.

Let AQp denote the p-adic completion of Zp[[X]][ 1
X ], it consists in the

set

AQp =

{∑
n∈Z

anX
n| ∀n ∈ Z, an ∈ Zp and an −→

n→−∞
0

}
.

It is a local p-adic, complete subring of Ã, with residue field Fp((ε − 1)).
Define A the p-adic completion of the maximal unramified extension of
AQp in Ã. Its residue field is then the separable closure of Fp((ε − 1)) in
Ẽ. Denote this field by E. It is a dense subfield of Ẽ.

1.3. p-adic periods.

We refer to Fontaine’s [14] for further details on these rings. The map

θ :
∑
n>0

pn[rn] ∈ Ã+ 7→
∑
n>0

pnr(0)
n ∈ OCp

TOME 61 (2011), FASCICULE 1



270 Floric TAVARES RIBEIRO

is onto, with kernel W 1(Ẽ+) a principal ideal of Ã+ generated, for instance,
by ω = X/ϕ−1(X). Define

B+
dR = lim

←−
n

(Ã+ ⊗Qp)/(W 1(Ẽ+)⊗Qp)n

the completion of Ã+⊗Qp with respect to the W 1(Ẽ+)-adic topology. The
action of GK on Ã+ extends by continuity to B+

dR. The sequence
log[ε] =

∑
n>1(−1)n+1Xn

n converges in B+
dR towards an element denoted

by t. Define BdR = B+
dR[1/t]. It is the fraction field of B+

dR. It is still en-
dowed with an action of GK for which BGKdR = K and with a compatible,
decreasing, exhaustive filtration FilkBdR = tkB+

dR.

Define Acrys to be the p-adic completion of the divided powers envelop
of Ã+ with respect to W 1(Ẽ+). It consists in the sequences

∑
n>0 an

ωn

n!
with an ∈ Ã+ and an → 0 p-adically. It is naturally a subring of BdR.
The sequence defining t converges in Acrys, set B+

crys = Acrys ⊗ Qp and
Bcrys = B+

crys[1/t] = Acrys[1/t].
These rings, endowed with their p-adic topology, come with a continuous

action of GK , the filtration induced by the one on BdR, and a Frobenius ϕ
extending by continuity the one on Ã+. Note that BGKcrys = K0.

We call a Zp-adic representation of GK any finitely generated Zp-module
with a linear, continuous action of GK and a p-adic representation of GK
any finite dimensional Qp-vector space with a linear, continuous action of
GK . A Zp-adic representation is then turned into a p-adic representation
by tensorizing by Qp.

Let V be a p-adic representation of GK . Let us introduce Dcrys(V ) :=
(V ⊗QpBcrys)GK . It is a K0-vector space of dimension lower or equal to the
dimension of V on Qp. The representation V is said to be crystalline when
these dimensions are equal. We say as well that a Zp-adic representation V ,
free over Zp, is crystalline when so is the p-adic representation V ⊗Zp Qp.

1.4. Fontaine’s theory

Let R be a topological ring with a linear, continuous action of some group
Γ and a continuous Frobenius ϕ commuting with the action of Γ. Call a
(ϕ,Γ)-module on R any finitely generated R-module M with commuting
semi-linear actions of Γ and ϕ. A (ϕ,Γ)-module on R is moreover said étale
if the image of ϕ generates M as an R-module: Rϕ(M) = M.

ANNALES DE L’INSTITUT FOURIER
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1.4.1. The classical case

Let us recall the theory of (ϕ,Γ)-modules introduced by Fontaine in [13].
Set AK = AGK∞ . Define functors

D : V 7→ D(V ) = (A⊗Zp V )GK∞

from the category of Zp-adic representations of GK to the one of (ϕ,ΓK)-
modules on AK and

V : M 7→ V (M) = (A⊗AK M)ϕ=1

from the category of étale (ϕ,ΓK)-modules on AK to the one of Zp-adic
representations ofGK . The following theorem was shown by Fontaine ([13]):

Theorem 1.2. — The following natural maps are isomorphisms

A⊗AK D(V ) → A⊗Zp V

A⊗Zp V (M) → A⊗AK M.

In particular, D and V are quasi-inverse equivalences of categories between
the category of Zp-adic representations of GK and the one of étale (ϕ,ΓK)-
modules on AK .

Example. Let us define the false Tate curve (or Tate’s representation) by
VTate = Zpe1 + Zpe2 with the action of GK given for all g ∈ GK by
g(e1) = χ(g)e1 and g(e2) = ψ(g)e1 +e2 where χ is the cyclotomic character
and ψ is defined in Paragraph 1.1. The name "false Tate curve" comes from
the similarity of this module with the Tate module of an elliptic curve with
split multiplicative reduction at p.

The (ϕ,ΓK)-module of the false Tate curve admits a basis (1 ⊗ e1, b ⊗
e1 + 1 ⊗ e2) where b ∈ AL satisfies (τ − 1)b = −1. However VTate is not
potentially crystalline, and then, because of the main result of [27], not of
finite height, which means b /∈ A+

L = AL

⋂
Ã+.

We want to build a (ϕ,Γ)-module which furnishes more information
(which will then be redundant but easier to use) on the behavior of the
associated representation in the extension Kπ/K or in its Galois closure
L/K. For this, we want Γ = G∞.

1.4.2. The metabelian case

Suppose A′ = A or A′ = Ã. Then, A′ is a complete p-adic valuation ring,
stable under both GK and ϕ. Its residue field E′ = E or Ẽ is separably
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closed. Set A′L = A′GL ; if E′L = E′GL then A′L is a complete p-adic
valuation ring with residue field E′L. For any Zp-adic representation V of
GK , define

D′L(V ) = (A′ ⊗Zp V )GL

and for any (ϕ,G∞)-module D, étale over A′L,

V ′L(D) = (A′ ⊗A′
L
D)ϕ=1.

Denote these functors by DL and VL when A′ = A and by D̃L and ṼL when
A′ = Ã. Remark that D′L(V ) and D(V ) ⊗AK A′L are (ϕ,G∞)-modules
over A′L, the latter being étale. The following theorem shows that they are
indeed isomorphic and assures that D′L is a good equivalent for D in the
metabelian case.

Theorem 1.3. —
(1) The natural map ι : D(V )⊗AK A′L → D′L(V ) is an isomorphism of

(ϕ,G∞)-modules étale over A′L.
(2) Functors D′L and V ′L are quasi-inverse equivalences of categories

between the category of Zp-adic representations of GK and the one
of étale (ϕ,G∞)-modules on A′L.

Proof. — Because of Theorem 1.2 and after extending scalars, the nat-
ural map D(V ) ⊗AK A′ → V ⊗Zp A′ is an isomorphism. Taking Galois
invariants, we get an isomorphism

D(V )⊗AK A′L = (D(V )⊗AK A′)GL ∼−→(V ⊗Zp A′)GL = D′L(V ).

The functor D′L is then the composite of D with the scalar extension
⊗AKA′L. Theorem 1.2 then shows that it is fully faithful. Fontaine’s com-
putation (cf. [13, Proposition 1.2.6.]) applies and shows that D′L is essen-
tially surjective on the category of étale (ϕ,G∞)-modules over A′L. The
fact that V ′L is a quasi-inverse of D′L still follows from Theorem 1.2. �

Corollary 1.4. — The scalar-extension functor D 7→ D ⊗AK A′L in-
duces an equivalence

{étale(ϕ,ΓK)−modules over AK} → {étale(ϕ,G∞)−modules over A′L}

Example. The (ϕ,G∞)-module of Tate’s representation admits a trivial
basis (1⊗ e1, 1⊗ e2).
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1.5. Galois Cohomology
1.5.1. Statement of the theorem

We suppose from now on p odd.
Recall the classical case. Let D(V ) be the (ϕ, ΓK)-module on AK asso-

ciated with a representation V . Fix γ a topological generator of ΓK . Herr
introduced in [16] the complex

0 // D(V )
f1 // D(V )⊕D(V )

f2 // D(V ) // 0

with maps f1 =
(
ϕ− 1
γ − 1

)
and f2 = (γ − 1, 1 − ϕ). He showed that

the homology of this complex canonically and functorially identifies with
the Galois cohomology of the representation V . This identification was
explicitly given in [9] and [4] for the first cohomology group by associating
with the class of a pair (x, y) of elements in D(V ) satisfying (γ − 1)x =
(ϕ− 1)y the class of the cocycle

σ 7→ −(σ − 1)b+ γn − 1
γ − 1

y

where b ∈ V ⊗Zp A is a solution of (ϕ − 1)b = x and σ|ΓK = γn for some
n ∈ Zp.

There still exists such a complex in the metabelian case. Since G∞ has
dimension 2, it will be a bit longer. Let M be a given étale (ϕ,G∞)-module
over A′L. Let us associate with M the four terms complex Cϕ,γ,τ (M):

0 // M
α // M ⊕M ⊕M

β // M ⊕M ⊕M
η // M // 0

where

α =

ϕ− 1
γ − 1
τ − 1

 , β =

γ − 1 1− ϕ 0
τ − 1 0 1− ϕ

0 τχ(γ) − 1 δ − γ

 ,

η = (τχ(γ) − 1, δ − γ, ϕ− 1)
with δ = (τχ(γ) − 1)(τ − 1)−1 ∈ Zp[[τ − 1]] defined as follows: set(

u

n

)
= u.(u− 1)...(u− n+ 1)

n!
∈ Zp for all u ∈ Zp and all n ∈ N.

Then τχ(γ) =
∑
n>0

(
χ(γ)
n

)
(τ−1)n since τpn converges to 1 in G∞, and thus

τ − 1 is topologically nilpotent in Zp[[G∞]]. So

δ = τχ(γ) − 1
τ − 1

=
∑
n>1

(
χ(γ)
n

)
(τ − 1)n−1.
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The purpose of this paragraph is to show

Theorem 1.5. — Let V be a Zp-adic representation of GK .
i) The homology of the complex Cϕ,γ,τ (DL(V )) canonically and func-

torially identifies with the continuous Galois cohomology of V .
ii) Explicitly, let (x, y, z) ∈ Z1(Cϕ,γ,τ (DL(V ))), let b be a solution in

V ⊗A′ of (ϕ−1)b = x, then the identification above associates with
the class of the triple (x, y, z) the class of the cocycle:

c : σ 7→ cσ = −(σ − 1)b+ γn
τm − 1
τ − 1

z + γn − 1
γ − 1

y, if σ|G∞ = γnτm.

1.5.2. Proof of Theorem 1.5 i)

The functor F • which associates with a Zp-adic representation V the ho-
mology of the complex Cϕ,γ,τ (DL(V )) is a cohomological functor coinciding
in degree 0 with the continuous Galois cohomology of V :

H0(Cϕ,γ,τ (DL(V )) = DL(V )ϕ=1,γ=1,τ=1 = V GK .

The proof consists then in showing that it is effaceable. In order to do that,
we would like to work with a category with sufficiently many injectives
and to see V as a submodule of an explicit injective, its induced module,
which is known to be cohomologically trivial. But the category of Zp-adic
representations of GK doesn’t admit induced modules. We will then work
modulo pr for a fixed r, and even in the category of direct limits of pr-
torsion representations and deduce the result by passing to the limit. We
have to show that the homology of the complex associated with an induced
module concentrates in degree 0, which shows a fortiori the effaceability of
F •. We will yet write this explicitly, which will let us get the second part of
the theorem, and, then, an explicit description of the cup-product in terms
of the complex.

Let MGK ,pr−tor be the category of discrete pr-torsion GK-modules, it is
also the category of direct limits of finite pr-torsion GK-modules or also
the one of discrete Z/prZ[[GK ]]-modules. Let us remark that the functor
DL extends to an equivalence of categories from this category to the one
of direct limits of pr-torsion étale (ϕ,G∞)-modules over A′L. Note finally
that this category is stable under passing to the induced module:

Lemma 1.6. — Let V be an object of MGK ,pr−tor, define the induced
module associated with V by IndGK (V ) := Fcont(GK , V ) the set of all con-
tinuous maps from GK to V . Endow IndGK (V ) with the discrete topology
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and the action of GK :
GK × IndGK (V ) → IndGK (V )

g.η = [x 7→ η(x.g)].

Then IndGK (V ) is an object of MGK ,pr−tor and V canonically injects in
IndGK (V ).

Proof. — The first part is well-known. See [23] for details. The injection
is given by sending v ∈ V on ηv ∈ IndGK (V ) such that ∀g ∈ GK , ηv(g) =
g(v). �

Let F i denote the functor Hi(Cϕ,γ,τ (DL(−))). The snake lemma gives
for any short exact sequence 0→ V → V ′′ → V ′ → 0 in MGK ,pr−tor a long
exact sequence

0→ F 0(V )→ F 0(V ′′)→ F 0(V ′)→ F 1(V )→ F 1(V ′′)→ · · ·

which shows that F • is a cohomological functor. Let us show that it coin-
cides with the long exact cohomology sequence when V ′′ = IndGK (V ). We
use the following

Proposition 1.7. — Let U = IndGK (V ) be an induced module in the
category MGK ,pr−tor, then F i(U) = Hi(K,U) = 0 for all i > 0.

Point i) of the theorem follows from this result: the commutative diagram

0 // F 0(V ) // F 0(IndGK (V )) // F 0(V ′) // F 1(V ) // 0

0 // H0(K,V ) // H0(K, IndGK (V )) // H0(K,V ′) // H1(K,V ) // 0

shows that H1(K,V ) ' F 1(V ). And in higher dimension the vanishing of
F i(IndGK (V )) and Hi(K, IndGK (V )) proves both that F k(V ′) = F k+1(V )
and Hk(K,V ′) = Hk+1(K,V ). Thus, by induction, F i(V ) = Hi(K,V )
holds for all i ∈ N and for any module V in MGK ,pr−tor.

Proof of the proposition. — The Galois cohomology part is classical (cf.
[21, VII, Proposition 1], or [22, I.2.5]). For the second part, let us begin
with a lemma.

Lemma 1.8. — The map ϕ− 1 : A′ → A′ admits a continuous section.

Proof of the lemma. — First, remark that ϕ is topologically nilpotent
on mẼ, so that ϕ − 1 is there invertible with inverse ψ = −

∑
n>0 ϕ

n. Let
us deduce that there exists a continuous section to ϕ− 1 on Ẽ: write

Ẽ =
⋃
i∈I

i+ mẼ
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where I is a set of representatives of Ẽ/mẼ. Choose for any i ∈ I a yi ∈ Ẽ
such that (ϕ− 1)yi = i. Then s : Ẽ→ Ẽ defined by

s(i+ u) = yi + ψ(u), i ∈ I, u ∈ mẼ

is a continuous section of ϕ− 1.
Now we have to lift this section mod p to a section on Ã. We will do it

by successive approximations mod pn. First consider s1 : Ã → Ã defined
by s1(x) = [s(x)]. Suppose now that we have built such a continuous map
sn : Ã → Ã satisfying for any x ∈ Ã, (ϕ − 1) ◦ sn(x) ≡ x mod pn. Then
there is a continuous fn : Ã→ Ã such that

∀x ∈ Ã, (ϕ− 1) ◦ sn(x) ≡ x+ pnfn(x) mod pn+1.

