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AN EXPLICIT FORMULA FOR THE HILBERT
SYMBOL OF A FORMAL GROUP

by Floric TAVARES RIBEIRO

ABSTRACT. — A Briickner-Vostokov formula for the Hilbert symbol of a formal
group was established by Abrashkin under the assumption that roots of unity be-
long to the base field. The main motivation of this work is to remove this hypothesis.
It is obtained by combining methods of (¢, I')-modules and a cohomological inter-
pretation of Abrashkin’s technique. To do this, we build (¢, I')-modules adapted
to the false Tate curve extension and generalize some related tools like the Herr
complex with explicit formulas for the cup-product and the Kummer map.

RESUME. Abrashkin a établi une formule de Brueckner-Vostokov pour le
symbole de Hilbert d’un groupe formel sous la condition d’appartenance de racines
de I'unité au corps de base. La motivation premiére de ce travail réside en la
suppression de cette hypothése. On I’obtient en combinant des méthodes de (¢, TI')-
modules et une interprétation cohomologique des techniques d’Abrashkin. Pour
cela, on construit des (¢, I')-modules adaptés & 1’extension dite de la fausse courbe
de Tate et on généralise des outils tels que le complexe de Herr avec des formules
explicites pour le cup-produit et I'application de Kummer.

Introduction
0.1. (¢,T')-modules

Let p be a prime number and K a finite extension of QQ, with residue
field k. Fix K an algebraic closure of K and note Gx = Gal(K/K) the
absolute Galois group of K. Let us furthermore introduce Koo = U, K ((pn)
the cyclotomic extension of K and 'y = Gal(K/K).

The context of this work is the theory of p-adic representations of the
Galois group of a local field, here Gi. We are particularly interested in Z,,-
adic representations of G, i.e. Z,-modules of finite type endowed with a

Keywords: p-adic representations, (¢, I')-modules, formal groups, explicit reciprocity law.
Math. classification: 11F80, 11525, 141,05, 11S31, 11523, 14F30.



262 Floric TAVARES RIBEIRO

linear and continuous action of G k. In [13], Fontaine defined an equivalence
of categories between the category of Z,-adic representations of Gx and
the one of étale (¢, 'k )-modules over aring Ag. A (p,I'k)-module on A i
is a module of finite type over A endowed with commuting semi-linear
actions of ¢ and I'gk.

Berger, in [5], showed how to recover the de Rham, semi-stable or crys-
talline module of Fontaine’s theory from the (¢,I'k)-module associated
with the representation. For absolutely unramified crystalline representa-
tions, Wach furnished in [27] another powerful construction which permits
to recover the crystalline module in the associated (¢, Ik )-module. This
construction was studied in details and made more precise by Berger ([7]).
(¢, Tk )-modules are also intimately linked to Iwasawa theory as was shown
in works by Cherbonnier and Colmez ([9]), Benois ([4]) or Berger ([6]).

0.2. The false Tate curve extension

The construction of (p, 'k )-modules lies on the use of the cyclotomic
tower and shows its fundamental role in the study of p-adic representa-
tions. But another extension appears as particularly significant. Fix 7 a
uniformizer of K and m, a system of p™-th roots of m: my = 7 and for all
n €N, W£+1 = mp,. It is the behavior in the extension K, = U, K (m,) which
makes the difference between a crystalline and a semi-stable representation.
It is then natural to introduce (¢, T')-modules where the cyclotomic exten-
sion K is replaced by K. However K, /K is not Galois and we only get
p-modules (also studied by Fontaine in [13]). These ¢-modules were used
by Breuil ([8]) or Kisin ([19]) to study p-adic representations and Abrashkin
made use of the field of norms of K /K in [2] and [1].

In order to recover the whole action of Gk, let us then consider the
Galois closure L of K, which is nothing more than the compositum of
K, and K, a metabelian extension of K, the false Tate curve extension.
What we lose here is the explicit description of the field of norms of this
extension. Note Go, = Gal(L/K). Our first result can, for A’ = A or A,
and A} = A’Gr (where A and A are Fontaine rings defined in Paragraph
1.2), be expressed as:

THEOREM 0.1. — The functor V — D (V) = (V @z, A’)~ induces an
equivalence of categories

{Z,, — adic representations of Gx} — {étale (¢, Gs) — modules over A’}

In fact we show that the (¢, G )-module Dr, (V') is nothing but the scalar
extension of the usual (¢, 'k )-module D(V) from Ak to A%.

ANNALES DE L’INSTITUT FOURIER



AN EXPLICIT FORMULA FOR THE HILBERT SYMBOL 263
0.3. Galois cohomology

Recall that in the case of (p, I'kx)-modules, Herr [16] showed that the ho-
mology of the complex 0 —= D(V) EL D(V)a D(V) EL D(V)—0

—1
with maps f; = ( 14
v—1

) and fo = (y — 1,1 — ¢) computes the Galois
cohomology of V.

We introduce now a complex in Dp (V) which computes the cohomol-
ogy of V. Since the group G has dimension 2, the corresponding com-
plex loses some simplicity. Let 7 be a topological generator of the sub-
group Gal(L/K) and ~ a topological generator of Gal(L/K,) satisfying

vy~ = X it can be described as:

THEOREM 0.2. — Let V' be a Zp-adic representation of Gk and D its
(¢, G )-module. The homology of the complex

0—>D—>DeDSD—>D&DSD ——>D—>0

where
p—1 v—1 11— 0
a=|v-1], B=[|7-1 0 1—¢],
T—1 0 X 15—y

n= (TX(’Y)*I,(S*’}/,QD*])

with § = (X0 — 1)(r — 1)7' € Z,[[r — 1]], identifies canonically and
functorially with the continuous Galois cohomology of V.

In fact, we get explicit isomorphisms. In particular for the first cohomol-
ogy group, let (z,y, z) € ker 3, let b be a solution in V@ A’ of (¢ —1)b = z,
then the above theorem associates with the class of the triple (z,y, z) the
class of the cocycle:

C o, = f(afl)bJrfy"Tm 7lz+ anly
T—1 v—1

where m and n are defined by the relation o, = ~"7".

Like Herr in [17], we also furnish explicit formulas for the cup-product.

0.4. Explicit formulas for the Hilbert symbol

The Hilbert symbol, for a field K containing the group pp» of p™-th roots
of unity is defined, for rx : K* — G3% the reciprocity map of class field
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264 Floric TAVARES RIBEIRO

theory, as the pairing

" rig(a)—1
(a,b) € K* x K* — (a,b)pn ::(p\/l;) € fpn.

Since 1858 and Kummer, many explicit formulas have been given for the
Hilbert symbol. Let us cite Coleman’s one ([10]): suppose that K = Ko({pn)
where K is a finite unramified extension of Q, and (p» a fixed primitive
p"-th root of unity. Note W the ring of integers of Ko. If FF € 1+ (p, X) C
W[X]], then F({p» —1) is a principal unit. Extend the absolute Frobenius ¢
from W to W[[X]] by putting ¢(X) = (1+ X )P —1. Denote for F' € W[[X]]

1 F(X)P

Z(F) = 5108 i)

So forFEl—i—(p,X),f(F):( —%) log F(X). Coleman’s formula is:

e WI[X]).

THEOREM 0.3 (Coleman). — Let F,G € 1+ (p, X) C W|[X]], then

(F(Cpn — 1), G (G — 1))pn = eI where

[F,G]n = Trg, g, © Resx (Z(G)dlogF — %.Z(F)dlog G‘p) .

_t
¢m(X)

Briickner-Vostokov’s formula is very similar to Coleman’s one: suppose
p # 2,let (pn € K, let W be the ring of integers of K, the maximal unram-
ified extension of K/Q,. Extend the Frobenius ¢ from W to W[[Y]][1/Y]
via o(Y) = Y?. Fix moreover 7 a uniformizer of K.

THEOREM 0.4 (Briickner-Vostokov). — Let F,G € (W|[Y]][1/Y])*, and
s € WI[Y]] such that s(m) = (yn, then

(F(m),G(m))pn = I[JZ’G]", where

1
[F, G|, = Trg,/q, © Resy -

T <$(G)dlogF - ;.Z(F)dlogG‘p) .

In the second part of this work, we show a generalization of this formula
to formal groups.

Remark that there are other types of formulas, in particular the one of
Sen ([20]), generalized to formal groups by Benois in [3]. We refer interested
readers to Vostokov’s [25] which provides a comprehensive background on
such formulas.

ANNALES DE L’INSTITUT FOURIER



AN EXPLICIT FORMULA FOR THE HILBERT SYMBOL 265

0.5. An explicit formula for formal groups

We suppose now p > 2.(1)

Let G be a connected smooth formal group of dimension d and finite
height h over W = W (k) the ring of Witt vectors with coefficients in a
finite field £®). Let K be a finite extension of Ky = FracWV containing the
pM-torsion G[p™] of G. Define the Hilbert symbol of G as

(z,0) € K* x G(mg) = (2, B)a.m = rx(2)(51) —c fr € Glp"']

where 7 1 K* — G is the reciprocity map and 3 satisfies pMidg 1 = 3.

Fix a basis of logarithms of G under the form of a vectorial logarithm
lg € Ko[[X]]¢ where X = (X1,..., X4) so that one has the formal identity
le(X+¢Y) =1c(X)+1c(Y). Complete g with almost-logarithms mg €
Ko[[X]]"~? in a basis (;;;) of the Dieudonné module of G. Fontaine
defined in [12] (see also [11] for an explicit description) a pairing between
the Dieudonné module and the Tate module of G, T(G) = lim & [p"].

Honda showed in [18] the existence of a formal power series of the
form A = ., Fag™ with F,, € My(W) such that (1 - %) ola(X) €
Ma(W([X])-

Let us introduce the approximated period matrix. Fix (0!, ..., 0") a basis
of T(G) where o' = (0!),>1 with pidgo!, = of,_;. Then (o},,...,0%) is a
basis of G[pM]. For all i, choose 6%, € F(YW/[[Y]]) such that 64,(7) = of,.
We define

Yy — (leG(é}w) o pMia(0fy) ) .
pMmg(6y,) ... pMmg(oh,)

Now we can state the reciprocity law which generalizes Briickner-
Vostokov’s one and constitutes the goal of the second part of this work:

THEOREM 0.5. — Let a € (W[[Y]][¢])* and 8 € GYW][Y]]). Write
Tr for Tryy,z,. The coordinates of the Hilbert symbol (a(w), 3(7))c, v in

the basis (0}, ...,0%,) are

(Tr o Resy V! (( g G )dmga(Y)—f(a)(jY( mG((;ﬂ) >)

(1 The computations of the Kummer maps require 2 to be invertible (cf. Proposition
1.14 and the proof of Lemma 2.15 below).

()W is then unramified over Zp. The ramified case seems much more complicated since
we don’t have the theory of Honda’s systems [18, Theorem 4].

TOME 61 (2011), FASCICULE 1



266 Floric TAVARES RIBEIRO

This formula was shown by Abrashkin in [2] under the assumption that
K contains pM-th roots of unity. Vostokov and Demchenko proved it in
[26] without any condition on K for formal groups of dimension 1.

0.6. The strategy

The main idea is due to Benois who carried it out in [4] to show Coleman’s
reciprocity law. The point is to see the Hilbert symbol as a cup-product
via the commutative diagram

K* « K* (7)?” ‘LLpn

HXK\L TinVK

HY(K, ) x HYK, pin) ——= H2(K, p?)

where k is Kummer’s map. He first explicitly computed  in terms of the
Herr complex associated with the representation Z,(1), then he used Herr’s
cup-product explicit formulas and he finally computed the image of the
couple he obtained via the isomorphism invg.

For a formal group, the situation is rather similar, we get the diagram

[OIeRY;

K* x G(mg) GlpM]

NXI{G\L TinVK

HY(K, pyn) x HY(K, GlpM]) —> H2(K, ppm @ Gp™M))

with identifications H?(K, pu,nr @ G[pM]) ~ H*(K, Z/p™Z(1)) @ G[p™] and
GpM] ~(z/p"Z)".

The formulas for the Kummer map and the cup-product are shown in
the section on (¢, I')-modules. The computation of the explicit formula for
the map k¢ : G(mg) — HY(K, G[pM]) constitutes the technical axis of this
work. Abrashkin made use of the Witt symbol, and to conclude via the field
of norms of extension K, /K, he used the compatibility of the reciprocity
map between the field of norms of an extension and the basis field. With
the help of the four terms complex above, we give a cohomological inter-
pretation of his method and carry his computations to the higher order to
calculate kg.

Let us finish with some technical remarks on the remainder assumption
that K contains the p™-torsion. Without this hypothesis, the Hilbert sym-
bol is not well defined, but we can’t even compute the Kummer map. Indeed

ANNALES DE L’INSTITUT FOURIER



AN EXPLICIT FORMULA FOR THE HILBERT SYMBOL 267

the formula involves an approximation of the period matrix, which is built
by approximating the basis of the Tate module by elements of G(K).

However, the assumption that K contains the p™-torsion implies, be-
cause of Weil’s pairing and in the case where the formal group comes from
an abelian variety, that K actually contains the p™-th roots of unity so
that we don’t get any improvement in this case.

0.7. Organization of the paper

This work splits in two parts. First, we introduce (¢, G )-modules and
give the associated Herr complex with explicit formulas between its homol-
ogy and the cohomology of the representation. Then we provide explicit
formulas for the cup-product and the Kummer map.

The second part is devoted to the proof of the Briickner-Vostokov formula
for formal groups. The main difficulty lies in the fact that the period matrix
does not live in the right place: we introduce an approximated period matrix
and show that it enjoys similar properties as the original matrix modulo
suitable rings. Then, we carry out the computation of the Hilbert symbol
in terms of the Herr complex.

ACKNOWLEDGMENT. — This work is based on my PhD thesis under
the supervision of Denis Benois. I wish to thank him for the precious ideas
he shared with me and the time and energy he offered me. I am also very
grateful to Laurent Berger. He carefully read an earlier version of this paper,
some of his remarks allowed me to improve it.

1. (¢,T')-modules and cohomology
1.1. Notation

Let p be a prime. Let us recall (cf. [21]) that if K is a perfect field of
characteristic p, the ring of Witt vectors W (K) over K is a strict p-ring
with residue field K. If R is a subring of K, we still denote by W (R) the
Witt vectors with coefficients in R. It is a subring of W (K).

Fix K a finite extension of Q, with residue field k. Denote W = W (k)
the ring of Witt vectors over k. Then Ko = W ®z, Q, identifies with the
maximal unramified sub-extension of Q, in K. Fix K an algebraic closure
of K and denote G = Gal(K/K) the absolute Galois group of K and

TOME 61 (2011), FASCICULE 1



268 Floric TAVARES RIBEIRO

C, the p-adic completion of K. Endow C, with the p-adic valuation v,
normalized by v,(p) = 1. Recall that the action of Gx on K extends by
continuity to C,,.

Let us fix € = ({pn)n>0 a coherent system of p™-th roots of unity, i.e.

o = Cpn—1 forall n, ¢ = 1 and ¢, # 1. Then Ko = J,,en K(Gpr) is
the cyclotomic extension of K. Denote Gg,, = Gal(K/K) its absolute
Galois group and I'y = Gal(K/K) the quotient.

Fix as well m a uniformizer of K and p = (mpn)n>0 a coherent system
of p"-th roots of m. Denote K = (J,5q K (mpn). The extension Kr/K
is not Galois, so put L = Un>0 K (Cpn,mpn) its Galois closure. It is the
compositum of K, and K. Denote G, = Gal(K /L) its absolute Galois
group and G = Gal(L/K) the quotient. The cyclotomic character y :
Gk — Z,, factorizes through G (even through ') ; it is also true for the
map ¢ : Gxg — Zj, defined by

Vge Gk g(mpn) = 7rpn§g’n(g).
Moreover, the group G identifies with the semi-direct product Z, »x I'k.
So if p is odd G is topologically generated by two elements, v and 7
satisfying 7y~ = 7X(). Let us fix v and choose 7 such that () = 1,
ie. with 7(p) = pe.

We adopt the convention that complexes have their first term in degree
—1 if this term is 0, and otherwise in degree 0.

Remark 1.1. — The group G is a p-adic Lie group so that the exten-
sion L/K is arithmetically profinite (cf [28, 24]).

1.2. The field E, the ring A and some of their subrings.

We refer to [13] for results of this section. However we adopt Colmez’

notation. Rings R, W (FracR) or O; become E*, A and A.

Define E as the inverse limit E = lim C, where transition maps are
exponentiation to the power p. An element of E is then a sequence z =
(™), en satisfying (z("tD)? = z(™ for all n € N. Endow E with the
addition z +y = s where s = lim (™™™ 4 y(F™)P" and the

m— —+00
product z.y = t where t(® = z(") y(") These operations make E into a
field of characteristic p, algebraically closed and complete for the valuation
ve(r) = v,(z(?). The ring of integers of E, denoted by ET, identifies
then with the inverse limit lgn Oc, - It is a local ring whose maximal ideal,

denoted by mg, identifies with lim m¢, and with residue field isomorphic to

ANNALES DE L’INSTITUT FOURIER



AN EXPLICIT FORMULA FOR THE HILBERT SYMBOL 269

k. The field E, as well as its ring of integers E*, still has a natural action of
Gk continuous with respect to the vg-adic topology. Define the Frobenius
¢ : x+— zP which acts continuously, commutes with the action of G and
stabilizes Et.

Let A = W(E) be the ring of Witt vectors on E and AT = W(E*).
Any element of A (resp. AT) can be written uniquely as Y nen P [7n]
where (z,)nen is a sequence of elements in E (resp in ET). The topology
on A comes from the product topology on W(E) = EN. This topology
is compatible with the ring structure on A. It is weaker than the p-adic
topology.

Let us remark that the sequences ¢ and p define elements in E*. Denote
X =[¢] =1 and Y = [p]. These are elements of AT and even of W (mg).
They are topologically nilpotent. We also have bases of neighborhoods of
0in A:

{pnA + X7TLA+}(n,m)€N2 and {pnA + YmA—’_}(n’m)eNz.

Let us remark moreover that if P is a polynomial with coefficients in W[[X]]
then 7(P) = P so that Y cannot be a root of P since otherwise 7(Y") =
Y (1 + X)™ would be another one, for any n € Z. Thus, X and Y are
algebraically independent.

Let W[[X,Y]] denote the subring of At consisting in sequences in X
and Y ; it is stable under the actions of Gx and ¢ which are given by:

g1+ X)=1+X)X9 and ¢(YV)=Y(1+ X)¥
e(X)=(1+X)P—-1 and o) =Y".

Let Ag, denote the p-adic completion of Z,[[X]][
set

+], it consists in the

Ag, {ZanX | Vn€Z, an € Zy and ap — 0}

neEZ
It is a local p-adic, complete subring of A, with residue field F,((e — 1)).
Define A the p-adic completion of the maximal unramified extension of
Ag, in A. Tts residue field is then the separable closure of F,((¢ — 1)) in
E. Denote this field by E. It is a dense subfield of E.

1.3. p-adic periods.

We refer to Fontaine’s [14] for further details on these rings. The map
0 : Zp" [rn] € AT — Zp"rﬁlo) € Oc,

n=0 n=0

TOME 61 (2011), FASCICULE 1



270 Floric TAVARES RIBEIRO

is onto, with kernel W' (E+) a principal ideal of At generated, for instance,
by w = X/p~1(X). Define

Bjy = lim(A* ©.Q,)/(W'(B") ©Q,)"

n

the completion of A* ®Q, with respect to the W (E*)-adic topology. The
action of Gx on AT extends by continuity to B;R. The sequence
logle] = Zn>1(—1)”+1XTn converges in B, towards an element denoted
by t. Define Byr = Bjjp[1/t]. It is the fraction field of BJ,. It is still en-
dowed with an action of Gk for which Bgé‘ = K and with a compatible,
decreasing, exhaustive filtration Fil*Byr = thCTR.

Define Acrys to be the p-adic completion of the divided powers envelop
of AT with respect to W' (ET). It consists in the sequences > >0 any
with a, € AT and a, — 0 p-adically. It is naturally a subring of Bgg.
The sequence defining ¢ converges in A,ys, set B;;ys = Aerys ® Qp and
BCT?JS = B;;ys[]'/t] = ACTyS[]'/t]'

These rings, endowed with their p-adic topology, come with a continuous
action of G, the filtration induced by the one on By, and a Frobenius ¢
extending by continuity the one on A™. Note that BE% = Kj.

crys

We call a Z,-adic representation of G any finitely generated Z,-module
with a linear, continuous action of Gk and a p-adic representation of G g
any finite dimensional Q,-vector space with a linear, continuous action of
Gk . A Z,-adic representation is then turned into a p-adic representation
by tensorizing by Q.

Let V be a p-adic representation of Gg. Let us introduce D yys(V) :=
(V®q, BCTyS)GK . It is a Ky-vector space of dimension lower or equal to the
dimension of V' on Q. The representation V is said to be crystalline when
these dimensions are equal. We say as well that a Z,-adic representation V/,
free over Zy, is crystalline when so is the p-adic representation V ®z, Q.

1.4. Fontaine’s theory

Let R be a topological ring with a linear, continuous action of some group
I' and a continuous Frobenius ¢ commuting with the action of I'. Call a
(p,T')-module on R any finitely generated R-module M with commuting
semi-linear actions of I and ¢. A (¢, T')-module on R is moreover said étale
if the image of ¢ generates M as an R-module: Rp(M) = M.

ANNALES DE L’INSTITUT FOURIER



AN EXPLICIT FORMULA FOR THE HILBERT SYMBOL 271
1.4.1. The classical case

Let us recall the theory of (¢, I')-modules introduced by Fontaine in [13].
Set Ax = A%% . Define functors

D:V i D(V) = (A®g, V)=

from the category of Z,-adic representations of G to the one of (¢, I'k)-
modules on A i and

V:iMw—V(M)=(A®a, M)*"

from the category of étale (¢, 'k )-modules on A to the one of Zy-adic
representations of G . The following theorem was shown by Fontaine ([13]):

THEOREM 1.2. — The following natural maps are isomorphisms
A@AK D(V) — A®ZPV
A®z, V(M) — A®a, M.

In particular, D and V' are quasi-inverse equivalences of categories between
the category of Z,-adic representations of Gk and the one of étale (¢, 'k )-
modules on A.

Example. Let us define the false Tate curve (or Tate’s representation) by
Vrate = Zpe1r + Zpea with the action of Gg given for all g € Gk by
g(e1) = x(g)e1 and g(e2) = 1(g)e1 +e2 where x is the cyclotomic character
and 1 is defined in Paragraph 1.1. The name "false Tate curve" comes from
the similarity of this module with the Tate module of an elliptic curve with
split multiplicative reduction at p.

The (¢, I'k)-module of the false Tate curve admits a basis (1 ® e1,b ®
e1 +1® ez) where b € Ay satisfies (1 — 1)b = —1. However Vrge is not
potentially crystalline, and then, because of the main result of [27], not of
finite height, which means b ¢ A} = A, N A*.

We want to build a (¢,T')-module which furnishes more information
(which will then be redundant but easier to use) on the behavior of the
associated representation in the extension K,/K or in its Galois closure
L/K. For this, we want I' = G.

1.4.2. The metabelian case

Suppose A’ = A or A’ = A. Then, A’ is a complete p-adic valuation ring,
stable under both Gx and . Its residue field E' = E or E is separably

TOME 61 (2011), FASCICULE 1



272 Floric TAVARES RIBEIRO

closed. Set A} = A’Cr ; if Ef = E'CL then A/ is a complete p-adic
valuation ring with residue field E’ . For any Z,-adic representation V' of
G, define

Di(V) = (A" @z, V)
and for any (¢, G )-module D, étale over A7,

VI{(D) = (A/ XA’ D)‘PZI.

Denote these functors by Dy, and V;, when A’ = A and by D 1 and ‘7L when
A’ = A. Remark that D} (V) and D(V) ®a, A/, are (¢, Go)-modules
over A’ , the latter being étale. The following theorem shows that they are
indeed isomorphic and assures that D} is a good equivalent for D in the
metabelian case.

THEOREM 1.3. —
(1) The natural map v : D(V)®a, A7 — D7 (V) is an isomorphism of
(p, Goo)-modules étale over A .
(2) Functors D} and V| are quasi-inverse equivalences of categories
between the category of Z,-adic representations of G i and the one
of étale (p, Goo)-modules on A’ .

Proof. — Because of Theorem 1.2 and after extending scalars, the nat-
ural map D(V) ®a, A" — V ®z, A’ is an isomorphism. Taking Galois
invariants, we get an isomorphism

D(V) ®a, AL = (D(V) @a, A)9 "=V @z, A') = DL(V).

The functor D is then the composite of D with the scalar extension
®a A’ . Theorem 1.2 then shows that it is fully faithful. Fontaine’s com-
putation (cf. [13, Proposition 1.2.6.]) applies and shows that D’ is essen-
tially surjective on the category of étale (¢, Goo)-modules over A’. The
fact that V] is a quasi-inverse of D7 still follows from Theorem 1.2. O

COROLLARY 1.4. — The scalar-extension functor D +— D ®a, A’ in-
duces an equivalence

{étale(¢,T'k) — modules over Ak} — {étale(p, G ) — modules over A’}

Example. The (¢, G )-module of Tate’s representation admits a trivial
basis (1 ® e1,1 ® e2).
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1.5. Galois Cohomology
1.5.1. Statement of the theorem

We suppose from now on p odd.

Recall the classical case. Let D(V') be the (p, I'k)-module on A asso-
ciated with a representation V. Fix v a topological generator of I'x. Herr
introduced in [16] the complex

0 D) - D) —=0

D(V)@ D(V)

with maps f; = < f:i > and fo = (v — 1,1 — ). He showed that

the homology of this complex canonically and functorially identifies with
the Galois cohomology of the representation V. This identification was
explicitly given in [9] and [4] for the first cohomology group by associating
with the class of a pair (z,y) of elements in D(V) satisfying (y — 1)z =
(¢ — 1)y the class of the cocycle

-1
0>—>7(071)b+1_1 Yy
where b € V ®z, A is a solution of (¢ —1)b = 2 and oy, = 7" for some

n € Lp.

There still exists such a complex in the metabelian case. Since G, has
dimension 2, it will be a bit longer. Let M be a given étale (¢, G )-module
over A’ . Let us associate with M the four terms complex Cy,  -(M):

0 M- MoMoM—sMoModM—>M—s0

where
p—1 v—1 1—¢ 0
a=|y—-1], pg=|7-1 0 1—¢|,
T—1 0 X 1§y

n= (X0 —1,6 7,0 1)
with § = (7X0) — 1)(7 — 1)7! € Z,[[7 — 1]] defined as follows: set

(u> w(w—1)(u—n+1)

" = " € Z, for all w € Z, and all n € N.

Then 7X(0) = Z (XE;Y)) (7—1)" since 7" converges to 1 in G, and thus
n>=0
7 — 1 is topologically nilpotent in Z,[[G]]. So

5= % = <X§:>> (r—1)",

n=1
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The purpose of this paragraph is to show

THEOREM 1.5. — Let V be a Z,-adic representation of G .

i) The homology of the complex C,, (D (V)) canonically and func-
torially identifies with the continuous Galois cohomology of V.

ii) Explicitly, let (z,y,z) € Z'(Cyp.-(Dr(V))), let b be a solution in
V@A’ of (p—1)b =z, then the identification above associates with
the class of the triple (x,y, z) the class of the cocycle:

PR |

: =—(c—1)b "
¢t o =—(o- Dbt T Ty,

ifo, = ~Amm
o

1.5.2. Proof of Theorem 1.5 )

The functor F'* which associates with a Z,-adic representation V' the ho-
mology of the complex C, - -(Dr,(V)) is a cohomological functor coinciding
in degree 0 with the continuous Galois cohomology of V:

H%(Cyryr(DL(V)) = Dp(V) gt ym1,7=1 = VEE.