Then sn+1 can be defined as sn+1 = sn + pns1 ◦ fn so that the series (sn)
converges to the desired section s.

Finally, the restriction of s to A is obviously still a continuous section of
ϕ− 1. �

Lemma 1.9. — For any V in MGK ,pr−tor and α ∈ Z∗p, there are short
exact sequences:

0 // IndG∞(V ) // DL(IndGK (V ))
ϕ−1 // DL(IndGK (V )) // 0

0 // IndΓK (V ) // IndG∞(V ) τα−1 // IndG∞(V ) // 0

0 // V GK // IndΓK (V )
γ−1 // IndΓK (V ) // 0.

Proof of the lemma. — Tensorize with IndGK (V ) the short exact se-

quence 0 // Zp // A′
ϕ−1// A′ // 0 . The existence of a continuous sec-

tion of ϕ−1 permits, taking Galois invariants, to get a long exact sequence
beginning with

0 // IndGK (V )GL // D
ϕ−1 // D // H1(L, IndGK (V ))

where D = DL(IndGK (V )). The kernel is IndGK (V )GL = IndG∞(V ). It re-
mains to show the vanishing of H1(GL, IndGK (V )). But it is the direct limit
limH1(GM , IndGK (V )) taken over the set of all finite Galois sub-extensions
M of L/K (cf.[22, Chapitre I, Proposition 8]). Indeed, the sub-Galois
groups GM of GK form, for inclusion, a projective system with limit⋂
GM = GL and this system is compatible with the inductive system

formed by the GM -modules by restriction IndGK (V ) whose limit is the
GL-module by restriction IndGK (V ).
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To prove the lemma, it suffices then to show for any finite Galois exten-
sion M/K included in L the vanishing of H1(GM , IndGK (V )). But, GM be-
ing open in GK , we have the finite decomposition GK =

⋃
g∈Gal(M/K) gGM

from which we deduce that, as a GM -module, IndGK (V ) admits a decom-
position

IndGK (V ) =
⊕

g∈Gal(M/K)

Fcont(gGM , V ) '
⊕

Gal(M/K)

IndGM (V ).

Thus H1(GM , IndGK (V )) '
⊕

Gal(M/K) H
1(GM , IndGM (V )) and the sum-

mands of the right-hand side are zero because of the first part of the propo-
sition. On the other hand, τα topologically generates Gal(L/K∞), thus the
complex IndG∞(V ) τ

α−1−→ IndG∞(V ) computes H•(Gal(L/K∞), IndG∞(V )).
We get the kernel IndG∞(V )Gal(L/K∞) ' IndΓK (V ). And the vanishing of
H1(Gal(L/K∞), IndG∞(V )) is shown as the one ofH1(L, IndGK (V )) above.

Finally, the complex IndΓK (V ) γ−1−→ IndΓK (V ) computes the cohomology
H•(ΓK , IndΓK (V )). The surjectivity of γ− 1 still comes from the nullity of
H1(ΓK , IndΓK (V )), proved as before. �

The surjectivity of (ϕ− 1) on DL(U) proves that F 3(U) = 0 and gives:

Ker η = {(x, y, z);x, y ∈ DL(U) , z ∈ (1−ϕ)−1((τχ(γ)−1)(x)+(δ−γ)(y))}.

Let x, y ∈ DL(U) and fix x′, y′ ∈ DL(U) such that (1−ϕ)(x′) = x and (1−
ϕ)(y′) = y ; proving that F 2(U) = 0 consists then in proving

∀u ∈ IndG∞(V ), (x, y, (τχ(γ) − 1)(x′) + (δ − γ)(y′) + u⊗ 1) ∈ Im β.

But (τχ(γ) − 1) is surjective on IndG∞(V ), thus it suffices to consider
β(0, x′ + u′, y′) with u′ chosen so that (τχ(γ) − 1)(u′) = u.

Let (u, v, w) ∈ Ker(β), i.e. satisfying:
(γ − 1)u = (ϕ− 1)v
(τ − 1)u = (ϕ− 1)w
(τχ(γ) − 1)v = (γ − δ)w

Fix x0 ∈ DL(U) such that (ϕ− 1)x0 = u. The first two relations show that
v0 := v − (γ − 1)x0 and w0 := w− (τ − 1)x0 lie in the kernel of ϕ− 1 thus
in IndG∞(V ), and satisfy furthermore (τχ(γ) − 1)v0 = (γ − δ)w0. Choose
now η ∈ IndG∞(V ) such that (τ − 1)η = w0. Then

(τχ(γ) − 1)(γ − 1)η = (γ − δ)(τ − 1)η = (τχ(γ) − 1)v0

so v0−(γ−1)η ∈ IndΓK (V ) and ∃ε ∈ IndΓK (V ) with (γ−1)ε = v0−(γ−1)η
thus (γ−1)(η+ε) = v0 and (τ−1)(η+ε) = w0. Define then x := x0 +η+ε,
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we have:
(ϕ− 1)x = (ϕ− 1)x0 + (ϕ− 1)(η + ε) = (ϕ− 1)x0 = u

(γ − 1)x = (γ − 1)x0 + (γ − 1)(η + ε) = v − v0 + v0 = v

(τ − 1)x = (τ − 1)x0 + (τ − 1)(η + ε) = w − w0 + w0 = w

so that α(x) = (u, v, w) which proves the proposition. �

1.5.3. Explicit Formulas

Proof of Theorem 1.5 ii). In order to make the isomorphism explicit,
it suffices to do a diagram chasing following the snake lemma: let (x, y, z) ∈
Z1(Cϕ,γ,τ (DL(V ))), through the injection DL(V ) ↪→ DL(IndGK (V )), we
can see (x, y, z) as an element of Z1(Cϕ,γ,τ (DL(IndGK (V )))). The vanishing
of H1(Cϕ,γ,τ (DL(IndGK (V )))) implies the existence of an element b′ ∈
DL(IndGK (V )) with α(b′) = (x, y, z). Consider b′ ∈ DL(IndGK (V )/V ) the
reduction of b′ modulo DL(V ),

b′ ∈ H0(Cϕ,γ,τ (DL(IndGK (V )/V ))) = (IndGK (V )/V )GK .

Thus, if b̃ ∈ IndGK (V ) lifts b′, the image of (x, y, z) in H1(K,V ) is the class
of the cocycle c : σ 7→ cσ = (σ − 1)b̃. But we can choose b̃ = b′ − b since
(ϕ− 1)(b′ − b) = x− x = 0 so that b′ − b ∈ IndGK (V ) and then b′ − b lifts
b′. So if σ|G∞ = γnτm, write

cσ = (σ − 1)(b′ − b) = −(σ − 1)(b) + (γnτm − 1)b′

= −(σ − 1)b+ γn
τm − 1
τ − 1

z + γn − 1
γ − 1

y.

Let us finally show how to pass to the limit in order to get the result
for a representation which is not necessarily torsion. Let V be a Zp-adic
representation of GK . For all r > 1, Vr = V ⊗ Z/prZ is a pr-torsion
representation such that V = lim← Vr. Then we know that the continuous
cohomology of V can be expressed as the limit:

∀i > 0, Hi(K,V ) = lim
←
Hi(K,Vr) = lim

←
F i(Vr).

It suffices to show that for all i > 0, F i(V ) = lim← F i(Vr). For short, let
Hi
r (resp. Bir, Zir) denote Hi(Cϕ,γ,τ (DL(Vr))) (resp. Bi(Cϕ,γ,τ (DL(Vr))),

Zi(Cϕ,γ,τ (DL(Vr)))). The maps in the Herr complex are Zp-linear so that
in the category of Zp-modules there is an exact sequence 0→ Bir → Zir →
Hi
r → 0 from which is obtained the exact sequence

0→ lim
←
Bir → lim

←
Zir → lim

←
Hi
r → lim

←
1Bir
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where lim
←

1 is the first derived functor of the functor lim
←

. But for all r,

Bir ' Bi(Cϕ,γ,τ (DL(V )))⊗ Z/prZ

so that the transition maps in the projective system (Bir) are surjective,
and then this system satisfies Mittag-Leffler conditions. Thus lim←1Bir = 0
shows that the homology of the inverse limit is equal to the inverse limit
of the homology, as desired.

The explicit formula for H2.

Proposition 1.10. — The identification between the homology of the
complex Cϕ,γ,τ (DL(V )) and the Galois cohomology of V associates with
(a, b, c) ∈ Z2(Cϕ,γ,τ (DL(V ))) the class of the 2-cocycle:

(g, h) 7→ sg − sgh + gsh + γn1
τm1 − 1
τ − 1

(δ−1γ)n2 − 1
δ−1γ − 1

δ−1c

where g|G∞ = γn1τm1 , h|G∞ = γn2τm2 and s : GK → A′ ⊗ V is if
σ|G∞ = γnτm, such that sσ = φ

(
γn−1
γ−1 a+ γn τ

m−1
τ−1 b

)
where φ is a con-

tinuous section of ϕ− 1.

Proof. — The proof is, mutatis mutandis, the same as above. Let α =
(a, b, c) ∈ Z2(Cϕ,γ,τ (DL(V ))). Because of the injection V ↪→ IndGK (V ), we
can consider α ∈ Z2(Cϕ,γ,τ (DL(IndGK (V )))).

The vanishing of H2(Cϕ,γ,τ (DL(IndGK (V )))) shows that α is a cobound-
ary, i.e., there is β = (ηx, ηy, ηz) ∈ DL(IndGK (V ))3 such that


a = (γ − 1)ηx − (ϕ− 1)ηy
b = (τ − 1)ηx − (ϕ− 1)ηz
c = (τχ(γ) − 1)ηx − (γ − δ)ηy

It corresponds to the class of the reduction β of β in DL(IndGK (V )/V )3

an element of H1(K, IndGK (V )/V ). Its image in H2(K,V ) is the element
corresponding to α. Let us compute it.

Let ηb ∈ A ⊗ IndGK (V ) be such that (ϕ − 1)ηb = ηx, then for σ|G∞ =
γnτm,

cσ = −(σ − 1)ηb + γn
τm − 1
τ − 1

ηz + γn − 1
γ − 1

ηy

TOME 61 (2011), FASCICULE 1



280 Floric TAVARES RIBEIRO

is a cocycle with values in IndGK (V ) + A′ ⊗ V which reduction modulo
A′ ⊗ V is a cocycle corresponding to β. Let us fix σ and calculate

(ϕ− 1)rσ = −(σ − 1)(ϕ− 1)ηb + γn
τm − 1
τ − 1

(ϕ− 1)ηz + γn − 1
γ − 1

(ϕ− 1)ηy

= −(γnτm − 1)ηx + γn
τm − 1
τ − 1

((τ − 1)ηx − b) +

+γn − 1
γ − 1

((γ − 1)ηx − a)

= −γ
n − 1
γ − 1

a− γn τ
m − 1
τ − 1

b =: −s̃σ

Let us choose now a section φ of ϕ−1 and define a map s : GK → A⊗V via
s = φ ◦ s̃. Then, (ϕ− 1)s = s̃. The choice is unique modulo Fcont(GK , V ).
Therefore, r + s : GK → IndGK (V ) is a lift of a cocycle corresponding to
β. Its image through the coboundary operator takes values in V , it is the
desired 2-cocycle. It is written as

d(r + s)(g, h) = rg + sg − rgh − sgh + grh + gsh

Let us compute the r part. Obviously, for g|G∞ = γn1τm1 and h|G∞ =
γn2τm2 we can write rg − rgh + grh as

γn1 (τm1 − 1) γ
n2 − 1
γ − 1

ηy + γn1

(
τm1 − 1
τ − 1

− γn2
τχ(γ)−n2m1 − 1

τ − 1

)
ηz

Remark on the one hand that:

(τ − 1)γ
n2 − 1
γ − 1

= (δ−1γ)n2 − 1
δ−1γ − 1

(τ − 1)

and on the other hand:

γn2
τχ(γ)−n2m1 − 1

τ − 1
= τm1 − 1

τ − 1
(δ−1γ)n2

so that

rg − rgh + grh = γn1
τm1 − 1
τ − 1

(δ−1γ)n2 − 1
δ−1γ − 1

((τ − 1)ηy + δ−1(δ − γ)ηz)

= γn1
τm1 − 1
τ − 1

(δ−1γ)n2 − 1
δ−1γ − 1

δ−1c.

�
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Remark 1.11. — In the classical case, with the class of a is associated
the class of the 2-cocycle:

(g1, g2) 7→ γ̃n1(h− 1) γ̃
n2 − 1
γ̃ − 1

ã

where (ϕ−1)ã = a, γ̃ lifts γ in GK , g1 = γ̃n1h, g2 = γ̃n2h′ with h, h′ ∈ GK∞
and n1, n2 ∈ Zp.

1.6. Explicit formulas for the cup-product

Herr gave in [17] explicit formulas for the cup-product in terms of his
complex. The following theorem gives the formulas for the metabelian case:

Theorem 1.12. — Let V and V ′ be Zp-adic representations of GK . The
cup-product induces maps:

(1) Let (a) ∈ H0(Cϕ,γ,τ (DL(V ))) and (a′) ∈ H0(Cϕ,γ,τ (DL(V ′))),

(a) ∪ (a′) = (a⊗ a′) ∈ H0(Cϕ,γ,τ (DL(V ⊗ V ′))),

(2) let (x, y, z) ∈ H1(Cϕ,γ,τ (DL(V ))) and (a′) ∈ H0(Cϕ,γ,τ (DL(V ′))),

(x, y, z) ∪ (a′) = (x⊗ a′, y ⊗ a′, z ⊗ a′) ∈ H1(Cϕ,γ,τ (DL(V ⊗ V ′))),

(3) let (a) ∈ H0(Cϕ,γ,τ (DL(V ))) and (x′, y′, z′) ∈ H1(Cϕ,γ,τ (DL(V ′))),

(a) ∪ (x′, y′, z′) = (a⊗ x′, a⊗ y′, a⊗ z′) ∈ H1(Cϕ,γ,τ (DL(V ⊗ V ′)))

(4) let (x, y, z)∈H1(Cϕ,γ,τ (DL(V ))), (x′, y′, z′)∈H1(Cϕ,γ,τ (DL(V ′))),
(x, y, z) ∪ (x′, y′, z′) ∈ H2(Cϕ,γ,τ (DL(V ⊗ V ′))) can be written as:

(y ⊗ γx′ − x⊗ ϕy′ , z ⊗ τx′ − x⊗ ϕz′ , δz ⊗ τχ(γ)y′ − y ⊗ γz′ + Σz,z′)

where Σz,z′ =
∑
n>1

(
χ(γ)
n+1
)∑n

k=1
(
n
k

)
(τ − 1)k−1z ⊗ τk(τ − 1)n−kz′.