The proof consists then in showing that it is effaceable. In order to do that,
we would like to work with a category with sufficiently many injectives
and to see V' as a submodule of an explicit injective, its induced module,
which is known to be cohomologically trivial. But the category of Z,-adic
representations of Gx doesn’t admit induced modules. We will then work
modulo p” for a fixed r, and even in the category of direct limits of p"-
torsion representations and deduce the result by passing to the limit. We
have to show that the homology of the complex associated with an induced
module concentrates in degree 0, which shows a fortiori the effaceability of
F*. We will yet write this explicitly, which will let us get the second part of
the theorem, and, then, an explicit description of the cup-product in terms
of the complex.

Let Mg, pr—tor be the category of discrete p"-torsion G'x-modules, it is
also the category of direct limits of finite p"-torsion G x-modules or also
the one of discrete Z/p"Z[[G k]]-modules. Let us remark that the functor
Dy, extends to an equivalence of categories from this category to the one
of direct limits of p"-torsion étale (¢, Goo)-modules over A’ . Note finally
that this category is stable under passing to the induced module:

LEMMA 1.6. — Let V be an object of M, pr—tor, define the induced
module associated with V' by Indg, (V) := Feont(Gk, V') the set of all con-
tinuous maps from Gk to V. Endow Indg,. (V') with the discrete topology
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and the action of G :
Gg xIndg, (V) — Indg.(V)
91 = [z—n(zg)]
Then Indg, (V) is an object of Mg, pr—tor and V' canonically injects in
Indg, (V).

Proof. — The first part is well-known. See [23] for details. The injection
is given by sending v € V on 7, € Indg, (V) such that Vg € Gk, n,(g) =
9(v). 0

Let F* denote the functor H*(Cy .- (Dr(—))). The snake lemma gives
for any short exact sequence 0 — V — V" — V' — 0 in Mg, pr—ior & long
exact sequence

0— F(V) - F'(V") - FO(V") = FY(V) — F*(V") — ---

which shows that F'® is a cohomological functor. Let us show that it coin-
cides with the long exact cohomology sequence when V" = Indg, (V). We
use the following

PROPOSITION 1.7. — Let U = Indg, (V') be an induced module in the
category Mc . pr—tor, then F(U) = H'(K,U) =0 for all i > 0.

Point 7) of the theorem follows from this result: the commutative diagram

0 — FY(V) —— FIndg, (V) ——= F°(V)) ——= FY{(V) —0

| | |
0— H°(K,V) — H°(K,Indg, (V)) — H(K,V') — HY(K,V) —0
shows that H!(K,V) ~ F'(V). And in higher dimension the vanishing of
Fi(Indg, (V)) and H*(K,Indg, (V)) proves both that F*(V') = FF1(V)
and H*(K,V') = H**Y(K,V). Thus, by induction, Fi(V) = H(K,V)
holds for all ¢ € N and for any module V' in Mg, pr—tor-

Proof of the proposition. — The Galois cohomology part is classical (cf.
[21, VII, Proposition 1], or [22, 1.2.5]). For the second part, let us begin
with a lemma.

LEMMA 1.8. — The map ¢ —1: A’ — A’ admits a continuous section.

Proof of the lemma. — First, remark that ¢ is topologically nilpotent

on mg, so that ¢ — 1 is there invertible with inverse ¢ = — Zn>0 ™. Let
us deduce that there exists a continuous section to ¢ — 1 on E: write
E= U 1+ Mg
i€l
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where [ is a set of representatives of E/m]::. Choose for any i € I a y; € E
such that (¢ — 1)y; = i. Then 5 : E — E defined by

3(i+u) = y; +¥(u),i € [,u € mg

is a continuous section of ¢ — 1.

Now we have to lift this section mod p to a section on A. We will do it
by successive approximations mod p™. First consider s : A — A defined
by s1(z) = [$(Z)]. Suppose now that we have built such a continuous map
5,1 A — A satisfying for any = € A, (p — 1) 0 s,(z) = mod p". Then
there is a continuous f,, : A — A such that

Ve e A, (p—1)osy(z)=x+p"fu(z) mod p"Ft.

Then s,41 can be defined as $,4+1 = s, + p™s1 o fy, so that the series (s;)
converges to the desired section s.

Finally, the restriction of s to A is obviously still a continuous section of
p—1. O

LEMMA 1.9. — For any V in Mg, pr—ior and o € Z;;, there are short
exact sequences:

—1
0 —=Indg_ (V) — Dy(Indg, (V) —> Dy (Indg, (V) —= 0

0 — Indr, (V) Indg_ (V) ———" > Inde_ (V) 0
0 VGx Indp, (V) — Indp, (V) 0.
Proof of the lemma. — Tensorize with Indg, (V) the short exact se-

-1

quence (0 —= Zp — A/ 99—> A’ — 0 . The existence of a continuous sec-
tion of ¢ — 1 permits, taking Galois invariants, to get a long exact sequence
beginning with

p—1

0 — Indg, (V)¢ D D HY(L,Indg, (V))

where D = Dr,(Indg, (V)). The kernel is Indg, (V)9 = Indg__ (V). It re-
mains to show the vanishing of H!(Gp, Indg, (V)). But it is the direct limit
lim H'(G s, Indg, (V) taken over the set of all finite Galois sub-extensions
M of L/K (cf.[22, Chapitre I, Proposition 8]). Indeed, the sub-Galois
groups Gy of Gk form, for inclusion, a projective system with limit
Gy = Gr and this system is compatible with the inductive system
formed by the Gjp;-modules by restriction Indg, (V) whose limit is the
Gr-module by restriction Indg,. (V).
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To prove the lemma, it suffices then to show for any finite Galois exten-
sion M/K included in L the vanishing of H' (G, Indg, (V). But, G be-
ing open in Gg, we have the finite decomposition Gx = U§eGal(M/K) 9gGr
from which we deduce that, as a Gjs-module, Indg, (V') admits a decom-
position

Inde, (V)= P  Feom(gGu, V)~ P Indg, (V).
gEGal(M/K) Gal(M/K)
Thus H'(Gr,Indg, (V)) ~ Dcam/x) HY(Gyr,Indg,, (V)) and the sum-
mands of the right-hand side are zero because of the first part of the propo-
sition. On the other hand, 7* topologically generates Gal(L/K ), thus the
complex Indg__ (V) g Indg (V) computes H*(Gal(L/Ko),Indg_ (V).
We get the kernel Indg_ (V)G2(E/K<) ~ Indr, (V). And the vanishing of
HY(Gal(L/Kw),Indg_ (V)) is shown as the one of H (L, Indg,. (V)) above.

Finally, the complex Indr, (V) 7=} Indp « (V) computes the cohomology
H*(T'g,Indr, (V)). The surjectivity of v — 1 still comes from the nullity of
HY(Tg,Indr, (V)), proved as before. O

The surjectivity of (¢ — 1) on Dy (U) proves that F3(U) = 0 and gives:
Kern = {(z,y,2);z,y € D (U) , z € (1=¢) " (X7 =1)(2) + (6 =) (y)}-
Let z,y € D1 (U) and fix 2’,y’ € D1 (U) such that (1—¢)(z') =z and (1—
©)(y') =y ; proving that F?(U) = 0 consists then in proving

Vu € Indg_ (V), (z,y, (X —1)(@") + (6 =) () +u®1) € Im 3.

But (7X() — 1) is surjective on Indg_(V), thus it suffices to consider
B(0,2" +u',y') with u/ chosen so that (7X() —1)(u') = w.
Let (u,v,w) € Ker(f), i.e. satisfying:
(v =Du=(p—1v
(T —Du=(p—-Nuw
(7))o = (3~ by

Fix z¢ € D (U) such that (¢ — 1)xg = u. The first two relations show that
vg :=v — (v —1)xg and wg := w — (7 — 1)x¢ lie in the kernel of ¢ — 1 thus
in Indg__(V), and satisfy furthermore (7X(V) — 1)vg = (v — §)wg. Choose
now 7 € Indg__ (V') such that (7 — 1) = wp. Then

(X —1)(y =D = (y = 8)(r = )y = (7 = 1)y

sovg—(y—1)n € Indp, (V) and Je € Indp, (V) with (y—=1)e = vo—(y—1)n
thus (y—1)(n+¢) = vg and (7—1)(n+e) = wy. Define then z := z¢+n+e,
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we have:
=Dz = (p-Dzo+(p-1n+e) = (p—Dzo =
(y-Dz = (y=Dzot+(y—-D+e) = v—wvotv = v
(r—1z = (T—Dzo+(t—1n+e) = w—-wo+w =

so that a(x) = (u,v,w) which proves the proposition. a

1.5.3. Explicit Formulas

Proof of Theorem 1.5 ii). In order to make the isomorphism explicit,
it suffices to do a diagram chasing following the snake lemma: let (z,y, 2) €
ZYCyp+(Dr(V))), through the injection D (V) — Dy(Indg, (V)), we
can see (z,y, z) as an element of Z*(Cy - (Dr(Indg, (V)))). The vanishing
of H(Cy ,-(Dr(Indg, (V)))) implies the existence of an element o €
Dy (Indg, (V)) with a(b') = (z,y, 2). Consider v/ € Dy, (Indg, (V)/V) the
reduction of ¥ modulo D (V),

b e HO(CL,D,’Y,T(DL (IndGK (V)/V))) = (IndGK (V)/V)GK :

Thus, if b € Indg,, (V) lifts &/, the image of (x,y, z) in H' (K, V) is the class
of the cocycle ¢ : 0 — ¢, = (0 — 1)b. But we can choose b = b — b since
(p—1)(b —b) =2 — 2 =0s0 that ¥ — b € Indg, (V) and then b’ — b lifts
V. So if Olg.. =7"T™, write

¢o = (0= =b)=—(c-1)(b) + ("7 — )
B B B L |
= —(c—1)b+~ p— z+ 7_1y.

Let us finally show how to pass to the limit in order to get the result
for a representation which is not necessarily torsion. Let V be a Z,-adic
representation of Gg. For all r > 1, V, = V ® Z/p"Z is a p"-torsion
representation such that V' = lim._ V,.. Then we know that the continuous
cohomology of V' can be expressed as the limit:

Vi >0, H(K,V) =lim H(K,V,) = lim F*(V,.).

It suffices to show that for all i > 0, F*(V) = lim._ F*(V,.). For short, let
H! (resp. Bi, Z!) denote H(Cy . +(Dr(Vy))) (vesp. B (Cy (DL (V;))),
ZHCyp,+(Dr(Vr)))). The maps in the Herr complex are Zj,-linear so that
in the category of Z,-modules there is an exact sequence 0 — B! — Z! —
H! — 0 from which is obtained the exact sequence

0— limen — lim Zf; — lim Hﬁ — lim' B?

T
— — — —
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where lim! is the first derived functor of the functor lim. But for all r,

By ~ B'(Cynr(DL(V) @ Z/p"Z

so that the transition maps in the projective system (B.) are surjective,
and then this system satisfies Mittag-Leffler conditions. Thus lim&lB}; =0
shows that the homology of the inverse limit is equal to the inverse limit
of the homology, as desired.

The explicit formula for H2.

ProOPOSITION 1.10. — The identification between the homology of the
complex Cy, ~ -(Dr(V)) and the Galois cohomology of V' associates with
(a,b,¢) € Z*(Cyp.+(Dr(V))) the class of the 2-cocycle:

A Y () Lt Y

(9:h) = s = sgn +gsn +7" —— 51y —1

where g, = y™M7™, b, = "1™ and s : Gg — A’ @V is if
Olg.. = "T™, such that s, = ¢ (%a—l—w"%b) where ¢ is a con-

tinuous section of ¢ — 1.

Proof. — The proof is, mutatis mutandis, the same as above. Let a =
(a,b,¢) € Z*(Cy,.+(Dr(V))). Because of the injection V — Indg, (V), we
can consider a € Z%(Cyp (D (Indg, (V)))).

The vanishing of H2(Cy, .- (Dr(Indg, (V)))) shows that « is a cobound-
ary, ie., there is 8 = (n4,7y,m.) € Dr(Indg, (V))? such that

a=(y—=1n—(p—1)n,
b= (T—1nz —(p—1)n,
¢ = (TX(PY) - 1)% - (7 - 5)771/

It corresponds to the class of the reduction 8 of 3 in Dy (Indg, (V)/V)?
an element of H'(K,Indg, (V)/V). Its image in H%(K,V) is the element
corresponding to a. Let us compute it.
Let n, € A ® Indg, (V) be such that (¢ — 1)m, = 0, then for o, =
T
Co = (o~ D+ 7" . + 1_ 1177y

T —
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is a cocycle with values in Indg, (V) + A’ ® V which reduction modulo
A’ ® V is a cocycle corresponding to 3. Let us fix o and calculate
2T =1 =1
(p=Vry = —(=Dlp—-Dm+y (o= D)n= + (o= 1)y
T—1 vy—1
T —1

= (""" = Dne +9" (T =Dne —b) +

T—1

n—1
(= e —a)
S S L | i
= - a— = =S4
v—1 7 T—1

Let us choose now a section ¢ of ¢ —1 and defineamap s : Gxg — AQV via

s =¢o3. Then, (¢ — 1)s = 3. The choice is unique modulo Feppnt(

Gr., V).

Therefore, r + s : Gx — Indg, (V) is a lift of a cocycle corresponding to

(. Its image through the coboundary operator takes values in V,
desired 2-cocycle. It is written as

d(r+s)(g,h) =rg+ 55— Tgn — Sgn + grn + gsn

Let us compute the r part. Obviously, for g, = 7" 7™ and
y"27™2 we can write g — rgp + gry as

T—1 T—1

it is the

h\coo -

n2 _ 1 m1 _ x(y)""my1 _
’Ynl (Tm,l _ 1) Y My + 'Ynl (7' . 7712 T .

vy—1
Remark on the one hand that:
it 0ty -1

-1 = -1
(7 N1 i1 Y
and on the other hand:
—"2m m
’Yn2 TX(W) o1 — - 1(571,}/)712

T—1 T—1
so that
™ —1] (6‘17)"2 -
T—1 o6 ly-1
A Y el i Y
T—1 01y —1

US

Tg —Tgh +9Th =

S
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Remark 1.11. — In the classical case, with the class of a is associated
the class of the 2-cocycle:

-1
a
-1
where (p—1)a = a, ¥ lifts yin Gk, g1 = 3" h, g2 = 3"2h with h, b/ € Gk __
and ny,ny € Zy,.

(91,92) = A" (h = 1)

1.6. Explicit formulas for the cup-product

Herr gave in [17] explicit formulas for the cup-product in terms of his
complex. The following theorem gives the formulas for the metabelian case:

THEOREM 1.12. — Let V and V' be Z,-adic representations of G k. The
cup-product induces maps:

(1) Let (a) € H(Cp,y,r(Dr(V))) and (a') € H*(Cyp . (Dr(V"))),
(@)U (a) = (a®a’) € H(Cpyr (D (V @ V")),

(2) let (z,y,2) € H'(Cpy,r(Dr(V))) and (a') € H(Cy 7 (Dr(V'))),

(z,y,2)U(d) = (z@d,y®d,z20d) € H(C,,(DL(Va V")),

(3) let (a) € HY(Cy,r (Dr(V))) and (', y',2") € H'(Cyy, (Dr(V"))),

(@U(y,2) = (a2 a0y ,a© ) € H(Cyrr(DL(V @ V)

(

4) let (z,y,2) €H' (Cypr,r(DL(V))), (2,4, 2) €HY(Cyp iy (DL (V))),
(z,y,2) U (2',y,2") € H*(Cp - (Dr(V @ V")) can be written as:

(yvr'—zQey , 2072’ —z @ @2, 5Z®TX(7)y/—y®’YZ/+Ez,Z’)

where 3. .0 =305, (iﬁ)) o1 (M =Dtz @R (r — )R

Proof. — The only non trivial identity is the last one. We will use the
construction of the previous paragraph and we can then suppose that V
and V' are objects of Mg, pr—tor. We will use the cup-product property
daUb = d(aUb) and the exact sequences

0—V —Indg, (V)= V"—0

0— FOV) — F%(Indg, (V)) — FO (V") — FY(V) — 0.
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Fix indeed (x,y, z) and (2’,y’, 2’) as in the theorem. Then there exists a €
Dy (Indg, (V)) satisfying a(a) = (2,9, 2) and @ € (Indg, (V)/V)%. Thus
(z,y,2)U (2,9, 2') is equal to
al@U@,y,2) = da@erdawy,aw) = plaer,avy,a®?)
(v=D(e®a’) = (¢ - D(aey),
(r=D@ea) - (p-D(ex7),
(PP —(@ey) ~ (y-0)(a®2)

Now we use the formal identity

(1.1) (c-1)(a®b)=(c—1)a®ob+a® (o —1)b.

The first term (v — 1)a® 2’ — (¢ — 1)a ® y’ can be written as

(v—1Da®yr' +a®@(y—1)2' — (¢—1)a®y —a®(p—1)y = y@vyr' —z @y .

From a similar computation, we get for the second one
(tT-D@@2)—(p-1)(a®)=20y1 —z® 2.

Let us finally write the computation of the third term. First, using (1.1),
we get
(X —Da@y =620 7Ny +a® (v - 0)
and

(v-Da® =y@y +a®(y—1)7"

It remains to compute §(a®z’). Recall § = TXT(i)l_l = Z <Xn7)> (r—1)""L
n>1
Moreover, iterating (1.1), we get by induction:

(O' — l)n(a@) b) = Z <Z> (0' — l)ka ® o'k(()' — 1)"7kb

So

dawz) =" <X§])) :Z::: <n ; 1) (1 — Dra@F(r —1)n 1k

n—1
Sla®z) =axd +Z <Xn’7 > Z
=1

n>1

<n; 1) ) 712®Tk(7_71)n717kz/

whence the result. O
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1.7. Kummer’s map

In this paragraph, we suppose A’ = A.

The purpose is to compute, in terms of the Herr complex, Kummer’s
map « : K* — H'(K,Z,(1)). More precisely, let F(Y) € (W[[Y]][$])",
we will compute a triple (z,y, 2) € Z'(Cy, . - (AL(1))) corresponding to the
image kof(F(Y)) of 0(F(Y)) = F(w) € K*. Remark that there exist d € Z
and G(Y) € (W[[Y]]))" such that F(Y) = YIG(Y). In fact G(Y) can be
written as the product of a ((fk) — 1)th root of unity (which doesn’t play
any role) and a series in 1 + (p) C W([[Y]].

Denote a = §(F(Y)) € K* and choose @ = (ag, a1, ..., Qn,...) € Esuch
that ap = a. Then [j% € E* thus % € At and for all 0 € Gk, there exists
Yo (o) € Z, such that

o(@) = ae¥(?).
The map o — £%(?) is in fact a cocycle computing x(a). So

o([a]) = [@](1 + X)¥=(@) where r(a) = ¥ € HY(K,Z,(1)).

Since F[(d)],) €At and @ ( F[(d)]/)) = 1, the series defining log % converges

in Fil' Bepys.

For all h € G, (h— 1) log F[(d}},) = 1o (h)t where t = log(1 + X). Set b =

(108 #5 ) /t € Fil’ Beyys. Then

wa(h) = (h - 1)(5) Vh € Gp.
And (¢~ 1)(B) = LA(Y) where £(¥) = Z(F) = Llog 203 € W[Y])

t
Choose by € A a solution of (p — 1)b; = —%. Let X1 = o 1(X) =
1 ~

] — 1, and w = % € AT then (¢ —w)(l1X1) = —f(Y). Write b1 X; =

> >0 P" [an]. Reducing modulo p the previous identity yields to an equation

~s

of the form af — @Wag = —f(Y) and since E* is integrally closed, ag € E*.
Let us deduce that a, € ET for any n € N by induction. We have the

identity
Yo Pkl —w ) P lan] = —f(Y) =Y p"bul.

neN neN neN
Suppose that there is u,, € At with

[afL] - w[an] = Unp InOd p
Then a, still belongs to Et because it is integrally closed and

p[aZ_H] —wplany1] = up — [ah] + wla,] + p[b,] mod p2-
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Thus up11 = W + [b,] € AT,

Finally, it comes b1 X7 € A*. But i € FilOBcry57 namely the series

7_2 n+1$_z n+1$

n>0 n>0

converges in FillACTys, and thus X = XL, € Fil’ Bepys. So by = (b1.X1). 5

I (Y) admits a solution by in A+

lies in FilOBcrys. Moreover, (o —1)by =
so that if we set z = —% — % cA; and choose a solution b € A of
(¢ — 1)b = x, then b € Fil®B.s.

So b+b € Fil’Beyys and (9 —1)(b+b) = (1 — L — 1) f(Y). And we have

the following

LEMMA 1.13. — Solutions of the equation
1 1 1
(12 -1 =(7-53) /M

in FilOBC,«ys lie in Q, + Filchrys and are invariant under the action of Gp,.

Proof of the lemma. — Consider

- Y m e T S0

n=2 n>2

then letting p' = tu, Equation (1.2) becomes

(13) (2- 1) () =

but the sequences (n)ﬁ" f(Y) X) f(Y) converge to 0 in Be,,s and
¥ X"\ (1+Xx)P" —1)»
P n+1 (n+ 1)pk
but .
k B ptl X" &
((1+X)p _1)_ Z (pk*’l")!w ep Acrys
1<r<p?

k n k(n—1)
SO (%) (Tfi_l) S ”HTACWS converges to 0 uniformly in n in B..,s. The

same holds for (f>k ( X~ ) We get a solution — >, -, (%)n uof (1.3) in

p n+1
(Fil® B.pys)C* thus a solution of Equation (1.2) in (Fil' Beyys)*. And the
lemma follows from (FilOBcrys)wzl =Q,. d
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S0 b+ b € (Fil®Bepys)C*, thus, for all h € Gy,
(h = 1)(=b) = (h = 1)b = ta(h).

We conclude that there exist a unique z € Az (1) and y € Az (1) unique
modulo (7 — 1)Z,(1) such that x(c) is the image in H'(K,Z,(1)) of the
triple (2,9, 2) € Z1(Cy .- (AL(1))) where z = —(% + 1) f(V) ®e. Namely,
we know that there exists such a triple (z’,%/,2’), and 2’ —z € (p—1)AL(1)
which shows the existence, and z being fixed, the unicity modulo «(Z,)
(where « is the first map in the Herr complex C,, (M), cf. section 1.5).

We get the more precise result:

PROPOSITION 1.14. — Let F(Y) € (W[[Y]][+])”. Then the image of
F(7) by Kummer’s map corresponds to the class of a triple

(—f(Y) ()1(4-;) ,y,z) ®e

with y,z € W([[X,Y]]. This triple is congruent modulo XYW|[[X,Y]] to

<f(Y) _fY)

Ty O YdlogF(Y)) ®e.

Proof. — We have to show the congruences. Remark that

, (1 ® 6) x(v)®e
X ()X + X(’Y)(XQ(V)—l)X2 + X3u(X)

_ <)1(—W2_1)+XU(X)> ©e

so that (y — 1)z € XYW][X,Y]](1) where ¢" is topologically nilpotent,
thus ¢ — 1 invertible. Because (y — 1)z = (¢ — 1)y, it comes

y €ker(p — 1)+ XYW[[X,Y]](1) = Z,(1) + XYW[[X,Y]](1).

Moreover, let 4 lift v in G, we still have

G -1b®e) =va(d)
where, because of ii) of Theorem 1.5 on the one hand, and Lemma 1.13
above on the other hand,

(F-DbRe+b®e) =va(3)+ (7 —1)(b®e) =y € Fil' Bepys(1)
which shows that y € XYW[[X,Y]](1). We proceed as well for z:
(=050 = f 4 xv) - ) = 3 )

n!
n>1

XY f(Y) mod (XY)2.
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Remark moreover (Y -%) o £=ypo (Y-%) so that

(T—DfY)=X(1—-¢)(YdigF'(Y)) mod (XY)?

and thus (7 — 1)z = (¢ — 1)(Ydiog F(Y) ® €) mod XYW{[X,Y]](1) which
shows

(1.4) 2€Ydioo F(Y)®e+Zp(1) + XYW[[X,Y])(1).
And if 7 lifts 7 in Gk,

~ FiY(1+ X
(F=1(b4+b) = v(7) —logM/t—&— (F—1pe FilchryS
F(Y)
s F(Y (14 X)) 1
= —1 log ——————= Fil'B
z Yao(T)+ (F—1)b € log F) Jt+Fil" Bepys
which, combined with (1.4), proves the desired result. O

2. Formal Groups

We still suppose that p is an odd prime.

In this section, we will prove the Briickner-Vostokov explicit formula
for formal groups. In [2], Abrashkin showed it under the condition that
the p™-th roots of unity belong to the base field, which turns out not
to be necessary. To remove this assumption, we will explicitly compute the
Kummer map linked to the Hilbert symbol of a formal group in terms of its
(¢, I')-module, then compute the cup-product with the usual Kummer map
and the image of this cup-product through the reciprocity isomorphism,
which gives the desired formula.

2.1. Notation and background on formal groups
2.1.1. Formal groups

We fix from now on an integer M € N.

Consider G a d-dimensional commutative connected smooth formal group
over W = W (k), the ring of Witt vectors with coefficients in the finite field
k. Denote by Ky the fraction field of W and K a totally ramified extension
of K. Under these hypotheses, G is determined by a formal group law

F(X,Y) = (F(X1,..., X0, Y1,..., Ya)i<ica € (W[X, Y])?
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where X = (X1,...,X4), Y = (Y1,...,Yy) (cf. [12]). We note the group law
by +¢. Suppose moreover that G has finite height h, that is the isogeny
pidg : G — G is finite and flat over W of degree p". Define G[p"] =
ker(p"idg : G — G) the sub-formal group of p"-torsion points of G and
denote the Tate module of G by T(G) = lim._ G[p"]|(K).

Suppose moreover G[pM](K) = G[pM](K), that is, pM-torsion points of
G lie in K. Then T(G) is a free Z,-module of rank h and G[pM|(K) =
G[pM](K) is isomorphic as a Z,-adic representation of G to (Z/pMZ)".

The space of pseudo-logarithms of G' (on Kj) is defined as the quotient
of {F € Kol[X]l, F(X +a Y) — F(X) — F(Y) € O, [X, Y]] & Q,} by
Ok, [[X]] ® Qp. Denote it by H'(G). It is a Ko-vector space of dimension
h. The space of logarithms of G is

QG) ={F e K[X]] | F(X+¢ Y) = F(X) + F(Y)}.

It is a sub-Ky-vector space of H!(G) of dimension d. Moreover, H'(G)
admits the filtration

Fil’(HY(G)) = HY(G), Fil'(HY(Q))=QG), Fil*(HY{(G))=o0.

With the Frobenius ¢ : F(X) — F?(X?), H'(G) is called the Dieudonné
module of G.

2.1.2. p-adic periods

Fontaine defined in [12, Chapitre V, Proposition 1.2 ] a pairing H*(G) x
T(G) — Bf.,, explicitly described by Colmez in [11, §3]. It is defined as
follows: let F € HY(G), and 0o = (05)s>0 € T(G) ; choose for all s a
lift 65 € W(mg)? of o, i.e. satisfying 6(6s) = o0s. The sequence p*F(é;)
converges to an element [ dF in BY.,s independent of the choice of lifts o,
and F. This pairing is compatible with actions of Galois and ¢ and with

filtrations: if F' is a logarithm, then fo dF € Fil'Bf

crys:®
This pairing permits (cf. [12, Chapitre V, Proposition 1.2 ]) to identify
H'(G) with Homg, (T(G), Bf,,,) with the filtration induced by the one

crys
of B;';ys. In order to work at an entire level, let us introduce a lattice of

H'(G), the W-module D}, (G) = Homg, (T(G), Acrys) endowed with

crys

the filtration and the Frobenius ¢ induced by those on A.,ys. The functor
D7, is a contravariant version of the crystalline functor of Fontaine’s

theory. The filtration has length 1 (cf. [11, Proposition 3.1]) and we denote

DO(G) = D:rys (G) = HomGKO (T(G), Acrys)
DY (G) = Fil'D},,.(G) =Homg,, (T(G),Fil' Acrys).
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So DY(G) is a direct factor of D(G) of rank d. Fix then a basis {l1,...,l4}
of DY(G) completed into a basis {l1,...,lq,m1,...,mu_q} of D°(G).