Proof. — The only non trivial identity is the last one. We will use the
construction of the previous paragraph and we can then suppose that V
and V ′ are objects of MGK ,pr−tor. We will use the cup-product property
da ∪ b = d(a ∪ b) and the exact sequences

0→ V → IndGK (V )→ V ′′ → 0

0→ F 0(V )→ F 0(IndGK (V ))→ F 0(V ′′)→ F 1(V )→ 0.
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Fix indeed (x, y, z) and (x′, y′, z′) as in the theorem. Then there exists a ∈
DL(IndGK (V )) satisfying α(a) = (x, y, z) and a ∈ (IndGK (V )/V )GK . Thus
(x, y, z) ∪ (x′, y′, z′) is equal to

α(a) ∪ (x′, y′, z′) = d(a⊗ x′, a⊗ y′, a⊗ z′) = β(a⊗ x′, a⊗ y′, a⊗ z′)
= ((γ − 1)(a⊗ x′)− (ϕ− 1)(a⊗ y′),

(τ − 1)(a⊗ x′)− (ϕ− 1)(a⊗ z′),
(τχ(γ) − 1)(a⊗ y′)− (γ − δ)(a⊗ z′))

Now we use the formal identity

(1.1) (σ − 1)(a⊗ b) = (σ − 1)a⊗ σb+ a⊗ (σ − 1)b.

The first term (γ − 1)a⊗ x′ − (ϕ− 1)a⊗ y′ can be written as

(γ−1)a⊗γx′+a⊗(γ−1)x′−(ϕ−1)a⊗y′−a⊗(ϕ−1)y′ = y⊗γx′−x⊗y′.

From a similar computation, we get for the second one

(τ − 1)(a⊗ x′)− (ϕ− 1)(a⊗ z′) = z ⊗ γx′ − x⊗ z′.

Let us finally write the computation of the third term. First, using (1.1),
we get

(τχ(γ) − 1)a⊗ y′ = δz ⊗ τχ(γ)y′ + a⊗ (γ − δ)z′

and
(γ − 1)a⊗ z′ = y ⊗ γz′ + a⊗ (γ − 1)z′.

It remains to compute δ(a⊗z′). Recall δ = τχ(γ)−1
τ−1 =

∑
n>1

(
χ(γ)
n

)
(τ−1)n−1.

Moreover, iterating (1.1), we get by induction:

(σ − 1)n(a⊗ b) =
n∑
k=0

(
n

k

)
(σ − 1)ka⊗ σk(σ − 1)n−kb.

So

δ(a⊗ z′) =
∑
n>1

(
χ(γ)
n

) n−1∑
k=0

(
n− 1
k

)
(τ − 1)ka⊗ τk(τ − 1)n−1−kz′

δ(a⊗z′) = a⊗δz′+
∑
n>1

(
χ(γ)
n

) n−1∑
k=1

(
n− 1
k

)
(τ−1)k−1z⊗τk(τ−1)n−1−kz′

whence the result. �
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1.7. Kummer’s map

In this paragraph, we suppose A′ = Ã.
The purpose is to compute, in terms of the Herr complex, Kummer’s

map κ : K∗ → H1(K,Zp(1)). More precisely, let F (Y ) ∈
(
W [[Y ]][ 1

Y ]
)×
,

we will compute a triple (x, y, z) ∈ Z1(Cϕ,γ,τ (ÃL(1))) corresponding to the
image κoθ(F (Y )) of θ(F (Y )) = F (π) ∈ K∗. Remark that there exist d ∈ Z
and G(Y ) ∈ (W [[Y ]])× such that F (Y ) = Y dG(Y ). In fact G(Y ) can be
written as the product of a ((]k) − 1)th root of unity (which doesn’t play
any role) and a series in 1 + (p) ⊂W [[Y ]].

Denote α = θ(F (Y )) ∈ K∗ and choose α̃ = (α0, α1, . . . , αn, . . .) ∈ Ẽ such
that α0 = α. Then α̃

ρd
∈ Ẽ+ thus [α̃]

Y d
∈ Ã+ and for all σ ∈ GK , there exists

ψα(σ) ∈ Zp such that
σ(α̃) = α̃εψα(σ).

The map σ 7→ εψα(σ) is in fact a cocycle computing κ(α). So

σ([α̃]) = [α̃](1 +X)ψα(σ) where κ(α) = εψα ∈ H1(K,Zp(1)).

Since [α̃]
F (Y ) ∈ Ã+ and θ

(
[α̃]
F (Y )

)
= 1, the series defining log [α̃]

F (Y ) converges
in Fil1Bcrys.

For all h ∈ GL, (h− 1) log [α̃]
F (Y ) = ψα(h)t where t = log(1 +X). Set b̃ =(

log [α̃]
F (Y )

)
/t ∈ Fil0Bcrys. Then

ψα(h) = (h− 1)(b̃) ∀h ∈ GL.

And (ϕ− 1)(b̃) = 1
t f(Y ) where f(Y ) = L (F ) = 1

p log F (Y )p
ϕ(F (Y )) ∈W [[Y ]].

Choose b1 ∈ Ã a solution of (ϕ − 1)b1 = − f(Y )
X . Let X1 = ϕ−1(X) =

[ε
1
p ] − 1, and ω = X

X1
∈ Ã+ then (ϕ − ω)(b1X1) = −f(Y ). Write b1X1 =∑

n>0 p
n[an]. Reducing modulo p the previous identity yields to an equation

of the form ap0 − ωa0 = −f(Y ) and since Ẽ+ is integrally closed, a0 ∈ Ẽ+.
Let us deduce that an ∈ Ẽ+ for any n ∈ N by induction. We have the
identity ∑

n∈N
pn[apn]− ω

∑
n∈N

pn[an] = −f(Y ) =
∑
n∈N

pn[bn].

Suppose that there is un ∈ Ã+ with

[apn]− ω[an] ≡ un mod p.

Then an still belongs to Ẽ+ because it is integrally closed and

p[apn+1]− ωp[an+1] ≡ un − [apn] + ω[an] + p[bn] mod p2.
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Thus un+1 = un−[apn]+ω[an]
p + [bn] ∈ Ã+.

Finally, it comes b1X1 ∈ Ã+. But 1
X1
∈ Fil0Bcrys, namely the series

t

X1
=
∑
n>0

(−1)n+1ωX
n−1

n
=
∑
n>0

(−1)n+1ω
nXn−1

1
n

converges in Fil1Acrys, and thus 1
X1

= t
X1

1
t ∈ Fil0Bcrys. So b1 = (b1X1). 1

X1

lies in Fil0Bcrys. Moreover, (ϕ− 1)b2 = − f(Y )
2 admits a solution b2 in Ã+,

so that if we set x = − f(Y )
X − f(Y )

2 ∈ ÃL and choose a solution b ∈ Ã of
(ϕ− 1)b = x, then b ∈ Fil0Bcrys.

So b̃+ b ∈ Fil0Bcrys and (ϕ− 1)(b̃+ b) = ( 1
t −

1
X −

1
2 )f(Y ). And we have

the following

Lemma 1.13. — Solutions of the equation

(1.2) (ϕ− 1)(µ) =
(

1
t
− 1
X
− 1

2

)
f(Y )

in Fil0Bcrys lie in Qp+ Fil1Bcrys and are invariant under the action of GL.

Proof of the lemma. — Consider

u = t

(
1
t
− 1
X
− 1

2

)
f(Y ) =

(
1− t

X
− t

2

)
f(Y )

= −
∑
n>2

(−X)n

n+ 1
f(Y ) +

∑
n>2

(−X)n

2n
f(Y )

then letting µ′ = tµ, Equation (1.2) becomes

(1.3)
(
ϕ

p
− 1
)

(µ′) = u

but the sequences (−X)n
n+1 f(Y ) and (−X)n

2n f(Y ) converge to 0 in Bcrys and(
ϕ

p

)k (
Xn

n+ 1

)
= ((1 +X)pk − 1)n

(n+ 1)pk

but

((1 +X)p
k

− 1) =
∑

16r6pk

pk!
(pk − r)!

Xr

r!
∈ pkAcrys

so
(
ϕ
p

)k (
Xn

n+1

)
∈ pk(n−1)

n+1 Acrys converges to 0 uniformly in n in Bcrys. The

same holds for
(
ϕ
p

)k (
Xn

n+1

)
. We get a solution −

∑
n>0

(
ϕ
p

)n
u of (1.3) in

(Fil2Bcrys)GL thus a solution of Equation (1.2) in (Fil1Bcrys)GL . And the
lemma follows from (Fil0Bcrys)ϕ=1 = Qp. �
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So b+ b̃ ∈ (Fil0Bcrys)GL , thus, for all h ∈ GL,

(h− 1)(−b) = (h− 1)b̃ = ψα(h).

We conclude that there exist a unique z ∈ ÃL(1) and y ∈ ÃL(1) unique
modulo (γ − 1)Zp(1) such that κ(α) is the image in H1(K,Zp(1)) of the
triple (x, y, z) ∈ Z1(Cϕ,γ,τ (ÃL(1))) where x = −( 1

X + 1
2 )f(Y )⊗ ε. Namely,

we know that there exists such a triple (x′, y′, z′), and x′−x ∈ (ϕ−1)ÃL(1)
which shows the existence, and x being fixed, the unicity modulo α(Zp)
(where α is the first map in the Herr complex Cϕ,γ,τ (M), cf. section 1.5).

We get the more precise result:

Proposition 1.14. — Let F (Y ) ∈
(
W [[Y ]][ 1

Y ]
)×. Then the image of

F (π) by Kummer’s map corresponds to the class of a triple(
−f(Y )

(
1
X

+ 1
2

)
, y, z

)
⊗ ε

with y, z ∈W [[X,Y ]]. This triple is congruent modulo XYW [[X,Y ]] to(
−f(Y )

X
− f(Y )

2
, 0, Y dlogF (Y )

)
⊗ ε.

Proof. — We have to show the congruences. Remark that

γ

(
1⊗ ε
X

)
= χ(γ)⊗ ε

χ(γ)X + χ(γ)(χ(γ)−1)
2 X2 +X3u(X)

=
(

1
X
− (χ(γ)− 1)

2
+Xv(X)

)
⊗ ε

so that (γ − 1)x ∈ XYW [[X,Y ]](1) where ϕn is topologically nilpotent,
thus ϕ− 1 invertible. Because (γ − 1)x = (ϕ− 1)y, it comes

y ∈ ker(ϕ− 1) +XYW [[X,Y ]](1) = Zp(1) +XYW [[X,Y ]](1).

Moreover, let γ̃ lift γ in GK , we still have

(γ̃ − 1)(b̃⊗ ε) = ψα(γ̃)

where, because of ii) of Theorem 1.5 on the one hand, and Lemma 1.13
above on the other hand,

(γ̃ − 1)(b̃⊗ ε+ b⊗ ε) = ψα(γ̃) + (γ̃ − 1)(b⊗ ε) = y ∈ Fil1Bcrys(1)

which shows that y ∈ XYW [[X,Y ]](1). We proceed as well for z:

(τ − 1)f(Y ) = f(Y +XY )− f(Y ) =
∑
n>1

(XY )n

n!
f (n)(Y )

≡ XY f ′(Y ) mod (XY )2.
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Remark moreover
(
Y d
dY

)
◦ ϕp = ϕ ◦

(
Y d
dY

)
so that

(τ − 1)f(Y ) ≡ X(1− ϕ) (Y dlogF (Y )) mod (XY )2

and thus (τ − 1)x ≡ (ϕ− 1)(Y dlogF (Y )⊗ ε) mod XYW [[X,Y ]](1) which
shows

(1.4) z ∈ Y dlogF (Y )⊗ ε+ Zp(1) +XYW [[X,Y ]](1).

And if τ̃ lifts τ in GK ,

(τ̃ − 1)(b̃+ b) = ψα(τ̃)− log F (Y (1 +X))
F (Y )

/t+ (τ̃ − 1)b ∈ Fil1Bcrys

z = ψα(τ̃) + (τ̃ − 1)b ∈ log F (Y (1 +X))
F (Y )

/t+ Fil1Bcrys

which, combined with (1.4), proves the desired result. �

2. Formal Groups

We still suppose that p is an odd prime.
In this section, we will prove the Brückner-Vostokov explicit formula

for formal groups. In [2], Abrashkin showed it under the condition that
the pM -th roots of unity belong to the base field, which turns out not
to be necessary. To remove this assumption, we will explicitly compute the
Kummer map linked to the Hilbert symbol of a formal group in terms of its
(ϕ, Γ)-module, then compute the cup-product with the usual Kummer map
and the image of this cup-product through the reciprocity isomorphism,
which gives the desired formula.

2.1. Notation and background on formal groups

2.1.1. Formal groups

We fix from now on an integer M ∈ N.
ConsiderG a d-dimensional commutative connected smooth formal group

over W = W (k), the ring of Witt vectors with coefficients in the finite field
k. Denote by K0 the fraction field of W and K a totally ramified extension
of K0. Under these hypotheses, G is determined by a formal group law

F(X,Y) = (Fi(X1, . . . , Xd, Y1, . . . , Yd))16i6d ∈ (W [[X,Y]])d
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where X = (X1, . . . , Xd), Y = (Y1, . . . , Yd) (cf. [12]). We note the group law
by +G. Suppose moreover that G has finite height h, that is the isogeny
pidG : G → G is finite and flat over W of degree ph. Define G[pn] =
ker(pnidG : G → G) the sub-formal group of pn-torsion points of G and
denote the Tate module of G by T (G) = lim←G[pn](K).

Suppose moreover G[pM ](K) = G[pM ](K), that is, pM -torsion points of
G lie in K. Then T (G) is a free Zp-module of rank h and G[pM ](K) =
G[pM ](K) is isomorphic as a Zp-adic representation of GK to (Z/pMZ)h.

The space of pseudo-logarithms of G (on K0) is defined as the quotient
of
{
F ∈ K0[[X]], F (X +G Y) − F (X) − F (Y) ∈ OK0 [[X,Y]] ⊗ Qp

}
by

OK0 [[X]] ⊗ Qp. Denote it by H1(G). It is a K0-vector space of dimension
h. The space of logarithms of G is

Ω(G) = {F ∈ K0[[X]] | F (X +G Y) = F (X) + F (Y)} .