For all 1 < i < d, ¢(l;) takes values in @(FillAc,,ys)d C (pAcrys)? so,
£(1;) belongs to D°(G). Moreover, [12, Chapitre III, Proposition 6.1] and
[15, §9.7] show on the one hand that ¢ is topologically nilpotent on D°(G)
(because G is connected) and on the other hand that the filtered mod-
ule D°(G) satisfies D°(G) = »D°(G) + %DI(G). Thus, we define ¢ an
endomorphism of D° by

Gl = 2()V1<i<d, and @(m;)=(m)V1<i<h—d
p

Its matrix € lies in GLy (W). Let 1 = (14, ...,1,) and m = *(mq,...,mp_p),

then .
(#)-<)

So, we can write a block decomposition €71 = < B) so that 1 = AZ(1)+

C D
By(m) and m = C%(l) + Dp(m). But ¢ is topologically nilpotent on
D°(G), and we can write

() ")
(2.1) 1= F,/—2 m=)» F~—=

where

Fy=A, F,=Byp(C), F,=B @"(D) | ¢"7H(C) for u > 2,

Fl =C, F} = Dy(C), F, = " (D) | " H(O).
0<k<

Define a Zy-linear operator A = > -, F,¢" on Ko[[X]]4. The vectorial
formal power series

A™(X)
pm

ZA(X):X-I-Z

m>1
gives then (cf. [18, Theorem 4]) the vectorial logarithm of a formal group
F over W from which we can recover the formal group law F by

F(X,Y)=1" (1a(X) +14(Y)).

In [18], Honda introduced the type of a logarithm. A logarithm log is of
type u € Mg(W)[[¢]] if u is special, i.e. u = pI; mod ¢ and if u(log) = 0
mod p. We remark that pI; — A is special and that, by construction, [ 4 is
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of type pl; — A. Moreover, 1 is also of type pl; — A because of Equation
(2.1).

Furthermore, Honda showed in [18, Theorem 4] that two formal groups
with vectorial logarithms of the same type are isomorphic over W. Thus,
we can replace the study of the formal group G by the one of F', which is
easier because we know an explicit expression of its logarithms, which gives
us a control on denominators.

2.2. Properties of the formal group F

In this section, the reader can refer to [2] from which we recall principal
constructions.

Let us first describe the Dieudonné module of F'. We already know a
basis of the logarithms, the coordinate power series of the vectorial series
aX)=X+3,5 AZ;ELX). Complete it into a basis of H!(F') by putting
(cf. [2, §1.5.2])

() — S pr £104X0).

(X) ; )

Let 0 = (05)s>0 € T(F). For all s > 0, choose a lift 65 € W(mg)? of o,
that is, with 0(65) = 0s. Then the following lemma says that the sequence
p*idros converges in W1(mg)? towards an element j(0) independent of the
choice of lifts:

LEMMA 2.1. —
(1) The series |4 defines a continuous one-to-one morphism of G-
modules

la : F(W<mE)) - Agrys ®Zp QP'

Its restriction to F(W'(mg)) takes values in (Fil' Aupys)?.

(2) The endomorphism pidp of F(W(mg)) is topologically nilpotent.
The convergence of pidr to zero is uniform on F(W!(mg)).

(3) The map j : T(F) — Wl(mg)? is well defined and provides a
continuous one-to-one homomorphism of Gi-modules j : T(F) —
PV (mg)).

Proof. — Point 1. is Lemma 1.5.1 of [2].

Point 2. follows from that W!(mg) = wW(mg) with w = X/ }(X) €
W(mg) + pA™T and that the series corresponding to pidp can be written
pidpX = pX + higher degrees. Let us recall briefly the proof of Point 3.
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For all s > 0, 0(p*idpds) = 0p = 0 so that p*idpés € F(W?!(mg)). On the
other hand, for all s > 0, pidpés11 = 6, mod F(W!(mg)) thus

p*Hidposr = ptidpo, mod pidp (F(W* (mg)))

And Point 2. provides the convergence of the sequence (p*idpos)s.

The fact that the convergence is given without compatibility condition
on the lifts shows the independence of the limit with respect to the choice
of these lifts. Namely, let (65)s>0 and (6})s>0 be two given lifts of (0s)s>0,
then for any lift (6))s>0 where Vs > 0, 6! = 6, or &), we still have the
convergence of (p®idpé!)s, from which we deduce that the limits are the
same. The remainder is straightforward. O

Composing the vectorial logarithm [4 with j gives a Gi-equivariant
injection that we will denote by 1 from T(F) into (Fil' A.pys)%. This map
satisfies then for any o in T'(F):

1(0) = l4( lim p®idpos) = lim p®l4(6s).
§— 00 §—00

(1
Put now m = Z F{LL(), then ( ! ) provides a basis of D(F) with 1 a
P m

uz>1

basis of D!(F). The map (IL) : T(F) — Al then factorizes through

crys

la 1 h
. F & A%
(m.A> (W (mE)) - crys
Recall (cf. [2, Remark 1.7.5]) that this map takes values in A+[[X?~1/p]].
It is also a consequence of Wach’s computation for potentially crystalline
representations (cf. [27]).

Fix now a basis (o!,...,0") of T(F). We can then introduce the period

(o")

. A (O N (L S
matrix V = (m(ol) - m(oh) which lies in

My, (AF[[XP71/pl]) N GLy (FracA* [ X7~ /p])).

Le 0
P V=E&V.
( 0 Ih—d‘ﬂ)

Remark that the inverse of V is then the change of basis matrix from the
basis (0',...,0") to a basis of Depys(T(F)) = (T(F) ®z, Acrys)®*, the
covariant version of the crystalline module of Fontaine’s theory associated
with T(F).

It satisfies
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Let u € T(F) ® A¢rys and let U denote the coordinate vector of w in
,0") (VN p(U) are

(o',...,0")V~L. The coordinates of ¢(u) = (o,...
now computed. We know that

pId 0 ) Id£ 0 (pId 0 )
V) = P V= A%
(V) (0 In_q ( 0  Ih_ap 0 Ih_a

-1
—1y _ yy»—le—1 (P Iy 0
QD(V ) - V 5 ( 0 Ih—d)

whence

SIS

L. .. 0o"MV~! are then €71

1, 0
and coordinates of p(y) in (o', ¢ U.
0 Ih_ap

0
acts as
In_q

/N

SIS

Keeping this in mind, the following lemma shows that <

the Frobenius on Depys(T(F)).
251 Al
LEMMA 2.2. — One has: £~} ( p° A) = (P ° A) )
poma ma

Proof. — Compute:
AT (L) + Belma) = A (1a) + 3 BoF,

u>l

e'(la) A
» » (la)

for BoF! = F,41 for all u > 1. And:
¢ (la)

CL(14) + Dop(ma) = CL (1) + > DyF, =m
p p u>1 p

since DoF, = F, , for all u > 1. O
Abrashkin ([2, Proposition 2.1.]) computed the cokernel of injection j :
PROPOSITION 2.3. — There is an equality (A —p) o l4(F(W(mg))) =

(A—p)ola(F(Wh(mg))) and the following sequence is exact:

(%71)OIA

0 — T(F) —> F(W' (mg)) —> W (mg)? — 0

Remark 2.4. — Beware that if € F(W(mg)), o(l4)(z) = ¢(la(z)),
and then A(l4)(x) = A(la(z)) hold if p(x) = aP (e.g. when z is a Teich-
miiller representative) but not in general ! On the left side, ¢ and A act on

W{[X]], whereas they act on A..,s on the right side.
Abrashkin showed furthermore (cf. [2, Lemma 1.6.2.])

LEMMA 2.5. — F(mg) is uniquely p-divisible.
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This provides a continuous one-to-one G g-equivariant morphism
5+ F(mg) — F(W (mg)) 47140

defined as follows: let x € F(mg), then because of the lemma, for all s > 0
there exists a unique x5 € F(mg) such that p*idpzs = x. Thus the sequence
(p*idp[zs])s converges to an element §(x) in F(W(mg)). The map J is a
morphism since

Mz +ry) = 1ignpsidF[$s +rys) = hfglpsidF([Is] +r [Ys] +F us)

with us € pW (mg) where the convergence of p®idp towards zero is uniform.
Moreover, since Aol 4 coincides with A(l4) on Teichmiiller representatives,
we get:

(A—p)ola(d(z)) = (A—=p)(la)(é(x)) = 0.
Finally, 0(6(z)) = 60([z]). Namely, Vs > 0, 0(p*idp[zs]) = p*idpl([z]) =
0([x]).

2.3. The ring Gj ,) and some subrings.
2.3.1. Introducing the objects

Fix e the absolute ramification index of K.

In [5], Berger introduced for s > r > 0 the ring A[W], the p-adic com-
pletion of the ring At [
a > b >0, the ring

» ysep/(p=1)
Yren/(—1) ) P

- Yae p
— AT L
Gy =& || |

which for integers a and b admits the description

<. [1] aevy(ap)+n>=20 forn>0
= y™ AT |- P 4 g .
g[b,a] {%an ‘ an € [p:l , bevp(an) +n>0 forn<0 }

} . Let us then introduce for

Note that the expression ), .,
The ring Gy, ) is, for a > a > 3 > b a subring of A[a(p,l)/p’ﬁ(p,l)/p]. We
even have inclusions

a,Y" for an element of G, ,) is not unique.

Ala(p—1)/pb(r—1)/p] C Yib,a] € Alalp—1)/p.8(p—1)/p)-

Let us fix such an o = ps/(p—1) and § = pr/(p—1) and endow Gy, o] with
the induced topology which is compatible with the ring structure.
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We shall prove that

yae ~
VN,k = { Z A ( » ) + Z by (Ybe) ;an;bn S A+} +pkg[b,a]

n>N

for N,k € N form a basis of neighborhoods of zero.
First, let us prove that for any k, N there is m € N such that

Vin D™ A ﬂ Glb,al-
Let x € A[s’r]. To say that p™x € g[b,a] means that one can write
p T = Z Cln + Z b Yben
n>=0 n>0

and that

Yaﬁn
= Z Un o Tm n + Z Yben

n>0 n>0

makes sense in A[sm]. Consequently, it remains to prove that for m large

enough
> o

pn
+ Z b" Yben € pkg[b7a]'

n<N n<N
But there are ng < N +m and a;, ,a;, € A* such that
Yaen s YOlen()
Qn, o = p"ay, o

and a direct computation shows that m — L%J > k if m is large enough,
say m = ‘”ﬁ%{jv

On the other hand, let us now fix m € N and prove that for N > m,
Vin,n Cp™ . One has

ae\ M ae(n+m
(Y ) — pm Y ( ) Y(afa)enfaem
D pn+m

and Y(e—a)en—aem o A+ a9 soon as n > ﬁm. The same computation
works for (%)n which proves that for NV large enough, we have the desired
inclusion.

As a byproduct, we get that the topology does not depend on the choices
of o or 3.
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For ay > ag > by > by > 0 we still have continuous injections G, 5, —
Glas,bs]- Define then Gy, of for a > b > 0 to be the p-adic completion of
Uasa Gip,a- For integers a and b,

aevp(an) +n>0 ifn>0
" -1
Gioal = D anY "0, € AT || aevplan) +n — oo,
e g bevp(an) +n >0 ifn<0

Moreover, the inclusion

Ua— U Awo-1/mso-1

a>a a>a,Bf>b

permits to regard the ring Gy, as a subring of the p-adic completion of
Ua>aﬁ>bA[a(p,l)/pﬁ(p,l)/p]. Let us endow this last ring with the p-adic
topology and G, ,; with the induced topology. Let us also introduce for
b>0,

Gipoof = [ | Gipua) = A* H P H CA

Yeb
a>b

and this inclusion is continuous since the preimage of a neighborhood
YNAY +p?*A s

yNAt 4+ {ik: an (%)n,vp(an) >2k—n 2} + { Z an (YEDEZ,)n}

n=1 n>2k

which contains p*Gp, oo + {Zn>k an (%)n + s n Y an, by € A+
which is a neighborhood of Gy, [ for the topology induced by any of the
g[b_’a], a>b.

Moreover, for b integer,

Glb,o0] Z an Y™ a, € At ybevp(an) +n =20 forn <0
n<0
Remark that the Frobenius
Z anyaen + Z anyben Z SD Ypaen Z Qp(an)ypben
n<0 n=0 n<0 n2=0

defines a one-to-one morphism from Gy, o) (resp. Gip.a) into Gy pa) (resp.
Gipb,pal)-
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Introduce for integers a and b the subring of Gy 4

G = WD |[2 5]

STt s an e Ky, SO N Z0 T30
LT IR0 bevy(an) 4020 0 <0

and Gy, [, o[ the subring of G, o admitting the description

aevp(a,) +n >0 ifn>0
Gy lb,a] = Z a Y™ ; a, € Ko, aevp(an) + n oo 1%
nez bevy(an) +n >0 ifn<0

Finally, for b > 0,

Gy, [b,oo] i= m Gy, ib,a =WI[Y]] Hyebﬂ {Z ¥ ngf(z[:) +n> 0}

a>b nez
Contrary to the above situation, the expression ), a,Y™ is unique as is

shown in the

LEMMA 2.6. — (1) In Gp g {p} one has

o210 3] -5
(2) Every element of Gy, q) or Gy,[p,q[ can be written in a unique way
as ),y anY" with a, € Ko.
(3) Leta > a > 3 > b, and ) designate | or [, then Gy, 3.« B] NGip.a) =
Gy [b.a)-
Proof. — The first point can be shown in Berger’s rings A[S 1], in fact
in the ring A[s oo [ ] + A[O 7] { ] Any element of this ring is of the form

n Yn p + [ yser/@-1)
ZnGNp (Yk pl) with Ty € A [W} and Yn c A {f .
Such an element is zero when

P P e =YY ptyn € Ap ol [ ) App-

neN neN

The condition is that for all N € N, Zn<Np"(plxn —Yky,) € pNA[S,T].

That is p' 3", _ 5 P" @, belongs to At 4 pNAT [W] and then

n X+ N—I R+ b
X;Vp T €AT P TA {yrep/(p—l)]’
n<
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and similarly
Z pnyn c A+ +prl/seA+
n<N
The limit p' Y, oy p"an = Y*Y, oy P"yn lies then in pPPATOYFAT =
p'Y*A*, hence, as claimed,

Zp”% = Zp"%; cAT.

neN neN

[ysep/(pl) }
’ .

Because of the first point, it is enough to prove the second one for
Yonco@nY™ and Y a,Y™. It is to prove that such a series converges
to zero if and only if all the a, actually are zero. For the first case, recall
that there is a continuous injection Gz o[ — A so that it is sufficient to
prove it in A.

Consider there a series )

Qn
n=0 yn»

also converging to 0. Let us prove by induction that p* divides all the a,,
in W. The case k = 0 being obvious, let us suppose it true for a given k.
Since (a,) converges to 0, there is an M € N such that p**! divides all the
a, with n > M. Write then

M
0=YM Z g;n = Z a—ZYM_" mod p.
n=0 p n=0 p

converging to 0 with a,, € W and a,,

An obvious induction using successive reductions modulo Y* in E* then
shows that all the Z—g are 0 in k so that all the a,, are divisible by p**!,
whence the result.

On the other side, Gy [o,o) is naturally a subring of the separable com-

pletion of A {ﬂ for the Y-adic topology. The result then follows similarly
from successive reductions modulo Y*.
We will proceed in a similar way to show the last point. Because of

the first one, it suffices to prove both Gy |3 [ﬂ N Gib,oo] = Gy, b,00] and
Gv,[0,a] [%] N Gj0,a) = Gv,[0,q)- First consider then

1
T = Z a, Y™ € ng,[@oo[ with Sev,(an) +n+ A >0,Vn <O0.
n<0

We suppose furthermore that x belongs to G, o[, that is, it can be written
as 3, bnymr with b, € A%, The identity 3, <o anY™ = 3, ey bn 325
makes sense in p%gm,oo[, thus in A. Denote by ng the highest integer,

supposing it exists, satisfying bev,(an,) +no < 0. We can then suppose the
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identity above of the form }° . a,Y" =} bnype—zn. Multiplying by
ytevr(ang) and reducing modulo p?»(%m0) in A yields then to

no vp(ang)
Z anyn-i-be'up(ano) = Z bnpnYEb(vP(a"O)_n) mod pvp(ano)
n=n n=0

but the right term belongs to A™ and not the left one, whence a contra-
diction.

Consider as before an identity of the form Zn>0 an Y™ =3 N bn$
and denote by ng the lowest integer satisfying aevy(an,) + no < 0. It can

be reduced to an identity of the form a Y =3 ey bn%. Mul-
tiplying by p~#(%0) and reducing modulo Y0+ yields to
p—vp(ang)ano yno = Z bnp—’up(ano)—nyean mod Yn0+1

o<ng 20

Nea

n=no

and the contradiction comes from the inequality n < 22 < —wv,(a,,) hence
the right term is divisible by p, and not the left one.
The case of Gy, [0,a] (1 G[0,af = G, [0,q[ follows from a similar argument. [

Remark 2.7. — As said before, periods of formal groups belong to
AF[XP=1/p]] = A*[[YPe/p]], that is Gjo,. We can also recover AT as
g[O,oo['

2.3.2. Some topological precisions

LEMMA 2.8. —
(1) The set of finite sums

N yea n n
{Zan< . > +bn(%) ;an,bn€A+,N€N}

n=0

is a dense subset of Gy, 4. The same holds for the sub-algebra

ALl S yeey” P A" A+
g[b,a]mA[p:| _{Zan< , ) —&-;E:an (ch> s, by € A ,NEN}

n=0
(2) The topology of Gy o) is weaker than the p-adic topology.
3) Gpp.q is Hausdorff and complete.
[b,a]
(4) The ring Gy, o) is local with residue field k and maximal ideal

ea\ " n _
m[b,a] = Za’n (Yp > + bn (%) ;an;bn S A+ + W(mE)

n>1
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(5) Any element of mp, 4) is topologically nilpotent.
(6) Powers of the ideal

m[lb,a] = Z an (Y;a>n + bn (%)n S, bn c A"r + Ye(a—b)A-‘r

n>1

form a basis of neighborhoods of 0 consisting in ideals of G 4]

(7) The ring Gpp o[ is local with maximal ideal my, o the p-adic comple-
tion of | J,~ , Mp,o) and with residue field k.

(8) Any element of my, 4 is topologically nilpotent.

Proof. — Let us introduce the notation

= (B () ¢ S ) i
n>N

n>N

Recall that {g[?];[] + pkg[bﬂ]; N,k e N} is a basis of neighborhoods of zero
in Gy q)- This shows the first two points. The fact that Gy, ,) is Hausdorff
follows from that A[s,r] is (cf. [5]). The following shows that the topology
on Gy ) is metrizable, and one can immediately see from the form of neigh-
borhoods of zero that any series with a general term going to 0 converges.
This shows that Gy, 4] is complete.

We will prove Points 4., 5. et 6. simultaneously: we first show my, o) is
an ideal, then that any element of mp, 4 has a power in m[lbm and we make

powers of m[1b7 a] explicit, which allows to conclude. Let

x:zan(yj)"#zan (L)

n<0 n=0

we say that x is the element of g[b,a] associated with the sequence (a, )nez €

= \Z
(A+) . Let y be the element associated with another sequence (by,)nez,
then write the product of two elements x and y of Gy, 4):

=Y (D) e (&)

n<0 n>=0

is associated with the sequence

(2.2)
ZYe(a—b)k(a]HnIL]€ + a_pbpin) + Zakbn,k ifn>0
_ k>0 k=0
Cp = —n
Zye(afb)k(akbn_k + an_iby) +Za_kbn+k ifn<0.
k>0 k=0
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This shows that my, ) is an ideal because of
(2.3) co = Z yela=blnlg p_..
nez
Suppose x € my ,). Because of the previous computation, one can define

for all k € N a sequence (¢, k)nez such that z* is associated with (¢, x)nez-
The fact that there exists a k such that z* € m[lb al is equivalent to that the

rest o 1 € ET of o, modulo p has a valuation greater or equal to a — b.
But because of Equality (2.3), vg(€o,x) > min(a — b, kvg(a@p)) which shows
Tk e m[lb o for k large enough.

k
Let us show now that mfb o = (m[lb a]) consists in elements associated

with sequences (a,)nez such that Vn € Z, vg(a,) > g§7b(n) where

ko(n)= {MHI)‘*J (a—b) = { VAQ‘HJ (a—b) if|n| <k

Ya,b 2 0 otherwise
satisfying the induction relation
g{:’b(n—l)—i—a—b if —k—1<n<0
(2.4) gsj'gl(n) = g(’j’b(n—l—l)—i—a—b ifo<n<k+1
0 otherwise

or equivalently

(2.5) gk—ztl(”) _ { g’(j,b(n +1) ifn<0

g{:,b(n —-1) ifn>0
Remark also that gsb is even and decreasing on N.

Let then x € mfb al be associated with a sequence (ay)necz satisfying
the previous induction relation, let y € mf“b al be associated with (b,)nez
ﬁfal] be associated with (¢, )nez which we compute as before.
Equations (2.2) show the relation for n > 0 (case n < 0 provides the same
computation):

and zy € m

a—br+g¥,(n+r), forr>0,
a—b)r+ gfyb(—r), for r > 0,
r), for 0 < r < n,

which gives because g¥ , is even and decreasing

(a—b)r+gk,(n+r), forr>0,
vg(Cy) > inf ¢ gk, (n—1)
gk y(n)+a—b
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But

(a—b)r +gEy(n+7) = (a—1b) (r+ V‘”U—Inzrlﬂhb

is strictly increasing in r and (a — b) + g§7b(n +1) > g, (n) because of
(2.4). Likewise,

ghpn)+a—b>=gitt(n—1) =gkt (n)
and finally, according to (2.5), gs,b(n -1) = gﬁl(n) The minimum is then
equal to gf;gl(n), which lets us conclude on the description of mﬁm].
Point 6. follows from this description, and proves 5. Point 4. follows
because any x € Gp o) can be written as z = ag —u with u € my, 41, a0 € At
and since W (mg) C mp, o) we can even choose ag = [ag] with @g € k. Then

either ag = 0 and = € m o) or x is invertible with

z7l = [ao_l} Z ([aal]u)n.

n>0

Let us prove now 8. Remark that any = € mp, 4 can be written as z =

To + pr1 i To € Mp o), T1 € Gpg for some a > a > b Write 2™ =
>oninem (F)pFagzl. We have to show pFzfaf — 0. When k goes to

k,n—+o00

infinity, it is clear. When n goes to infinity, remark that the convergence
of xy to 0 in Gy o) implies for any N and ¢ in N, z{ can be written, for n

«@e S & .
large enough as ZS>N Qg (%) + ZS>N b (ﬁ)? + plu with v € Gib,al
and ag, b in A™T. Fix then a t, and let us remark that if we choose a > a >
o 20 >p>0b,
yae\ ® B tyaes B tyo/e%/
P =p ps+t =p ps+t

/

Ofii,. The same computation for

belongs to A[a’(p—l)/p,ﬁ/(p—l)/p] for N >
(ﬁ)s shows that if N is chosen large enough, that is, for n large enough,
5 € P' AL (p-1)/p./(p-1)/p], Whence 8.

At last, 7. is a consequence of 8. Namely, any x € Gj 4 can be written
as ¥ = xo + pu with zg € G o) for some a > a > b and u € Gpp 4,
so that pu € my, . We deduce that z = [Tg] + v with Zg € k and v €
M o) + Mp o[ = Mpq[- S0 that, just like before, = either belongs to mp, of
or is invertible in G 4. O

Remark 2.9. — The preceding lemma makes Gy ,) into a complete
valuation ring with the valuation given by wvp 4)(2) = lim, oo %" where
k, =sup{k € N,z" € mfcb o)
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The following lemma provides a link between algebras Gy, o) and Acyys.

LEMMA 2.10. —
(1) Gjo,p) injects continuously in Acpys.
(2) Frobenius ¢ of A.pys and @g coincide on Gig p)-
(3) Any non zero element of Gy o ;) is invertible in Gy,jp—1,p—1] @z, Q.
(4) The series defining t/X converges in Gy ,) where it is invertible.

Proof. — The first point consists in showing that % € Acrys for all n

and converges to 0. Let E; be an Eisenstein polynomial for 7, it has degree
e and E,(Y) generates Wl(f)+) so that Ag.,s is the p-adic completion
of A"’[%}()n} and it is obvious that Y;:n lies in this ring and p-adically
converges to 0. The second point is an immediate consequence of the first

one.
Now let x € Gy,[,p), then there exists a sequence (a,)nen € (A* BDN
such that z = ) ya,Y" with Vn € N ; epvy(an) +n > 0. Then, ¥Vn €
N e(p — vp(an) + n = 3 and for & non zero, e(p — 1)vp(an) + n goes
to +00 when n — +00, it reaches its minimum K a finite number of times
and we fix ng the greater integer with K = e(p — 1)vp(an,) + no, so that

(2.6) e(p— Dvp(an/an,) +n—ng =20 ifn<ng
(2.7) e(p— Dvp(an/an,) +n—ng >0 ifn>ng

and Yn > ng ; e(p — 1)vp(an/an,) +n —ng > % — K hence it comes

lim inf e(p = vp(an/an,) + 1 =m0 > 1
n—00 n—ng D

which, combined with (2.7), shows the existence of some 0 < A < 1 with

e(p— Dvp(an/an,) +n—ng = A(n—ng)

-1
L Up(@n/tn,) +n—ng = 0.
1-A
This shows that for a = % >p—1, Zn>n0 5:0 YnTme € myg o). Inequality
(2.6) shows furthermore that ZZOZ_OI ;—;Y”’”O lies in m,_1 o[ and finally

Zn#no ;:0 yn—no ¢ M[p_1,q]- ’I‘hen7
T=an Y™ (14¢€); e €mp_yq
is invertible in Gy, _1,4) ®z, Qp C Gy,[p—1,p—1] ®z, Qp. Remark finally

X=[-1+p=Y?CYytpy; uveAt
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so that XP~1 = YPo/ +po/, o/,v' € AT from which we deduce for s prime
to p,

r r v T -1l _p
Xps—1 - XP (s—1) xr -1 B Xpr(s_l)P 1 (Ypek) =1 —k i
r - T - Z D Uk
p's S p k=0 p
p"—1 k 7pr__11 —r
f— Xp (571) g ( p ) pkuk

k=0

where u; € AT. But p}::f > r so that for all n > 1, X"~ /n € Gjg ) and

p;:f — 1 goes to +o0o with 7 — oo, which shows that X"~!/n converges
p-adically to 0 in Gyg - O

2.4. The Hilbert symbol of a formal group
2.4.1. The pairing associated with the Hilbert symbol

In this paragraph we express the Hilbert symbol of F' in terms of the
Herr complex attached to F[pM]. Let us recall that the Hilbert symbol of
a formal group is defined as the pairing:

(o, B) € K* x F(mg) — (o, B)pm = 7(a)(B1) —rF B € FpM]

where ) € F(mc,) satisfies pMidpB; = B and r 1 K* — G% is the
reciprocity map of local class field theory. In fact, we will be interested in
the pairing

(B,9) € F(mg) x Gg — (B,glrm = 981 —F B1 € F[pM]

where 81 € F(mg,) satisfies p™idp 1 = 8. Then (8,7(a)]par = (o, B)p,a
Put

R(F) = {(»Ti)z;o € F(me,) ; o € F(mg) and (pidp)ziq1 = 2; Vi > 0}
then the Hilbert symbol is a mod p reduction of the pairing
(z,9) € R(F) x Gk — (2, 9lr(r) = (97 —F xi); € T(F)

with ((z, glr(r))m = (w0, g]F,m for any z = (x;) € R(F).
This pairing is linked with the connecting map F(mg) — H(K,T(F))
in the long exact sequence associated with the short exact one:

0 — T(F) — lim F(mc,) — F(mc,) — 0
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where transition maps in the inverse limit are pidr and the last map is the
projection on the first component. The ring R(F') is then the preimage of
F(mK) by limF(me) — F(m@p).
Let now x € F(mg) be such that 6([z]) € F(mg). Then for all g € Gk,
(9= 1)d(x) € F(W(mg)) A PM4=0 ~ T(F)

with § defined at the end of §2.2. The following diagram is commutative

F(W (mg)) A P°M4=0 o G —— F(W(mg))(A-P)ola=0
6><idT
F(mg)r x Gk
ind\L
R(F) x Gx T(F)

where (z) = (6 0o 6(p*idp(x)))s = (6([p~*idr(z))])s and we denote by
F(mg)kg (resp. F(W(mg))k) the set of z € F(mg) (resp. F(W(mg)))
with 0([z]) € K (resp. 8(x) € K) and where the first pairing is simply
(u,9) = (g — Du.