It is a sub-K0-vector space of H1(G) of dimension d. Moreover, H1(G)
admits the filtration

Fil0(H1(G)) = H1(G), Fil1(H1(G)) = Ω(G), Fil2(H1(G)) = 0.

With the Frobenius ϕ : F (X) 7→ Fϕ(Xp), H1(G) is called the Dieudonné
module of G.

2.1.2. p-adic periods

Fontaine defined in [12, Chapitre V, Proposition 1.2 ] a pairing H1(G)×
T (G) → B+

crys explicitly described by Colmez in [11, §3]. It is defined as
follows: let F ∈ H1(G), and o = (os)s>0 ∈ T (G) ; choose for all s a
lift ôs ∈ W (mẼ)d of os, i.e. satisfying θ(ôs) = os. The sequence psF (ôs)
converges to an element

∫
o
dF in B+

crys independent of the choice of lifts ôs
and F . This pairing is compatible with actions of Galois and ϕ and with
filtrations: if F is a logarithm, then

∫
o
dF ∈ Fil1B+

crys.
This pairing permits (cf. [12, Chapitre V, Proposition 1.2 ]) to identify

H1(G) with HomGK0
(T (G), B+

crys) with the filtration induced by the one
of B+

crys. In order to work at an entire level, let us introduce a lattice of
H1(G), the W -module D∗crys(G) = HomGK0

(T (G), Acrys) endowed with
the filtration and the Frobenius ϕ induced by those on Acrys. The functor
D∗crys is a contravariant version of the crystalline functor of Fontaine’s
theory. The filtration has length 1 (cf. [11, Proposition 3.1]) and we denote

D0(G) = D∗crys(G) = HomGK0
(T (G), Acrys)

D1(G) = Fil1D∗crys(G) = HomGK0
(T (G),Fil1Acrys).
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So D1(G) is a direct factor of D0(G) of rank d. Fix then a basis {l1, . . . , ld}
of D1(G) completed into a basis {l1, . . . , ld,m1, . . . ,mh−d} of D0(G).

For all 1 6 i 6 d, ϕ(li) takes values in ϕ(Fil1Acrys)d ⊂ (pAcrys)d so,
ϕ
p (li) belongs to D0(G). Moreover, [12, Chapitre III, Proposition 6.1] and
[15, §9.7] show on the one hand that ϕ is topologically nilpotent on D0(G)
(because G is connected) and on the other hand that the filtered mod-
ule D0(G) satisfies D0(G) = ϕD0(G) + ϕ

pD
1(G). Thus, we define ϕ̃ an

endomorphism of D0 by

ϕ̃(li) = ϕ

p
(li) ∀ 1 6 i 6 d, and ϕ̃(mi) = ϕ(mi) ∀ 1 6 i 6 h− d.

Its matrix E lies inGLh(W ). Let l = t(l1, . . . , ln) and m = t(m1, . . . ,mh−n),
then (

ϕ
p (l)
ϕ(m)

)
= E

(
l

m

)
.

So, we can write a block decomposition E−1 =
(
A B

C D

)
so that l = Aϕ

p (l)+

Bϕ(m) and m = C ϕ
p (l) + Dϕ(m). But ϕ is topologically nilpotent on

D0(G), and we can write

(2.1) l =
∑
u>1

Fu
ϕu(l)
p

, m =
∑
u>1

F ′u
ϕu(l)
p

where

F1 = A, F2 = Bϕ(C), Fu = B

 ∏
16k6u−2

ϕk(D)

ϕu−1(C) for u > 2,

F ′1 = C, F ′2 = Dϕ(C), F ′u =

 ∏
06k6u−2

ϕk(D)

ϕu−1(C).

Define a Zp-linear operator A =
∑
u>1 Fuϕ

u on K0[[X]]d. The vectorial
formal power series

lA(X) = X +
∑
m>1

Am(X)
pm

gives then (cf. [18, Theorem 4]) the vectorial logarithm of a formal group
F over W from which we can recover the formal group law F by

F(X,Y) = l−1
A (lA(X) + lA(Y)) .

In [18], Honda introduced the type of a logarithm. A logarithm log is of
type u ∈ Md(W )[[ϕ]] if u is special, i.e. u ≡ pId mod ϕ and if u(log) ≡ 0
mod p. We remark that pId −A is special and that, by construction, lA is
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of type pId − A. Moreover, l is also of type pId − A because of Equation
(2.1).

Furthermore, Honda showed in [18, Theorem 4] that two formal groups
with vectorial logarithms of the same type are isomorphic over W . Thus,
we can replace the study of the formal group G by the one of F , which is
easier because we know an explicit expression of its logarithms, which gives
us a control on denominators.

2.2. Properties of the formal group F

In this section, the reader can refer to [2] from which we recall principal
constructions.

Let us first describe the Dieudonné module of F . We already know a
basis of the logarithms, the coordinate power series of the vectorial series
lA(X) = X +

∑
m>1

Am(X)
pm . Complete it into a basis of H1(F ) by putting

(cf. [2, §1.5.2])

mA(X) =
∑
u>1

F ′u
ϕu(lA(X))

p
.

Let o = (os)s>0 ∈ T (F ). For all s > 0, choose a lift ôs ∈ W (mẼ)d of os,
that is, with θ(ôs) = os. Then the following lemma says that the sequence
psidF ôs converges in W 1(mẼ)d towards an element j(o) independent of the
choice of lifts:

Lemma 2.1. —
(1) The series lA defines a continuous one-to-one morphism of GK-

modules

lA : F (W (mẼ))→ Adcrys ⊗Zp Qp.

Its restriction to F (W 1(mẼ)) takes values in (Fil1Acrys)d.
(2) The endomorphism pidF of F (W (mẼ)) is topologically nilpotent.

The convergence of pidF to zero is uniform on F (W 1(mẼ)).
(3) The map j : T (F ) → W 1(mẼ)d is well defined and provides a

continuous one-to-one homomorphism of GK-modules j : T (F )→
F (W 1(mẼ)).

Proof. — Point 1. is Lemma 1.5.1 of [2].
Point 2. follows from that W 1(mẼ) = ωW (mẼ) with ω = X/ϕ−1(X) ∈

W (mẼ) + pÃ+ and that the series corresponding to pidF can be written
pidFX = pX + higher degrees. Let us recall briefly the proof of Point 3.
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For all s > 0, θ(psidF ôs) = o0 = 0 so that psidF ôs ∈ F (W 1(mẼ)). On the
other hand, for all s > 0, pidF ôs+1 ≡ ôs mod F (W 1(mẼ)) thus

ps+1idF ôs+1 ≡ psidF ôs mod psidF
(
F (W 1(mẼ))

)
And Point 2. provides the convergence of the sequence (psidF ôs)s.

The fact that the convergence is given without compatibility condition
on the lifts shows the independence of the limit with respect to the choice
of these lifts. Namely, let (ôs)s>0 and (ô′s)s>0 be two given lifts of (os)s>0,
then for any lift (ô′′s )s>0 where ∀s > 0, ô′′s = ôs or ô′s, we still have the
convergence of (psidF ô′′s )s, from which we deduce that the limits are the
same. The remainder is straightforward. �

Composing the vectorial logarithm lA with j gives a GK-equivariant
injection that we will denote by l from T (F ) into (Fil1Acrys)d. This map
satisfies then for any o in T (F ):

l(o) = lA( lim
s→∞

psidF ôs) = lim
s→∞

pslA(ôs).

Put now m =
∑
u>1

F ′u
ϕu(l)
p

, then
(

l
m

)
provides a basis of D0(F ) with l a

basis of D1(F ). The map
(

l
m

)
: T (F )→ Ahcrys then factorizes through

(
lA
mA

)
: F (W 1(mẼ))→ Ahcrys.

Recall (cf. [2, Remark 1.7.5]) that this map takes values in Ã+[[Xp−1/p]].
It is also a consequence of Wach’s computation for potentially crystalline
representations (cf. [27]).

Fix now a basis (o1, . . . , oh) of T (F ). We can then introduce the period

matrix V =
(

l(o1) . . . l(oh)
m(o1) . . . m(oh)

)
which lies in

Mh(Ã+[[Xp−1/p]]) ∩GLh(FracÃ+[[Xp−1/p]]).

It satisfies (
Id
ϕ
p 0

0 Ih−dϕ

)
V = EV.

Remark that the inverse of V is then the change of basis matrix from the
basis (o1, . . . , oh) to a basis of Dcrys(T (F )) = (T (F ) ⊗Zp Acrys)GK , the
covariant version of the crystalline module of Fontaine’s theory associated
with T (F ).
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Let u ∈ T (F ) ⊗ Acrys and let U denote the coordinate vector of u in
(o1, . . . , oh)V−1. The coordinates of ϕ(u) = (o1, . . . , oh)ϕ(V−1)ϕ(U) are
now computed. We know that

ϕ(V) =
(
pId 0
0 Ih−d

)(
Id
ϕ
p 0

0 Ih−dϕ

)
V =

(
pId 0
0 Ih−d

)
EV

whence
ϕ(V−1) = V−1E−1

(
p−1Id 0

0 Ih−d

)
and coordinates of ϕ(y) in (o1, . . . , oh)V−1 are then E−1

(
Id
ϕ
p 0

0 Ih−dϕ

)
U.

Keeping this in mind, the following lemma shows that

(
A
p 0
0 Ih−d

)
acts as

the Frobenius on Dcrys(T (F )).

Lemma 2.2. — One has: E−1

(
ϕ
p ◦ lA
ϕ ◦mA

)
=

(
A
p ◦ lA
mA

)
.

Proof. — Compute:

A
ϕ

p
(lA) +Bϕ(mA) = A

ϕ

p
(lA) +

∑
u>1

BϕF ′u
ϕu(lA)
p

= A
p

(lA)

for BϕF ′u = Fu+1 for all u > 1. And:

C
ϕ

p
(lA) +Dϕ(mA) = C

ϕ

p
(lA) +

∑
u>1

DϕF ′u
ϕu(lA)
p

= mA

since DϕF ′u = F ′u+1 for all u > 1. �

Abrashkin ([2, Proposition 2.1.]) computed the cokernel of injection j :

Proposition 2.3. — There is an equality (A − p) ◦ lA(F (W (mẼ))) =
(A− p) ◦ lA(F (W 1(mẼ))) and the following sequence is exact:

0 // T (F )
j // F (W 1(mẼ))

(Ap −1)◦lA
// W (mẼ)d // 0

Remark 2.4. — Beware that if x ∈ F (W (mẼ)), ϕ(lA)(x) = ϕ(lA(x)),
and then A(lA)(x) = A(lA(x)) hold if ϕ(x) = xp (e.g. when x is a Teich-
müller representative) but not in general ! On the left side, ϕ and A act on
W [[X]], whereas they act on Acrys on the right side.

Abrashkin showed furthermore (cf. [2, Lemma 1.6.2.])

Lemma 2.5. — F (mẼ) is uniquely p-divisible.
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This provides a continuous one-to-one GK-equivariant morphism

δ : F (mẼ)→ F (W (mẼ))(A−p)◦lA=0

defined as follows: let x ∈ F (mẼ), then because of the lemma, for all s > 0
there exists a unique xs ∈ F (mẼ) such that psidFxs = x. Thus the sequence
(psidF [xs])s converges to an element δ(x) in F (W (mẼ)). The map δ is a
morphism since

δ(x+F y) = lim
s
psidF [xs +F ys] = lim

s
psidF ([xs] +F [ys] +F us)

with us ∈ pW (mẼ) where the convergence of psidF towards zero is uniform.
Moreover, since A◦ lA coincides with A(lA) on Teichmüller representatives,
we get:

(A− p) ◦ lA(δ(x)) = (A− p)(lA)(δ(x)) = 0.
Finally, θ(δ(x)) = θ([x]). Namely, ∀s > 0, θ(psidF [xs]) = psidF θ([xs]) =
θ([x]).

2.3. The ring G[b,a] and some subrings.

2.3.1. Introducing the objects

Fix e the absolute ramification index of K.
In [5], Berger introduced for s > r > 0 the ring Ã[s,r], the p-adic com-

pletion of the ring Ã+
[

p
Y rep/(p−1) ,

Y sep/(p−1)

p

]
. Let us then introduce for

a > b > 0, the ring

G[b,a] := Ã+
[[
Y ae

p
,
p

Y be

]]
which for integers a and b admits the description

G[b,a] =

{∑
n∈Z

anY
n | an ∈ Ã+

[
1
p

]
,
aevp(an) + n > 0 for n > 0
bevp(an) + n > 0 for n 6 0

}
.

Note that the expression
∑
n∈Z anY

n for an element of G[b,a] is not unique.
The ring G[b,a] is, for a > α > β > b a subring of Ã[α(p−1)/p,β(p−1)/p]. We
even have inclusions

Ã[a(p−1)/p,b(p−1)/p] ⊂ G[b,a] ⊂ Ã[α(p−1)/p,β(p−1)/p].

Let us fix such an α = ps/(p− 1) and β = pr/(p− 1) and endow G[b,a] with
the induced topology which is compatible with the ring structure.

ANNALES DE L’INSTITUT FOURIER



AN EXPLICIT FORMULA FOR THE HILBERT SYMBOL 293

We shall prove that

VN,k :=

{∑
n>N

an

(
Y ae

p

)n
+
∑
n>N

bn

( p

Y be

)n
; an, bn ∈ Ã+

}
+ pkG[b,a]

for N, k ∈ N form a basis of neighborhoods of zero.
First, let us prove that for any k,N there is m ∈ N such that

Vk,N ⊃ pmÃ[s,r]
⋂
G[b,a].

Let x ∈ Ã[s,r]. To say that pmx ∈ G[b,a] means that one can write

pmx =
∑
n>0

an
Y aen

pn
+
∑
n>0

bn
pn

Y ben

and that

x =
∑
n>0

an
Y aen

pn+m +
∑
n>0

bn
pn−m

Y ben

makes sense in Ã[s,r]. Consequently, it remains to prove that for m large
enough ∑

n6N

an
Y aen

pn
+
∑
n6N

bn
pn

Y ben
∈ pkG[b,a].

But there are n0 6 N +m and a′n0
, a′′n0
∈ Ã+ such that

an
Y aen

pn
= pma′n0

Y αen0

pn0

= pm−b
n0α
a ca′′n0

Y aeb
n0α
a c

pb
n0α
a c

and a direct computation shows that m−
⌊
n0α
a

⌋
> k if m is large enough,

say m > ak+αN
a−α .