Fix now a € F(mg) and a lift £ of @ in F(mg) which then satisfies
0([€]) = a. We get

3(((€); glr(r)) = (g —1)d(€)
for all g € Gk. Choose now 8 € F(YW][[Y]]) such that 8(8) = a = 6([¢]).
Then

VheGr, (h—1)(6(&) —r B) = j((t(&), hlrry)-
Moreover, §(&) —p 3 € F(W'(mg)) thus 14(6(¢) —r 3) € (Fil' Azrys)? and
FB))

ma(5(6) — ) = 32 LT A

u>1

3

converge in A", Put now A =V~ (;{4 ((55(8)_1? 55))> € Al .. These are
A —F
coordinates of a A € Depys(T(F)) ® Aepys in the basis (o,...,0"). And,

(2.8) Vh € GL, (h — 1))\ = (L(f)ah]R(F)
2.4.2. The approximated period matrix

Now we explicitly compute the Hilbert symbol of F, i.e. the image of
1(€) in HY (K, F[pM]) which coincides with the one of a. For that, we have
to give a triple in the first homology group of the Herr complex of F[p™]
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corresponding to a cocycle representing the image of ¢(£). Recall that if
such a triple is written as (z,y, z), then the associated cocycle is

g—(g—1(=b)+7" z+ Yy

where g, =~"7™ and b € F[pM]® A is a solution of (¢ —1)b = 2. In par-
ticular, the image of h € G, through this cocycle is (h—1)(—b). Let us start
with finding b € T'(F)®A such that for all h € G, (h—1)b = —((£), hlr(r)
mod pM. Equality (2.8) incites to build b as an approximation of —\. In
fact, we will build = by approximating (¢ — 1)(—A), whose coordinates in

(2 —1)ola(B)

the basis (o!,...,0") are V7! 0
Indeed, Lemma 2.2 shows that the action of ¢ is written in the basis
A
20
(o',...;0"V las [P . Because (o' = (0}),,...,0") is the fixed
0 In—g
basis of T(F), (0};,...,0%,) is a basis of F[p™] and we further fix 6},,...,

0", elements in F(YW][[Y]]) such that for all i, 8(6%,) = &%,(7) = 0o},
Define then the matrix

. (leA(é}w) o pMia(ohy) )
Y pr—
pMma6y) .. pMma(oly)

whose coefficients belong to A.pys, and more precisely to W[[Y]] H%” =
Gy,j0,p)- From Lemma 2.10, Vy is invertible in Gy,[p_1,,-1] ® Q,.

LEMMA 2.11. —
(1) The matrix XV;l has coefficients in Gy ) + %m[ﬁm[ C
Q[ﬁm] and thus (pg(XV;jl) € Glp/(p—1).p)-

(2) Coefficients of V;l lie in 7},61,/1(1,,1)9[1717], thus in 71/[61,/1(1),1” Gy, [1,p]
and

M

-1 _ y)—1
VY =V mod mm[Lp].

3) The principal part V(_l) of V71 has p-entire coefficients and its
p pal p Y Y p
derivative %V)(,fl) has coefficients in pM A..
(4) The matrix XV)(fl) has coefficients in At + pMA.
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Proof. — We use the strategy of [2, Paragraph 3.4.]. Let us recall that
Abrashkin there showed

PMay) € (EW<Y)YW[[Y]HE7T;WWHY”Hm”)n

p
st < o 5]
and
1) =~ pa(h) € ¥ (B wimg) + E=0V & [[E]

(o)~ pma@h) € (Wi >+};')A+HY;H)M.

Let VP be the matrix of the group dual to F. It satisfies the relation
tYD ) = ¢];,. And one can then write

YO Yy =tl, mod pM (Ew<y)w<m1:;)+ = ;Y) AT HyppH)

Yer -, [[Yer
WP Vy =tl, mod pM <Y€W(m]:3) + —A" H H) .
p p

Remark, because of Lemma 2.10, that the element ¢/X converges in

9{6 " and X = w[gl/p —1] = EW(Y)YP‘/(P_”U with v € QFL sof? 5O that
, it
VP Vy = t(I}, — pMu) with
p2—2p

E‘,T(Y) yer Y¢ -1

u € TW(WE) + Fg[om] C Ye/(p DTS e S Y
1 1
C vl Mt © PR

thus V;l = % (ZnGN pMnry ) tyb ¢ Q 7l whence the first point ; and
even

—1 -1 M 11 M
Vy =V mod ln g of Vy o €S9 Mkl

Recall t = E,(Y)o Y (X)) ; v’ € Gjop and remark that because Er is
an Eisenstein polynomial, E(Y) and Y¢ are associated in Gy o[ ; finally,

with the above computation, we deduce that ¢ and Y¢/(=1) are associated
in g[l,p]. Then

M

-1 p
Vy Ye(p+1)/(p—1)

g[l,p]'

1
Gnp + Yer/—1)

1
€ yer/o-D M1p) &
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So, Yfep/(p—lﬂ]};l has coefficients in Gy, 1 1] {%} NGnp = Gv,j1,p) be-

cause of Lemma 2.6. Let us further deduce that V}(,_l) has p-entire coeffi-
cients. It is to show that any z =3 _, a,Y™ € mgwm satisfies
a, € W for all n < 0. But that means that

yler/(0=11, — Z a, Y tler/(-1D1 ¢ Gy, [1,p]
nez

and thus if v,(an) < 1, n+ep/(p —1) > ep hence n > (p;# > 0 and

Vﬁ(/_l) has p-entire coefficients.
For the third point, let us recall the argument of [2, Lemma 4.5.4]. Write

d (-1 - d ~1
W =W )<dYVy> vy

since differentials of 4 and m_4 have coefficients in W, we get %Vy €
pM My, (W[Y]]) so

1
) 1.l

d (-1
- € gY,[p—L;D—l[ Qz, Qpn Y2ep/(p—1)

ay ¥
and the same argument as above permits to conclude (we get the inequality
n> B3 > 0).

Finally, the proof of Point 4. is the same as the one of Proposition 3.7,
Point d) in [2]. Let us write it in the following way: we know on the one
hand that V)(,_l) and then also X V}(,_l) has p-entire coefficients, so they have
coefficients in G,y o[ [+] and that U = X(Vy' — V)(fl)) has coefficients

in G p—1] [ﬂ On the other hand, Lemma 2.11 tells

XVyt € My (G0 + PG p-1).000)
Remark

X P x p
G/ (p-1),00 = AT Hye/(pfl)” = A"+ S /1) 00l

Thus we can write XV;1 = M; + pM M, with M; having coefficients in
Glo,p) and My in mgu/@,l),m[ C A. Therefore the matrix XVX(:I) —
pMMy = My — U has coefficients in Gpp—1 o0[ [] M Gpo,p—1] B} = AT, as
desired.
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Remark that z € F(W(mg)) can be written as z = [zo] + pu with u €
F(pW (mg)), thus

(;‘ - 1) ola(z) = (;‘ - 1) o la(lzo]) + <“; - 1) o la(u)

= Gl (2= 1) o Lafu) € Wimg)*

since [ 4(u) € pW (mg)<. In particular (% - 1) ola(B) € W(mg)4, so that

v <(A K lA(ﬁ)) c Al

0

2.4.3. An explicit computation of the Hilbert symbol

We come to the proposition that explicitly gives the desired triple. The
basic ingredient can be seen as a rewording of Proposition 3.8 of [2] which
provides the x coordinate of the triple and allows to prove that y is zero.
However, in order to get z, we have to carry Abrashkin’s computations to
the higher order. Indeed, we already know that z belongs to W(mg), but
we need its value modulo X W (mg).

PRrROPOSITION 2.12. — Denote by U the principal part of the vector

A
V}(/_l) (( p 1) © lA(ﬂ)) and define & = (017 o 7Oh)U' Then
0

(1) U e W[ n Ay A
(2) Letb e T(F)®A be asolution of (p—1)b = & then for any g € G,
(9—1b=(B(n),g9]lpr mod pM A + W (mpg).

Proof. — Point 1. can be shown like Point 3. of Lemma 2.11 above. The
second point appears as a rewording of [2, Proposition 3.8]. Let us give
another proof. Let us recall from Lemma 2.11:

pM

-1 _ yy—1
Ve =V mod G e M

then there is § € wpfli])w/(p,l)m[l,p] with Vit = Y1 +3. Write 6 = 0 + d
with 8, € pM—lye(p2_2p—1)/(p—1)g[0’p] and d9 € Wm[l,oo[- Let us

recall that we write V;l = V}(/_l) + U so that

XV = X8y = XV X0 — XU € G100 [Y] (V6o u A

TOME 61 (2011), FASCICULE 1



308 Floric TAVARES RIBEIRO

Then, if B is a matrix with coefficients in A such that

(2.9) (p-1B= (W7 -5) <( ~1)e lA(ﬁ)) ,

0

as in Paragraph 1.7, (¢ —w)(X1B) = (XVX(/* _ X5, ) (( — 1%0 u(ﬁ))

has coefficients in At so that, by successive approximations modulo p* and
since ET is integrally closed, we get B € XilA"‘ - FilOBcrys. Still write

-1 [ 1a(6(€) —F B) {0 h
A=V <mAM@Fm)E@1A””'

We compute

lie in Yg[oyp], the se-

(p=1)(B=A)= (6 —U) ((? - 12)%1(5))
4-1)o0La(8)
0

Since the coefficients of ] := 1 <(
ries — ) oy " (07) converges to Ay € Y Gyg ) with (¢ —1)(A1) = 0. Like-
wise the coefficients of 6, = U << —1)e lA(ﬂ)) belong to YW([Y]] +

0

ng[o’p] so that — )y ¢"(d5) converges to a Ay with co-

P
efficients in YW/[[Y]] + Wgy 0,5 satisfying (¢ —1)(Ag) = d5.
Finally,
(6= 1)(B-A— A +As) =0
with B — A — A1 + Ay having coefficients in FilOBcrys. And the fact that
(FilOBcryS)@zl = Qp shows B—A — Ay + Ay € Q. Then, for g € Gk,
(g—1)(0"...,0") (B—A—=A;+A3)=0 mod pM

so that

(9= 1)(0,..,0" (B) = (g—1)(0",...,0") (A+ Ay — Ay)
(L(§)>Q]R(F) + (g - 1)(017 ce 7Oh) (Al - AQ)
And since A; — A, has coefficients in %g[o,p], the same holds for the co-

ordinates of (g — 1)(0*,...,0") (A; — Ay). We find that the coordinates of
(9—1) ((o*,...,0"B) = (.(&), ]R(F) have coefficients in

1
Ye(p+1)/(p—1)

g ooﬂ g[o,p]—YA C W(mg).

p—1’

ANNALES DE L’INSTITUT FOURIER



AN EXPLICIT FORMULA FOR THE HILBERT SYMBOL 309

To finish, recall Equality (2.9): there exists d2 € Whm[lm[ c pMA

such that
A
_ 2 —1)ol
(p-0B= (V" -5) ((,, ) AW))
0
And surjectivity of ¢ — 1 on A permits to conclude. |

Remark 2.13. — It is possible to get rid of A..,s here by studying the
action of (¢ — 1) on Gjo ) [+]-

2.4.4. An explicit computation of the Kummer map

We will use the above result in the following specified form.

PROPOSITION 2.14. — Let a € F(mg) and § € F(YW][Y]]) be such
that a = 6(8) = B(m). Put

z=(o',..., oMYV <(? B 1)00 lf‘@) € D (T(F)).

There exists z € Dy, (T(F))NT(F)® W (mg) unique modulo p™ such that
the class of (x,0,z) corresponds to the image of o by the Kummer map
F(mg) — HY(K, F[p™]). Moreover,

z = XYVX(;D% <rf:,l4((ﬂﬂ))> mod XW(mg).
Proof. — We use Proposition 2.12, and remark that
-z eT(F)QYWI[Y]]C (¢ — 1)(T(F)  YW[[Y]])-
So, if b € T(F) @ A satisfies (¢ — 1)b = x, then for any g € G,
(9—1b=(a,glrm mod p™ A+ W (mg).
Thus for any h € G, since (h — 1)b € ker(p — 1) = T(F),
(h—1)b= (a,hlpy mod pMT(F).