On the other hand, let us now fix m ∈ N and prove that for N � m,
Vm,N ⊂ pmÃ[s,r]. One has(

Y ae

p

)n
= pm

Y αe(n+m)

pn+m Y (a−α)en−αem

and Y (a−α)en−αem ∈ Ã+ as soon as n > α
a−αm. The same computation

works for
(
p
Y be

)n which proves that for N large enough, we have the desired
inclusion.

As a byproduct, we get that the topology does not depend on the choices
of α or β.
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For a1 > a2 > b2 > b1 > 0 we still have continuous injections G[a1,b1] ↪−→
G[a2,b2]. Define then G[b,a[ for a > b > 0 to be the p-adic completion of⋃
α>a G[b,α]. For integers a and b,

G[b,a[ =


∑
n∈Z

anY
n; an ∈ Ã+

[
1
p

]
,

aevp(an) + n > 0 if n > 0
aevp(an) + n −→

n→+∞
+∞,

bevp(an) + n > 0 if n 6 0


Moreover, the inclusion⋃

α>a

G[b,α] ↪−→
⋃

α>a,β>b

Ã[α(p−1)/p,β(p−1)/p]

permits to regard the ring G[b,a[ as a subring of the p-adic completion of⋃
α>a,β>b Ã[α(p−1)/p,β(p−1)/p]. Let us endow this last ring with the p-adic

topology and G[b,a[ with the induced topology. Let us also introduce for
b > 0,

G[b,∞[ :=
⋂
a>b

G[b,a] = Ã+
[[ p

Y eb

]]
⊂ Ã

and this inclusion is continuous since the preimage of a neighborhood
Y NÃ+ + p2kÃ is

Y NÃ+ +

{ 2k∑
n=1

an

( p

Y eb

)n
, vp(an) > 2k − n >

}
+

{∑
n>2k

an

( p

Y eb

)n}

which contains pkG[b,∞[ +
{∑

n>k an
(
p
Y eb

)n +
∑
n>N bnY

n, an, bn ∈ Ã+
}

which is a neighborhood of G[b,∞[ for the topology induced by any of the
G[b,a], a > b.

Moreover, for b integer,

G[b,∞[ =

∑
n60

anY
n; an ∈ Ã+, bevp(an) + n > 0 for n 6 0

 .

Remark that the Frobenius

ϕG

∑
n<0

anY
aen +

∑
n>0

anY
ben

 =
∑
n<0

ϕ(an)Y paen +
∑
n>0

ϕ(an)Y pben

defines a one-to-one morphism from G[b,a] (resp. G[b,a[) into G[pb,pa] (resp.
G[pb,pa[).
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Introduce for integers a and b the subring of G[b,a]

GY,[b,a] := W [[Y ]]
[[
Y ae

p
,
p

Y be

]]
=

{∑
n∈Z

anY
n ; an ∈ K0,

aevp(an) + n > 0 if n > 0
bevp(an) + n > 0 if n 6 0

}
and GY,[b,a[ the subring of G[b,a[ admitting the description

GY,[b,a[ =


∑
n∈Z

anY
n ; an ∈ K0,

aevp(an) + n > 0 if n > 0
aevp(an) + n −→

n→+∞
+∞,

bevp(an) + n > 0 if n 6 0

 .

Finally, for b > 0,

GY,[b,∞[ :=
⋂
a>b

GY,[b,a] =W [[Y ]]
[[ p

Y eb

]]
=

{∑
n∈Z

anY
n; an ∈W,

bevp(an) + n > 0

}
Contrary to the above situation, the expression

∑
n∈Z anY

n is unique as is
shown in the

Lemma 2.6. — (1) In G[b,a]

[
1
p

]
, one has

G[0,a]

[
1
p

]⋂
G[b,∞[

[
1
Y

]
= Ã+.

(2) Every element of GY,[b,a] or GY,[b,a[ can be written in a unique way
as
∑
n∈Z anY

n with an ∈ K0.
(3) Let a > α > β > b, and ) designate ] or [, then GY,[β,α]

[
1
p

]⋂
G[b,a) =

GY,[b,a).

Proof. — The first point can be shown in Berger’s rings Ã[s,r], in fact
in the ring Ã[s,∞[

[ 1
Y

]
+ Ã[0,r]

[
1
p

]
. Any element of this ring is of the form∑

n∈N p
n( xn
Y k
− yn

pl
) with xn ∈ Ã+ [ p

Y rep/(p−1)

]
and yn ∈ Ã+

[
Y sep/(p−1)

p

]
.

Such an element is zero when

pl
∑
n∈N

pnxn = Y k
∑
n∈N

pnyn ∈ Ã[s,∞[
⋂

Ã[0,r].

The condition is that for all N ∈ N,
∑
n<N p

n(plxn − Y kyn) ∈ pNÃ[s,r].

That is pl
∑
n<N p

nxn belongs to Ã+ + pNÃ+ [ p
Y rep/(p−1)

]
and then∑

n<N

pnxn ∈ Ã+ + pN−lÃ+
[ p

Y rep/(p−1)

]
,
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and similarly ∑
n<N

pnyn ∈ Ã+ + pN−l/seÃ+
[
Y sep/(p−1)

p

]
.

The limit pl
∑
n∈N p

nxn = Y k
∑
n∈N p

nyn lies then in plÃ+⋂Y kÃ+ =
plY kÃ+, hence, as claimed,∑

n∈N
pn
xn
Y k

=
∑
n∈N

pn
yn
pl
∈ Ã+.

Because of the first point, it is enough to prove the second one for∑
n<0 anY

n and
∑
n>0 anY

n. It is to prove that such a series converges
to zero if and only if all the an actually are zero. For the first case, recall
that there is a continuous injection G[β,∞[ → Ã so that it is sufficient to
prove it in Ã.

Consider there a series
∑
n>0

an
Y n converging to 0 with an ∈ W and an

also converging to 0. Let us prove by induction that pk divides all the an
in W . The case k = 0 being obvious, let us suppose it true for a given k.
Since (an) converges to 0, there is an M ∈ N such that pk+1 divides all the
an with n > M . Write then

0 = YM
∑
n>0

an
pkY n

≡
M∑
n=0

an
pk
YM−n mod p.

An obvious induction using successive reductions modulo Y k in Ẽ+ then
shows that all the an

pk
are 0 in k so that all the an are divisible by pk+1,

whence the result.
On the other side, GY,[0,α) is naturally a subring of the separable com-

pletion of Ã
[

1
p

]
for the Y -adic topology. The result then follows similarly

from successive reductions modulo Y k.
We will proceed in a similar way to show the last point. Because of

the first one, it suffices to prove both GY,[β,∞[

[
1
p

]⋂
G[b,∞[ = GY,[b,∞[ and

GY,[0,α]

[
1
p

]⋂
G[0,a) = GY,[0,a). First consider then

x =
∑
n60

anY
n ∈ 1

pλ
GY,[β,∞[ with βevp(an) + n+ λ > 0,∀n 6 0.

We suppose furthermore that x belongs to G[b,∞[, that is, it can be written
as
∑
n∈N bn

pn

Y ebn
with bn ∈ Ã+. The identity

∑
n60 anY

n =
∑
n∈N bn

pn

Y ebn

makes sense in 1
pλ
G[β,∞[, thus in Ã. Denote by n0 the highest integer,

supposing it exists, satisfying bevp(an0) +n0 < 0. We can then suppose the
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identity above of the form
∑
n6n0

anY
n =

∑
n∈N bn

pn

Y ebn
. Multiplying by

Y bevp(an0 ) and reducing modulo pvp(an0 ) in Ã yields then to
n0∑

n=n′0

anY
n+bevp(an0 ) ≡

vp(an0 )∑
n=0

bnp
nY eb(vp(an0 )−n) mod pvp(an0 )

but the right term belongs to Ã+ and not the left one, whence a contra-
diction.

Consider as before an identity of the form
∑
n>0 anY

n =
∑
n∈N bn

Y ean

pn

and denote by n0 the lowest integer satisfying aevp(an0) + n0 < 0. It can
be reduced to an identity of the form

∑
n>n0

anY
n =

∑
n∈N bn

Y ean

pn . Mul-
tiplying by p−vp(an0 ) and reducing modulo Y n0+1 yields to

p−vp(an0 )an0Y
n0 ≡

∑
06n6n0

ea

bnp
−vp(an0 )−nY ean mod Y n0+1

and the contradiction comes from the inequality n 6 n0
ea < −vp(an0) hence

the right term is divisible by p, and not the left one.
The case of GY,[0,α]

⋂
G[0,a[ = GY,[0,a[ follows from a similar argument. �

Remark 2.7. — As said before, periods of formal groups belong to
Ã+[[Xp−1/p]] = Ã+[[Y pe/p]], that is G[0,p]. We can also recover Ã+ as
G[0,∞[.

2.3.2. Some topological precisions

Lemma 2.8. —
(1) The set of finite sums{

N∑
n=0

an

(
Y ea

p

)n
+ bn

( p

Y eb

)n
; an, bn ∈ Ã+, N ∈ N

}
is a dense subset of G[b,a]. The same holds for the sub-algebra

G[b,a]
⋂

Ã
[

1
p

]
=

{
N∑
n=0

an

(
Y ea

p

)n
+
∑
n∈N

bn

( p

Y eb

)n
; an, bn ∈ Ã+, N ∈ N

}
(2) The topology of G[b,a] is weaker than the p-adic topology.
(3) G[b,a] is Hausdorff and complete.
(4) The ring G[b,a] is local with residue field k and maximal ideal

m[b,a] =

∑
n>1

an

(
Y ea

p

)n
+ bn

( p

Y eb

)n
; an, bn ∈ Ã+

+W (mẼ).
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(5) Any element of m[b,a] is topologically nilpotent.
(6) Powers of the ideal

m1
[b,a] =

∑
n>1

an

(
Y ea

p

)n
+ bn

( p

Y eb

)n
; an, bn ∈ Ã+

+ Y e(a−b)Ã+

form a basis of neighborhoods of 0 consisting in ideals of G[b,a].
(7) The ring G[b,a[ is local with maximal ideal m[b,a[ the p-adic comple-

tion of
⋃
α>a m[b,α] and with residue field k.

(8) Any element of m[b,a[ is topologically nilpotent.

Proof. — Let us introduce the notation

G>N[b,a] =

{∑
n>N

an

(
Y ae

p

)n
+
∑
n>N

bn

( p

Y be

)n
; an, bn ∈ Ã+

}
⊂ G[b,a].

Recall that
{
G>N[b,a] + pkG[b,a]; N, k ∈ N

}
is a basis of neighborhoods of zero

in G[b,a]. This shows the first two points. The fact that G[b,a] is Hausdorff
follows from that Ã[s,r] is (cf. [5]). The following shows that the topology
on G[b,a] is metrizable, and one can immediately see from the form of neigh-
borhoods of zero that any series with a general term going to 0 converges.
This shows that G[b,a] is complete.

We will prove Points 4., 5. et 6. simultaneously: we first show m[b,a] is
an ideal, then that any element of m[b,a] has a power in m1

[b,a] and we make
powers of m1

[b,a] explicit, which allows to conclude. Let

x =
∑
n<0

an

(
Y ea

p

)−n
+
∑
n>0

an

( p

Y eb

)n
we say that x is the element of G[b,a] associated with the sequence (an)n∈Z ∈(
Ã+)Z. Let y be the element associated with another sequence (bn)n∈Z,

then write the product of two elements x and y of G[b,a]:

xy =
∑
n<0

cn

(
Y ea

p

)−n
+
∑
n>0

cn

( p

Y eb

)n
is associated with the sequence
(2.2)

cn =


∑
k>0

Y e(a−b)k(ak+nb−k + a−kbk+n) +
n∑
k=0

akbn−k if n > 0

∑
k>0

Y e(a−b)k(akbn−k + an−kbk) +
−n∑
k=0

a−kbn+k if n 6 0.
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This shows that m[b,a] is an ideal because of

(2.3) c0 =
∑
n∈Z

Y e(a−b)|n|anb−n.

Suppose x ∈ m[b,a]. Because of the previous computation, one can define
for all k ∈ N a sequence (cn,k)n∈Z such that xk is associated with (cn,k)n∈Z.
The fact that there exists a k such that xk ∈ m1

[b,a] is equivalent to that the
rest c0,k ∈ Ẽ+ of c0,k modulo p has a valuation greater or equal to a − b.
But because of Equality (2.3), vE(c0,k) > min(a− b, kvE(a0)) which shows
xk ∈ m1

[b,a] for k large enough.

Let us show now that mk
[b,a] =

(
m1

[b,a]

)k
consists in elements associated

with sequences (an)n∈Z such that ∀n ∈ Z, vE(an) > gka,b(n) where

gka,b(n) =
⌊

(k − |n|+ 1)+

2

⌋
(a− b) =

{ ⌊
k−|n|+1

2

⌋
(a− b) if |n| 6 k

0 otherwise
satisfying the induction relation

(2.4) gk+1
a,b (n) =


gka,b(n− 1) + a− b if − k − 1 6 n 6 0
gka,b(n+ 1) + a− b if 0 6 n 6 k + 1
0 otherwise

or equivalently

(2.5) gk+1
a,b (n) =

{
gka,b(n+ 1) if n < 0
gka,b(n− 1) if n > 0 .

Remark also that gka,b is even and decreasing on N.
Let then x ∈ mk

[b,a] be associated with a sequence (an)n∈Z satisfying
the previous induction relation, let y ∈ mk

[b,a] be associated with (bn)n∈Z

and xy ∈ mk+1
[b,a] be associated with (cn)n∈Z which we compute as before.

Equations (2.2) show the relation for n > 0 (case n < 0 provides the same
computation):

vE(cn) > inf


(a− b)r + gka,b(n+ r), for r > 0,
(a− b)r + gka,b(−r), for r > 0,
gka,b(r), for 0 6 r < n,

gka,b(n) + a− b


which gives because gka,b is even and decreasing

vE(cn) > inf


(a− b)r + gka,b(n+ r), for r > 0,
gka,b(n− 1)
gka,b(n) + a− b

 .
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But

(a− b)r + gka,b(n+ r) = (a− b)
(
r +

⌊
(k − |n+ r|+ 1)+

2

⌋)
is strictly increasing in r and (a − b) + gka,b(n + 1) > gk+1

a,b (n) because of
(2.4). Likewise,

gka,b(n) + a− b > gk+1
a,b (n− 1) > gk+1

a,b (n)

and finally, according to (2.5), gka,b(n−1) = gk+1
a,b (n). The minimum is then

equal to gk+1
a,b (n), which lets us conclude on the description of mk

[b,a].
Point 6. follows from this description, and proves 5. Point 4. follows

because any x ∈ G[b,a] can be written as x = a0−u with u ∈ m[b,a], a0 ∈ Ã+

and since W (mẼ) ⊂ m[b,a] we can even choose a0 = [a0] with a0 ∈ k. Then
either a0 = 0 and x ∈ m[b,a] or x is invertible with

x−1 = [a−1
0 ]
∑
n>0

(
[a−1

0 ]u
)n
.

Let us prove now 8. Remark that any x ∈ m[b,a[ can be written as x =
x0 + px1 ; x0 ∈ m[b,α], x1 ∈ G[b,a[ for some a > α > b. Write xm =∑
n+k=m

(
m
k

)
pkxn0x

k
1 . We have to show pkxn0x

k
1 −→
k,n→+∞

0. When k goes to
infinity, it is clear. When n goes to infinity, remark that the convergence
of xn0 to 0 in G[b,α] implies for any N and t in N, xn0 can be written, for n
large enough as

∑
s>N as

(
Y αe

p

)s
+
∑
s>N bs

(
p
Y be

)s + ptu with u ∈ G[b,a[

and as, bs in Ã+. Fix then a t, and let us remark that if we choose a > α >

α′ > β′ > β > b, (
Y αe

p

)s
= pt

Y αes

ps+t = pt
Y α

′eαsα
′

ps+t

belongs to Ã[α′(p−1)/p,β′(p−1)/p] for N > α′t
α−α′ . The same computation for(

p
Y be

)s shows that if N is chosen large enough, that is, for n large enough,
xn0 ∈ ptÃ[α′(p−1)/p,β′(p−1)/p], whence 8.

At last, 7. is a consequence of 8. Namely, any x ∈ G[b,a[ can be written
as x = x0 + pu with x0 ∈ G[b,α] for some a > α > b and u ∈ G[b,a[,
so that pu ∈ m[b,a[. We deduce that x = [x0] + v with x0 ∈ k and v ∈
m[b,α] + m[b,a[ = m[b,a[. So that, just like before, x either belongs to m[b,a[
or is invertible in G[b,a[. �

Remark 2.9. — The preceding lemma makes G[b,a) into a complete
valuation ring with the valuation given by v[b,a)(x) = limn→∞

kn
n where

kn = sup{k ∈ N, xn ∈ mk
[b,a)}.
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The following lemma provides a link between algebras G[b,a] and Acrys.

Lemma 2.10. —
(1) G[0,p] injects continuously in Acrys.
(2) Frobenius ϕ of Acrys and ϕG coincide on G[0,p].
(3) Any non zero element of GY,[0,p] is invertible in GY,[p−1,p−1[⊗Zp Qp.
(4) The series defining t/X converges in G[0,p] where it is invertible.

Proof. — The first point consists in showing that Y pen

pn ∈ Acrys for all n
and converges to 0. Let Eπ be an Eisenstein polynomial for π, it has degree
e and Eπ(Y ) generates W 1(Ẽ+) so that Acrys is the p-adic completion
of Ã+[Eπ(Y )n

n! ] and it is obvious that Y pen

pn lies in this ring and p-adically
converges to 0. The second point is an immediate consequence of the first
one.

Now let x ∈ GY,[0,p], then there exists a sequence (an)n∈N ∈
(

Ã+
[

1
p

])N

such that x =
∑
n∈N anY

n with ∀n ∈ N ; epvp(an) + n > 0. Then, ∀n ∈
N ; e(p − 1)vp(an) + n > n

p and for x non zero, e(p − 1)vp(an) + n goes
to +∞ when n→ +∞, it reaches its minimum K a finite number of times
and we fix n0 the greater integer with K = e(p− 1)vp(an0) + n0, so that

e(p− 1)vp(an/an0) + n− n0 > 0 if n 6 n0(2.6)
e(p− 1)vp(an/an0) + n− n0 > 0 if n > n0(2.7)

and ∀n > n0 ; e(p− 1)vp(an/an0) + n− n0 >
n
p −K hence it comes

lim inf
n→∞

e(p− 1)vp(an/an0) + n− n0

n− n0
>

1
p
,

which, combined with (2.7), shows the existence of some 0 < λ < 1 with

e(p− 1)vp(an/an0) + n− n0 > λ(n− n0)

e
p− 1
1− λ

vp(an/an0) + n− n0 > 0.

This shows that for a = p−1
1−λ > p−1,

∑
n>n0

an
an0

Y n−n0 ∈ m[0,a]. Inequality
(2.6) shows furthermore that

∑n0−1
n=0

an
an0

Y n−n0 lies in m[p−1,∞[ and finally∑
n 6=n0

an
an0

Y n−n0 ∈ m[p−1,a]. Then,

x = an0Y
n0(1 + ε) ; ε ∈ m[p−1,a]

is invertible in GY,[p−1,a] ⊗Zp Qp ⊂ GY,[p−1,p−1[ ⊗Zp Qp. Remark finally

X = [ε− 1] + pv = Y ep/(p−1)u+ pv ; u, v ∈ Ã+
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so that Xp−1 = Y epu′+pv′, u′, v′ ∈ Ã+ from which we deduce for s prime
to p,

Xprs−1

prs
= Xpr(s−1)

s

Xpr−1

pr
= Xpr(s−1)

pr−1∑
k=0

(
Y pek

p

) pr−1
p−1 −k

pruk

= Xpr(s−1)
pr−1∑
k=0

(
Y pek

p

) pr−1
p−1 −r

pkuk

where uk ∈ Ã+. But pr−1
p−1 > r so that for all n > 1, Xn−1/n ∈ G[0,p] and

pr−1
p−1 − r goes to +∞ with r → ∞, which shows that Xn−1/n converges
p-adically to 0 in G[0,p]. �

2.4. The Hilbert symbol of a formal group

2.4.1. The pairing associated with the Hilbert symbol

In this paragraph we express the Hilbert symbol of F in terms of the
Herr complex attached to F [pM ]. Let us recall that the Hilbert symbol of
a formal group is defined as the pairing:

(α, β) ∈ K∗ × F (mK) 7→ (α, β)F,M = r(α)(β1)−F β1 ∈ F [pM ]

where β1 ∈ F (mCp) satisfies pM idFβ1 = β and r : K∗ → Gab
K is the

reciprocity map of local class field theory. In fact, we will be interested in
the pairing

(β, g) ∈ F (mK)×GK 7→ (β, g]F,M = gβ1 −F β1 ∈ F [pM ]

where β1 ∈ F (mCp) satisfies pM idFβ1 = β. Then (β, r(α)]F,M = (α, β)F,M .
Put

R(F ) =
{

(xi)i>0 ∈ F (mCp) ; x0 ∈ F (mK) and (pidF )xi+1 = xi ∀i > 0
}

then the Hilbert symbol is a mod p reduction of the pairing

(x, g) ∈ R(F )×GK 7→ (x, g]R(F ) = (gxi −F xi)i ∈ T (F )

with ((x, g]R(F ))M = (x0, g]F,M for any x = (xi) ∈ R(F ).
This pairing is linked with the connecting map F (mK) → H1(K,T (F ))

in the long exact sequence associated with the short exact one:

0→ T (F )→ lim
←
F (mCp)→ F (mCp)→ 0
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where transition maps in the inverse limit are pidF and the last map is the
projection on the first component. The ring R(F ) is then the preimage of
F (mK) by lim

←
F (mCp)→ F (mCp).

Let now x ∈ F (mẼ) be such that θ([x]) ∈ F (mK). Then for all g ∈ GK ,

(g − 1)δ(x) ∈ F (W 1(mẼ))(A−p)◦lA=0 ' T (F )

with δ defined at the end of §2.2. The following diagram is commutative

F (W (mẼ))(A−p)◦lA=0
K ×GK // F (W 1(mẼ))(A−p)◦lA=0

F (mẼ)K ×GK

δ×id
OO

ι×id
��

R(F )×GK // T (F )

j

OO

where ι(x) = (θ ◦ δ(p−sidF (x)))s = (θ([p−sidF (x))])s and we denote by
F (mẼ)K (resp. F (W (mẼ))K) the set of x ∈ F (mẼ) (resp. F (W (mẼ)))
with θ([x]) ∈ K (resp. θ(x) ∈ K) and where the first pairing is simply
(u, g) 7→ (g − 1)u.

Fix now α ∈ F (mK) and a lift ξ of α in F (mẼ) which then satisfies
θ([ξ]) = α. We get

j((ι(ξ), g]R(F )) = (g − 1)δ(ξ)

for all g ∈ GK . Choose now β ∈ F (YW [[Y ]]) such that θ(β) = α = θ([ξ]).
Then

∀h ∈ GL, (h− 1)(δ(ξ)−F β) = j((ι(ξ), h]R(F )).
Moreover, δ(ξ)−F β ∈ F (W 1(mẼ)) thus lA(δ(ξ)−F β) ∈ (Fil1Acrys)d and

mA(δ(ξ)−F β) =
∑
u>1

F ′u
ϕu(lA(δ(ξ)−F β))

p

converge in Ah−ncrys. Put now Λ = V−1
(
lA(δ(ξ)−F β)
mA(δ(ξ)−F β)

)
∈ Ahcrys. These are

coordinates of a λ ∈ Dcrys(T (F ))⊗Acrys in the basis (o1, . . . , oh). And,

(2.8) ∀h ∈ GL, (h− 1)λ = (ι(ξ), h]R(F ).

2.4.2. The approximated period matrix

Now we explicitly compute the Hilbert symbol of F , i.e. the image of
ι(ξ) in H1(K,F [pM ]) which coincides with the one of α. For that, we have
to give a triple in the first homology group of the Herr complex of F [pM ]
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corresponding to a cocycle representing the image of ι(ξ). Recall that if
such a triple is written as (x, y, z), then the associated cocycle is

g 7→ (g − 1)(−b) + γn
τm − 1
τ − 1

z + γn − 1
γ − 1

y

where g|Γ = γnτm and b ∈ F [pM ]⊗ Ã is a solution of (ϕ− 1)b = x. In par-
ticular, the image of h ∈ GL through this cocycle is (h−1)(−b). Let us start
with finding b ∈ T (F )⊗Ã such that for all h ∈ GL, (h−1)b ≡ −(ι(ξ), h]R(F )
mod pM . Equality (2.8) incites to build b as an approximation of −λ. In
fact, we will build x by approximating (ϕ − 1)(−λ), whose coordinates in

the basis (o1, . . . , oh) are V−1

(
(Ap − 1) ◦ lA(β)

0

)
.

Indeed, Lemma 2.2 shows that the action of ϕ is written in the basis

(o1, . . . , oh)V−1 as

(
A
p 0
0 Ih−d

)
. Because (o1 = (o1

n)n, . . . , oh) is the fixed

basis of T (F ), (o1
M , . . . , o

h
M ) is a basis of F [pM ] and we further fix ô1

M , . . . ,

ôhM elements in F (YW [[Y ]]) such that for all i, θ(ôiM ) = ôiM (π) = oiM .

Define then the matrix

VY =

(
pM lA(ô1

M ) . . . pM lA(ôhM )

pMmA(ô1
M ) . . . pMmA(ôhM )

)

whose coefficients belong to Acrys, and more precisely to W [[Y ]]
[[

Y pe

p

]]
=

GY,[0,p]. From Lemma 2.10, VY is invertible in GY,[p−1,p−1[ ⊗Qp.

Lemma 2.11. —

(1) The matrix XV−1
Y has coefficients in G[0,p] + pM

Y e/(p−1) m[ 1
p−1 ,∞[ ⊂

G[ 1
p−1 ,p] and thus ϕG(XV−1

Y ) ∈ G[p/(p−1),p].

(2) Coefficients of V−1
Y lie in 1

Y ep/(p−1)G[1,p], thus in 1
Y dep/(p−1)eGY,[1,p]

and

V−1
Y ≡ V

−1 mod pM

Y e(p+1)/(p−1) m[1,p].

(3) The principal part V(−1)
Y of V−1

Y has p-entire coefficients and its
derivative d

dY V
(−1)
Y has coefficients in pMÃ.

(4) The matrix XV(−1)
Y has coefficients in Ã+ + pMÃ.

ANNALES DE L’INSTITUT FOURIER



AN EXPLICIT FORMULA FOR THE HILBERT SYMBOL 305

Proof. — We use the strategy of [2, Paragraph 3.4.]. Let us recall that
Abrashkin there showed

pM lA(ôiM ) ∈
(
Eπ(Y )YW [[Y ]] + Eπ(Y )p

p
W [[Y ]]

[[
Y ep

p

]])n
pMmA(ôiM ) ∈

(
YW [[Y ]] + Y ep

p
W [[Y ]]

[[
Y ep

p

]])h−n
and

l(oi)− pM lA(ôiM ) ∈ pM
(
Eπ(Y )W (mẼ) + Eπ(Y )p

p
Ã+

[[
Y ep

p

]])n
m(oi)− pMmA(ôiM ) ∈ pM

(
W (mẼ) + Y ep

p
Ã+

[[
Y ep

p

]])h−n
.

Let VD be the matrix of the group dual to F . It satisfies the relation
tVD V = tIh. And one can then write

tVD VY ≡ tIh mod pM
(
Eπ(Y )W (mẼ) + Eπ(Y )p

p
Ã+

[[
Y ep

p

]])
tVD VY ≡ tIh mod pM

(
Y eW (mẼ) + Y ep

p
Ã+

[[
Y ep

p

]])
.

Remark, because of Lemma 2.10, that the element t/X converges in
G∗[0,p], and X = ω[ε1/p − 1] = Eπ(Y )Y e/(p−1)v with v ∈ G∗[ 1

p−1 ,∞[, so that
tVD VY = t(Ih − pMu) with

u ∈ Eπ(Y )
t

W (mẼ) + Y ep

pt
G[0,p] ⊂

1
Y e/(p−1) m[ 1

p−1 ,p] + Y e
p2−2p
p−1

p
G[ 1
p−1 ,p]

⊂ 1
Y e/(p−1) m[ 1

p−1 ,p] ⊂
1
p
m[ 1
p−1 ,p]

thus V−1
Y = 1

t

(∑
n∈N p

Mnun
)
tVD ∈ 1

tG[ 1
p−1 ,p] whence the first point ; and

even

V−1
Y ≡ V

−1 mod pM

tY e/(p−1) m[ 1
p−1 ,p] or V−1

Y ∈
1
t
G[0,p] + pM

Y e/(p−1) m[ 1
p−1 ,p].