We deduce there exist y, z € D (T(F)) unique modulo p* such that the
class of the triple (x,v, 2) corresponds to the image of a in H'(K, F[p™]);
indeed let (1,91, 21) be such a triple, and by € T(F) ® A a solution of
(¢ — 1)by = x; then,

VYheGr, (h—1)(b1 —b)=0 mod p™, thus, by —be Di(F[pM]),

which shows that the class of (z,y; + (v —1)(b—101),21 + (1 — 1)(b — b))
corresponds to the same class as (z1, 41, 21) and, if x is fixed, this triple is
unique.
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Let us now determine y: let 7 lift v then
(3 = 1)(=b) +y = (@, 3lpa = (F = 1)(=b) mod p™ A + W (mg)
hence, since (5 —1)(=b) € T(F), y € T(F) @ W(mg) NT(F) = {0}.
Likewise, let 7 lift 7 then
(F = 1)(=b) + 2 = (o, Flpr = (F — 1)(=b) mod pM A + W (mg)

hence z € T(F) @ W(mg). As z satisfies moreover (7 — 1)z = (¢ — 1)z, this
uniquely determines z since ¢ — 1 is injective on T'(F) @ W (mg). In order
to specify z, we need the

LEMMA 2.15. —
(1) For all U € W[[Y]], the following congruence holds

(r— 1)V VU = xyvle Zg mod XW (mg) + pA.

(2) There exists u € mp,/(,—1),p) Such that

1
_ e =I; 0
P (XVy!) = (po (X)W 17 +pMu) (7’0 I d)
Proof of the lemma. — We first specify (7 — I)V}(,_l) Remark that if
F(Y) is aseries in W{{Y}}NA, (r=1)f(Y) = 2,5, S22 F)(Y). Thus:
0 _ yy ey XY)? & (Xy)" (-1)
—1 = XY
(r =Wy vt gy +§3 nl dY”V

Let us estimate the summand (X:,)” d‘gln V( D Lemma 2.11 shows that
Lyt = pMVYIWVY for some W with coefficients in W[Y]] and the

principal part of V71WV71 is entire. Thus, on the one hand
(XY)? a?

(- 1) ( 1) M X
V 5 y? ep” A
and on the other hand one can write
Mk
dYn Z P Wnk

where the w,j; are sums of terms of the form V;lm,lv;lvwvn,z .
W, kv;l, where W, ; € W([[Y]] are derivatives of W. Recall that the coeffi-

1
cients of Vy, ! belong to — (Q[o,p] +pM [1/(p*1),p])7 then the coefficients
of V; Wn,l e n,kVY he in Xk+1g07p +pM-t (ﬁm[l/(p,l)_’p]) .
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Suppose 1 < k < n — 1. Since vp(n!) < [n/(p—1)] =n/, thereis u € Z,
such that

mr (XY)"
n!

n—k—2
2X

_ ynyk+
=Y"X pn’ MEk *

p

Since p > 2 and k > 1,

xn—k—2 Xxp-1
(n’_Mk)(p—l)gn—k—QandeW Cg[O:P]'
" p

Thus, pM* &0y, | Ties in myg ) + pM ' m/(p_1).p1-
Let now k = 1, write

pdvt T
W1 = vY1WWVY1 = (n— D)WV WYt
and
XY n—1 XY n—1 o Xn—
&y n)' pMwnq = [C.0.0)in n) VyiWwivgt = Sy xSyt

has coefficients in mg ) +pM*1m[1/(p_1)7p} as before.
Let k = n, one has

W =1V Wt Ve Waa o W Vit Vi Wy = W,

so that X¥)" ) pM Wn,n lies in pMn% (Q[O,p] +p m[l/(p_l)m]) .
Finally, for k=mn—1,since vp(n!) <n/(p—1) <n-—1,

Xy)" _
( ) pM(n 1)

= W1 €Y (G0 + 0 ' G/p-1) ) -

The same argument as for Point 1. above shows that for n > 2, the coeffi-

cients of X:L/I d%:" V( Y lie in XW(mg) + p™ A hence the coefficients of

(r— 1)V3(; ) lie in XW(mg) +pMA. Point 2. then follows from

(r= WU = (e =) U+ (e - 1)U
and the congruence (1 — 1)U = XY % mod XW (mg).

Now, let us carry on computations of Lemma 2.11: we write XVy 1=
(Ih —|—pM Lug)tVP with uy € ML) And since VP has coefficients in

TOME 61 (2011), FASCICULE 1



312 Floric TAVARES RIBEIRO

Glo,p) C Acrys where g and ¢ coincide, the following holds in G, /(p—1),p):

06 (X%) = 05 () (n + #¥go(un)) 05 (V)

iy
©g (X> (Ih +pMs0g(v1))p tyD -1 <p0d 0 )

t In—a

X M M —1le—1 lId 0
= wg|— | Un+p" @g(v1))In —p v)ptVy € | P
t 0 Ipa

e NYE! 0
- et (0 0)
h—d

where ¥ = (g(v1) — v — pMeg(v1)v) V3 €L
Let us clarify this: v,v; € %m[l/(p,l)’p], thus ¢g(vy) lies in %m[p/(p,l)’p}.
Therefore pMvpg(v1) € %m[p/(p_l)yp] and,

1
pg(v1) —v—ppg(vi)v € 5 M/ (o=1).2]

Hence, since V;.!' € Wg[m] , p¥ lies in %m[p/(p_l),p]. The result
follows then from ¢g(X) € pXGjo ) and X € Yep/@*l)g[,,/(,,_l)m[. O

X La(B)
Remark ¢ (XY ) %) — & )Y% o and u% (mA(/B) € Mpp/(p—1),p]

p

so that we compute modulo p™my,/(,—1) p:

ooy () = e (2 ) (50)

P(X) ), 1 d (;} ozAw)) .

= D Y ody ma(fB)

This yields to

|
5
s
h<
N
B
VN
Sl
o
=
— =
< SN———
+
i~}
S
<
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with u € mp, /(1) p)- Write u = uy +up with u; € %Q[o’p}, thus pMu, €
Xmygp and uz € My, /(p—1),00[- In addition, V)(,_l) —V;l € Glo,p) ® Qp hence

-1 y,-1) 4 [ 1a(B)
¥g (XY (VY Vy ) dy <mA(ﬂ)>> € Xg[pr] ®Qp'
Write moreover

PX) oy d (2 0lalB) (n d (ZolaB)) = | =
. vyldy<f’ (6)> XYoo Ty ) TR ER

with

A
= =xy (W - d <p oLa(p)

av \ "ma(9) )6 (Xmap ©@,)°

h

[1]

= A PRy
2 P Yoay \ ma(d)

It can then be written as My + My with My € Xmg, and My € pMA.
Eventually,

(o (500)) i (P ) o

lies in M (X Gjo,p) ® Q) for some My € A. Then, since XG0, @QpN A=
XA™*, we deduce the congruence modulo XA+ + pM A

o (ot () =0 (£

which lets us prove the proposition since modulo XA+ + pM A

-1 d_(1a(B) n d ((5-1)clad)
(p— XYV i (mt(ﬁ)) Xyvit i (( 2) )

X) - pX d (dolaB -
e(X) — 1 (p Al )> €X (Mo + 2™ G/ (r-1),000)

= (r—-1z

and since the equation (¢ —1)Z = o € XAt + pM A admits a solution
Z e XAt +pMA. O

2.5. The explicit formula

We come now to the proof of the main theorem, the explicit formula for
the Hilbert symbol. Write Tr for the trace Try,z, .
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THEOREM 2.16. — Let 8 € F(YW[[Y]]) and a € (W[[Y]][])*. Denote

L(a) = (1 - ?) log a(Y) = %log ;‘;?:) e W),

Then coefficients of the Hilbert symbol (a(m), 3(m))p.ar in (04, ...,0%)
are

(TroResy)Vy' <<(1 - %) ° ZA(@) dioga(Y) — X(OD% (ﬁmo lA(ﬂ)))

0 A(B)

Proof. — We use the fact that if n € HY(K,Z/pMZ) and r(z) € G% is
the image by the reciprocity isomorphism x € K then invg(dz Un) =
n(r(x)). From Proposition 1.14, da(m) corresponds to a triple (z,y, z) con-
gruent modulo XYW|[[X,Y]] to

<8(XY) - s(;/), 0, YdlogS(Y)> ®e.

We compute its cup-product with the image (2,0, 2') in H' (K, F[pM]) of
6(B) given by Proposition 2.14 where we recall that

r (-1) (*_I)OZA(ﬂ)
(i

, yd (1
7 = Xyw ”ﬁ <m“1((ﬂﬂ))> mod XW (mg)

We get the triple (a, b, ¢) where:

4 _1)o
o () g

because Proposition 1.14 says that y € XYW/[[X,Y]] and Lemma 2.11 that
X YVX(;D has coefficients in W (mg) + p™ A. Moreover,

:7y®’yz +Z( )Z 17—,1 Z®7k(7——1)"*1*kz’

nz1

lies in W (mg) because y, z, 2/ € W (mg). Finally, b = 2 @ 72’ — 2 ® 2z’ and
1y ((A=1)ol
@72’ = (r— D(log(S(Y))/t+p) 7 (Vi(/ 2 <( 4 )Oo A(B) ® €.

On the one hand
(1 —1)(log(S(Y))/t + p) = Ydiog F(Y) mod XYW[[X,Y]]
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oy ((A-1
and on the other hand, Lemma 2.15 says that 7 <V§, b <( P )OO LalB)

is congruent modulo XYW|[X,Y]] to

P ((;;‘ e w)) Sxyp L <<;; e u(@) |

Thus, since XYVX(,*U has coefficients in W (mg) +pMA,

A [¢]
z@ra =YY <(P B 1)0 ZA(ﬂ)) diogS(Y) mod W(mg).

Finally,
s(Y) _s(¥)\
T ® 2 ( X 5 )% ®e
and since 2’ = XYV( 1) ( ) modulo XW (mg), we get the con-
gruence

- -1 _d [ 1a(B) _
—z@ez =Ys(Y)Vy v (mi(ﬁ)) mod W (mg).

Eventually, (a,b, c) is congruent mod W (mg) to (0,',0) with b equal to

[ ((5=1)0lalB) d (L)1, S
Vars << 0 )dlogS(Y> + (mf;(ﬂ)> plog S(Yp)> ®e.

The theorem follows then from the lemma:

LEMMA 2.17. — Let C = C,.,,(AL(1)) be the complex computing
Galois cohomology of Zp(1).

(1) Let f(Y) =320 % € My (A) be the principal part of Vi Vg(Y)
with g(Y') having coefficients in W{[Y']]. Then there exists a triple
(x1,22,0) with coefficients in W (mg) such that (1,22 + f(Y) ®
£,0) € B%(C). In other words the image of (z1,72+ f(Y) ®¢,0) in
H?*(K,Z,(1)) is zero.

(2) Let (z,y,2) € Z*(C) with z,y,2 € W(mg)(1) then (z,y,2) €
B2(C).

(3) Let w € W then (0,w ® ¢,0) € Z?(C) and its image through the
reciprocity isomorphism is Tr(w).

Proof of the lemma. — Put w, = W + ﬁ € Ar. Then
1 1 1
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and

€ _ x(v)e
7(Y"((HX)‘"—l)) Yo (1+ X)—x(n = 1)

= x(yo! (yn ( +§()—" - 1)> '

The Taylor expansion

571 _ X(PY) . X(V)(X(V) — 1) (7_ o 1) + (7_ o 1)29(7_ _ 1)

2
where g(7 — 1) is a power series in 7 — 1 yields to the relation
1
(2.11) (’y*l)wn@)é‘:g(T*l)(T*l)ﬁ.

From Lemma 2.15, we know (1 — 1)VDU for U € W][Y]] has coeffi-
cients in W(mg). Relation (2.10) then shows (7 — 1) _japw, = f(Y)
mod W(mg) and Relation (2.11) that (y=1) " . apw, =0 mod W (mg)
which proves that the coboundary image of triple (> anWnp,0,0) in
H?(C) has the desired form, hence 1.

To show 2. we have to solve for z,y, 2 € W(mg)(1) the system

z = (y=Du+(1—-p
y = (t-Du+(1-pw
= ()~ 1w+ (6 —~)w.

n>0

Consider therefore v, w € W(mg)(1) solutions of x = (¢ — 1)v and y =
(¢ — 1)w which exist, and are unique since ¢ — 1 is bijective on W(mg)(1).
Then, by combining these equations with the ones of the system, we get

(o = (XD =D + (6 —P)w) = —(7XY = Dz — (§ =)y = (¢ — 1)z

Since z and (7X(7) —1)v 4 (§ — y)w are elements of W (mg)(1) where (p—1)
is injective, the equality z = (7X() — 1)v + (§ — y)w holds ; (z,y, 2) is then
a coboundary, image of (0, v, w).

Finally, for Point 3., remark that (0,w ® ,0) = (0,0,1 ® £) U (w, 0,0).
Proposition 1.14 says (0,0, 1®¢) is the image through the Kummer map of
a uniformizer of K. (To see this, take F(Y) =Y.) In addition (0,w ® ¢,0)
corresponds from Theorem 1.5 to the character  of Gk defined in the
following way: choose b € A such that (¢ — 1)b = w, then for all g €
Gk, n(g) = (1—g)b. Remark that since w € W, we can choose b € W"" and
that the image through the Kummer map of a uniformizer is the Frobenius
Frobg, thus the image through reciprocity isomorphism of (0, w ® €,0) is

(1 —Frobg)b=(1- o™ b=1+¢+ -+ " Hw = Trw
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where fx = f(K/Qp), which proves the lemma. O

We prove then the theorem by remarking, from the congruence shown
above, that the triple (a, b, ¢) can be written as a sum of a triple (0, g(Y),0)
where ¢ is the negative part of a vector series in Y and then is zero
in H?(K,Z/pMZ), of a triple with coefficients in W (mg)(1), then also a
coboundary because of the lemma above and finally a triple (0,w ® ¢,0)
where w is the constant term of the vector series

v [ ((5 =1 olalB) d (148 \ 1, a)
YV . dogo(Y) + = (m“‘; ( 6)) “lo

P & a(YP)

hence the residue of

e (((3=1)0u®) 4 oy 4 4 (zA(m)llOgamp

0 dy \ma(B)) p = a(YP)
The only term with a non zero contribution is then the residue, and that
contribution is, according to the lemma, given by the trace. O
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