Recall t = Eπ(Y )ϕ−1(X)u′ ; u′ ∈ G∗[0,p] and remark that because Eπ is
an Eisenstein polynomial, Eπ(Y ) and Y e are associated in G[1,∞[ ; finally,
with the above computation, we deduce that t and Y ep/(p−1) are associated
in G[1,p]. Then

V−1
Y ∈

1
Y ep/(p−1)G[1,p] + pM

Y e(p+1)/(p−1) m[1,p] ⊂
1

Y ep/(p−1)G[1,p].
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So, Y dep/(p−1)eV−1
Y has coefficients in GY,[p−1,p−1[

[
1
p

]⋂
G[1,p] = GY,[1,p] be-

cause of Lemma 2.6. Let us further deduce that V(−1)
Y has p-entire coeffi-

cients. It is to show that any x =
∑
n∈Z anY

n ∈ 1
Y dep/(p−1)eGY,[1,p] satisfies

an ∈W for all n 6 0. But that means that

Y dep/(p−1)ex =
∑
n∈Z

anY
n+dep/(p−1)e ∈ GY,[1,p]

and thus if vp(an) 6 1, n + ep/(p − 1) > ep hence n > (p−2)ep
p−1 > 0 and

V(−1)
Y has p-entire coefficients.
For the third point, let us recall the argument of [2, Lemma 4.5.4]. Write

d

dY
V(−1)
Y = −V(−1)

Y

(
d

dY
VY
)
V(−1)
Y

since differentials of lA and mA have coefficients in W , we get d
dY VY ∈

pMMh(W [[Y ]]) so

d

dY
V(−1)
Y ∈ GY,[p−1,p−1[ ⊗Zp Qp

⋂ 1
Y 2ep/(p−1)G[1,p]

and the same argument as above permits to conclude (we get the inequality
n > (p−3)ep

p−1 > 0).
Finally, the proof of Point 4. is the same as the one of Proposition 3.7,

Point d) in [2]. Let us write it in the following way: we know on the one
hand that V(−1)

Y and then also XV(−1)
Y has p-entire coefficients, so they have

coefficients in G[p−1,∞[
[ 1
Y

]
and that U = X(V−1

Y − V
(−1)
Y ) has coefficients

in G[0,p−1[

[
1
p

]
. On the other hand, Lemma 2.11 tells

XV−1
Y ∈Mh

(
G[0,p] + pM−1G[1/(p−1),∞[

)
.

Remark

G[1/(p−1),∞[ = Ã+
[[ p

Y e/(p−1)

]]
= Ã+ + p

Y e/(p−1)G[1/(p−1),∞[

Thus we can write XV−1
Y = M1 + pMM2 with M1 having coefficients in

G[0,p] and M2 in 1
Y e/(p−1)G[1/(p−1),∞[ ⊂ Ã. Therefore the matrix XV(−1)

Y −
pMM2 = M1 − U has coefficients in G[p−1,∞[

[ 1
Y

]⋂
G[0,p−1[

[
1
p

]
= Ã+, as

desired. �
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Remark that x ∈ F (W (mẼ)) can be written as x = [x0] + Fu with u ∈
F (pW (mẼ)), thus(

A
p
− 1
)
◦ lA(x) =

(
A
p
− 1
)
◦ lA([x0]) +

(
A
p
− 1
)
◦ lA(u)

= [x0] +
(
A
p
− 1
)
◦ lA(u) ∈W (mẼ)d

since lA(u) ∈ pW (mẼ)d. In particular
(
A
p − 1

)
◦ lA(β) ∈W (mẼ)d, so that

V(−1)
Y

((
A
p − 1

)
◦ lA(β)

0

)
∈ Ãh.

2.4.3. An explicit computation of the Hilbert symbol

We come to the proposition that explicitly gives the desired triple. The
basic ingredient can be seen as a rewording of Proposition 3.8 of [2] which
provides the x coordinate of the triple and allows to prove that y is zero.
However, in order to get z, we have to carry Abrashkin’s computations to
the higher order. Indeed, we already know that z belongs to W (mẼ), but
we need its value modulo XW (mẼ).

Proposition 2.12. — Denote by U the principal part of the vector

V(−1)
Y

((
A
p − 1

)
◦ lA(β)

0

)
and define x̂ = (o1, . . . , oh)U . Then

(1) U ∈ (W [[ 1
Y ]] ∩ Ã)h

(2) Let b̂ ∈ T (F )⊗Ã be a solution of (ϕ−1)b̂ = x̂ then for any g ∈ GK ,

(g − 1)b̂ ≡ (β(π), g]F,M mod pMÃ +W (mẼ).

Proof. — Point 1. can be shown like Point 3. of Lemma 2.11 above. The
second point appears as a rewording of [2, Proposition 3.8]. Let us give
another proof. Let us recall from Lemma 2.11:

V−1
Y ≡ V

−1 mod pM

Y e(p+1)/(p−1) m[1,p]

then there is δ ∈ pM

Y e(p+1)/(p−1) m[1,p] with V−1
Y = V−1 + δ. Write δ = δ1 + δ2

with δ1 ∈ pM−1Y e(p2−2p−1)/(p−1)G[0,p] and δ2 ∈ pM

Y e(p+1)/(p−1) m[1,∞[. Let us
recall that we write V−1

Y = V(−1)
Y + U so that

XV(−1)
Y −Xδ2 = XV−1 +Xδ1−XU ∈ G[p−1,∞[

[
1
Y

]⋂
G[0,p−1[

[
1
p

]
= Ã+.
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Then, if B is a matrix with coefficients in Ã such that

(2.9) (ϕ− 1)B =
(
V(−1)
Y − δ2

)((A
p − 1

)
◦ lA(β)

0

)
,

as in Paragraph 1.7, (ϕ−ω)(X1B) =
(
XV(−1)

Y −Xδ2

)((A
p − 1

)
◦ lA(β)

0

)
has coefficients in Ã+ so that, by successive approximations modulo pk and
since Ẽ+ is integrally closed, we get B ∈ 1

X1
Ã+ ⊂ Fil0Bcrys. Still write

Λ = V−1
(
lA(δ(ξ)−F β)
mA(δ(ξ)−F β)

)
∈
(
Fil0Acrys

)h
.

We compute

(ϕ− 1) (B − Λ) = (δ1 − U)

((
A
p − 1

)
◦ lA(β)

0

)

Since the coefficients of δ′1 := δ1

((
A
p − 1

)
◦ lA(β)

0

)
lie in Y G[0,p], the se-

ries −
∑
n∈N ϕ

n(δ′1) converges to ∆1 ∈ Y G[0,p] with (ϕ−1)(∆1) = δ′1. Like-

wise the coefficients of δ′2 = U

((
A
p − 1

)
◦ lA(β)

0

)
belong to YW [[Y ]] +

Y ep−dep/(p−1)e

p GY,[0,p] so that −
∑
n∈N ϕ

n(δ′2) converges to a ∆2 with co-
efficients in YW [[Y ]] + Y ep−dep/(p−1)e

p GY,[0,p] satisfying (ϕ − 1)(∆2) = δ′2.

Finally,
(ϕ− 1) (B − Λ−∆1 + ∆2) = 0

with B − Λ −∆1 + ∆2 having coefficients in Fil0Bcrys. And the fact that
(Fil0Bcrys)ϕ=1 = Qp shows B − Λ−∆1 + ∆2 ∈ Qp. Then, for g ∈ GK ,

(g − 1)(o1, . . . , oh) (B − Λ−∆1 + ∆2) ≡ 0 mod pM

so that

(g − 1)(o1, . . . , oh) (B) = (g − 1)(o1, . . . , oh) (Λ + ∆1 −∆2)
= (ι(ξ), g]R(F ) + (g − 1)(o1, . . . , oh) (∆1 −∆2)

And since ∆1 − ∆2 has coefficients in Y
p G[0,p], the same holds for the co-

ordinates of (g − 1)(o1, . . . , oh) (∆1 −∆2). We find that the coordinates of
(g − 1)

(
(o1, . . . , oh)B

)
− (ι(ξ), g]R(F ) have coefficients in

1
Y e(p+1)/(p−1)G[ 1

p−1 ,∞[
⋂ Y

p
G[0,p] = Y Ã+ ⊂W (mẼ).
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To finish, recall Equality (2.9): there exists δ2 ∈ pM

Y e(p+1)/(p−1) m[1,∞[ ⊂ pMÃ
such that

(ϕ− 1)B =
(
V(−1)
Y − δ2

)((A
p − 1

)
◦ lA(β)

0

)
And surjectivity of ϕ− 1 on Ã permits to conclude. �

Remark 2.13. — It is possible to get rid of Acrys here by studying the
action of (ϕ− 1) on G[0,p]

[ 1
Y

]
.

2.4.4. An explicit computation of the Kummer map

We will use the above result in the following specified form.

Proposition 2.14. — Let α ∈ F (mK) and β ∈ F (YW [[Y ]]) be such
that α = θ(β) = β(π). Put

x = (o1, . . . , oh)V(−1)
Y

(
(Ap − 1) ◦ lA(β)

0

)
∈ D̃L(T (F )).

There exists z ∈ D̃L(T (F ))∩ T (F )⊗W (mẼ) unique modulo pM such that
the class of (x, 0, z) corresponds to the image of α by the Kummer map
F (mK)→ H1(K,F [pM ]). Moreover,

z ≡ XY V(−1)
Y

d

dY

(
lA(β)
mA(β)

)
mod XW (mẼ).

Proof. — We use Proposition 2.12, and remark that

x̂− x ∈ T (F )⊗ YW [[Y ]] ⊂ (ϕ− 1)(T (F )⊗ YW [[Y ]]).

So, if b ∈ T (F )⊗ Ã satisfies (ϕ− 1)b = x, then for any g ∈ GK ,

(g − 1)b ≡ (α, g]F,M mod pMÃ +W (mẼ).

Thus for any h ∈ GL, since (h− 1)b ∈ ker(ϕ− 1) = T (F ),

(h− 1)b ≡ (α, h]F,M mod pMT (F ).

We deduce there exist y, z ∈ D̃L(T (F )) unique modulo pM such that the
class of the triple (x, y, z) corresponds to the image of α in H1(K,F [pM ]);
indeed let (x1, y1, z1) be such a triple, and b1 ∈ T (F ) ⊗ Ã a solution of
(ϕ− 1)b1 = x1 then,

∀h ∈ GL, (h− 1)(b1 − b) ≡ 0 mod pM , thus, b1 − b ∈ D̃L(F [pM ]),

which shows that the class of (x, y1 + (γ − 1)(b− b1), z1 + (τ − 1)(b− b1))
corresponds to the same class as (x1, y1, z1) and, if x is fixed, this triple is
unique.
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Let us now determine y: let γ̃ lift γ then

(γ̃ − 1)(−b) + y = (α, γ̃]F,M ≡ (γ̃ − 1)(−b) mod pMÃ +W (mẼ)

hence, since (γ̃ − 1)(−b) ∈ T (F ), y ∈ T (F )⊗W (mẼ) ∩ T (F ) = {0}.
Likewise, let τ̃ lift τ then

(τ̃ − 1)(−b) + z = (α, τ̃ ]F,M ≡ (τ̃ − 1)(−b) mod pMÃ +W (mẼ)

hence z ∈ T (F )⊗W (mẼ). As z satisfies moreover (τ − 1)x = (ϕ− 1)z, this
uniquely determines z since ϕ− 1 is injective on T (F )⊗W (mẼ). In order
to specify z, we need the

Lemma 2.15. —
(1) For all U ∈W [[Y ]], the following congruence holds

(τ − 1)V(−1)
Y U ≡ XY V(−1)

Y

dU

dY
mod XW (mẼ) + pMÃ.

(2) There exists u ∈ m[p/(p−1),p] such that

ϕG(XV−1
Y ) = (ϕG(X)V−1

Y E
−1 + pMu)

(
1
pId 0
0 Ih−d

)

Proof of the lemma. — We first specify (τ − 1)V(−1)
Y . Remark that if

f(Y ) is a series in W{{Y }}∩Ã, (τ−1)f(Y ) =
∑
n>1

(XY )n
n! f (n)(Y ). Thus:

(τ − 1)V(−1)
Y = XY

d

dY
V(−1)
Y + (XY )2

2
d2

dY 2V
(−1)
Y +

∑
n>3

(XY )n

n!
dn

dY n
V(−1)
Y

Let us estimate the summand (XY )n
n!

dn

dY nV
(−1)
Y . Lemma 2.11 shows that

d
dY V

−1
Y = pMV−1

Y W̃V−1
Y for some W̃ with coefficients in W [[Y ]] and the

principal part of V−1
Y W̃V−1

Y is entire. Thus, on the one hand

XY
d

dY
V(−1)
Y + (XY )2

2
d2

dY 2V
(−1)
Y ∈ pMÃ

and on the other hand one can write
dn

dY n
V−1
Y =

n∑
k=1

pMkwn,k

where the wn,k are sums of terms of the form V−1
Y W̃n,1V−1

Y W̃n,2 . . .

W̃n,kV−1
Y , where W̃n,i ∈W [[Y ]] are derivatives of W̃ . Recall that the coeffi-

cients of V−1
Y belong to 1

X

(
G[0,p] + pM−1m[1/(p−1),p]

)
, then the coefficients

of V−1
Y W̃n,1 . . .W̃n,kV−1

Y lie in 1
Xk+1G[0,p] + pM−1 ( 1

Xk+1 m[1/(p−1),p]
)
.
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Suppose 1 < k < n− 1. Since vp(n!) 6 bn/(p− 1)c = n′, there is u ∈ Zp
such that

pMk (XY )n

n!
= Y nXk+2u

Xn−k−2

pn′−Mk
.

Since p > 2 and k > 1,

(n′ −Mk)(p− 1) 6 n− k − 2 and Xn−k−2

pn′−Mk
∈W

[[
Xp−1

p

]]
⊂ G[0,p].

Thus, pMk (XY )n−1

n! wn,k lies in m[0,p] + pM−1m[1/(p−1),p].

Let now k = 1, write

wn,1 = V−1
Y

dn−1

dY n−1 W̃V
−1
Y = (n− 1)!V−1

Y W̃ ′V−1
Y

and

(XY )n−1

n!
pMwn,1 = (XY )n−1

n
V−1
Y W̃ ′V−1

Y = Xn−p

n
Y nXp−1V−1

Y W̃ ′V−1
Y

has coefficients in m[0,p] + pM−1m[1/(p−1),p] as before.
Let k = n, one has

wn,n = n!V−1
Y W̃n,1V−1

Y W̃n,2 . . . W̃n,nV−1
Y , ∀i W̃n,i = W̃ ,

so that (XY )n
n! pMnwn,n lies in pMn 1

X

(
G[0,p] + pM−1m[1/(p−1),p]

)
.

Finally, for k = n− 1, since vp(n!) 6 n/(p− 1) 6 n− 1,

(XY )n

n!
pM(n−1)wn,n−1 ∈ Y n

(
G[0,p] + pM−1G[1/(p−1),p]

)
.

The same argument as for Point 1. above shows that for n > 2, the coeffi-
cients of (XY )n

n!
dn

dY nV
(−1)
Y lie in XW (mẼ) + pMÃ hence the coefficients of

(τ − 1)V(−1)
Y lie in XW (mẼ) + pMÃ. Point 2. then follows from

(τ − 1)V(−1)
Y U =

(
(τ − 1)V(−1)

Y

)
τU + V(−1)

Y (τ − 1)U

and the congruence (τ − 1)U ≡ XY dU
dY mod XW (mẼ).

Now, let us carry on computations of Lemma 2.11: we write XV−1
Y =

X
t (Ih + pM−1u1)tVD with u1 ∈ m[ 1

p−1 ,p]. And since VD has coefficients in
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G[0,p] ⊂ Acrys where ϕG and ϕ coincide, the following holds in G[p/(p−1),p]:

ϕG
(
XV−1

Y

)
= ϕG

(
X

t

)(
Ih + pMϕG(v1)

)
ϕG
(
tVD

)
= ϕG

(
X

t

)(
Ih + pMϕG(v1)

)
p tVDE−1

(
1
pId 0
0 Ih−d

)

= ϕG

(
X

t

)
(Ih + pMϕG(v1))(Ih − pMv)ptV−1

Y E
−1

(
1
pId 0
0 Ih−d

)

= ϕG(X)
(
V−1
Y E

−1 + pM ṽ
)( 1

pId 0
0 Ih−d

)
where ṽ =

(
ϕG(v1)− v − pMϕG(v1)v

)
V−1
Y E−1.

Let us clarify this: v, v1 ∈ 1
pm[1/(p−1),p], thus ϕG(v1) lies in 1

pm[p/(p−1),p].

Therefore pMvϕG(v1) ∈ 1
pm[p/(p−1),p] and,

ϕG(v1)− v − pMϕG(v1)v ∈ 1
p
m[p/(p−1),p].

Hence, since V−1
Y ∈

1
Y ep/(p−1)G[1,p], pṽ lies in 1

Y ep/(p−1) m[p/(p−1),p]. The result
follows then from ϕG(X) ∈ pXG[0,p] and X ∈ Y ep/(p−1)G[p/(p−1),∞[. �

Remark ϕ
(
XY ◦ d

dY

)
= ϕ(X)

p Y d
dY ◦ϕ and u d

dY

(
lA(β)
mA(β)

)
∈ m[p/(p−1),p]

so that we compute modulo pMm[p/(p−1),p]:

ϕG

(
XY V−1

Y

d

dY

(
lA(β)
mA(β)

))
≡ ϕ(X)

p
Y V−1

Y

d

dY
E−1

(
1
pId 0
0 Ih−d

)
ϕ

(
lA(β)
mA(β)

)

≡ ϕ(X)
p

Y V−1
Y

d

dY

(
A
p ◦ lA(β)
mA(β)

)
.

This yields to

ϕ

(
XY V(−1)

Y

d

dY

(
lA(β)
mA(β)

))
= ϕG

(
XY V−1

Y

d

dY

(
lA(β)
mA(β)

)
+XY

(
V(−1)
Y − V−1

Y

) d

dY

(
lA(β)
mA(β)

))
= ϕ(X)

p
Y V−1

Y

d

dY

(
A
p ◦ lA(β)
mA(β)

)
+ pMu

+ϕG
(
XY

(
V(−1)
Y − V−1

Y

) d

dY

(
lA(β)
mA(β)

))
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with u ∈ m[p/(p−1),p]. Write u = u1 +u2 with u1 ∈ Xp−1

p G[0,p], thus pMu1 ∈
Xm[0,p] and u2 ∈ m[p/(p−1),∞[. In addition, V(−1)

Y −V−1
Y ∈ G[0,p]⊗Qp hence

ϕG

(
XY

(
V(−1)
Y − V−1

Y

) d

dY

(
lA(β)
mA(β)

))
∈ XG[0,p] ⊗Qp.

Write moreover

ϕ(X)
p

Y V−1
Y

d

dY

(
A
p ◦ lA(β)
mA(β)

)
= XY V(−1)

Y

d

dY

(
A
p ◦ lA(β)
mA(β)

)
+ Ξ1 + Ξ2,

with

Ξ1 = XY
(
V−1
Y − V

(−1)
Y

) d

dY

(
A
p ◦ lA(β)
mA(β)

)
∈
(
Xm[0,p] ⊗Qp

)h
Ξ2 = ϕ(X)− pX

p
Y V−1

Y

d

dY

(
A
p ◦ lA(β)
mA(β)

)
∈X

(
m[0,p] + pM−1G[p/(p−1),∞[

)h
It can then be written as M1 + M2 with M1 ∈ Xm[0,p] and M2 ∈ pMÃ.
Eventually,

ϕ

(
XY V(−1)

Y

d

dY

(
lA(β)
mA(β)

))
−XY V(−1)

Y

d

dY

(
A
p ◦ lA(β)
mA(β)

)
− pMM0

lies in Mh(XG[0,p]⊗Qp) for some M0 ∈ Ã. Then, since XG[0,p]⊗Qp ∩ Ã =
XÃ+, we deduce the congruence modulo XÃ+ + pMÃ

ϕ

(
XY V(−1)

Y

d

dY

(
lA(β)
mA(β)

))
≡ XY V(−1)

Y

d

dY

(
A
p ◦ lA(β)
mA(β)

)
which lets us prove the proposition since modulo XÃ+ + pMÃ

(ϕ− 1)XY V(−1)
Y

d

dY

(
lA(β)
mA(β)

)
≡ XY V(−1)

Y

d

dY

((
A
p − 1

)
◦ lA(β)

0

)
≡ (τ − 1)x

and since the equation (ϕ − 1)Z = α ∈ XÃ+ + pMÃ admits a solution
Z ∈ XÃ+ + pMÃ. �

2.5. The explicit formula

We come now to the proof of the main theorem, the explicit formula for
the Hilbert symbol. Write Tr for the trace TrW/Zp .
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Theorem 2.16. — Let β ∈ F (YW [[Y ]]) and α ∈ (W [[Y ]][ 1
Y ])×. Denote

L (α) =
(

1− ϕ

p

)
logα(Y ) = 1

p
log α(Y )p

αϕ(Y p)
∈W [[Y ]].

Then coefficients of the Hilbert symbol (α(π), β(π))F,M in (o1
M , . . . , o

h
M )

are

(Tr ◦ResY )V−1
Y

(((
1− Ap

)
◦ lA(β)

0

)
dlogα(Y )−L (α) d

dY

(
A
p ◦ lA(β)
mA(β)

))

Proof. — We use the fact that if η ∈ H1(K,Z/pMZ) and r(x) ∈ GabK is
the image by the reciprocity isomorphism x ∈ K then invK(∂x ∪ η) =
η(r(x)). From Proposition 1.14, ∂α(π) corresponds to a triple (x, y, z) con-
gruent modulo XYW [[X,Y ]] to(

−s(Y )
X
− s(Y )

2
, 0, Y dlogS(Y )

)
⊗ ε.

We compute its cup-product with the image (x′, 0, z′) in H1(K,F [pM ]) of
θ(β) given by Proposition 2.14 where we recall that

x′ = V(−1)
Y

(
(Ap − 1) ◦ lA(β)

0

)

z′ ≡ XY V(−1)
Y

d

dY

(
lA(β)
mA(β)

)
mod XW (mẼ)

We get the triple (a, b, c) where:

a = yV−1
Y

(
(Ap − 1) ◦ lA(β)

0

)
∈W (mẼ)

because Proposition 1.14 says that y ∈ XYW [[X,Y ]] and Lemma 2.11 that
XY V(−1)

Y has coefficients in W (mẼ) + pMÃ. Moreover,

c = −y ⊗ γz′ +
∑
n>1

(
χ(γ)
n

) n−1∑
k=1

Ckn−1(τ − 1)k−1z ⊗ τk(τ − 1)n−1−kz′

lies in W (mẼ) because y, z, z′ ∈W (mẼ). Finally, b = z⊗ τx′−x⊗ϕz′ and

z ⊗ τx′ = (τ − 1)(log(S(Y ))/t+ µ) τ

(
V(−1)
Y

(
(Ap − 1) ◦ lA(β)

0

))
⊗ ε.

On the one hand

(τ − 1)(log(S(Y ))/t+ µ) ≡ Y dlogF (Y ) mod XYW [[X,Y ]]
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and on the other hand, Lemma 2.15 says that τ
(
V(−1)
Y

(
(Ap − 1) ◦ lA(β)

0

))
is congruent modulo XYW [[X,Y ]] to

V(−1)
Y

(
(Ap − 1) ◦ lA(β)

0

)
+XY V(−1)

Y

d

dY

(
(Ap − 1) ◦ lA(β)

0

)
.

Thus, since XY V(−1)
Y has coefficients in W (mẼ) + pMÃ,

z ⊗ τx′ ≡ Y V(−1)
Y

(
(Ap − 1) ◦ lA(β)

0

)
dlogS(Y ) mod W (mẼ).

Finally,

−x⊗ ϕz′ =
(
−s(Y )

X
− s(Y )

2

)
z′ ⊗ ε

and since z′ ≡ XY V(−1)
Y

d
dY

(
lA(β)
mA(β)

)
modulo XW (mẼ), we get the con-

gruence

−x⊗ ϕz′ ≡ Y s(Y )V(−1)
Y

d

dY

(
lA(β)
mA(β)

)
mod W (mẼ).

Eventually, (a, b, c) is congruent mod W (mẼ) to (0, b′, 0) with b′ equal to

Y V(−1)
Y

((
(Ap − 1) ◦ lA(β)

0

)
dlogS(Y ) + d

dY

(
lA(β)
mA(β)

)
1
p

log S(Y )p

S(Y p)

)
⊗ ε.

The theorem follows then from the lemma:

Lemma 2.17. — Let C = Cϕ,γ,τ (ÃL(1)) be the complex computing
Galois cohomology of Zp(1).

(1) Let f(Y ) =
∑
n>0

an
Y n ∈Mh(Ã) be the principal part of V(−1)

Y g(Y )
with g(Y ) having coefficients in W [[Y ]]. Then there exists a triple
(x1, x2, 0) with coefficients in W (mẼ) such that (x1, x2 + f(Y ) ⊗
ε, 0) ∈ B2(C). In other words the image of (x1, x2 + f(Y )⊗ ε, 0) in
H2(K,Zp(1)) is zero.

(2) Let (x, y, z) ∈ Z2(C) with x, y, z ∈ W (mẼ)(1) then (x, y, z) ∈
B2(C).

(3) Let w ∈ W then (0, w ⊗ ε, 0) ∈ Z2(C) and its image through the
reciprocity isomorphism is Tr(w).

Proof of the lemma. — Put wn = 1
Y n((1+X)−n−1) + 1

2Y n ∈ ÃL. Then

(2.10) (τ − 1)wn = 1
Y n

+ 1
2

(τ − 1) 1
Y n
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and

γ

(
ε

Y n ((1 +X)−n − 1)

)
= χ(γ)ε

Y n
(
(1 +X)−χ(γ)n − 1

)
= χ(γ)δ−1

(
ε

Y n ((1 +X)−n − 1)

)
.

The Taylor expansion

δ−1 = χ(γ)− χ(γ)(χ(γ)− 1)
2

(τ − 1) + (τ − 1)2g(τ − 1)

where g(τ − 1) is a power series in τ − 1 yields to the relation

(2.11) (γ − 1)wn ⊗ ε = g(τ − 1)(τ − 1) 1
Y n

.

From Lemma 2.15, we know (τ − 1)V(−1)U for U ∈ W [[Y ]] has coeffi-
cients in W (mẼ). Relation (2.10) then shows (τ − 1)

∑
n>0 anwn = f(Y )

mod W (mẼ) and Relation (2.11) that (γ−1)
∑
n>0 anwn = 0 mod W (mẼ)

which proves that the coboundary image of triple (
∑
n>0 anwn, 0, 0) in

H2(C) has the desired form, hence 1.
To show 2. we have to solve for x, y, z ∈W (mẼ)(1) the system

x = (γ − 1)u+ (1− ϕ)v
y = (τ − 1)u+ (1− ϕ)w
z = (τχ(γ) − 1)v + (δ − γ)w.

Consider therefore v, w ∈ W (mẼ)(1) solutions of x = (ϕ − 1)v and y =
(ϕ− 1)w which exist, and are unique since ϕ− 1 is bĳective on W (mẼ)(1).
Then, by combining these equations with the ones of the system, we get

(ϕ− 1)((τχ(γ) − 1)v + (δ − γ)w) = −(τχ(γ) − 1)x− (δ − γ)y = (ϕ− 1)z.

Since z and (τχ(γ)−1)v+(δ−γ)w are elements of W (mẼ)(1) where (ϕ−1)
is injective, the equality z = (τχ(γ)− 1)v+ (δ− γ)w holds ; (x, y, z) is then
a coboundary, image of (0, v, w).

Finally, for Point 3., remark that (0, w ⊗ ε, 0) = (0, 0, 1 ⊗ ε) ∪ (w, 0, 0).
Proposition 1.14 says (0, 0, 1⊗ε) is the image through the Kummer map of π
a uniformizer of K. (To see this, take F (Y ) = Y .) In addition (0, w ⊗ ε, 0)
corresponds from Theorem 1.5 to the character η of GK defined in the
following way: choose b ∈ Ã such that (ϕ − 1)b = w, then for all g ∈
GK , η(g) = (1−g)b. Remark that since w ∈W , we can choose b ∈Wnr and
that the image through the Kummer map of a uniformizer is the Frobenius
FrobK , thus the image through reciprocity isomorphism of (0, w ⊗ ε, 0) is

(1− FrobK)b = (1− ϕfK )b = (1 + ϕ+ · · ·+ ϕfK−1)w = Trw
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where fK = f(K/Qp), which proves the lemma. �

We prove then the theorem by remarking, from the congruence shown
above, that the triple (a, b, c) can be written as a sum of a triple (0, g(Y ), 0)
where g is the negative part of a vector series in Y and then is zero
in H2(K,Z/pMZ), of a triple with coefficients in W (mẼ)(1), then also a
coboundary because of the lemma above and finally a triple (0, w ⊗ ε, 0)
where w is the constant term of the vector series

Y V(−1)
Y

((
(Ap − 1) ◦ lA(β)

0

)
dlogα(Y ) + d

dY

(
lA(β)
mA(β)

)
1
p

log α(Y )p

α(Y p)

)
hence the residue of

V−1
Y

(((
A
p − 1

)
◦ lA(β)

0

)
dlogα(Y ) + d

dY

(
lA(β)
mA(β)

)
1
p

log α(Y )p

α(Y p)

)
.

The only term with a non zero contribution is then the residue, and that
contribution is, according to the lemma, given by the trace. �
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